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Affect of Spatial and Temporal Discretization
in the Numerical Solution of One-
Dimensional Variably Saturated Flow
Equation

M. S. Islam * & R. Ahamad °

Absiract- Numerical simulation of the Richards’ equation in dynamically saturated soils keeps on being a difficult
assignment because of its highly non-linear course of action. This is especially evident as soils approach saturation and
the conduct of the principal partial differential equation changes from elliptic to parabolic. In this study, we developed a
numerical model for solving Richards’ equation with regards to finite element approach in which pressure head-based
scheme is proposed to approximate the governing equation, and mass-lumping techniques are used to maintain
stability of the numerical simulation. Dynamic adaptive time stepping procedure is implemented in the Picard and
Newton linearization schemes. The robustness and accuracy of the numerical model were demonstrated through
simulation of two difficult tests, including sharp moisture front that infiltrates into the soil column with time dependent
boundary condition and flow into a layered soil with variable initial conditions. The two cases introduced feature various
parts of the presentation of the two iterative strategies and the various components that can influence their convergence
and efficiency, spatial and temporal discretization, convergence error norm, time weighting, conductivity and moisture
content attributes and the degree of completely saturated regions in the soil. Numerical accuracy, mass balance nature
and iteration efficiency of Picard and Newton techniquesare compared using different step sizes and spatial resolutions.
Results demonstrated that the presented algorithm is vigorous and exact in simulating variably saturated flows and
outcomes of some hydrologic process simulations are affected significantly by the spatial and temporal grid scales.
Hence it is proposed that the strategy can be adequately actualized and used in numerical models of Richards'
equation.

Keywords: richards’ equation; finite element, variably saturated flow, spatial discretization; temporal

discretization.
[. [NTRODUCTION

Ground water flow issues are moderately hard to solve because of their nonlinear
and parabolic nature, dependent on space and time dependent boundary conditions,
nonhomogeneous parameters, etc. Analytical solution can once in a while be acquired
for such genuine frameworks. In this way much of the time, flow equations must be
illuminated by numerical approximations. However, numerically solving the flow
problem is regularly tested by numerical scattering and motions, and as often as
possible winds up with misleading outcomes. Inexact results of numerical
approximations might be a significant reason for much disarray in the quantifiable
analysis of flow problems.
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Existing numerical methodologies to deal with explain Richards’ equation vary
by the detailing of this equation, for example, grid discretization, time step and
resolution strategies. These decisions impact computational time, numerical strength
and result exactness. Numerical strategies for Richards’ equation have pulled in
extensive examination consideration and are generally utilized in reasonable simulations
of subsurface procedures. In any case, numerous examinations have been indicated that
standard numerical process cannot overcome difficulties for certain flow problems
satisfactorily, particularly for the saturation of at first dry soils with non-uniform pore
size appropriation [1]. This examination researches the upsides of noniterative adaptive
time stepping approximations for Richards’ equation and built up a simple cost-effective
approximation that takes care of these troublesome issues precisely. The proposed
formulation is firmly identified with in backward Euler techniques and henceforth can
be utilized to progress existing programming for pragmatic subsurface simulations.

Standard numerical strategies for Richards’ equation is principally restricted to
straightforward time stepping approximations combined with finite element or finite
difference spatial approximations [2]. The time stepping approximations included
backward Euler and related schemes [e.g., 3, 4]. A basic advancement in the numerical
examination of Richards’ equation is the presentation of adaptive time stepping
algorithms, which acclimate to the conduct of the solution and are commonly more
solid and productive than uncontrolled procedures. Adaptive spatial approximations for
Richards’ equation incorporate a hierarchic finite element technique [5] and a front-
tracking scheme [6].

Variable-order variable-step size differential algebraic equation solvers (DASPK)
[1, 7, 8], lower-order backward Euler and similar techniques [9, 10] are depicted and

successfully applied in the pressure head form of Richards’ equation. Modern high-order
techniques gave significant upgrades over existing low-order uniform step-size
procedures when a small tolerance is used. In any case, for practical framework, many
ordinary differential equation algorithms have certain constraints in the modeling
variably saturated flows. By the controlling of formal truncation error, impressive
improvements in solution accuracy and efficiency are achievable using fixed step and
heuristic time stepping approximations, as well as, enhances the mass balance of models

dependent on pressure head form of Richards’ equation.

A significant issue in taking care of the flow problem is the mass balance error
relating to its nonlinear nature when flow includes physical and chemical responses, for
example, degradation, adsorption, evapotranspiration, and production. Mass
preservation is an important obligation for accurate numerical solution, while,
numerical accuracy is not ensured with a small mass balance. Iterative solution
techniques with small step size can reduce the mass balance error, which thus makes
the solution procedures very expensive. Numerical encounters for certain -cases,
contingent upon the nature and level of the nonlinearity, shows that mass balance
errors may not be adequately wiped out in any event, when small steps are utilized.
Thus, in flow demonstrating, most consideration has been paid to overcoming
nonlinearity and eliminating the numerical scattering and false motions of the flow
problems.

