

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: H
ENVIRONMENT & EARTH SCIENCE
Volume 20 Issue 6 Version 1.0 Year 2020
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Palynology and Stratigraphy Relationship of the Facies Intertongueing between the Afikpo Sandstone and Nkporo Shale in the Cretaceous Anambra Basin, Southeastern Nigeria

By Ola-Buraimo A. O.

Federal University

Abstract- Palynological research on ditch cutting samples from the upper part of the Ubiaja- 1 well (40-1425ft) located in the western flank of the Anambra Basin Nigeria shows that sandstone of the Campanian to Early Maastrichtian age in Afikpo Basin has lateral extension into the Anambra Basin. Lithological description of the stratigraphic sequence indicates that the interval is characterized by nine different lithofacies units. These include granulestone, conglomeratic sandstone which are poorly sorted, thickly bedded and deposited in continental setting; pebble sandstone, coarse sandstone are also poorly sorted, with more pebble grains, deposited under high energy current in continental environment. Other lithofacies include claystone, mudstone, deposited in fluvial environment; heterolith facies of various proportions of sand and shale comprising of shaly sand and sandy shale deposited in deltaic setting; followed by dark grey shale, deposited in the marginal marine environment. The sandstone facies is dated Campanian to Early Maastrichtian; equivalent to Afikpo Sandstone in the adjacent Afikpo Basin.

Keywords: nkporo group, intertongueing, afikpo sandstone, nkporo shale/afikpo sandstone, campanian-early maastrichtian and intercalation.

GJSFR-H Classification: FOR Code: 059999

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Palynology and Stratigraphy Relationship of the Facies Intertongueing Between the Afikpo Sandstone and Nkporo Shale in the Cretaceous Anambra Basin, Southeastern Nigeria

Ola-Buraimo A. O.

Abstract- Palynological research on ditch cutting samples from the upper part of the Ubiaja- 1 well (40-1425ft) located in the western flank of the Anambra Basin Nigeria shows that sandstone of the Campanian to Early Maastrichtian age in Afikpo Basin has lateral extension into the Anambra Basin. Lithological description of the stratigraphic sequence indicates that the interval is characterized by nine different lithofacies units. These include granulestone, conglomeratic sandstone which are poorly sorted, thickly bedded and deposited in continental setting; pebble sandstone, coarse sandstone are also poorly sorted, with more pebble grains, deposited under high energy current in continental environment. Other lithofacies include claystone, mudstone, deposited in fluvial environment; heterolith facies of various proportions of sand and shale comprising of shaly sand and sandy shale deposited in deltaic setting; followed by dark grey shale, deposited in the marginal marine environment. The sandstone facies is dated Campanian to Early Maastrichtian; equivalent to Afikpo Sandstone in the adjacent Afikpo Basin.

Two palynological zones: *Milfordia* spp acme zone I characterized by relative high abundance of *Milfordia* spp. such as *Milfordia* sp. and *Milfordia jardinei*, dated Campanian and the overlying *Foveotriletes margaritae* zone II characterized by paucity of *Milfordia* spp. and co-occurrence of *Monocolpopollenites sphaeroidites*, *Syncolporites* sp., *Ephedripites* sp., and *Monosulcites* sp.; dated Early Maastrichtian age. The age dating and the stratigraphic lithofacies is equivalent to Nkporo Shale/Afikpo Sandstone known for Afikpo Basin stratigraphy but here reported newly in the Anambra Basin. This suggests lateral facies intertongueing of Afikpo Sandstone characterized by erosional surfaces, unconformable with Nkporo Shale, extended into Anambra Basin. The result reveals a new sandstone member in the Nkporo Formation or in another way makes Nkporo Formation to become Nkporo Group comprising of Nkporo Shale and Afikpo Sandstone.

Keywords: nkporo group, intertongueing, afikpo sandstone, nkporo shale/afikpo sandstone, campanian-early maastrichtian and intercalation.

