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Absiract- This work investigates the response to simply supported orthotropic rectangular plate resting on a variable elastic
bi-parametric foundation under the action of moving distributed masses. The governing equation is a fourth order partial
differential equation with variable and singular co-efficients. The solutions to the problem are obtained by transforming the
fourth order partial differential equation for the problem to a set of coupled second order ordinary differential equations
using the technique of Shadnam et al[12] which are then simplified using modified asymptotic method of Struble. The
closed form solution is analyzed, resonance conditions are obtained and the results are presented in plotted curves for both
cases of moving distributed mass and moving distributed force.
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[.  INTRODUCTION

The problems connected with the analysis of thin structural bodies (rods, beams, plates,and
shells) with other bodies have widespread application in various fields of science and technology.
The physical phenomena involved in the impact event include structural responses, contact ef-
fects and wave propagation. These problems are topical issues of research in the field of applied
mechanics. Since these problems belong to the problems of dynamic contact interaction, their
solution is connected with severe mathematical and calculation difficulties. To this end , sev-
eral researchers had worked and some are still working on the dynamic behavior of orthotropic
rectangular plates. Analytical investigation of the low-velocity impact response of circular or-
thotropic and transversely isotropic plates possessing curvilinear anisotropy under compressive
preloading has been carried out recently by Rossikhin and Shitikova in [1] and [2], respectively.
The equations of plate motion take the rotatory inertia and transverse shear deformations into
account. In the case of the orthotropic target [1], the changes in the geometrical dimensions
of the contact domain have been ignored and the contact interaction is modeled by a linear
spring, and a force arising in it is the linear approximation of Herts?z contact force. Ambart-
sumian [3] examined the five fundamental differential equations describing the equilibrium of
an orthotropic plate with a cylindrical anisotropy for the case when all radial planes crossing
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the axis of anisotropy are the planes of elastic symmetry. Sveklo [4] suggested the contact
theory for two anisotropic bodies under compression according to which the contact pressure
is distributed over an elliptical contact region. The same structural effects are also true of the
concrete slab in a composite girder bridge, but the steel orthotropic deck is considerably lighter,
and therefore allows longer span bridges to be more efficiently designed. Awodola [5] studied
the effect of plate parameters on the vibrations under moving masses of elastically supported
plate resting on bi-parametric foundation with stiffness variation.Szekrenyes [6] investigated
the interface fracture in orthotropic composite plates using second order shear deformation
theory. Kadari [7] analyzed buckling in orthotropic nanoscale plates resting on elastic foun-
dations. Yan [8] proposed elastic orthotropic models and used these in the nonlinear analysis
of concrete structures subjected to monotonic or pseudo dynamic loading. Since these models
can appropriately describe the strain softening behavior of concrete beyond the peak stress and
show good agreement with the strength envelope obtained from experimental results Hu and

Yao [9] studied the vibration solutions of rectangular orthotropic plates by symplectic geom-
etry method. In the same vien, Alshaya, Hunt and Rowlands [10] investigated stresses and
strains in thick perforated orthotropic plates. Gbadeyan and Dada [11] found the natural fre-
quency of rectangular plates traversed by moving concentrated masses. Awodola and Adeoye
[13] investigated the behavior of simply supported orthotropic rectangular plate by applying
the technique of variable separable. Adeoye and Awodola [14] studied the dynamic behavior
of orthotropic rectangular plate with clamped-clamped boundary conditions by making use of
the technique of Shadnam Due to inability of researchers to solve orthotropic plates problems
by analytical methods, this work aims at solving the governing equation by analytical solution
and also considers the effect of the flexural rigidities in both x and y directions.

[[. GOVERNING EQUATION

The dynamic transverse displacement W (z,y,t) of orthotropic rectangular plates when it is
resting on a bi-parametric elastic foundation and traversed by distributed mass M, moving
with constant velocity ¢, along a straight line parallel to the x-axis issuing from point y=s on
the y-axis with flexural rigidities D, and D, is governed by the fourth order partial differential
equation given as

4 4 4 2

0 0 0 0
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0x?

—Wi(x,y, t)> H(zx — ¢, t)H(y — 5)] =0

where D, and D, are the flexural rigidities of the plate along x and y axes respectively.

E.h?

D, ="
12(1 — vu1)

E, and E, are the Young’s moduli along x and y axes respectively, G, is the rigidity modulus,
vy and v, are Poisson’s ratios for the material such that E,v, = E,v, , p is the mass density
per unit volume of the plate, h is the plate thickness, t is the time, x and y are the spatial
coordinates in x and y directions respectively, R, is the rotatory inertia correction factor, K,
is the foundation constant, S, shear modulus and g is the acceleration due to gravity, H(.) is

the Heaviside function.

Rewriting equation (2.1), one obtains

2
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Simplifying equation (2.3) further, one obtains
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0 M, [ &*
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aiatW(x, y,t) + craa—W(x, Y, t)) H(x — ¢, t)H(y — s))] (2.4)

where w? is the natural frequencies, n = 1,2, 3, ...