The governing equation for flow in saturated porous media i.e., Richards’
equation, contains nonlinearities arising from pressure head dependencies on soil
moisture and hydraulic conductivity. For steadiness reasons an implicit time
discretization requiring assessment of the nonlinear coefficients at the current time level,
is typically used to tackle the equation numerically. To linearize the subsequent discrete
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system of equations, Newton or Picard method is ordinarily utilized numerical
techniques for solving the nonlinearity of the coupled system [3, 11]. Newton-Krylov
method, combined Picard-Newton method, initial slope Newton methods are also used

to solve Richards’ equation [12, 13, 14]. Basically, Picard scheme is the most famous
because of its straightforwardness and normally adequate performance [15], and, is
computationally more affordable on a for each iteration premise, and preserves
symmetry of the discrete system of equations. Yet, the technique may diverge under
specific conditions, as has been watched experimentally [3]. Furthermore, the non-
perfection of constitutive relationships depicting a few soils causes poor convergence or
complete divergence of Picard and Newton solvers for uncontrolled time stepping
algorithms. To enhance the convergence efficiencies for such difficult simulations,
improved sophisticated variable-order variable-step size strategies along chord slope
iteration integrator and Newton techniques with global line search method can be
employed [1, 7]. The Newton technique, yields nonsymmetric system matrices and is
more unpredictable and costly than Picard linearization, however it accomplishes a
higher rate of convergence and can be more strong than Picard for particular sorts of
issues. Utilization of the Newton method has been restricted to one-and two-
dimensional saturated-unsaturated flow models. Detail comparison of Picard and
Newton strategies has been directed for the transient one-dimensional Richards’
equation is found in the study [3], where it was demonstrated that, regarding CPU time
expected to accomplish a given degree of solution exactness, Newton scheme can be as
or more effective than Picard.

The number of iterations are expected to converge is a deciding component in
the linearization schemes such as the Picard and Newton for the accurate, robust and
efficient simulations. Therefore to meet this rationale, convergence rate is often
enhanced by providing the solver with an initial solution estimate that is closer to the
final solution for the current time step. This can be obtained by taking the initial guess
from the previous step and by choosing a sufficiently small time step [13]. Hence,
empirical dynamic adaptive time step criterion is required for a numerical model [3, 13,
16, 17].

Possible efficiency advantages can be obtained by use of noniterative schemes
where formation of a single matrix with inversion per time step is required. For
instance, the study [3] demonstrated that the noniterative implicit factored scheme with
Newton solver can display equivalent or higher convergence efficiency than Crank-

Nicolson method. However, it is not comfortable to handle the Richards’ equation, as
well as, much complexities are occurred at the saturated-unsaturated interface. Besides,
these simpler algorithms, noniterative linearizations are limited for the temporal
accuracy to first order. Regardless of these complexities, noniterative linearization
techniques are an alluring option in contrast to customary iterative techniques for
solving Richards’ equation and other nonlinear partial differential equations.

The goal of this study, a general head-based mass conservative numerical
procedure with regards to finite element scheme is developed to approximate the
governing equation in which mass-lumping strategies are utilized to keep the stability of
numerical simulation. To investigate the applicability and accuracy of the mathematical
model and solution technique that offers a stable solution without requiring the resizing
of the finite element mesh structure. To analyze complete flow behavior, realistic initial
and Dirichlet boundary conditions are imposed in the numerical simulator to the head-

based form of Richards’ equation. Adaptive time-stepping approach is employed to
minimize the computational time and maintain small truncation error. The performance
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of the algorithm is shown to be superior to the conventional pressure head-based form
and can easily be used in layered soil.

[I. GOVERNING EQUATIONS

Move through fluidly saturated permeable media is portrayed by the classical
Richards’ equation, which is joined by coupling an announcement of mass preservation
with the Darcy’s equation. Richards’ equation contains nonlinearities emerging from
pressure head conditions in the soil moisture and hydraulic conductivity. For settling
Richards’ equation utilizing regular numerical techniques can prompt a progression of
numerical troubles including loss of mass protection, inadequately settled sharp fronts,
and disappointment for nonlinear solver or iterative linear solvers. Also, precise and
effective simulation of ground water flow in the saturated-unsaturated zone is
computationally pricey, particularly for issues those are described by sharp fronts in
both realities. Normal calculations that utilize homogeneous spatial and transient
discretizations for the numerical solution of these issues lead to off base, wasteful, some
time shaky and costly simulations. To evade these numerical challenges, mass-
preservation plan of flow condition, fine discretization in reality can be utilized, and
need to usage of proficient solid nonlinear and linear calculations. While bringing about
solutions of adequate precision, these methodologies can be computationally costly,
particularly when simulating conditions that include sharp fronts in space and timey,
time varying boundary conditions, vertical redistribution, just as various soil materials
in flow system.

Richards’ equation might be written in three standard structures, with either
pressure head or moisture content as dependent variables. The constitutive connection
between fluid substance and pressure head takes into account transformation of one
type of the condition to another. Three standard types of the saturated-unsaturated

flow condition might be distinguished by the "ip-based’, ’6-baesd’, and the 'mixed (y-8)’
form. For one-dimensional vertical flow, these conditions can be composed as follows:

(i) The “y-based’ form, where the primary variable is the pressure head,

Cw) 2 == [k (£ +1))] (1)

where, C(y) is the specific fluid capacity [L7!] and is defined by C(w) = g—i, v is the
pressure head [Z], t is time [7], z denotes the vertical distance from reference elevation,

assumed positive upward [L], K(y) is the hydraulic conductivity [LT~!], and @ is the
moisture content.

The ‘y-based’ form permits for both unsaturated and saturated conditions.
However, in highly non-linear problems, such as infiltration into very dry heterogeneous
soils, these methods can suffer from mass-balance error, convergence problems and poor
CPU efficiency. The reason for poor mass balance resides in the time derivative term.
While % and C(y) (%) are mathematically equivalent in the continuous partial
differential equation, their discrete analogues are not. The inequality in the discrete
forms is exacerbated by the highly nonlinear nature of the specific capacity term C ().
This leads to significant mass-balance errors in the p-based formulations because the

. . . . . de .
change in mass in the system is calculated using discrete values of pm while the
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approximating equations use the expansion C(y) (%) Using standard time-integration

techniques, mass-balance errors grow with the time-step size. Various approaches have
been developed to overcome this problem. A mass-conserving solution that modifies the
capacity term to force global mass balance scheme is proposed [18]. A mass distributed
algorithm [19] that satisfied mass balance and was free from oscillation. Implementation
of method of lines is shown the property of good mass balance through time-step
truncation error [7]. Moreover, very fine spatial and temporal discretizations with mass
lumping are needed to maintain mass balance property for these scenarios.