I. INTRODUCTION

The full knowledge of the stratigraphy of Anambra Basin is still a mirage considering the complexity of the lithofacies in both vertical and lateral relationship. The Ubiaja-1 well is located in the Anambra Basin, Delta State, Nigeria (Fig. 1). A considerable lower section of it had earlier been investigated by Ola-Buraimo *et al*, (2015). In this study the upper part of the well is being investigated to further elucidate the lithofacies sequence and to determine both the palynostratigraphy and paleo environment of deposition of the sediments. Detail investigation shows that there is much complexity attached to the understanding of the stacking patterns of contemporaneous sediments, thereby making it virtually difficult to emphatically say that the formations are composed of a particular sequence in one location compared to the other. A study of the Ubiaja-1 well revealed two important information in terms of age dating which varies from the oldest sediment of Eze-Aku Formation dated Turonian (Ola-Buraimo *et al*, 2015) and the uppermost part of this study which indicates Nkporo/Afikpo Formation which has never been reported for Anambra Basin but only for Afikpo Basin (Nwajide, 1990). A lithostratigraphic sequence of over 300ft shows that younger formations such as Mamu, Ajali, Nsukka, Imo, Ameki and Ogwashii-Asaba Formations are not present. This raises a lot of concern and why they are missing from the established sequence of Anambra Basin up to the near surface of the studied well.

Palynological study of this well has raised another dust in terms of what could have been responsible for the non-deposition or removal of such thick pile of sediments involving several formations. A conclusive statement cannot be made here but it could suggest another phase of tectonic activity that has not been noticed and reported in the Anambra Basin. After the Early Maastrichtian deposition of the Afikpo Sandstone, it was followed by period of structural readjustment leading to tectonic activity whereby there was local upliftment of the Ubiaja syncline into a platform; that is from a graben into a horst compared to

its adjacent structural blocks. However, this idea is at a premature stage because it lacks enough data probably due to inadequate sampling and poor marker palynomorph recovery which needs further investigation by collecting more samples from the area to corroborate

results obtained from this study. However, a new Stratigraphy is suggested for the Nkporo Formation to become Nkporo Group comprising of Nkporo Shale and Afikpo Sandstone.

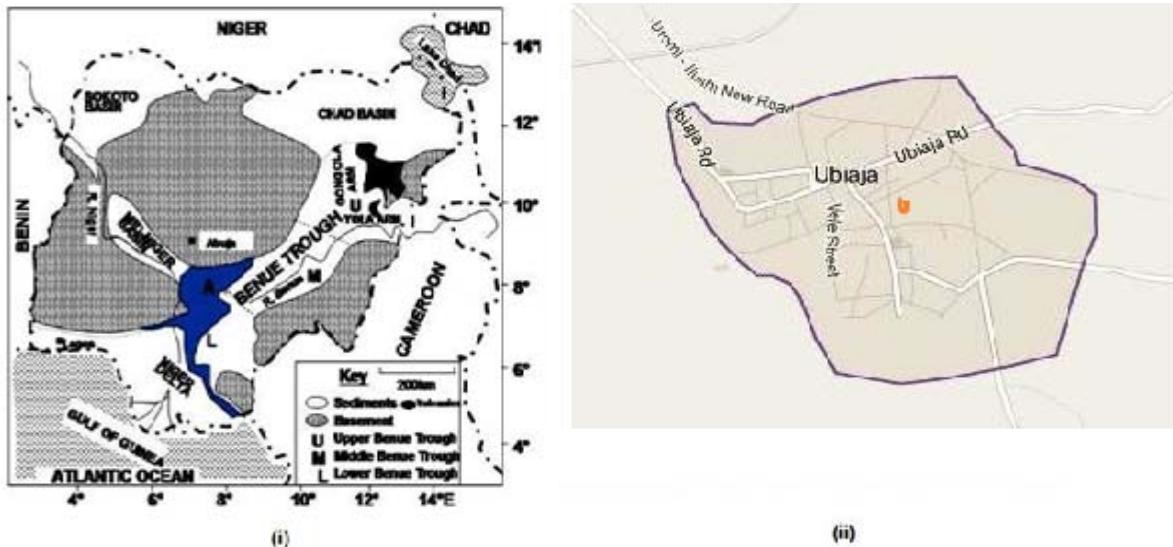


Fig. 1: (i) Generalized geological map of Nigeria showing Anambra Basin [Whiteman, 1982; blue color-A]; (ii) location map of the Ubajia-1 well in Anambra Basin (Adopted from Ola-Buraimo *et al.*, 2015)