The initial conditions, without any loss of generality, is taken as

W(z,y,t) =0= %W(I, y,t) (2.5)

[II. ANALYTICAL APPROXIMATE SOLUTION

In order to solve equation (2.4), one applies technique of Shadnam et al which requires that
the deflection of the plates be in series form as

Wia,y.t) = V(e 1)Qu(t) (3.1)
where
U (2, ) = Yo (2)Whm ()
VUim@ = sin (jm@ + Ajp, €08 (jm® + Bjp, sinh (x4 Cjyy, cosh G
VY = SIN @y + Apm €08 ©pm¥y + B sinh ©py + Chy, cosh opny

(,bjm (bhm

Lx’ SOhm:L—y

ij =

The right hand side of equation (2.4), taken into account equation (3.1), written in the form of
series takes the form

Ro< () 0alt) + 5l )l >> - Q0 — 2

4
Ui, )Qult) =~ 5 0,0)Qu) + A0, 0)Qu(0) = ke = 30% 4 2 (o)
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Qu(t) + aa—yg%(w, y)Qn(t)> +> ( ~gH(z — ¢, t)H(y — s) — My ( (7, ) Qn () +
0 : , 0?
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Multiplying both sides of equation (3.2) by ¥,,(z,y) and integrating on area A of the plate and
considering the orthogonality of ¥, (z,y), one obtains
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and zero when n # m

Wy (2, y)dA (3.3)

where
0 :/Wz(m,y)dfl (3.4)
A

Making use of equation (3.3) and taking into account equation (3.2), equation (2.4) can be
written as
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On further simplification of equation (3.5), one obtains
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(3.6)
The system of equations in equation (3.6) is a set of coupled ordinary differential equations
where H(z — ¢,t) and H(y — s) are the Heaviside functions which are defined as

1,for x>cyt 1,for y>s
Hia =)~ { HE-9-{ (37)
0,for z<crt 0,for y<s
With the properties
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f(x),for x>crt f(y),for y>s
(@01 (2 = )= § - = (39
0,for z<crt 0,for y<s
Using the Fourier series representation, the Heaviside functions take the form
1 1 sin(2n + )7 (z — ¢,t)
H(z—ct)=~+-=)_ o<z <1 (3.10)
Notes 4 T 2n+1
11 a sin(2n + D)7(y — s)
H -+ — O<y<l1 3.11
=g Ly o0 i

On putting equations (3.7) to (3.11) into equation (3.6) and simplifying, one obtains
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1 [ & cos(2j + D)me,t sin(2j + 1)mwe,t 1 [ &
>+4W<Z 2T i Z 2 +1 T ;

7j=1 J=1

sin(2k + 1)w
ZE;‘* 21@11) )) )] Zzue* Vn(s)

qg=1 r=1

which is the transformed equation governing the problem of an orthotropic rectangular plate Notes

resting on bi-parametric elastic foundation.
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A
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in the directions of x and y axes respectively. That is
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where

| I, |
D, (x) = sin Lx —|— A,, cos —— T —|— B,, sinh I + C,, cosh Lf (3.39)
- Ly, N |-
D, (y) = sin —my + A,, cos —mY + B,, sinh —mY + C,, cosh —mY (3.40)
Ly Ly Ly Ly N
otes

where A, Bpm, Cpm, Abm, Bem and C, are constants determined by the boundary condi-
tions. And ¥,,,, and ¥, are called the mode frequencies

where

épm &)m
Ao = = 3.41
Lx ? b Ly ( )

Apm =

Considering a unit mass, equation (3.12) can be re-written as
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16
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equation (3.42) is the fundamental equation of the problem. where
M
a=—, o=1L,L, (3.43)
129
W, (ct) = sin Xyt + Ay, €08 Ximt + By, sinh xo,t + C,y, cosh x ot (3.44)
U, (s) = sinv,, + Ay, cos vy, + By, sinh vy, + C,, cosh vy, (3.45)
Pmc P S
_ rm = m7 4
Xon = 7= V= T (3.46)

We shall consider the situation where the orthotropic rectangular plate is simply supported
at all its edges. The boundary conditions for an orthotropic rectangular plate having simple

supports at all its edges are given by

W(0,y,t) =0=W(Lg,y,t) =0 (3.47)
W(x,0,t)=0= W (x,L,,t) (3.48)
0? 0?
32V (0,4,8) =0= 55 W(Ls,y,t) =0 (3.49)
0? 82
U (0) = ¥ (L) (3.51)
0, (0) = U (L) (3.52)
0? o?
55 9m(0) = =5 ¥n(La) (3.53)
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0? 0?

