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Abstract- Numerical simulation of the Richards’ equation in dynamically saturated soils keeps on 
being a difficult assignment because of its

 
highly non-linear course of action. This is especially 

evident as soils approach saturation and the conduct of the principal
 
partial differential equation 

changes from elliptic to parabolic. In this study, we developed a numerical model for solving 
Richards’ equation with regards to finite element approach in which pressure head-based 
scheme is proposed to approximate the governing equation, and mass-lumping techniques are 
used to maintain stability of the numerical simulation. Dynamic adaptive time stepping procedure 
is implemented in the Picard and Newton linearization schemes. The robustness and accuracy of 
the numerical model were demonstrated through simulation of two difficult tests, including sharp 
moisture front that infiltrates into the soil column with time dependent boundary condition and 
flow into a layered soil with variable initial conditions.  
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Abstract-

 

Numerical simulation of the Richards’ equation in dynamically saturated soils keeps on being a difficult 
assignment because of its

 

highly non-linear course of action. This is especially evident as soils approach

 

saturation and 
the conduct of the principal

 

partial differential equation changes from elliptic to parabolic. In this study, we developed a 
numerical model for solving Richards’ equation with regards to finite element approach in which pressure head-based 
scheme is proposed to approximate the governing equation, and mass-lumping techniques are used to maintain 
stability of the numerical simulation. Dynamic adaptive time stepping procedure is implemented in the Picard and 
Newton linearization schemes. The robustness and accuracy of the numerical model were demonstrated through 
simulation of two difficult tests, including sharp moisture front that infiltrates into the soil column with time dependent 
boundary condition and flow into a layered soil with variable initial conditions. The two cases introduced feature various 
parts of the presentation of the two iterative strategies and the various components that can influence their

 

convergence 
and efficiency, spatial and temporal discretization, convergence

 

error norm, time weighting, conductivity and moisture 
content attributes and the degree of completely

 

saturated regions in the soil. Numerical accuracy, mass balance nature 
and iteration efficiency of Picard and Newton techniquesare compared using different step sizes and spatial resolutions. 
Results demonstrated that the presented algorithm is vigorous and exact in

 

simulating variably saturated flows and 
outcomes of some hydrologic process simulations are affected significantly by the spatial and temporal grid scales. 
Hence it is proposed that the strategy can be adequately actualized

 

and used in numerical models of Richards' 
equation.

  
 

richards’ equation; finite element; variably saturated flow; spatial discretization; temporal 
discretization.

 
I.

 

Introduction

 
Ground water flow issues are moderately hard to solve because of their nonlinear 

and parabolic nature, dependent on space and time dependent boundary conditions, 
nonhomogeneous parameters, etc. Analytical solution can once in a while be acquired 
for such genuine frameworks. In this way much of the time, flow equations must be 
illuminated by numerical approximations. However, numerically solving the flow 
problem is regularly tested by numerical scattering and motions, and as often as 
possible winds up with misleading outcomes. Inexact results of numerical 
approximations might be a significant reason for much disarray in the quantifiable 
analysis of flow problems. 
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Existing numerical methodologies to deal with explain Richards' equation vary 
by the detailing of this equation, for example, grid discretization, time step and 
resolution strategies. These decisions impact computational time, numerical strength 
and result exactness. Numerical strategies for Richards' equation have pulled in 
extensive examination consideration and are generally utilized in reasonable simulations 
of subsurface procedures. In any case, numerous examinations have been indicated that 
standard numerical process cannot overcome difficulties for certain flow problems 
satisfactorily, particularly for the saturation of at first dry soils with non-uniform pore 
size appropriation [1]. This examination researches the upsides of noniterative adaptive 
time stepping approximations for Richards' equation and built up a simple cost-effective 
approximation that takes care of these troublesome issues precisely. The proposed 
formulation is firmly identified with in backward Euler techniques and henceforth can 
be utilized to progress existing programming for pragmatic subsurface simulations.  

Standard numerical strategies for Richards' equation is principally restricted to 
straightforward time stepping approximations combined with finite element or finite 
difference spatial approximations [2]. The time stepping approximations included 
backward Euler and related schemes [e.g., 3, 4]. A basic advancement in the numerical 
examination of Richards' equation is the presentation of adaptive time stepping 
algorithms, which acclimate to the conduct of the solution and are commonly more 
solid and productive than uncontrolled procedures. Adaptive spatial approximations for 
Richards' equation incorporate a hierarchic finite element technique [5] and a front-
tracking scheme [6].  