II. GEOLOGIC SETTING

The Anambra Basin is believed to be the lower section of the Benue Trough, an intracratonic basin, trending NE-SW, folded and aborted rift basin that runs obliquely across Nigeria. Its origin was linked to the tectonic process that accompanied the separation of the African and South American plates in the Early Cretaceous (Murat, 1972; Burke *et al.*, 1972). Structurally, the evolution of the Anambra Basin has been described by some researcher (Nwachukwu, 1972; Ojoh, 1988; Popoff, 1990; Fairhead and Binks, 1991; Obi *et al.*, 2001; Obi and Okogbue, 2004). Prior to the tectonic event, the Anambra Basin was considered to be a platform; that was thinly covered by sediments while the Abakaliki Synclinorium was an axis of active sedimentation. Recently, understanding the stratigraphy of the Anambra Basin has shown that this assertion might not be widely applicable to the whole basin rather a local aspect of it. This is because oldest sediments of Albian to Upper Cenomanian age (Ola-Buraimo and Akaegbobi, 2013b) within the basin at a great depth has proved that when there was active sedimentation in the Abakaliki Synclinorium, the same active sediment deposition was also taking place in some other parts of the Anambra Basin.

There is an old school of thought which believes that the folding of the Abakaliki Anticlinorium led to lateral shifting of the depositional axis into the Anambra Basin which began to accumulate sediments shed largely from the Abakaliki Anticlinorium (Murat, 1972;

Hoque and Nwajide, 1985; Amajor, 1987). Also, this explanation given for the post Santonian deposition of sediments in the Anambra Basin lacks logical reasoning and simple geological law of superposition. Firstly, pre-Santonian sediments which include Asu River Group, dated Albian to Lower Cenomanian (Ola-Buraimo and Akaegbobi, 2013b); Eze-Aku Formation, dated Upper Cenomanian-Turonian (Ola-Buraimo, 2013a); and Awgu Formation, dated Coniacian (Ola-Buraimo, 2013c) have been found present in the Anambra Basin. Secondly, the sediments claimed to have been shed from Abakaliki Anticlinorium to Anambra Basin after Santonian tectonics suppose to have been deposited in reverse order of the youngest sediment (Awgu) being eroded first from the top and deposited, followed by Eze-Aku and Asu River at the top. However, this is not the case.

Thirdly, Stratigraphy rule applies that in reworked sediment like that suggested for Anambra Basin (Murat, 1972; Hoque and Nwajide, 1985) should contain both older and younger fossils, where the younger fossil takes precedent over the older fossil in dating the formation. Ola-Buraimo *et al.* (2015) reported that all pre Santonian formations dated palynologically did not show any evidence of reworking which should have shown admixture of older and younger fossils. Such reworked sediment was only reported in the Neogene Ogwashi-Asaba Formation (Ola-Buraimo and Akaegbobi, 2012).

The lithostratigraphic framework for the Early Cretaceous-Oligocene strata in the southeastern Nigeria

has been summarized by Nwajide, (1990; Table 1). Various authors including Arua, (1986); Anyanwu and Arua, (1990); Fayose and Ola, (1990) have suggested a progressive deepening of the basin from lower coastal plain and shoreline deltas to shoreline and marginal marine deposits. The resulting post Santonian stratigraphy succession comprising of Nkporo Group,

Mamu Formation, Ajali Sandstone, Nsukka Formation, Imo Formation, Ameki Formation and Ogwashi-Asaba Formation is presented in Table 1. The detailed stratigraphic descriptions of the formations have been reported by many authors (Petter, 1978; Ladipo, 1985; Agagu *et al.*, 1986; Reijers, 1996; Ola-Buraimo and Akaegbobi, 2012, 2013b).

Table 1: Correlation chart for early cretaceous strata in southeastern Nigeria (Modified after Nwajide, 1990)

Age	Abakaliki-Anambra Basin		Afikpo Basin
30M.Y	Oligocene	Ogwashi-Asaba Formation	Ogwashi-Asaba Formation
54.9	Eocene	Ameki/Nanka Formation Nsuegbe Sandstone (Ameki Group)	Ameki Formation
65	Paleocene	Imo Formation Nsukka Formation	Imo Formation Nsukka Formation
73	Maastrichtian	Ajali Formation Mamu Formation	Ajali Formation Mamu Formation
83	Campanian	Nkporo Oweli Formation/Enugu Shale	Nkporo Shale/Afikpo Sandstone
87.5	Santonian		
88.5	Coniacian	Agbani Sandstone/Awgu Shale	Non-deposition/erosion
93	Turonian	Eze Aku Group	Eze Aku Group (include Amasiri Sandstone)
100	Cenonian-Albian	Asu River Group	Asu River Group
119	Aptian Berremian Hauterivian	Unnamed Group	
Precambriam		Basement Complex	

III. MATERIALS AND METHODS

Detailed lithostratigraphy description was carried out on fifty two samples under the microscope in the laboratory. The lithological description followed international standard by considering the type of facies, colour, textural parameters such as grain size, roundness, and sorting. Other important features noted are fossil contents, post depositional effect (diagenesis) and presence of calcite or authigenic minerals such as glauconite or pyrite.