—,,(0) = =—V,,(L
8y2 ( ) 8@/2 ( y)
[ | S Ly
W, (x) = sin 7 * + A,, cos z + B,, sinh 7 < + C,, cosh z
v, (y) = sin =y + A,, cos —my + B,, sinh —mY + C,, cosh =Y
Ly Ly Ly Ly

On solving equations (3.51) and (3.53) simultaneously, one obtains

Ap =0, Bp=0, Cpo =0

I, =mnr

(3.54)

(3.55)

(3.56) Notes

(3.57)

(3.58)

On putting equations (3.55) to (3.58) into equations (3.13) to (3.37), the integrals become

2

2q

2.2 Ly Ly

7 TT . MTX T mm

+ a ] / sin 7% gin dx / sin 7Y gin ydy
Y 0 0

L. L, L, L,

T gt /LI sin T2 5 VT /Ly sin 1Y o ™Y
= 11 11 X 111 —— S1n
> 2L ), 7 P A L, 1, "

T mq* /L“” i 7T TIT /Ly o 7Y g Y
= Sin Sin i S111 —— SIn
T, L, L, ), L, L,

T 7T4q4/Ly L g mTE /Ly LTy Ty
= S1n S1n X S1n —— S1n
T L, L, Y, L, "o, "

xT

15 =4 / zsin L2 gin 1 gy / sin 7Y gin 1Y dy — 3 / 22 sin L2
0 Lx L:v 0 Ly Ly 0 L:Jc

. mmnx Ly . qmy . mmy La 3 . 4qmx . ML Ly . qmy
sin dx sin —= sin dy + x” sin sin dx sin —=
L, 0 L, L, 0 L, L, 0 L,

mmy
Ly

sin

dy

—13mq [ Ly 127 (L
Ts = k! / cos g sin mre dx / sin any sin mry dy + ik / T COS
0 L L 0 L 0

L, L, Ly

x x Yy
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(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

qmx

T



Ly 3 L:v Ly
sin mre dx / sin my sin mry dy + g / z? cos e sin mre dx / sin any (3.64)
L, 0 L, L, L, J, L, Ly 0 y
. mmny
s d
in I, Y
e 1272¢? /Lz . qmT | mwxd /Ly . qmy . mwyd 13m2¢> /LI . qTT
= sin sin x sin sin — xsin
Notes T 2 J, L, L, 0 L, L, J L2 J, L,
. mmx L gmy . omamy 6m%¢*> [t ,  qmx | mmx Ly gy
sin dx sin —= sin dy + —— xsin sin dx sin —=
Lx 0 Ly Ly L?c 0 Lx Lw 0 Y
2.2 rLs Ly 2 2
. mmy m4q 3 . QT . m7nI . qmy . mmy 1272q
sin I, dy + 2 /0 x° sin I sin I dx /0 smL—ysm I, dy + 7
/Lz . qmT | mﬁxd /Ly . qmy . mwyd 13m2¢? /Lz . qmT | mﬂxd
sin sin x sin sin — x sin sin x
; L, L M, L, L, YT T L, UL
/Ly sin Y sin mry dy + 6" /Lw 2% sin e sin Y 1 /Ly sin any sin mry dy
0 L, L, Lz Jo L, L, 0 L, L,
2.2 pLg Ly
+ T Z / 23 sin I2 gin mm:dx/ sin T g 7Y dy (3.65)
Ly 0 Lx T 0 y Ly
T 1 (Lo grx . mmvd /Ly . qmy . mwyd (3.66)
= — sin sin x sin — sin .
"7 16 J, L, L, ), L, 1, "
La . gmxr . mmx ) Ly . qry . mmy
Ef = / sin sin sin(2j + 1)7rxdac/ sin —= sin dy (3.67)
0 Lz L:Jc 0 Y Ly
La . gmxr . mmnx ) Ly . qTy . mmy
E; = / sin sin cos(2j + 1)7r3:dx/ sin —= sin dy (3.68)
0 Lx Lz 0 Y Ly
E; /Lz in 7% gin 2 g /Ly in T sin " sin(2k + 1)myd (3.69)
= sin sin x sin —= sin sin T .
’ 0 Lz L:Jc 0 Ly Ly v
E: / " i O Gy T / " i T i Y o2k 4 1)myd (3.70)
= sin sin x sin —= sin cOS ™ .
! 0 Lx Lm 0 Ly Ly e
EX=FE], E;=FE,, E;=E; E;j=ELE] (3.71)
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La Ly
i / cos L8 sin 0 gy / sin Y gin Y dy (3.72)
0 0

"7 16L, L, La L, L
E=dr /Lz I in ™ sin(2f + 1)rad /Ly in Y gin Y g (3.73)
= — cos sin sin wrdr sin —= .
) Lz 0 La: Lz J 0 Ly Ly y
qm Ls qrx mnx Ly qrmy mny
Ej, = L_x/o cos I sin I Cos(2j+1)7ra:dx/0 SinL—ySin I, dy (3.74) Notes
qm Ls qmx mnzx Ly qmy mny
Ef, = L_x/o COS I sin I dx/o sinL—ysin I, sin(2k + 1)wydy (3.75)
qm Ls qmx mmnx Ly qrmy mmy
Ef, = L_:E/O cos I sin I dq:/o sinL—ysin I, cos(2k + 1)mydy (3.76)
By =FE5, Ey=E\, Eji;=FE;, FEjz==FE) (3.77)
7T2q2 Lz qmx mmx Ly qrmy mmny
T = — i d in —= si d 3.78
"0 1612 /0 cos I sin I SL‘/O sin I, sin I, y (3.78)
q27r2 Lz qmx mmx Ly qmy mmny
Ej, = _L_g%/o cos I sin I sin(2j+1)7rxdx/0 sinL—ysin L dy (3.79)
2.2 (Lo Ly
Ejy = —% /o cos qzj sin nzlx cos(2j + 1)7mtdx/0 sin % sin Trg;y dy (3.80)
2. 2 rle Ly
Ejy = C]L—g /O cos q[ifj sin WZ:U dx/o sin % sin WZZ?J sin(2k + 1)mydy (3.81)
2 2 rLe Ly
E}y = —qL—g /0 cos CJIZE sin nzzm dx/o sin % sin 77”27;34 cos(2k + 1)mydy (3.82)
By =Ey; Ey=Ey Ey=EFE, Ey=E, (3.83)