Variable-order variable-step size differential algebraic equation solvers (DASPK) 
[1, 7, 8], lower-order backward Euler and similar techniques [9, 10] are depicted and 

successfully applied in the pressure head form of Richards’  equation. Modern high-order 
techniques gave significant upgrades over existing low-order uniform step-size 
procedures when  a small tolerance is used. In any case, for practical framework, many 
ordinary differential equation algorithms have certain constraints in the modeling 
variably saturated flows. By the controlling of formal truncation error, impressive 
improvements in solution accuracy and efficiency are achievable using fixed step and 
heuristic time stepping approximations, as well as, enhances the mass balance of models 

dependent on pressure head form of Richards’ equation. 
A significant issue in taking care of the flow  problem is the mass balance error 

relating to its nonlinear nature when flow includes physical and chemical responses, for 
example, degradation, adsorption, evapotranspiration, and production. Mass 
preservation is an important obligation for accurate numerical solution, while,  
numerical accuracy is not ensured with a small mass balance.  Iterative solution 
techniques with small step size can reduce the mass balance error, which thus makes 
the solution procedures very expensive. Numerical encounters for certain cases, 
contingent upon the nature and level of the nonlinearity, shows that mass balance 
errors may not be adequately wiped out in any event, when small steps are utilized. 
Thus, in flow demonstrating, most consideration has been paid to overcoming 
nonlinearity and eliminating the numerical scattering and false motions of the flow 
problems.  

The governing equation for flow in saturated porous media i.e., Richards' 
equation, contains nonlinearities arising from pressure head dependencies on soil 
moisture and hydraulic conductivity. For steadiness reasons an implicit time 
discretization requiring assessment of the nonlinear coefficients at the current time level, 
is typically used to tackle the equation numerically. To linearize the subsequent discrete 
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system of equations, Newton or Picard method is ordinarily utilized numerical 
techniques for solving the nonlinearity of the coupled system [3, 11]. Newton-Krylov 
method, combined Picard-Newton method, initial slope Newton methods are also used 

to solve Richards’ equation [12, 13, 14]. Basically, Picard scheme is the most famous 
because of its straightforwardness and normally adequate performance [15], and, is 
computationally more affordable on a for each iteration premise, and preserves 
symmetry of the discrete system of equations. Yet, the technique may diverge under 
specific conditions, as has been watched experimentally [3]. Furthermore, the non-
perfection of constitutive relationships depicting a few soils causes poor convergence or 
complete divergence of Picard and Newton solvers for uncontrolled time stepping 
algorithms. To enhance the convergence efficiencies for such difficult simulations, 
improved sophisticated variable-order variable-step size strategies along chord slope 
iteration integrator and Newton techniques with global line search method can be 
employed [1, 7]. The Newton technique, yields nonsymmetric system matrices and is 
more unpredictable and costly than Picard linearization, however it accomplishes a 
higher rate of convergence and can be more strong than Picard for particular sorts of 
issues. Utilization of the Newton method has been restricted to one-and two-
dimensional saturated-unsaturated flow models. Detail comparison of Picard and 
Newton strategies has been directed for the transient one-dimensional Richards' 
equation is found in the study [3], where it was demonstrated that, regarding CPU time 
expected to accomplish a given degree of solution exactness, Newton scheme can be as 
or more effective than Picard.   

The number of iterations are expected to converge is a deciding component in 
the linearization schemes such as the Picard and Newton for the accurate, robust and 
efficient simulations. Therefore to meet this rationale, convergence rate is often 
enhanced by providing the solver with an initial solution estimate that is closer to the 
final solution for the current time step. This can be obtained by taking the initial guess 
from the previous step and by choosing a sufficiently small time step [13]. Hence, 
empirical dynamic adaptive time step criterion is required for a numerical model [3, 13, 
16, 17].  

Possible efficiency advantages can be obtained by use of noniterative schemes 
where formation of a single matrix with inversion per time step is required. For 
instance, the study [3] demonstrated that the noniterative implicit factored scheme with 
Newton solver can display equivalent or higher convergence efficiency than Crank-

Nicolson method. However, it is not comfortable to handle the Richards’ equation, as 
well as, much complexities are occurred at the saturated-unsaturated interface. Besides, 
these simpler algorithms, noniterative linearizations are limited for the temporal 
accuracy to first order. Regardless of these complexities, noniterative linearization 
techniques are an alluring option in contrast to customary iterative techniques for 
solving Richards' equation and other nonlinear partial differential equations. 