The materials used for the palynological analysis are mortar and pestle, weighing balance, sample plastic cups, pipettes, 5 micron sieves, centrifuge, fume cupboard, Branson sonifer 250, distilled water, test tubes, glass slide and cover slip, hydrochloric acid (HCl), hydrofluoric acid (HF), filter paper, glycerine ($C_3H_8O_3$), 250 ml polypropylene beakers, Nitric acid (HNO_3), zinc bromide ($ZnBr_2$), TPX (a mounting medium), potassium hydroxide (KOH) and personal protective wears such as safety gloves, glasses and coverall. Fifteen samples were selected and taken at irregular interval because some of the intervals are missing. Therefore, 10 g of the samples

were soaked overnight in Hydrofluoric acid (HF), and stirred intermittently for effective digestion.

To completely remove the fluoro-silicate compounds that usually form from the reaction with HF, the content was again treated with warm 10 % HCl and finally completely neutralized with distilled water. Sieving process with 5 μ m mesh was undertaken in order to remove clay particles present, enhance collection of the debris and to achieve clean slide making. The retrieved debris of the samples was mildly oxidized, followed by heavy mineral liquid separation of the macerals using zinc bromide ($ZnBr_2$) at 2.1g/cc. The collected residue was mounted on glass slides with DPX. The preparation method was in accordance with standard methods (Traverse, 1988; Wood *et al.*, 1996). Important forms including pollen and spores photographs were taken with Nikon Koolpix P6000 digital camera.

IV. RESULTS AND DISCUSSION

a) Lithology Description

i. Lithostratigraphy of Ubajia-1 Well

The lithostratigraphy analysis result shows that there are nine lithofacies units delineated and they occur

suggests Nkporo Formation to become Nkporo Group comprising of Nkporo Shale and Afikpo Sandstone.

Table 2: Lithostratigraphy, Palynological Zones and Paleoenvironment of the Studied Interval

V. BIOZONATION

Palynological analysis was carried out yielded palynological contents such as pollen, spores, dinoflagellates, algae, and fungal spore. The interval yielded poor to moderate amount of palynomorphs which are fairly preserved. However, diagnostic forms present were used for palynozonation exercise. Two palynological zones were erected after the works of Jardine and Magloire, (1965); Lawal, (1982); Lawal and Moullade, (1986); Ola-Buraimo, (2012); Ola-Buraimo and Akaegbobi, (2013b). The details and basis of establishing the zones are given below.

Interval: 870-1425 ft

Zone: *Milfordia* spp. Acme Zone

Age: Campanian

Characteristics: The base of the interval is marked by the appearance of *Milfordia* sp., *Proxapertites cursus*, *Tricolpites* sp., and *Inaperturopollenites* sp. Depth 1330 ft is characterized by the occurrence of *Milfordia* sp., *Syncolporites marginatus* and *Tricolpites* sp. There is a continuous occurrence of *Milfordia* spp. in the interval with relative maximum development within the interval. Other forms that occurred within the interval include *Inaperturopollenites* sp, *Proxapertites cursus*, *Tricolpites* sp., *Syncolporites marginatus*, *Verrucatosporites usmensis*, *Zlvisporites blanensis*, *Milfordia jardinei*, *Cyathidites* sp. and *Laevigatosporites* sp. The top of the interval is marked by the top quantitative occurrence of *Milfordia* sp. The fossil assemblage observed here is similar to palynological report on *Milfordia* spp acme zone 3 reported on Tuma-1 well, Bornu Basin, Nigeria (Ola-Buraimo, 2012), also similar to assemblages reported on Nkporo Shale in Anambra Basin, southeastern Nigeria(Ola-Buraimo and Akaegbobi, 2013b). The interval is dated Campanian age and stratigraphically belongs to Nkporo Formation in Anambra Basin, southeastern Nigeria (see Tables 1 and 2).