On solving equations (3.59) to (3.66),(3.72) and (3.78), and substituting into equation (47),
one obtains

Qn(t> + wiQn(t) - %Z

g=1

Dy7r4q4LgC
4plL3

Qq<t) -

RoL,L, m¢ 7%¢*\ 2Bmiqt
- = . 2 + 2 QQ(t) -
4 L2 L 4pl, L,

D, 14 L,.L K,
Q) — ==L 2 q<t>+(—y —

G *
4ul3 4 YT 7T5> Qq(t) + 70(T6 +T7)Qq(t) — wo <<
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Lcos(2k + 1)ms
T

L.L, 1 [<= ,co8(2j+)met = .80 sin(2j + Dmet
— EY — E;
61 +7T2<Z T 2B 2 +1

Jj=1 Jj=1

Lsin(2k + 1)w 1 (& ., cos(2j + 1)met Lsin(25 + 1)met 1
_N e )R il i e At il
;4QH1)4(2 Sy

Notes

> cos(2k + 1 Lsin(2k + 1 " —4mL, 1
preer TR i S Al 42 —— E;
<kz:; T Qk—i—l Z 2k +1 ))Qq()+ 6(64(q2—m2)7r+7r2<z ?

cos(2j + )met sin(2j 4 1)mct cos(2k + 1)7s = sin(2k + 1)7s
B A B S N O e S
25 +1 Z 02541 Z C2%k+1 Z

J=1

1 [ & cos(2] + 1)met sin(2j + 1)met [ & cos(2k + 1)ms
)+4W(Z B9 41 Z 2j +1 )+47T<Z B9k 41

j=1 =1 k=1

sin(2k + 1)7s - o (—T2PL, 1 [ <& cos(2j + 1)met
Elq t —_— 4 — E7
Z 2k + 1 ))Qq()+c< oL, | 2 2j + 1 >

j=1 7j=1

. sin(25 + V)met cos(2k + 1)ms = ., sin(2k + 1) .
b ) (3 e 5 ) (S

cos(2j + et sin(2j + 1)wet 1 cos(2k + )7
2j +1 Z 2 25 +1 e z:: 2k + 1 Z 2

=1

Sin(s: 1_11)”3» )] Z Mg L&, (ct) By (s) (3.84)

The solutions to equation (3.84) shall be obtained by considering two cases:

a) Simply Supported Orthotropic Rectangular Plate Tranversed by Moving Force

For moving force problem, one sets @ = 0 in equation (3.84) which becomes

- L,L, 1 uRoL,L, (7*n? 7T2n2 2Bn*n?
9 1_ 2 Q _ Y ( ) —
n(t) ( 40+ ) nlt) = e < 4 ( L2 L2 n(t) 4L, L,

D,m*n*L, D, min?*

Qn(t) — 4—Lan(t) B an( ) — KoT5Q.(t) + %(TG + T?)Qn(t)>
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1 - pRoL,L, mq¢* w2 2B7r4q4 D,m*q
_ _ 7 (1) — 2y~ 1~
g=1,qg#=n
D,m¢*L, L.,L, ,
Zy(t) = =gz Qu(t) + | =7y = KoT5 | Qq(t) — Go(To + T7)Qy (1)

On further simplification and re-arrangement, one obtains

4Lm

413

)

4 2z "L AL, L, AL}

m )\,uRoLxLy m2n? 7r2n2>] Onlt) + < E (_ 2Bmint B D,m*n*L, B

_KOTSQn(t)+G0(T6+T7)Qn<t)>) —A Z ( MROL Z <L2 +

g=1,g#=n

2Bmiq*

Dy7r4q4 L,
4L, L,

th_
®) 1L

QQ<t) - A3

. t
Qq(t) + Go(Ts + T7)Q,(t ) Z Mg sin WZTS sin 1

q=1 4 £

where

L.L |
A N (it T \ =
n ( 46 |“n e

Consider a parameter Ax < 1 for any arbitrary mass ratio A, defined as

A
AT
It can be shown that
A=\ —o(A\*?)
Retaining only o(A*), one obtains
A=\

D,mtq¢*L L,L
Qult) — Q) + (—4 sy~ m)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

On putting equation (3.89) into equation (3.86),rewriting and simplifying further , one obtains
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Qn(t) +