(ii) The 6-based form, where the primary variable is the moisture content,

0 2 201 9K
=5 PO%]+5 (2)
where D(0) = K — K is the soil water unsaturated diffusivity [L?T~!]. One of the

C(y) ae
advantages of the 6-based formulation is that perfectly mass conservative discrete
approximations can be applied. However, this form degenerates under fully saturated
conditions as heterogeneous material produces discontinuous 6 profiles and a pressure-
saturation relationship no longer exist [20]. Thus, this form may be useful only for
homogeneous porous media.

(iii) The mixed form, where both 6 and ¥ are the dependent variables,

T=lkw G+ (3)

It is also expressed in terms of mass conservative formulation. This form can be
used to solve for both saturated-unsaturated flow cases. It is commonly viewed as better
than the other two structures as a result of vigor as for mass balance. However,
conservation of mass alone does not guarantee satisfactory numerical solutions [4, 21].

Numerical strategies that utilize both 8 and 1 in the solution system have been
developed to reduce the mass balance errors and improve computational efficiency. A
primary variable switching technique, which is unconditionally mass conservative [22].
This method involves assembling and solving a nonsymmetric equation system at each
time and iteration level which increases CPU time but reported faster convergence
behavior. Modified Picard iteration approach guarantees mass balance by assessing the
moisture content change in a period step legitimately from the adjustment in the water
pressure head [4]. It has been shown to provide excellent mass balance when modelling
unsaturated problems with sharp wetting fronts [23]. This method is easy to implement
into -based codes, requiring only an additional source term.

More efficient convergence scheme has been proposed for the modified Picard
iteration method dependent on utilizing the pressure head as the primary variable [24].
However, problems have been reported when employing the mixed form for free
drainage problems [25]. If relatively large values are encountered, mass-balance errors
can accumulate with longer simulation times and larger domains. The -based form can

achieve good mass balance if the change in ¥ is small enough during a time step
whereas the mixed form improves mass balance with a sharp wetting front. Therefore,
combining these, makes a more efficient procedure for long time simulations of water
flow in soils with frequent infiltration and deep drainage processes. The method
switches to the 1-based form when the change in i is less than some prescribed value,
otherwise the mixed form is applied. Developing robust and efficient algorithms for
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certain flow problems, such as those that give rise to sharp wetting fronts, has provided
a computational challenge to the simulation community. For this class of problem,
small time-step sizes and a fine mesh is often required in order to maintain stability
when steep wetting fronts develop, making large-scale multi-dimensional infiltration
problems impractical to simulate.

a) Constitutive Relationships

For solving Richards’ equation numerically, we must define the characteristic
functions to illustrate the relationship among fluid pressures, saturations and relative
permeabilities. Various mathematical formulations are used in modeling for the soil
water moisture curves. The most regularly utilized connections are the Brooks—Corey
[26] and the van Genuchten [27] models. These two models are described as follows:

i. Brooks—Corey Model
The soil water pressure-moisture mathematical models proposed by Brooks and

Corey [26] are given by:
Yy

o) = 6, + (6, - 6)(%F

¢)nif1/) < Yy

0@W) = 6ifp > Py

_ 3+2/,
o) Qr] iy < U,

K@) = Ks[ T

K@) = Kifp >y,

cw) = nZ (%

n+1
[YPal ?) iy < ¥

C) = 0ifyp > ¢y

where 6, is the saturated moisture content [L3L73], 6, is the residual moisture content
[L3L73], Yy = —% is the air entry pressure head [Z] and m = 1—% is a pore-size
distribution index.

ii. Van Genuchten Model
Van Genuchten model [27]is the most used characteristic function for moisture
content and hydraulic conductivity and presented as follows:

@) = 6, + _ 6 -6 <0
V=0t g Y S
o) = 6,ifp > 0

6 — 6,1 e—er%m
K(‘p):KSes—er] {1—[1—(93_9)]}1%50

K@) = K,ifp > 0
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0, — 6,
1+ |ap|"]

C) = amn — lay|* ~lify < 0

C@) = 0ify > 0

b) Spatial Discretization
An appropriate technique to divided the boundary-value spatial component of

Richards’ equation from its initial-value temporal variation is the finite element
technique and this approach is very simple and practical to use. To build up the finite
element algorithm of the pressure head-based Richards’ equation, the weak model of the
dependent variable and the constitutive relations were approximated utilizing
introducing polynomials [28, 29]. It was expected that the pressure driven conductivity
just as capacitance differs linearly inside every component [30].

For solving Richards’ equation (1) numerically, finite element Galerkin's
approach is applied to discretize spatial domain and finite difference method is used for
time derivative term. To build up the finite element model, there are M-1 discretized
components for M global nodes in the problem domain.