Interval: 40-870 ft

Zone: *Foveotriletes margaritae* Assemblage Zone II

Age: Early Maastrichtian

Characteristics: The base of the interval coincides with the top of the underlying zone I marked by the quantitative top occurrence of *Milfordia* spp. The interval is sparse in miospores is characterized by the continuous occurrence of *Monocolpopollenites sphaeroidites* and occurrences of *Syncolporites* sp., *Monosulcites* sp., *Ephedripites multicostatus*, *Milfordia* sp., *Milfordia jardinei*, *Laevigatosporites* sp., and *Cyathidites* sp. The assemblage of palynomorphs in this interval is comparable with other established zones. It is partly similar to earlier works of Ola-Buraimo, (2012) and

Ola-Buraimo and Akaegbobi, (2013b). The interval is also dated Early Maastrichtian based on negative criteria: it lacks diagnostic Middle and Late Maastrichtian forms such as maximum development of *Longapertites marginatus* (Ogala et al, 2010), and appearance of *Spinizonocolpites baculatus* (Lawal and Moullade, 1986) respectively. It is also based on the stratigraphic position which suggests Early Maastrichtian age and well compared to the palynomorph assemblages reported on Tuma-1 well, Bornu Basin, northeastern Nigeria (Ola-Buraimo, 2012). Therefore, the interval is equivalent in terms of facies and age to Afikpo Sandstone established in Afikpo Basin (Nwajide, 1990; see Tables 1 and 2).

VI. PALEOENVIRONMENT OF DEPOSITION

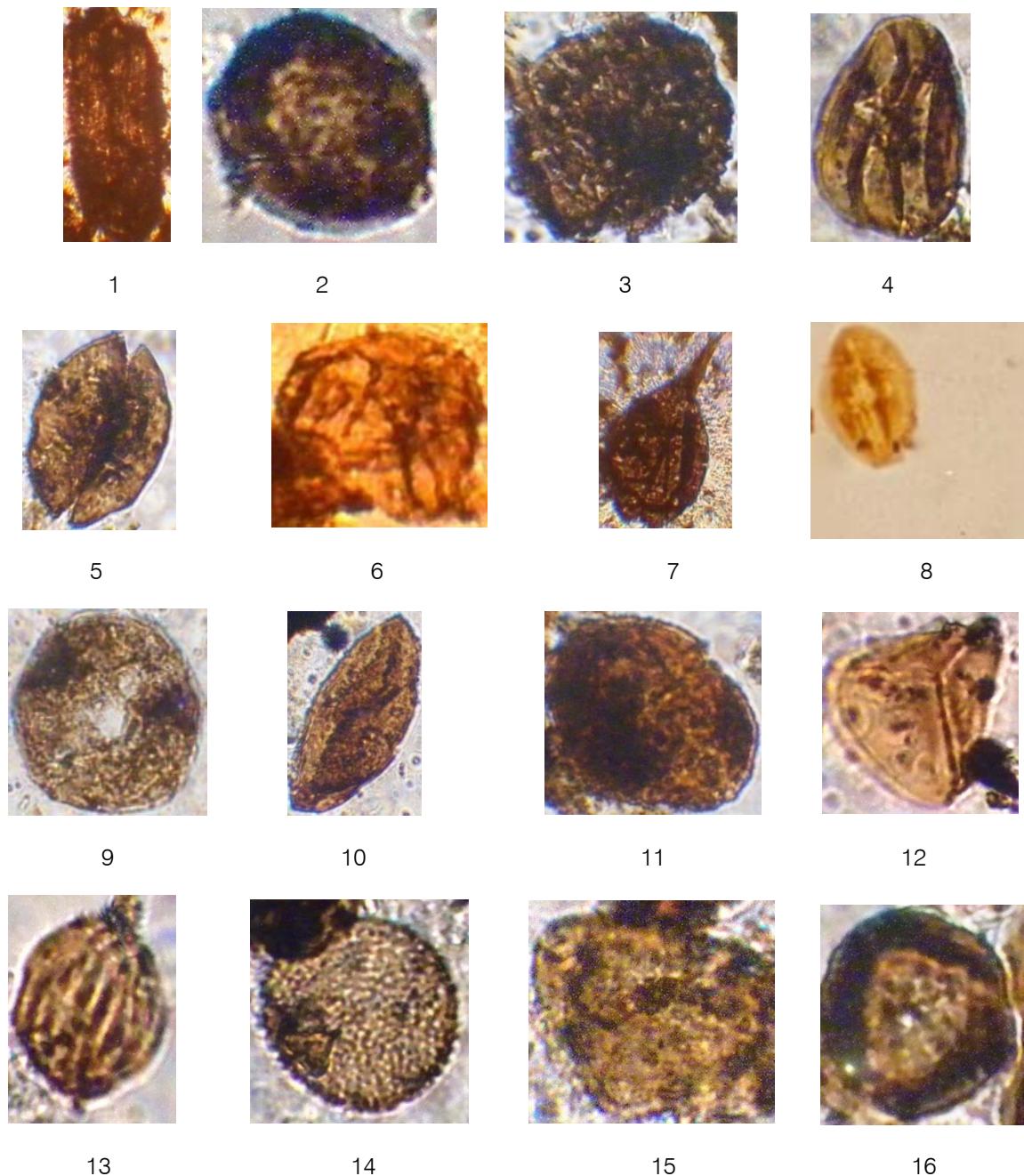
The paleoenvironment of deposition of the sediments in the entire analyzed interval is characterized by continental to marginal marine. The paleoenvironmental deduction made for this research work is based on the combined data of Non-Pollen Palynomorphs such as algae, fungi, microforaminiferal wall linings, gonyaulacacean/peridinacean ratio (G/P) after Harland (1983); and terrestrially derived pollens and spores.. The use of relative abundance of terrestrially derived pollen and marine derived dinoflagellate cysts have also been documented in the works of Lawal, (1982); Schrank, (1984); Edet and Nyong, (1992); Ojo and Akande, (2000); Ogala et al, (2009); Ola-Buraimo and Adeleye, (2010) and Ola-Buraimo and Akaegbobi (2013b).