9 JRoL L, wn?  wn? 2 . 2Brm'n*  D,m'n'L,
wn<1—)\ 1 Iz + 7 +o(AN)+ ... | = A —

D,m*n*L, KyL GoL, ™™ mn?  mwn?
- yle + <MW721 - %@1@)) + l . L—902($) + (? + 7) <P3(x)> (1_
Yy x

x y
Notes A “ROfILy (”222 + WZ;) +o(A%) + ))] Qu(t) =’ ( Y “Rof“"Ly (”27; + ”27;
Yoo )) 55 (b ) (20 Dt
q=1,g#=n v Y v
¢ Doile ) Kol ) - S (%ZW) s ”f) 903(56))>)Qq(t) -
Mg\ sin WZZS sin m;;ct (3.91)

Expanding equation (3.91), and retaining only o(A*), one obtains

. RLxL 2,,2 2,2 2B44 Dx44L D44Lx
Qn(t) + wi(l—n*uo v T2 Wn))ﬂf( i e

4 "I - -

AL, L, 413 4L3
KoL GoL,[ ™ mn?  wn? .
+(/M§_ Zy%(g;)> + 1y<L_<p2(:c)+ ( I + 72 )(pg(x)>>]Qn(t)—n (1

Y

JMRoL, L, [ 7n?  wn? > pRoL.L, [ 7*¢* 7%\ - 2Bmiqt
— — t) —
T z I 2 1 e )9O\,

q=1,g#=n * Y

D,m¢*L, D,n*¢*L, KoL GoL, [ mq w¢*  mig?
T T g @ (el Tt el
x Yy T

mms . mmct
sin

L, L,

Qq(t) = Mgn*sin

Using Struble’s technique, equation (3.92) can be rewritten as

Qu(t) +v5Qn(t) =0 (3.93)
Hence, the entire equation (3.92) becomes

.. t
Qn(t) + 2Q,(t) = Mg\*sin 7727?5 sin ¢

(3.94)
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where

Vp = €p —

N | e€RyL,L, mn? N 2n? 2Br*n*  D,r'n*L, D,m*n'L,
2en | 4 rz 12 ) " aL, 4l 4L
(3.95)

KoL,L, n GoL,L, m2n? n m2n?
4 4 L2 Lg

is the modified frequency for simply supported orthotropic rectangular plate traversed by mov-
ing force.

On solving equation (3.94) by Laplace transformation techniques one obtains

Mag\* Uy sin 276t — (E€) sin vt
Qn(t) = =22 gn 177 Lo _ 2( ,3 (3.96)
Un Ly (m) —
which on inversion becomes
Mg\ . mms U Sin Pt — (7€) sin vt . mTx | mmy
W(z,y,t) = ,sin I, x[ (=7 12 X sin = sin I, (3.97)

is the transverse displacement response to a moving force of a simply supported orthotropic
rectangular plate.

b) Simply Supported Orthotropic Rectangular Plate Transversed by Moving Mass

Here, one seeks solution to the entire equation (3.84). To solve this problem, one makes use of
the modified asymptotic method of Struble. The equation becomes,

1 Lcos(2j + Dmet = .,
G.(0) + 12010 MQZK (ZEl a3

Jj=1

sin(2j + 1)mwet cos(2k +1 Lsin(2k + 1
AT )R Ei—— T T ik St E:
2j + 1 )(Z 2k+1 2:: 2% + 1 ) M(Z

CoS 2j+1 )Tt = . sin 2]—1—1 Ywet 1 [ & ,cos(2k+1
i S L il it S E;
pee i) Ly pesin s,

=1

sin(2k + 1)7s . —4mL 1 [ 0082+ Dmet
s S M )+ 2| " 2 B,
o+ 1 >>Qq<)+ C<64( e (; 2j + 1 Z
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sin(2j + 1)wct cos(2k + 1)Ts sin(2k + 1)ms 1 [ &
2j +1 )(2 2k + 1 z_: 22k 41 e 2 Fiy

j=1

0052j+1 Ymet > 81112]—1—1 )met 1 COSQk‘—i—l) -
* _ * _ E*
g ) 4(2 i S,

NOteS sin(2k + 1)ws : 9 1 7 €08 (2 + Dt = _,
2%k + 1 Q) ¢ 64L Tl 2By _]ZE”‘

sin(2j + 1)met = cos(2k + 1)m sin(2k + 1)7s R
2j +1 )(; Y ok 41 2 2k +1 e 2 21

sin 2] + 1)mcet 1 & cos(2k + 1)7s sin(2k + 1)ms
> ) (St

k=1 k=1
_ gammws . mmct
>>Qq(t)] =5 I sin T

On further simplifications and rearrangements of equation (3.98), one obtains

. 2cap* —4mL, 1 (N 0082+ Dmet
Qn() + ( )) (64(q2—m2)7r+7r2(2 P25 +1 ; 10
1,7 B

1+ ap*d(i, g =1

sm(2j + D)met cos(2k + 1)ms sin(2k + 1
it S A e EY, *— Ef,
) (g e ) L5

cos(2j + Dmet sin(2j 4+ 1)met R cos(2k + 1)m
— Ej,———————— — Eff————— Efq
25 +1 ; 9541 e g B ok 41 Z
sin(2k + )7ws \ \ - 1 5 o —7m?¢*L
—_— n(t * EY,
ok + 1 >>Q<)+ v+ o —r =t 7r2 Z
1+ ag*d(i, j)
cos 2] + 1)met = sin(2j + 1)met - cos(2k + 1
gy ) (5 et S

sin(2k + 1)7s 1 [ & cos(2j + Dmet sin(2j + 1)met 1
bt Skt E* _N "SR —
%+ 1 >+47r<21 2T 91 > B 25+1 ) Tn