The approximating function is

Pz ~ Bz 1) = S Ny @D (1) (16)

where N;(z) and y; (t) are linear Lagrange basis functions and nodal values of ¢ at time
t, respectively. The method of weighted residuals is used to set the criteria to solve for
the unknown coefficients. In local coordinate space —1 < & < 1, the approximating

function for each element (e) is P© = ZLZ:lNi(e)(E) lpi(e)(t) = %(1 — E)lpl(e)(t) +

. T
%(1 + f)l/)z(e)(t), which we can write in vector form as ) = (N(e)(f)) w©)(t). The

global function (16) becomes:
P = DI (N = FIotp©

The symmetric weak formulation of Galerkin’s method applied to (1) yields the
system of ordinary differential equations [14]:

d¥
AMIY + F(¥) - = a® — b(¥)

where Wis the vector of undetermined coefficients corresponding to the values of
pressure head at each node, A is the stiffness matrix, F is the storage or mass matrix, q
contains the specified Darcy flux boundary conditions and b contains the gravitational

gradient component. Over local sub domain element Q(), we have:

dN®© dn@©

T
dz(dz)dz

20 = [ KK
Qe

© 2020 Global Journals

XX

Frontier Research (F) Volume

Global Journal of Science



Global Journal of Science Frontier Research ( F) Volume XX Issue VII Version I E Year 2020

dN®©

77 dz

B =f KOK (5©)
ac)

F) :f CWEYNENENTdz
O]

Here, NT denotes the transpose of V.

¢) Time Differencing
Equation (18) can be integrated by the weighted finite difference scheme. We obtain:

k+1 _ l}]k

Y
A(\pk +/1)1_I_Jk +1 + F(q_}k +A)W

— q(tk +/'{) _ b(\pk+/'{)
where WK+4 = Awk+1l 4 (1 — YWk, with 0<A1<1 (1 is a weighting
parameter)and k + 1 denotes current time level.

The time step size to ensure a stable solution will be dependent on the spatial
discretization, and for nonlinear equations, there will in general also be a dependency on

the form of the solution itself at any given time. Equation (22) is O(At) accurate,
except for A = % When 1 = %, the discretized scheme (22) corresponds to the Crank—
Nicolson scheme.

The system of equations (22) is nonlinear in ¥**!, except when 1 = 0, which
corresponds to an explicit Euler scheme. When A > 0, the scheme becomes implicit.
Some iteration or linearization strategy is thus needed to solve the system of nonlinear
equations for the implicit case. For 4 = 1, the scheme corresponds to the backward
Euler scheme.

[11. [TERATIVE METHODS

The system of equations (22) is highly nonlinear because of the nonlinear

dependency of hydraulic conductivity K and specific moisture capacityC on . Picard
and Newton are the two classical iterative approaches can be applied in the nonlinear
system (22) for linearization. Picard method is simpler than Newton and preserves
symmetry in the system matrix. Then again, the Newton strategy requires the
computation of Jacobian matrix at each iteration and yields a nonsymmetric system.
Along these matters, Picard technique is less computational, on a for every cycle
premise, than the Newton strategy. The Picard strategy is convergent linearly, whereas,
Newton meets quadratically.

a) Newton Scheme
Let us Consider

f(ll—’k"'l)
1Pk+1 _ qjk

— A(ll_jk+/1)1_l_;k+/1 + F(l_pk+/1) AT

— q(tk+7) + p(Wk+1) = 0o
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The Newton scheme [3] can be written as:

f,(lpk + 1,(m))(lpk +1,(m+1) _ l/)k + 1,(m)) - _ f(l/)k + 1,(m))

where the superscripts m and m + 1 denote the previous and current iteration levels
respectively.
The Jacobian for the system is:

fj = Ay + ey Za¢k+1lp5 *

1 oF, ab;
+ E (k+1 — k) +

k+1 k+1 S S k+1
Atk + — 0y o]

expressed here in terms of ij-th component of the Jacobian matrix f ECARED)
b) Picard Scheme

Straightforward and simple mathematical expression of Picard iterative method
can be derived from (22) by iterating with all linear events of ¥* *taken at the current
iteration level m + 1 and all nonlinear events at the previous level m [3]. We get:

AAk + 4,(m) +

— Fl +/1,(m)] (lpk LD ok 1,(m))
At

- _ f(l/)k +1,(m))

By the comparison of the equations (22) and (26), it is observed that Picard
technique is an approximation of Newton technique. To assess the overall efficiency of
the two linearization techniques, it is very important to know the structural differences
of Picard and Newton techniques, such as, Picard linearization produces symmetric and
Newton produces a nonsymmetric system matrix. Three derivative terms are needed to
calculate in the Newton procedure, as a result, the Newton strategy is more expensive
and arithmetically complex than Picard.

[V.  METHODOLOGY

The principal objective of this research is to generalize pressure head-based finite
element algorithm to handle the nonlinearity, minimize the mass balance errors locally
and globally of the flow equation and application of one-dimensional saturated flow
conditions for investigating the spatial and temporal discretization affect. This is
practiced by linearizing a head-based flow equation with the Picard and Newton
iteration techniques. Anusual Galerkin finite element technique is then wused to
comprehend the linearized definition to acquire the solution of flow problems.

Mass balance errors and computational efficiency are the key factors for the
measure of the solution quality. Numerical trials will be introduced to delineate the
promising solution execution of the iteration techniques as contrasted and the reference
solution which will be made by fine grid resolutions maintain with a tight nonlinear
tolerance for the test problems to evaluate the efficiency and robustness and also

© 2020 Global Journals

XX

Frontier Research (F) Volume

Global Journal of Science



Global Journal of Science Frontier Research ( F) Volume XX Issue VII Version I E Year 2020

compare the computed result with other published footprints. Note that the input
tolerance level will affect the accuracy of the numerical solution, within limits imposed
by spatial and temporal truncation error.

The exhibition of the calculation is contrasted and two illustrative arrangements
of distributed exploratory information, every one of which speaks to an alternate
physical situation and is frequently used to approve calculations. In the test examples,
the accuracy, mass balance character and iteration efficiency of the pressure head-based
model is evaluated with the Picard and the Newton iteration schemes using three
different spatial and time-step sizes, and applicability of the resultant solutions, and
draw methods to assess the computational work required to achieve the results.
Numerical experiments are performed with mass lumping, to appraise the robustness of
the approach and investigate the advantages of the methods for improving the efficiency

of solutions to Richards’ equation.