The dinoflagellates that characterized this depositional system are peridinoid forms such as *Andalusia polymorpha*, and *Andalusia* sp. They are described to be dinocysts having relatively long processes. They are the only type of dinoflagellates that are present in the samples analyzed and they suggest deposition of the shale facie in the marginal marine environment.

The peridinoids which are the only form in abundance is attributed to relative low or reduced salinity as a result of admixture of fresh water (*Botryococcus braunii*) from the fluvial mixing with the saline water (dinoflagellate) of the marine environment present in the marginal marine setting. This similar view had been expressed by Upshaw (1964), Olotu (1987) and Ogala et al (2009), Ola-Buraimo and Akaegbobi, (2013b).

VII. CONCLUSION

lithostatigraphy analysis revealed nine lithofacies units such as granulestone, coarse sandstone, pebbly sandstone, conglomeratic sandstone and medium grain sandstone characterized by medium to pebble sized grains, poorly sorted, erosional surfaces and fining upward signature, deposited in continental


environment under high energy current. Other facies include claystone and mudstone also deposited in continental environment. The heterolith facies such as sandy shale and shale sand were deposited in prograding deltaic system, while the dark grey shale was deposited in the marginal marine setting. The sandstone sequence is the Afikpo Sandstone unconformably overlying the Nkporo marginal marine shale.

Palynozones established indicated that the entire stratigraphic sequence belongs to Nkporo Shale/Afikpo Sandstone synonymous with Afikpo Basin

but here established in Anambra Basin. This palynological revelation shows that there is lateral facies intertonguing of the Afikpo Sandstone in the Afikpo Basin into the Ubiaja- 1 well located in Delta State, Anambra Basin in Nigeria. The result reveals a new sandstone member in the Nkporo Formation or in another way makes Nkporo Formation to become Nkporo Group comprising of Nkporo Shale and Afikpo Sandstone. This further corroborates the complexity of Anambra Basin Stratigraphy and the need to further carry out investigations into the stratigraphy through the use of palynological tool and other useful tools.

Magnification $\times 800$

PLATE I



17

18

19

20

Plate 1

1	<i>Ephedripites multicostatus</i>
2,3	<i>Milfordia</i> sp.
4	<i>Tricolpites</i> sp.
5	<i>Monocolpites</i> sp.
6	<i>Zlivisporites blanensis</i>
7	<i>Andalusielia</i> sp.
8	<i>Tricolporopollenites</i> sp.
9	<i>Milfordia jardinie</i>
10	<i>Monosulcites</i> sp.
11	<i>Monocolpopollenites sphaeroidites</i>
12	<i>Cythidites</i> sp.
13	<i>Ephedripites</i> sp.
14	<i>Proxapertites cursus</i>
15	<i>Syncolporites</i> sp.
16	<i>Milfordia</i> sp.
17	<i>Laevigatosporites</i> sp.
18	<i>Inaperturopollenites</i> sp.
19	<i>Syncolporites marginatus</i>
20	<i>Verrucatosporites</i> sp.