=1

(3.98)
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- cos(2k + 1)m sin(2k + 1)7s ap*
Eyy—————— E,—— n(t
; 2 2k +1 Z 2k +1 ))]Q()+
- - 1+ ap*6(i, j)
= L.L, 1 [~ .co8(2j+ )met = .sin(25 + 1)met
il E* _ E*— E;
2 (64 w(Z Lo9j 41 Z 2 25 +1 Z
q:17q7én ]:1 ]:1 N
otes

cos(2k + 1)1s = ., sin(2k + 1)7s 1 cos(2) + )met
COMER T TS NP e BEN T TS | 2 (N7 g B
%+ 1 P T Z 5T 2511 Z

k=1 j=1

—4mL 1 ,cos(2j + Dmet = sin(2j + 1)met
2l — "y L - pr22\s TR
* (64( 7r (Zl 27 +1 Z 27 +1 )

sin(2j + 1)mct 1 Lcos(2k + 1)m =\ _sin(2k + D7s | -
i S L At — et oY AL AN N -’ i Sl
2j +1 > 4 (g 2k +1 Z 8 2k+1 @u?)

=1

cos(2k + 1) sin(2k + 1)7s 1 [, cos(2j + Dmct
*— *— . E*

Z *Sln2]+17TCt Z *C082k+1 Z *Slﬂ2k+1)
- 2j+ 1 £ kvl 2k + 1

m2¢*L Z *cos2j+17rct i , sin(2j + L)wct
64L — 25 +1 — 25 +1

7 cos(2k + L)ms B, sin(2k + 1 1 [ & B, cos 2] + 1)met
sin(2j + 1)wct 1 (& cos(2k + 1)Ts sin(2k + 1)7s
EYy——— — Eyy—m——— — E,,——— (3.99
2 2j+1 ) A (z:: 2k + 1 2k 41 (3.99)
t
))Qq(t)] B g iy TS o M

N L, L,
* 14 ap*o(i,7)

We shall consider a parameter a* < 1 for any arbitrary mass ratio defined by

*

«a
1+ o

(3.100)

=
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By using binomial theorem and truncating after second terms, one obtains
a=a* —o(a™?) (3.101)
Considering only o(a*), equation(3.101) becomes
a=a (3.102)
Notes Applying binomial expansion, one obtains

1
(14 a*g*d(i, j))

On putting equation (3.101) into equation (3.99), expanding and retaining only o(a*?), one
obtains

- —4mL 1 (&K, cos(2f + Dmet sin(2j + 1)met
Qnt) +2ca’e <64(n2—m2)7r—i_7rz(Z ? 27 +1 Z 02541

j=1 j=1

=1—a"0"6(i,j) + (a*)* + ... (3.103)

cos(2k + 1)ms sin(2k + 1)m 1 [ cos 2j+1)7rct
E7, Ej, — E}
(5 ee gy ) L (55 gyt

- sin(2j + 1)met R cos(2k + 1 sin(2k + 1)7s
_ E*— _ *— *—
> I (5 e 5 gy i

j=1

Qn(t) +

(&

L,L 1 cos(2j + 1)met sin(2j + 1)mwet
2 * % -y * «
1—aqa - E E — E Ey————
V"( Q<64 71'2(, ! 2741 . 2 2741

Jj=1 Jj=1

Lcos(2k + 1)m Lsin(2k + 1 1 , COS 2j+ )wet
S e (S

Lsin(25 + 1)wet 1 cos(2k 4+ 1)m Lsin(2k + 1)ws
ik S A i — E— it Skt
z; 2j+1 >+47T<Z To2k+1 Z 2k +1 >)

k=1 k=1

2L 1 cos(2j + 1)mwet sin(2j + 1)mwet
2 k k * *
a et I E — E pr 2 L T
coe ( 64L, 7T < 27+1 18 2741

=1 j=1

cos(2k + 1)m sin(2k + 1)7s 1 [& cos(2j + 1)mct
E * N\ _ E*
(Z o 2%k+1 Z:: 2k + 1 )+4w<z 2541

J=1

*51n2j+1 ymet I [ & ., cos(2k +1)ms = _, sin(2k + 1)7s
S B | L (S et e g sl
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e

%(2

Lcos(2j + 1)met

>

27 +1
sin(2j + 1)met Lcos(2k + 1 Lsin(2k + 1
E*
sl e (Sl 5 e ) (5
cos(2j + 1)met i ,sin(2j + 1)mwet 1 Z Lcos(2j + )m ZE* NOteS
25 +1 — 2j +1 i — 25 +1

sin(2j + 1)7s
2 + 1

)) +o(a*)? + ...