To enhance the convergence the of the nonlinear iterative approaches, dynamic
time stepping technique is incorporated in this study. During whenever step, nonlinear

convergence tolerance Tol (= 10™%) is assigned for both the test examples, alongside a
most extreme number of nonlinear iterations denoted by maxit and it is 15. Simulation
start with time step size is Atyand proceeds until we arrive at the end of the simulation
time T,,,,. Present step size will increase with a predetermined amplification factor
Atyqg (= 1.20) if the number of iterations is less than another pre-assigned limit of
iterations maxit; (= 8) and this process is repetitive until reach the maximum time step
size Atn... Current step size is constant if number of nonlinear iterations are lies
between maxit; and maxit,(= 5) iterations. If the number of nonlinear iterations is less
than maxit,, then the simulation step size will reduce by a reduction factor

At,.q (= 0.5) to assigned minimum step size At,,;, . Solution will start recalculate if the
convergence is not attaining within the specified maximum number of nonlinear
iterations, which is called back-stepping. For both the iterative schemes, the infinity

norm [11], ||g* +Lm+D — yk+L0M|| < Tol is used as the stopping criterion.

A correlation of the overall precision of the numerical outcomes got from various
plans is not easy [15]. It is depending upon the objectives such as, global or local
comparisons of water pressure or water content, minimum or maximum value of the
compared variable, etc. One proportion of a numerical test system is its capacity to
preserve global mass over the area of intrigue. Small mass balance error is necessary yet
not totally satisfactory essential for a correct solution [4, 15, 31]. To quantify the
capacity of the test system to conserve mass, one of the most broadly utilized models
for assessing the accuracy of a numerical strategy is the mass balance error (MBE)
given by [4]:

Total additional massin the domain|

Mass Balance Error=|1- _ _
Total net flux into the domain |

where the complete extra mass in the space is the distinction between the mass
estimated at any moment t and the underlying mass in the area, and the total net flux

into the region is the flux balance coordinated in time up to t. In this study, this is
determined by the accompanying equation [4]:
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E-

Y (0 -6°)(A2) +(eg+l—eg)(ﬂj+(9;+1—eg)[mj
MB(t)= = 2 2

=

(27)

k+1

> {(ad —al)(an))

j=1

with N = E + 1 nodes {zj, z1, 23, ... ... ,Zg}, and constant nodal spacing Az is considered
and qo and gy being boundary fluxes evaluated from the finite element equations
related with the boundary modes z, and zy.

To solve the linearized system of equations, a main drawback of the Newton
scheme is insufficiency of linear solvers for large, sparse non symmetric systems. This is
not true anymore, as at present accessible form conjugate gradient-type algorithms for
handling non symmetric systems have gotten progressively steady and effective. In this
work, bi-conjugate gradient stabilized algorithm (BICGSTAB) is used to solve the
linear systems. For the symmetric system produced by Picard linearization, incomplete
Cholesky conjugate gradient strategy (ICCG) is joined. For all experiments, where
ICCG, BICGSTAB, iterative solver, the linear solver boundaries tolcg (convergence
tolerance 1071%) and maxitcg (maximum number of linear iterations is1000) was
assigned. Soil moisture properties are evaluated by analytical differentiation.

Hydrological model CATHY (CATchmentHYdrology) [11, 32], where the surface
module settles the one-dimensional diffusion wave condition and the subsurface module
solves the three-dimensional Richards’ equation, is used for all runs. All simulations
were executed on a Dell Inspiron 2.56-GHz laptop computer.

V. RESULTS AND DISCUSSIONS

Two challenging one-dimensional test examples are considered to validate the
algorithm and to compare the accuracy of the numerical solution of Richards’ equation
by the CATHY model. Time dependent boundary conditions with a sharp moisture
front that infiltrates into the soil column [10, 16, 33] is the first test problem and the
second test case involves flow into a layered soil with variable initial conditions [33, 34,
35].

a) Test problem 1

This problem considers a soil column of 2 m deep with the initial pressure head
distribution is ¥(z,0) = z — 2. At the bottom of thecolumn, a water table boundary
condition (i.e.,}p(0,t) = 0) is imposed, while a time-dependent Dirichlet condition

( _ _ < 21 ) <
. 0.05 +0.03 sin (555= 0 < ¢ < 100000
Y21 = 0.1 if100000 < ¢ < 180000

t

k—0.05 + 2952.45 e 182048if 180000 < t < 300000

is applied at the top boundary which is presented in Figure 1. The soil hydraulic
properties are described by the van Genuchten model. The soil parameters are

0, = 0.410, 0, = 0.095, a = 1.9/m, n = 1.31 and K, = 0.062 m/day.
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Figure 1: Dirichlet boundary condition imposed at the top of the soil column for Test
problem 1

The Dirichlet boundary condition leads to significant ponding between
100000 sand 200000 s, and as will be found in the outcomes, this kind of boundary
condition, leading in coupled groundwater water representation, is a wellspring of huge
trouble in the iterative techniques.

Attributes of such soil compare to an unconsolidated clay loam with a
nonuniform grain size circulation [36]. Antecedent experiment [37] completed a
comparative correlation utilizing a moisture-based type of Richards’ equation and an
alternate experiment that doesnot include time-differing boundary conditions with
surface ponding.

Due to the positive value of pressure head in the second period of simulation
time (100000 < t < 180000 s), to achieve the numerical convergence is very challenging
for any algorithm. In light of unexpected increment of the upper Dirichlet boundary

condition to a positive estimation of 0.1 m, it makes a sharp moisture front that
infiltrates into the soil section. Toward the start of the third time frame (t > 180000 s)

ponding diminishes exponentially, arriving at asymptotically a last worth —0.05 m, and
before the finish of the simulation the whole section is near tofull saturation.