The goal of this study, a general head-based mass conservative numerical 
procedure with regards to finite element scheme is developed to approximate the 
governing equation in which mass-lumping strategies are utilized to keep the stability of 
numerical simulation. To investigate the applicability and accuracy of the mathematical 
model and solution technique that offers a stable solution without requiring the resizing 
of the finite element mesh structure. To analyze complete flow behavior, realistic initial 
and Dirichlet boundary conditions are imposed in the numerical simulator to the head-

based form of Richards’ equation. Adaptive time-stepping approach is employed to 
minimize the computational time and maintain small truncation error. The performance 
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of the algorithm is shown to be superior to the conventional pressure head-based form 
and can easily be used in layered soil.  

II.  Governing Equations  

Move through fluidly saturated permeable media is portrayed by the classical 
Richards' equation, which is joined by coupling an announcement of mass preservation 
with the Darcy's equation. Richards' equation contains nonlinearities emerging from 
pressure head conditions in the soil moisture and hydraulic conductivity. For settling 
Richards' equation utilizing regular numerical techniques can prompt a progression of 
numerical troubles including loss of mass protection, inadequately settled sharp fronts, 
and disappointment for nonlinear solver or iterative linear solvers. Also, precise and 
effective simulation of ground water flow in the saturated-unsaturated zone is 
computationally pricey, particularly for issues those are described by sharp fronts in 
both realities. Normal calculations that utilize homogeneous spatial and transient 
discretizations for the numerical solution of these issues lead to off base, wasteful, some 
time shaky and costly simulations. To evade these numerical challenges, mass-
preservation plan of flow condition, fine discretization in reality can be utilized, and 
need to usage of proficient solid nonlinear and linear calculations. While bringing about 
solutions of adequate precision, these methodologies can be computationally costly, 
particularly when simulating conditions that include sharp fronts in space and timey, 
time varying boundary conditions, vertical redistribution, just as various soil materials 
in flow system.  

Richards' equation might be written in three standard structures, with either 
pressure head or moisture content as dependent variables. The constitutive connection 
between fluid substance and pressure head takes into account transformation of one 
type of the condition to another. Three standard types of the saturated-unsaturated 

flow condition might be distinguished by the '𝜓𝜓-based', '𝜃𝜃-baesd', and the 'mixed (𝜓𝜓-𝜃𝜃)' 
form. For one-dimensional vertical flow, these conditions can be composed as follows:  

(i) The ‘𝜓𝜓-based’  form, where the primary variable is the pressure head,  

                                      
C(ψ) ∂ψ

∂t
= ∂

∂z
�K(ψ) �∂ψ

∂z
+ 1��                                     (1) 

where,

 
𝐶𝐶(ψ)

 

is the specific fluid capacity [𝐿𝐿−1] and is defined by  𝐶𝐶(ψ) = 𝑑𝑑𝑑𝑑
𝑑𝑑ψ

 

, ψ
 

is the 

pressure head [L], 𝑡𝑡
 

is time [T], 𝑧𝑧
 

denotes the vertical distance from reference elevation, 

assumed positive upward [L],
 

𝐾𝐾(ψ)
 

is the hydraulic conductivity [𝐿𝐿𝐿𝐿−1], and 𝜃𝜃
 

is the 
moisture content.

 

The ‘𝜓𝜓-based’
 

form permits for both unsaturated and saturated conditions. 
However, in highly non-linear problems, such as infiltration into very dry heterogeneous 
soils, these methods can suffer from mass-balance error, convergence problems and poor 
CPU efficiency. The reason for poor mass balance resides in the time derivative term. 

While 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 
and 𝐶𝐶(ψ) �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

 
are mathematically equivalent in the continuous partial 

differential equation, their discrete analogues are not. The inequality in the discrete 

forms is exacerbated by the highly nonlinear nature of the specific capacity term 𝐶𝐶(ψ). 
This leads to significant mass-balance errors in the 𝜓𝜓-based formulations because the 

change in mass in the system is calculated using discrete values of 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
while the 
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approximating equations use the expansion 𝐶𝐶(ψ) �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. Using standard time-integration 

techniques, mass-balance errors grow with the time-step size. Various approaches have 
been developed to overcome this problem. A mass-conserving solution that modifies the 
capacity term to force global mass balance scheme is proposed [18]. A mass distributed 
algorithm [19] that satisfied mass balance and was free from oscillation. Implementation 
of method of lines is shown the property of good mass balance through time-step 
truncation error [7]. Moreover, very fine spatial and temporal discretizations with mass 
lumping are needed to maintain mass balance property for these scenarios.  