A

q=1,g#n

—Z

k=1

1 Lcos(2j + 1)met -
— EZ
+4W(Z ST 211 Z
7=1 =1
.sin(25 + 1)
2 —|—1

—Z

Z E*

L cos(2 + Dmet = _, sin(2j + V)mct
> Ei - B

J=1 2 +1 Jj=1
- sin(2j + 1)ws - o [—m2¢*L,
E—— t 1

J=1 J=1

cos 2] + 1)met

(Emt

=1 j=1

f: . sin(2j + 1)met

.8in(2j + 1)met = _.cos(2k + 1)ms
b A ¥ At ErlAeM T )T

2j +1 ) (Z P2k +1
Lsin(25 + )met 1 [ & ., co8(2j + rs
i e A ¥ A — pro2\e) )RS

2 +1 >+4W(Z Y

. —4mL

1)+ 2c| ———F—

sin(2j + 1)met iE* cos(2j + I)m
25 +1 1 25 +1
Jj=1

iE* sin(2j + 1)wct iE* cos(2j + )ws
18 2] + 1 19 2] + 1

1 (& cos(2j + 1)7s
— Fr o\ )RR
) T (; #2541

1 [ ., cos(2j + Dmct
- E*
T (Z L2411

Jj=1

=\ _.sin(2k + 1)7s
2 BT
— 2k +1

Jj=1

Lcos(2j + 1)met
27+1

%(z

1

Z *Sln2j+1) +1
— 27 +1 4m

1 [ & cos(2j + 1)7s
— o A A
e (Z B 941

Jj=1

1 [ & cos(2j + 1)met
il E* _
T <Z Y

j=1

=\, sin(2j + 1)7s 1
Epy—2 | 4+ —
; 2541 e

E, sin(2j + 1)7s ga® . mms
E — 77 Q,0)]| =
— 27 +1 )) ol )] o L,
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Notes

Applying the method of Struble technique to equation (3.104),its homogeneous part becomes

Qn(t) +62Qu(t) =0 (3.105)
Hence, entire equation becomes

.. * t
On(t) + 82Qn(t) = L9 sin 17 gy 7€ (3.106)
Iz L, L,

where
B 1 5 .« x y 1 (& ., cos(2k+ )7 LSin(2k + 1)ms
5”‘[””_2un<””0‘g( i (; ok + 1 Z o+ 1 B

2 2 o0 o0 :
9 « «| —T™¢°L, 1 , cos(2k + 1)ms , sin(2k + 1)ws
— + = Ey—— J Dt St A
coe ( 6iL, in (; T M D2 T (3.107)

is the modified frequency for simply supported orthotropic rectangular plate.
On solving equation (3.106) by Laplace transformation techniques, one obtains

Op sin BTt — (7€) sin 0t
gOé . mms n 7 7 n
Qn(t) = ——sin X L z (3.108)
0%, L, (E)2 — 42
which on inversion becomes
go* | mms Oy Sin L — (7€) sin ot . ommr . mmy
Wiz, y,t) = o5, sin I, X [ (5= — 52 X sin I sin L, (3.109)

is the transverse displacement response to a moving mass of a simply supported orthotropic
rectangular plate.

[V. DISSCUSION OF THE ANALYTICAL SOLUTIONS

For this undamped system, it is desirable to examine the phenomenon of resonance. From
equation (3.96), it is clearly shown that the simply supported orthotropic rectangular plate
on constant elastic foundation and traverse by moving distributed force with uniform speed
reaches a state of resonance whenever

(4.1)

while equation (3.109) shows that the same simply supported orthotropic rectangular plate
under the action of a moving mass experiences resonance when
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5y = (4.2)

1 L.L 1 cos 2k+1 sm 2k+1
6, = v, — — | 2a" o Y4 - i S i b e
[V 2yn<””0‘9< T (Z 2% + 1 Z % + 1

2 2 % oo :
o « o —T™¢L, 1 , cos(2k + 1)ms , sin(2k + 1)ms
— B et Er—— - 7 ) D S — 4.3
)) CO‘Q( 6AL, +47r<; 5okt 1 ; S T 3

Comparing equations (4.1) and (4.2), one obtains

1 L.L 1 cos(2k + 1 Lsin(2k + 1)ws
5, = v, |1 — —| v2a*p 7Y o E— sullah 7 L)
”[ 2%%(%04@( 64 +4w<; T2k 1 Z 2+ 1
2 92 oo oo .
9 « «f —T¢L, 1 ., cos(2k + 1)ms . sin(2k + 1)ws
. —mCLy | 1§ skt Drs | $= o, sin(2k + D (1.4
)) ““’( G4L, +47r<; B0k + 1 ; Mok 41
_ mmc
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Obviously
1 Lco8(2k + 1)ms = ,sin(2k + 1)7s
1— — 2 % % D S A E*—
e (o (B (St 5 gyt

(4.5)
5« « [ —TG*L, N 1 iE* cos(2k + 1)7s iE* sin(2k + 1)7s 1
C\Te, Tan\ &TFT £ U ok
That is, 9, < v, implies that moving mass simply supported system researches the state of

resonance earlier than the moving force system.