The moisture retention curve is monotonic with a point of inflection that gives
the moisture capacity function its typical shape. The soil moisture retention curves for
this test problem using the van Genuchten model are represented in Figure 2.
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Fligure 2: Soil moisture characteristic curves for Test problem 1
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In order to assess the robustness and efficiency of the method, we used three set
of grid sizes, i.e.,Az= 0.004m,0.008 mand 0.04m and each grid discretization is

simulated with three temporal sizesAt,,,, = 1000 s,100s and 10s.

The computed pressure head profiles at various meshing obtained with a small
tolerance (10™* m) are displayed in Figure 3. These solutions are very similar to those
reported in the literature [10, 16, 33]. Figure 3 shows the initial conditions and pressure
head solution profiles at three different times (e.g., 0s5,35000s,155000s and
300000 s). It is evident that the solution profiles are affected by the spatial resolutions.

The red profiles, which falls inside the ponding time frame, shows the abundance water
that structures at the soil surface and the fairly sharp moisture front that is produced.
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Figure 3: Pressure head profiles at different times for Az = 0.04 m (red) and Az =
0.008 m (blue) of Test problem 1

Adaptive time stepping algorithm is applied to the iteration techniques Newton
and Picard for all vertical discretizations and three different time stepping scales for
investigating the step size behavior. We discovered generally striking here the
altogether different conduct between the Newton and Picard methodologies during the
ponding time frame. Though the Newton model is compelled to make extremely little
step sizes just at the absolute starting point and end of the ponding time frame, the
Picard plot needs to arrange a wide scope of step sizes all through the ponding time
range, and surely for the At,,,, = 1000 s case, it never accomplishes this most extreme
incentive during ponding, for any of the vertical grid resolutions. Small time step size is
observed from 100000 s to 200000 s, as ponding progressively diminishes to zero. Step
size is quickly increasing and reaches maximum allowable time step size 1000 s in the
simulation period 200000 s to 300000 s for both iteration schemes. This demonstrates
simpler nonlinear solver conditions because of smoother infiltration fronts and surface
conditions that are no longer fully saturated. Compelling an iteration scheme to take
extremely small time steps for prolonged periods during a simulation can represent a
massive computational trouble for subsurface solvers. The time stepping behavior of

Picard and Newton can be found in the Figure 4 for Az = 0.008 m and 0.04 m cases
with various time step sizes.
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Figure 4: Dynamic time stepping behavior of Picard (top row)and Newton (bottom
row) schemes for Az = 0.04 m (left) and Az = 0.008 m (right)of Test problem 1
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Figure 5: Nonlinear convergence behavior of Picard (top row) and Newton (bottom
row) schemes for Az = 0.04 m (left) and Az = 0.008 m (right) of Test problem 1

Graphical representation of convergence nature on the basis of number of
nonlinear iterations required at each step of Picard and Newton iteration schemes are
shown in the Figure 5. Here, we observed that a smoother transition into and out of the
ponding period, and without the need for time step adaptation. Solver needs to
negotiate a wide range of iteration to achieve converge.
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Using Picard and Newton techniques, cumulative mass balance error (CMBE)
plot is presented in the Figure 6 for all temporal discretizations. The mass balance error

almost closes to zero with the exception of a couple of cases around 100000 s implied
that the accurate solution is ensured. Nonlinear iteration, time stepping and CMBE

behavior of Az = 0.004 m case is not presented graphically as they are almost same as
for Az = 0.008 m. Note that Newton method cannot converge for At = 100 s and 1000 s

for grid spacing Az = 0.004 m.

The computational statistics of the methods under all the cases are summarized
in Table 1 and Table 2. The performance indicators are the total number of iterations,
cumulative mass balance error, the average number of Picard and Newton iterations
taken at each time step, the number of back stepping occurrences i.e., failure of Picard
or Newton to converge within the assigned maximum number of iterations, the number
of linear solver failures and the computational time (CPU). Examining more closely
both iterative results, we note that Newton scheme resulted in significantly fewer back-
stepping occurrences. Graphical results and statistics of the simulation clearly indicate
that the technique is adequate.
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Figure 6: Cumulative mass balance error behavior of Picard (top row) and Newton

(bottom row) schemes for Az = 0.04 m (left) and Az = 0.008 m (right) of Test
problem 1

Another precision of simulation is assessed by the root mean squared error
(RMSE) as for the reference solution which is made utilizing very fine grid with very
small nonlinear tolerance. Errors are measured at three different times, explicitly, at
35000 s, 155000 s, and 300000 s for all the temporal discretizations of Picard and
Newton techniques (Table 3). We have appeared (Figure 7) that the normal errors are
most noteworthy at the coarsest spatial and temporal discretizations, and the pinnacle
errors spread with the moisture front that is moving downwards into the soil.
Furthermore, Picard scheme gives little higher errors than Newton scheme and sharp
increment in absolute error in the range of ponding time is observed. Choice of the
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discretization method of spatial and temporal domain has a great impact on handling
soil properties, as a result, numerical accuracy can be affected significantly including the
stability and rate of convergence of the numerical scheme.