(ii)  The 𝜃𝜃-based form, where the primary variable is the moisture content,  

                                            𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐷𝐷(𝜃𝜃) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
                                        (2) 

where 𝐷𝐷(𝜃𝜃) = 𝐾𝐾
𝐶𝐶(ψ) = 𝐾𝐾 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 is the soil water unsaturated diffusivity [𝐿𝐿2𝑇𝑇−1]. One of the 

advantages of the 𝜃𝜃-based formulation is that perfectly mass conservative discrete 
approximations can be applied. However, this form degenerates under fully saturated 
conditions as heterogeneous material produces discontinuous 𝜃𝜃 profiles and a pressure-
saturation relationship no longer exist [20]. Thus, this form may be useful only for 
homogeneous porous media.  
(iii) The mixed form, where both 𝜃𝜃 and 𝜓𝜓 are the dependent variables, 

                                                                
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾(𝜓𝜓) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1��                                                            (3) 

It is also expressed in terms of mass conservative formulation. This form can be 
used to solve for both saturated-unsaturated flow cases. It is commonly viewed as better 
than the other two structures as a result of vigor as for mass balance. However, 
conservation of mass alone does not guarantee satisfactory numerical solutions [4, 21]. 

Numerical strategies that utilize both 𝜃𝜃 and 𝜓𝜓 in the solution system have been 
developed to reduce the mass balance errors and improve computational efficiency. A 
primary variable switching technique, which is unconditionally mass conservative [22]. 
This method involves assembling and solving a nonsymmetric equation system at each 
time and iteration level which increases CPU time but reported faster convergence 
behavior. Modified Picard iteration approach guarantees mass balance by assessing the 
moisture content change in a period step legitimately from the adjustment in the water 
pressure head [4]. It has been shown to provide excellent mass balance when modelling 
unsaturated problems with sharp wetting fronts [23]. This method is easy to implement 

into 𝜓𝜓-based codes, requiring only an additional source term. 
More efficient convergence scheme has been proposed for the modified Picard 

iteration method dependent on utilizing the pressure head as the primary variable [24]. 
However, problems have been reported when employing the mixed form for free 
drainage problems [25]. If relatively large values are encountered, mass-balance errors 

can accumulate with longer simulation times and larger domains. The 𝜓𝜓-based form can 

achieve good mass balance if the change in 𝜓𝜓 is small enough during a time step 
whereas the mixed form improves mass balance with a sharp wetting front. Therefore, 
combining these, makes a more efficient procedure for long time simulations of water 
flow in soils with frequent infiltration and deep drainage processes. The method 

switches to the 𝜓𝜓-based form when the change in 𝜓𝜓 is less than some prescribed value, 
otherwise the mixed form is applied. Developing robust and efficient algorithms for 
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certain flow problems, such as those that give rise to sharp wetting fronts, has provided 
a computational challenge to the simulation community. For this class of problem, 
small time-step sizes and a fine mesh is often required in order to maintain stability 
when steep wetting fronts develop, making large-scale multi-dimensional infiltration 
problems impractical to simulate.  

a)  Constitutive Relationships  

For solving Richards’  equation numerically, we must define the characteristic 
functions to illustrate the relationship among fluid pressures, saturations and relative 
permeabilities. Various mathematical formulations are used in modeling for the soil 

water moisture curves. The  most regularly utilized connections are the Brooks–Corey 
[26] and the van Genuchten [27] models. These two models are described as follows:  

i.  Brooks–Corey Model  
The soil water pressure-moisture mathematical models proposed by Brooks and 

Corey [26] are given  by:  

𝜃𝜃(𝜓𝜓)  =  𝜃𝜃𝑟𝑟  +  (𝜃𝜃𝑠𝑠
 −  𝜃𝜃𝑟𝑟) �

𝜓𝜓𝑑𝑑
𝜓𝜓
�
𝑛𝑛

if  𝜓𝜓  ≤  𝜓𝜓𝑑𝑑
 

 