ACKNOWLEDGEMENT

The author is grateful to Palystrat Limited for provision of materials used for analysis and print materials consulted for interpretation.

REFERENCES RÉFÉRENCES REFERCIAS

1. Agagu, O.K., Fayose, E.A. and Petters S.W., 1986. Stratigraphy and sedimentation in the Senonian Anambra Basin of eastern Nigeria. *Journal of Mineralogy and Geology*, 22: 25-36.
2. Amajor L.C., 1987. Paleocurrent, petrography and provenance analysis of the Ajali Sandstone (Upper Cretaceous), southeastern Benue Trough, Nigeria. *Sedimentary Geology*. 54: 47-60
3. Anyanwu, N.P.C. and Arua E., 1990. Ichnofossils from the Imo Formation and their paleoenviron-

mental significance. *Nigeria Journal of Mining Geology*, 26(1).

4. Arua, I., 1986. Episodic sedimentation: an example from the Nkporo Shale (Campano-Maastrichtian) Nigeria. *Journal African Earth Sciences*. 7: 759-762.
5. Burke, K.C, Dessaуважи, R.F.J. and Whiteman, A.W., 1972. Geological history of the Benue Valley and adjacent areas. In African Geology, *Univ. of Ibadan press*, 187-206.
6. Edet J.J. and Nyong E.E., 1994. Depositional environments, sea level history and paleogeography of the Late Campanian - Maastrichtian on the Calabar Flank, SE Nigeria. *Paleogeography, Paleoclimatology, Palaeoecology*. 102: 161-175.
7. Fairhead J.D., and Binks R.M., 1991. Differential opening of the Central South Atlantic Oceans and

opening of the West African Rift System. *Technophysics*. 187: 191-203.