Table 1: Computational statistics of Picard scheme for Test problem 1

Aty () = 10 100 1000

Az (m) > 0.04 0.008 0.004 0.04 0.008 0.004 0.04 0.008 0.004

MBE (m?3) -2.11e-5 | 8.12e-6 | 8.44e-6 | -2.13e-5 | 9.85e-6 | 4.95e-6 | -2.11e-5 | 8.12e-6 | 8.44e-6 N

No. of time step 42583 136622 | 186242 | 303006 | 364601 | 403462 42583 136622 | 186242 otes

NL Ite/Step 2.22 2.44 2.37 1.43 1.65 1.70 2.22 2.44 2.37

Back step 1084 7911 11419 367 6290 9564 1084 7911 11419
Solver failures 0 0 0 0 0 0 0 0 0

CPU (s) 5546 80729 | 202349 3679 69892 | 74496 3055 7790 | 183895

* NL Ite=Nonlinear Iteration

Table 2: Computational statistics of Newton scheme for Test problem 1

At (5) = 10 100 1000

Az (m) - 0.04 0.008 0.004 0.04 0.008 | 0.004 0.04 0.008 | 0.004

MBE (m3) -2.09e-5 | 1.40e-5 | 5.90e-6 | -1.52e5 | 2.24e5 | Div | -1.65e5 | 3.19e5 | Div
No. of timestep | 30149 30247 | 30266 3187 3737 Div 1281 2237 Div

NL Ite/Step 1.86 2.05 2.08 3.38 4.26 Div 5.58 5.93 Div
No. of back step 6 16 14 7 12 Div 15 22 Div
Solver failures 0 2 1 0 1 Div 1 3 Div
CPU (s) 6949 52378 | 70347 1385 11303 | Div 911 7790 Div

* Div=Divergent
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Figure 7: RMSE behavior of Picard (top row) and Newton (bottom row) schemes for

Az = 0.04 m (left) and Az = 0.008 m (right)of Test problem 1.Errors at 35000s, 155000s
and 300000s are marked by solid, dash-dotted, dashed lines with green, magenta, blue
colors respectively
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Table 3: RMSE of Picard and Newton schemes for Test problem 1

Az(m) | Aty (5) Tl\lz:hf()ir 35000 | 155000 | 300000
Picard 5.76e-2 4.93e-2 9.33e-4

10 Newton 5.76e-2 | 4.94e-2 | 9.33e4

0.04 Picard 5.6le2 | 4.982 | 9.37e4
100 Newton 5.62e-2 4.73e-2 9.19¢-4

Picard 4.38e-2 4.54e-2 9.15e-4

1000 Newton 5.0le2 | 4.12¢2 | 9.0be4

Picard 4.20e-3 2.50e-3 6.62¢e-5

10 Newton 4.20e-3 1.90e-3 6.89¢-5

Picard 1.50e-3 | 9.80e-3 | 9.69e-5

0.008 100 Newton 3.20e-3 4.50e-3 3.32e-4
Picard 6.60e-3 | 1.00e-3 | 5.98e4

1000 Newton 3.37e-3 8.10e-3 6.36e-4

b) Test problem 2

The simulations of this test case with different layer thicknesses with the
heterogeneity in the soil moisture retention curves, represented with the Brooks—Corey
model. This case involves vertical drainage from initially saturated conditions. At time
t = 0 s, the pressure head at the base of the column is reduced from 2 m to 0 m. During
the subsequent drainage, a no-flow boundary condition is applied to the top of the soil
column. These forcing conditions lead to the development of a sharp discontinuity in
the moisture content occurs at the interface between two material layers [33, 34, 35].
This type of problem provides a rigorous test case for a numerical algorithm and is well
suited for the analysis of numerical convergence and efficiency.

During downward draining, the middle coarse soil tends to restrict drainage from
the upper fine soil, and high saturation levels are maintained in the upper fine soil for a
considerable period of time. The hydraulic properties of the soils are given in Table 4.
The soil profile is Soil 1 for 0 <z < 60cm and 120 cm < z < 200 cm and Soil 2 for

60cm <z <120 cm.

Table 4: Soil hydraulic properties used in Test problem 2

Parameters Soil 1 Soil 2
0, 0.35 0.35
0, 0.07 0.035
@ (cm—1) 0.0286 0.0667
n 1.5 3.0
K, (cm/s) 9.81 x 107 9.81 x 10°

The soil moisture curves of the moisture content (6) and specific moisture

capacity (C) are evaluated by the Brooks—Corey model (Figure 8). The shape of the soil
moisture capacity is very sharp near the saturation implies the rigorous complexities are
encountered when the analytical differentiation of fluid content is used. As a
consequence, numerical accuracy can be affected significantly. To handle such
difficulties efficiently, proper choice of grid resolution and temporal discretization is
required for heterogeneous porous media.
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Figure 8: Soil moisture characteristic curves for Test problem 2

To compare the performance of the algorithm, simulations are performed on two
fine mesh of 300 and 150 elements and a coarser mesh of 50 elements with three time

step sizes (Atpa,=10s,100s and 1000s) via dynamic time stepping control for
nonlinear iterations with mass lumping. The algorithm is used to simulate the

experiment and the comparison of water saturation prediction after 1050000 sis
depicted in Figure 9, which is similar to those presented in the published result
(33, 34, 35]. Some oscillations are produced in the middle coarse soil in the solution
profile, as our expectation. These oscillations have been attributed to insufficient spatial
resolution.