𝜃𝜃(𝜓𝜓)  =  𝜃𝜃𝑠𝑠if𝜓𝜓 >  𝜓𝜓𝑑𝑑
 

 

𝐾𝐾(𝜓𝜓)  =  𝐾𝐾𝑠𝑠 �
𝜃𝜃(𝜓𝜓)

 

−

 

𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠

 

−

 

𝜃𝜃𝑟𝑟
�

3+2 𝑛𝑛�

if𝜓𝜓

 

≤

 

𝜓𝜓𝑑𝑑

 
 

𝐾𝐾(𝜓𝜓)  =  𝐾𝐾𝑠𝑠if𝜓𝜓 > 𝜓𝜓𝑑𝑑

 
 

𝐶𝐶(𝜓𝜓)  =  𝑛𝑛
𝜃𝜃𝑠𝑠

 

−

 

𝜃𝜃𝑟𝑟
|𝜓𝜓𝑑𝑑 | �

ψ𝑑𝑑
ψ
�
𝑛𝑛  + 1

if𝜓𝜓

 

≤

 

𝜓𝜓𝑑𝑑

 
 

𝐶𝐶(𝜓𝜓)  =  0  if

 

𝜓𝜓 >  𝜓𝜓𝑑𝑑

 
 

where 𝜃𝜃𝑠𝑠

 

is the saturated moisture content [𝐿𝐿3𝐿𝐿−3], 𝜃𝜃𝑟𝑟

 

is the residual moisture content 

[𝐿𝐿3𝐿𝐿−3], 𝜓𝜓𝑑𝑑 =  − 1
𝛼𝛼

 

is the air entry pressure head [L] and  𝑚𝑚 = 1 − 1
𝑛𝑛

 

is a pore-size 

distribution index.

 

ii.

 

Van Genuchten Model

 

Van Genuchten model [27]is the most used characteristic function for moisture 
content and hydraulic conductivity and presented as follows:

 

𝜃𝜃(𝜓𝜓)  =  𝜃𝜃𝑟𝑟  +  
𝜃𝜃𝑠𝑠

 

−

 

𝜃𝜃𝑟𝑟
[1 + |𝛼𝛼𝛼𝛼|𝑛𝑛]𝑚𝑚 if𝜓𝜓

 

≤  0

 

 

𝜃𝜃(𝜓𝜓)  =  𝜃𝜃𝑠𝑠if𝜓𝜓 >  0

 

 

𝐾𝐾(𝜓𝜓)  =  𝐾𝐾𝑠𝑠 �
𝜃𝜃

 

−

 

𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠

 

−

 

𝜃𝜃𝑟𝑟
�

0.5

�1 −

 

�1 −

 

�
𝜃𝜃

 

−

 

𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠

 

−

 

𝜃𝜃𝑟𝑟
�

1
𝑚𝑚
�

𝑚𝑚

�

2

if𝜓𝜓

 

≤  0

 
 

𝐾𝐾(𝜓𝜓)  =  𝐾𝐾𝑠𝑠 if𝜓𝜓 >  0
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𝐶𝐶(𝜓𝜓)  =  0 if𝜓𝜓 >  0  

 
b) Spatial Discretization

 
An appropriate technique to divided the boundary-value spatial component of 

Richards’
 

equation from its initial-value temporal variation is the finite element 
technique and this approach is very simple and practical to use. To build up the finite 
element algorithm of the pressure head-based Richards' equation, the weak model of the 
dependent variable and the constitutive relations were approximated utilizing 
introducing polynomials [28, 29]. It was expected that the pressure driven conductivity 
just as capacitance differs linearly inside every component [30]. 

 
For solving Richards’

 
equation (1) numerically, finite element Galerkin’s 

approach is applied to discretize spatial domain and finite difference method is used for 
time derivative term. To build up the finite element model, there are M-1 discretized 
components for M global nodes in the problem domain.