V. GRAPHS OF THE NUMERICAL SOLUTIONS

To illustrate the analysis presented in this work, orthotropic rectangular plate is taken to be of
length L, = 0.923m, breadth L, = 0.432m the load velocity ¢=0.8123 m/s and s = 0.4m.The

results are presented on the various graphs below for the simply supported boundary conditions.
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a) Graphs for Simply Supported Boundary Conditions
Figures 5.1 and 5.2 display the effect of rotatory inertia R, on the deflection profile of simply
B supported orthotropic rectangular plate under the action of load moving at constant velocity

in both cases of moving distributed forces and moving distributed masses respectively. The
graphs show that the response amplitude decreases as the value of rotatory inertia R, increases.

Figures 5.3 and 5.4 display the effect of foundation modulus K, on the deflection profile of
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Figure 5.1: Displacement Profile of Simply Supported Orthotropic Rectangular Plate with
Varying R, and Traversed by Moving Force

Figure 5.2: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying R, and Traversed by Moving Mass

simply supported orthotropic rectangular plate under the action of load moving at constant
velocity in both cases of moving distributed forces and moving distributed masses respectively.
The graphs show that the response amplitude decreases as the value of foundation modulus K,
increases.

Figure 5.3: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying K, and Traversed by Moving Force
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Figure 5.4: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying K, and Traversed by Moving Mass

Figures 5.5 and 5.6 display the effect of shear modulus G, on the deflection profile of simply
supported orthotropic rectangular plate under the action of load moving at constant velocity
in both cases of moving distributed forces and moving distributed masses respectively. The
graphs show that the response amplitude decreases as the value of shear modulus G, increases.

Figure 5.5: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying G, and Traversed by Moving Force
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Figure 5.6: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying G, and Traversed by Moving Mass

Figures 5.7 and 5.8 display the effect of flexural rigidity of the plate along x-axis D, on the
deflection profile of simply supported orthotropic rectangular plate under the action of load
moving at constant velocity in both cases of moving distributed forces and moving distributed
masses respectively. The graphs show that the response amplitude decreases as the value of

flexural rigidity D, increases.

Figure 5.7: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying D_and Traversed by Moving Force
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Figure 5.8: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying D_and Traversed by Moving Mass

Figures 5.9 and 5.10 display the effect of flexural rigidity of the plate along y-axis D, on the
deflection profile of simply supported orthotropic rectangular plate under the action of load
moving at constant velocity in both cases of moving distributed forces and moving distributed
masses respectively. The graphs show that the response amplitude decreases as the value of
flexural rigidity D, increases.
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Figure 5.9: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying D, and Traversed by Moving Force
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Figure 5.10: Displacement Profile of Simply Supported Orthotropic Rectangular Plate
with Varying D, and Traversed by Moving Mass

Figure 5.11 displays the comparison between moving force and moving mass for fixed values of
R,, G,, K,, D, and D,,.

Figure 5.11: Displacement Profile of Comparison between Moving Force and Moving
Mass

VI. CONCLUSION

In this work, the problem of response to simply supported orthotropic rectangular plate resting
on a variable elastic bi-parametric foundation under the action of moving distributed masses
has been studied. The closed form solutions of the fourth order partial differential equations
with variable and singular coefficients governing the orthotropic rectangular plates is obtained
for both cases of moving force and moving mass using a solution technique that is based on

the separation of variables which was used to remove the singularity in the governing fourth
order partial differential equation and thereby reducing it to a sequence of coupled second order
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differential equations. The modified Struble’s asymptotic technique and Laplace transformation
techniques are then employed to obtain the analytical solution to the two-dimensional dynamical
problem.

The solutions are then analyzed. The analyses show that, for the same natural frequency
and the critical speed for the moving mass problem is smaller than that of the moving force
problem. Resonance is reached earlier in the moving mass system than in the moving force
problem. That is to say the moving force solution is not an upper bound for the accurate
solution of the moving mass problem.

The results in plotted curves show that as the rotatory inertia correction factor R, increases,
the amplitudes of plates decrease for both cases of moving force and moving mass problems.
The flexural rigidities along both the x-axis D, and y-axis D, increase, the amplitudes of plates
decrease for both cases of moving force and moving mass problems. As the shear modulus G,
and foundation modulus K, increase, the amplitudes of plates decrease for both cases of moving
force and moving mass problems.

It is shown further from the results that for fixed values of rotatory inertia correction factor,
flexural rigidities along both x-axis and y-axis, shear modulus and foundation modulus, the
amplitude for the moving mass problem is greater than that of the moving force problem which
implies that resonance is reached earlier in moving mass problem than in moving force problem
of simply supported orthotropic rectangular plates resting on bi-parametric foundation.
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