The simulations conducted with small grid spacing produce more acceptable
results in that the overall shape of the soil hydraulic characteristic. However, that use
of even smaller grid spacing may not significantly improve the simulation results. It is
recommended that the computed saturation is sensitive about grid spacing.
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Figure 9: Saturation predictions after 1050000 s for different spatial discretizations of
Test problem 2

Adaptive time stepping behavior (Figure 10), nonlinear iterations per time step
(Figure 11) and cumulative mass balance error (Figure 12) are presented graphically for

the case Az = 0.04m and Az = 0.0133 m. Almost similar results are recorded for 150
and 300 elements. So, in the figure analysis on the basis of the mentioned factors are
excluded for 300 elements. Time stepping plots shows that Picard scheme has to face
very little trouble at 2 X 10° s, whereas Newton scheme is highly affected during the
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simulation for At,,,, = 100sand 1000s. But note that, the large time step size
speedup to complete the simulation. Convergence plots demonstrated that, Picard and

Newton techniques need only one iteration during entire simulation for At,,,, = 10s.
There are some differences are observed for other time scales as well grid spacing.
Cumulative mass balance errors are almost approaching to zero. This implies that the
numerical results are strictly maintained accuracy. Table 5 and 6 summarized the
simulation statistics for Picard and Newton iteration methods respectively. The mass
balance error at any given time step is calculated as the absolute difference between the
changes in water storage during that time step. In this test case, Newton technique
needs many back-stepping to achieve the convergence for all spatial and temporal
discretizations. RMSE evaluated with respect to the surrogate exact solution with very
small nonlinear tolerance. Errors are measured at the three different times, specifically,

at 250000 s, 550000 s, and 1050000 s for all the temporal discretizations of Picard and
Newton techniques (Table 7).
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Figure 10: Dynamic time stepping behavior of Picard (top row) and Newton (bottom
row) schemes for Az = 0.04 m (left) and Az = 0.0133 m (right)of Test problem 2
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problem 2
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Table 5: Computational statistics of Picard scheme for Test problem 2

At (s) > 10 100 1000
Az (m) - 0.04 0.0133 | 0.0067 0.04 0.0133 | 0.0067 0.04 0.0133 | 0.0067
MBE (m3) 1.88e-6 | 1.72e-6 | 1.43e-6 | 8.03e-6 | 0.0067 | 3.11e-6 | -6.23e-5 | 6.59e | -7.44e-5

No. of time step | 105051 | 105051 | 105051 | 10566 | 5.28e-6 | 10556 1146 43602 1136

NL Ite/Step 1.00 1.00 1.00 1.04 1.03 7.56 1.62 3.62 1.58
No. of back step 15 15 15 20 1.03 16 29 28 25
Solver failures 0 0 0 0 19 0 0 0 0

CPU (s) 6449 14034 | 47528 767 2506 4050 134 631 966

Table 6: Computational statistics of Newton scheme for Test problem 2

At (s) = 10 100 1000

Az (m) - 0.04 0.0133 | 0.0067 0.04 0.0133 | 0.0067 0.04 0.0133 | 0.0067
MBE (m?) 2.20e-6 | 7.15e7 | 7.32e-7 | 9.59¢-6 | 8.26e-6 | 7.63e-6 | -9.45e-6 | 7.6%-5 | 8.59e-5
No. of timestep | 106217 | 240041 | 371587 | 29024 | 79014 | 143872 | 11137 43602 | 86856

NL Ite/Step 1.06 3.07 3.10 3.05 3.38 3.53 3.55 3.62 3.65
No. of back step 663 49640 | 77980 5972 18698 | 36050 2682 11287 | 22697
Solver failures 0 0 0 0 19 0 0 0 0
CPU (s) 14945 | 416403 | 1340 31101 | 145679 | 168846 | 11400 74944 | 367914

Table 7: RMSE of Picard and Newton schemes for Test problem 2

Az (M) | Atpgy (5) T&“;Eh(:'()u_’ 250000 | 550000 | 1050000
10 Picard 4.70e-3 3.70e-3 3.60e-3
Newton 5.300-3 3.706-3 3.606-3
0.04 100 Picard 4.70e-3 3.70e-3 3.60e-3
Newton 5.206-3 3.906-3 3.806-3
1000 Picard 4.60e-3 3.70e-3 3.60e-3
Newton 5.500-3 3.306-3 3.706-3
10 Picard 1.10e-3 1.00e-3 8.91e-4
Newton 1.10e-3 1.30e-3 8.95¢e-4
0.0133 00 Picard 1.10e3 1.00e-3 3214
Newton 1.30e-3 1.00e-3 T T2e-4
1000 Picard 1.606-3 3.706-3 3.606-3
Newton 1.10e-3 9.83e-4 8.08c-4

VI. CONCLUSIONS

A finite element algorithm is introduced to solve the Richards’ equation for one-
dimensional flow problems in variably saturated soils. Specifically, the problem of mass-
balance errors is handled, which is in reality a pressing problem for the simulation of
such highly nonlinear phenomena as the infiltration into soil column and drainage
through layered soil from initially saturated condition. The effectiveness of the
algorithm is demonstrated by compare with published results. The conduct of various
techniques for solution estimates and adaptive time stepping were experimented for

Richards’ equation model. Time step adaptation is essential to accomplish sensible
figuring execution in reasonable uses of Richards’ equation. Head based Picard and
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Newton iteration schemes are compared, where three step-time sizes are implemented
for each of three different spatial discretizations. It is demonstrated that both iterative
schemes are mass conservative and efficient in terms of nonlinear iteration. For the
most part, large time-step size requires modest number of iterations to converge the
solution, however, Newton scheme is diverge for drainage problem, as well as
significantly many back-stepping occurred. So, the size of the time step can be
constrained by the convergence of the iterative scheme for simulating strong
nonlinearities. Coarse grid spacing is caused for numerical oscillations for the both test
experiments. Therefore, time step size and/ or grid size are the influential factors for
the numerical simulation of variably saturated flows. The model presents tremendous
mass balance property over whole spatial and temporal mesh for the problems of
infiltration fronts and drainage problems. The accomplishment of the finite element
algorithm in simulating an assortment of problems leads to confidence in its
applicability to many dynamically saturated flow problems for its advantageous
flexibility. Further research is needed in the development of multidimensional finite

element model for solving problem in saturated—unsaturated regions without special
treatment of fluid content discontinuities in heterogeneous porous media.
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