 
The approximating function is  

                                  
ψ(z, t) ≈ ψ�(z, t) = ∑ NJ(z)ψJ(t)M

J=1        (16) 

where 𝑁𝑁𝐽𝐽 (𝑧𝑧)
 
and 𝜓𝜓𝐽𝐽 (𝑡𝑡)

 
are linear Lagrange basis functions and nodal values of 𝜓𝜓

 
at time 

t, respectively. The method of weighted residuals is used to set the criteria to solve for 

the unknown coefficients. In local coordinate space −1 ≤
 
𝜉𝜉

 
≤  1, the approximating 

function for each element (e) is 𝜓𝜓�(𝑒𝑒)  =  ∑ 𝑁𝑁𝑖𝑖
(𝑒𝑒)(𝜉𝜉)2

𝑖𝑖 = 1 𝜓𝜓𝑖𝑖
(𝑒𝑒)(𝑡𝑡)  =  1

2
(1 −

 
𝜉𝜉)𝜓𝜓1

(𝑒𝑒)(𝑡𝑡)  +
 
1
2

(1 +  𝜉𝜉)𝜓𝜓2
(𝑒𝑒)(𝑡𝑡), which we can write in vector form as 𝜓𝜓�(𝑒𝑒)  =  �𝑁𝑁(𝑒𝑒)(𝜉𝜉)�

𝑇𝑇
Ψ(𝑒𝑒)(𝑡𝑡). The 

global function (16) becomes: 
 

                                    𝜓𝜓�  =  ∑ (𝑵𝑵(𝑒𝑒))𝑇𝑇𝚿𝚿(𝑒𝑒)𝑀𝑀  − 1
𝑒𝑒  = 1  =  ∑ 𝜓𝜓�(𝑒𝑒)𝑀𝑀  − 1

𝑒𝑒  = 1
 

 

The symmetric weak formulation of Galerkin’s method applied to (1) yields the 
system of ordinary differential equations [14]: 

𝐴𝐴(Ψ)Ψ +  F(Ψ)
dΨ
dt

 =  q(t)  −  b(Ψ) 
 

where Ψ is the vector of undetermined coefficients corresponding to the values of 
pressure head at each node, A is the stiffness matrix, F is the storage or mass matrix, q 
contains the specified Darcy flux boundary conditions and b contains the gravitational 

gradient component. Over local sub domain element Ω(𝑒𝑒), we have: 

𝐴𝐴(𝑒𝑒)  =  � 𝐾𝐾𝑠𝑠
(𝑒𝑒)𝐾𝐾𝑟𝑟(𝜓𝜓�(𝑒𝑒))

Ω(𝑒𝑒)

𝑑𝑑𝑑𝑑(𝑒𝑒)

𝑑𝑑𝑑𝑑
(
𝑑𝑑𝑑𝑑(𝑒𝑒)

𝑑𝑑𝑑𝑑
)𝑇𝑇𝑑𝑑𝑑𝑑 
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𝐶𝐶(𝜓𝜓)  =  𝛼𝛼𝑚𝑚𝑛𝑛
𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟

[1 +  |𝛼𝛼𝜓𝜓|𝑛𝑛]𝑚𝑚  + 1 |𝛼𝛼𝜓𝜓|𝑛𝑛 − 1if𝜓𝜓 ≤  0
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𝑏𝑏(𝑒𝑒)  =  � 𝐾𝐾𝑠𝑠

(𝑒𝑒)𝐾𝐾𝑟𝑟(𝜓𝜓�(𝑒𝑒))
Ω(𝑒𝑒)

𝑑𝑑𝑑𝑑(𝑒𝑒)

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

 𝐹𝐹(𝑒𝑒)  =  � 𝐶𝐶(𝜓𝜓�(𝑒𝑒))
Ω(𝑒𝑒)

𝑁𝑁(𝑒𝑒)(𝑁𝑁(𝑒𝑒))𝑇𝑇𝑑𝑑𝑑𝑑

 

 

Here, 𝑁𝑁𝑇𝑇

 

denotes the transpose of N. 

c)

 

Time Differencing

 

Equation (18) can be integrated by the weighted finite difference scheme. We obtain:

 𝐴𝐴�Ψ𝑘𝑘  + 𝜆𝜆�Ψ𝑘𝑘  + 𝜆𝜆  +  𝐹𝐹�Ψ𝑘𝑘  + 𝜆𝜆�
Ψ𝑘𝑘  + 1

 

−

 

Ψ𝑘𝑘

∆tk  +  1  =  𝑞𝑞�𝑡𝑡𝑘𝑘  + 𝜆𝜆�

 

−

 

𝑏𝑏(Ψ𝑘𝑘  + 𝜆𝜆)

 

 

 

where Ψ𝑘𝑘  + 𝜆𝜆  =  λΨ𝑘𝑘  + 1  +  (1 −

 

𝜆𝜆)Ψ𝑘𝑘 , with 0 ≤

 

𝜆𝜆

 

≤  1 (𝜆𝜆

 

is a weighting 

parameter)and 𝑘𝑘 +  1

 

denotes current time level.