8. Fayose E.A. and Ola P.S., 1990. Radiolarian occurrences in the Ameki type section, eastern Nigeria. *Journal of Mining and Geology*. 26: 75-80.
9. Harland, R., 1973: Dinoflagellate cyst and acritarchs from the Bear paw Formation (Upper Campanian) of southern Alberta, Canada. *Paleontology*, 16(4): 665-706.
10. Hoque M. N and Nwajide C.S. Tectono-sedimentological evolution of an elongate intracratonic basin (aulacogen): The case of the Benue Trough of Nigeria. *Journal of Mineralogy and Geology*. 21(1-2): 19-26.
11. Jardine, S. and Magloire, I., 1965: Palynologie et stratigraphie du Cretace des Basins du Senegal et de Cote d' Ivoire 1er Coll. *Memoire du Bureau Recherches Geologiques et Minieres*, 32: 187-245.
12. Ladipo, K.O., 1985. Tidal shelf depositional model for the Ajali sandstone, Anambra Basin, Southeastern Nigeria. *Journal of African Earth sciences*. 5(2): 177-185.
13. Lawal, O., 1982. Biostratigraphie palynologique es paleoenvironmens des formations Cretacees de la Haute- Benoue, Nigeria mord-oriental. *These-3- cycle, Univ. Nice*, 218 pp.
14. Lawal, O., and Moullade, M., 1986: Palynological biostratigraphy of the Cretaceous sediments in the upper Benue Basin, N.E. Nigeria. *Revue micropaleontologie*, 29(1): 61-83.
15. Murat R.C., 1972. Stratigraphy and paleogeography of the Cretaceous and Lower Tertiary in southern Nigeria, In: Dessaувагие TFC. And Whiteman AJ. (eds). *African Geology*. pp. 261-266.
16. Nwachukwu, S.O., 1972. The tectonic evolution of the southern portion of the Benue Trough, *Geological Magazine*, 109(5): 411-419
17. Nwajide, C.S., 1990. Cretaceous sedimentation and paleogeography of the of the central Benue Trough, in C. O. Ofoegbu, (eds). The Benue Trough structure and evolution: *Braunschweig and Wiesbaden, Germany, Virweg and Sohne Verlag*, 19-38.
18. Obi G.C., and Okogbue C.O., 2004. Sedimentary response to tectonism in the Campanian-Maastrichtian succession, Anambra Basin, Southeastern Nigeria. *Journal of African Earth Sciences*. 38: 99-108.
19. Obi, G.C., Okogbue, C.O., and Nwajide, C.S., 2001. Evolution of the Enugu Cuesta: A tectonically driven erosional process. *Global Journal Pure Applied Sciences*. 7(2): 321-330.
20. Ogala, J.E., Ola-Buraimo A.O., and Akaegbobi, I. M., 2009. Palynological investigation of the Middle-Upper Maastrichtian Mamu Coal facies in Anambra Basin, Nigeria. *World Applied Sciences Journal*, 7(12): 1566-1575.
21. Ojo, O.J., and Akande, S.O., 2000. Depositional environments and diagenesis of the carbonate facies of Dakul and Jessau formations in the Yola Basin N. E Nigeria. Implications reservoir potential. *Nigeria Association of Petroleum Explorationists Bulletin*, 15: 47-50.
22. Ojoh K.A., 1988. Evolution des basins albo-santonien du sud— Quest du fosse de labe noue (Nigeria). Apports a la connaissance du domaine Equatorial de l' Atlantique Sud. *These Doctorat Univer- site Aix-Marseille III*.
23. Ola-Buraimo A.O., 2012. Lithostartigraphy and palynostratigraphy of Tuma -1 well, Bornu Basin, Northeastern Nigeria. *Journal of Biological and Chemical Research*, 29(2): 206-223.
24. Ola-Buraimo, A.O., 2013a. Palynological stratigraphy of the Upper Cenomanian-Turonian Eze Aku Formation in Anambra Basin, southeastern Nigeria. *Journal of Biological and Chemical Research*. 30(10): 54-67.
25. Ola-Buraimo A.O., 2013c. Biostratigraphy and paleoenvironment of the Coniacian Awgu Formation in Nzam-1 well, Anambra Basin, southeastern Nigeria. *International Journal of Scientific and Technology Research*, 2(3): 112-122
26. Ola-Buraimo A.O., and Adeleye M., 2010: Palynological characterization of the Late Maastrichtian Ute Coal measure deposit, Southwestern Nigeria. *Science Focus*, 15(2): 276-287.
27. Ola-Buraimo, A.O., and Akaegbobi, I.M., 2012. Neogene dinoflagellate cyst assemblages of the Late Miocene-Pliocene Ogwashi-Asaba sediment in Umuna-1 Well, Anambra Basin, southeastern Nigeria. *Journal of Petroleum and Gas Exploration Research*, 2(6): 115-124.
28. Ola-Buraimo A.O., and Akaegbobi I.M., 2013b. Palynological and paleoenvironmental investigation of the Campanian Asata/Nkporo Shale in the Anambra Basin, Southeastern Nigeria. *British Journal of Applied Science and Technology*, vol. 3(4): 898-915.
29. Ola-Buraimo A.O., Yelwa N.A. and Aliyu M., 2015. Appraisal of the Middle Cretaceous sediments in Ubajia-1 well through the use of Palynology in Anambra Basin, Southeastern Nigeria. *British Journal of Applied Science and Technology* vol. 14(3): 1-11
30. Petters, S. W., 1978: Mid-Cretaceous paleoenvironment and biostratigraphy of the Benue Trough, Nigeria. *Bulletin Geological Society America*, 89: 151-154
31. Popoff, M., 1990. Deformation intracontinental gondwanienne— Rifting mesozoique en (Evolution meso-cenozoique du fosse de la Benue, Nigeria)— Relations de l' ocean Atlantique sud. *These de Etat, University Aix-Marseille III*.

32. Reijers T.J.A., 1996. Selected chapters in geology, sedimentary geology and sequence stratigraphy in Nigeria and three case studies and field guide. *Shell Petroleum Development Company of Nigeria, Corporate reproduction Services: Warri.* 197 pp.
33. Schrank, E., 1984: Organic -walled microfossils and sedimentary facies in the Abu Tartur phosphates (Late Cretaceous, Egypt). *Berlin Geowiss, Abh (A)* 50: 177-187.
34. Traverse A., 1988. Palaeopalynology, *Unwin Hyman, London.* 1-600.
35. Upshaw, C.F., 1964: Palynological zonation of the Upper Cretaceous Frontier Formation near Dubois, Wyoming. In: A. T. CROSS (Editor), Palynology in Oil Exploratio, a Symposium. Soc. Econ. Palaeontology Mini Special Publication, 11: 153-168.
36. Wood G.D., Gabriel, A.M., and Lawson J.C., 1996. Palynological techniques-processing and microscopy. In: Jansonius J. McGregor V. editors. Palynology: Principles and applications. *American Association of Stratigraphic Foundations, Dallas.* 1: 29-50.