 

The time step size to ensure a stable solution will be dependent on the spatial 
discretization, and for nonlinear equations, there will in general also be a dependency on 

the form of the solution itself at any given time. Equation (22) is 𝑂𝑂(∆𝑡𝑡)

 

accurate,

 

except for 𝜆𝜆 =  1
2
. When  𝜆𝜆 =  1

2
, the discretized scheme (22) corresponds to the Crank–

Nicolson scheme.

 

The system of equations (22) is nonlinear in 𝜓𝜓𝑘𝑘+1, except when 𝜆𝜆 =  0, which 

corresponds to an explicit Euler scheme. When 𝜆𝜆 >  0, the scheme becomes implicit. 
Some iteration or linearization strategy is thus needed to solve the system of nonlinear 

equations for the implicit case. For 𝜆𝜆 =  1, the scheme corresponds to the backward 
Euler scheme.

 

III.

 

Iterative Methods

 

The system of equations (22) is highly nonlinear because of the nonlinear 

dependency of hydraulic conductivity 𝐾𝐾

 

and specific moisture capacity𝐶𝐶 on 𝜓𝜓. Picard 
and Newton are the two classical iterative approaches can be applied in the nonlinear 
system (22) for linearization. Picard method is simpler than Newton and preserves 
symmetry in the system matrix. Then again, the Newton strategy requires the 
computation of Jacobian matrix at each iteration and yields a nonsymmetric system. 
Along these matters, Picard technique is less computational, on a for every cycle 
premise, than the Newton strategy. The Picard strategy is convergent linearly, whereas, 
Newton meets quadratically. 

 

a)

 

Newton Scheme

 

Let us Consider
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𝑓𝑓(Ψ𝑘𝑘 + 1)

= 𝐴𝐴�Ψ𝑘𝑘 + 𝜆𝜆�Ψ𝑘𝑘 + 𝜆𝜆 + 𝐹𝐹�Ψ𝑘𝑘 + 𝜆𝜆�
Ψ𝑘𝑘 + 1 − Ψ𝑘𝑘

∆tk + 1

− 𝑞𝑞�𝑡𝑡𝑘𝑘 + 𝜆𝜆� + 𝑏𝑏�Ψ𝑘𝑘 + 𝜆𝜆� = 0

Notes



 

 

   

 

  

  

 

   

 
 

 

  

 
 

 

  

  

   

  
 

By the comparison of the equations (22) and (26), it is observed that Picard 
technique is an approximation of Newton technique. To assess the overall efficiency of 
the two linearization techniques, it is very important to know the structural differences 
of Picard and Newton techniques, such as, Picard linearization produces symmetric and 
Newton produces a nonsymmetric system matrix. Three derivative terms are needed to 
calculate in the Newton procedure, as a result,

 

the Newton strategy is more expensive 
and arithmetically complex than Picard.

 

IV.

 

Methodology

 

The principal objective of this research is to generalize pressure head-based finite 
element algorithm to handle the nonlinearity, minimize the mass balance errors locally 
and globally of the flow equation and application of one-dimensional saturated flow 
conditions for investigating the spatial and temporal discretization affect. This is 
practiced by linearizing a head-based flow equation with the Picard and Newton 
iteration techniques. Anusual

 

Galerkin finite element technique is then used to 
comprehend the linearized definition to acquire the solution of flow problems. 

 

Mass balance errors and computational efficiency are the key factors for the 
measure of the solution quality. Numerical trials

 

will be introduced to delineate the 

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
II

Y
ea

r
20

20

53

  
 

( F
)

© 2020 Global Journals

Affect of Spatial and Temporal Discretization in the Numerical Solution of One-Dimensional Variably 
Saturated Flow Equation

The Newton scheme [3] can be written as:

𝑓𝑓′�𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚)��𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚 + 1) − 𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚)� = − 𝑓𝑓�𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚)�

where the superscripts 𝑚𝑚 and 𝑚𝑚 + 1 denote the previous and current iteration levels 
respectively. 
The Jacobian for the system is:

𝑓𝑓𝑖𝑖𝑖𝑖′ = 𝜆𝜆𝐴𝐴𝑖𝑖𝑖𝑖 +
1

∆𝑡𝑡𝑘𝑘 + 1 𝐹𝐹𝑖𝑖𝑖𝑖 + �
𝜕𝜕𝐴𝐴𝑖𝑖𝑠𝑠
𝜕𝜕𝜓𝜓𝑖𝑖𝑘𝑘 + 1

𝑠𝑠

𝜓𝜓𝑠𝑠𝑘𝑘 + 𝜆𝜆

+
1

∆𝑡𝑡𝑘𝑘 + 1 �
𝜕𝜕𝐹𝐹𝑖𝑖𝑠𝑠

𝜕𝜕𝜓𝜓𝑖𝑖𝑘𝑘 + 1
𝑠𝑠

(𝜓𝜓𝑠𝑠𝑘𝑘 + 1 − 𝜓𝜓𝑠𝑠𝑘𝑘) +
𝜕𝜕𝑏𝑏𝑖𝑖

𝜕𝜕𝜓𝜓𝑖𝑖𝑘𝑘 + 1

expressed here in terms of 𝑖𝑖𝑖𝑖-th component of the Jacobian matrix 𝑓𝑓′(Ψ𝑘𝑘 + 1). 

b) Picard Scheme
Straightforward and simple mathematical expression of Picard iterative method 

can be derived from (22) by iterating with all linear events of 𝜓𝜓𝑘𝑘 + 1taken at the current 

iteration level 𝑚𝑚 + 1 and all nonlinear events at the previous level 𝑚𝑚 [3]. We get:

�𝜆𝜆𝐴𝐴𝑘𝑘 + 𝜆𝜆,(𝑚𝑚) +
1

∆𝑡𝑡𝑘𝑘 + 1 𝐹𝐹
𝑘𝑘 + 𝜆𝜆 ,(𝑚𝑚)� �𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚 + 1) − 𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚)�

= − 𝑓𝑓�𝜓𝜓𝑘𝑘 + 1,(𝑚𝑚)�

promising solution execution of the iteration techniques as contrasted and the reference 
solution which will be made by fine grid resolutions maintain with a tight nonlinear 
tolerance for the test problems to evaluate the efficiency and robustness and also 

Notes



compare the computed result with other published footprints. Note that the input 
tolerance level will affect the accuracy of the numerical solution, within limits imposed 
by spatial and temporal truncation error. 

 

The exhibition of the calculation is contrasted and two illustrative arrangements 
of distributed exploratory information, every one of which speaks to an alternate 
physical situation and is frequently used to approve calculations. In the test examples, 
the accuracy, mass balance character and iteration efficiency of the pressure head-based 
model is evaluated with the Picard and the Newton iteration schemes using three 
different spatial and time-step sizes, and applicability of the resultant solutions, and 
draw methods to assess the computational work required to achieve the results. 
Numerical experiments are performed

 

with mass lumping, to appraise the robustness of 
the approach and investigate the advantages of the methods for improving the efficiency 

of solutions to Richards’ equation. 

To enhance the convergence the of the nonlinear iterative approaches, dynamic 
time stepping technique is incorporated in this study. During whenever step, nonlinear 

convergence tolerance 𝑇𝑇𝑇𝑇𝑇𝑇 (= 10−4)

 

is assigned for both the test examples, alongside a 

most extreme number of nonlinear iterations denoted by maxit

 

and it is 15. Simulation 

start with time step size is Δ𝑡𝑡0and proceeds until we arrive at the end of the simulation 

time 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 . Present step  size will increase with a predetermined amplification factor 

Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (= 1.20)

 

if the number of iterations is less than another pre-assigned limit of 

iterations 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1(= 8)

 

and this process is repetitive

 

until reach the maximum time step 

size Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 . Current step size is constant if number of nonlinear iterations are lies 

between

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1

 

and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2(= 5)

 

iterations. If the number of nonlinear iterations is less 

than 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2, then the simulation step size will reduce by a reduction factor                    

 

Δ𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 (= 0.5)

 

to assigned minimum step size

 

Δ𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 . Solution will start recalculate if the 
convergence is not attaining within the specified maximum number of nonlinear 
iterations, which is called back-stepping. For both the iterative schemes, the infinity 

norm [11], �ψ𝑘𝑘  +  1,(𝑚𝑚  +

 

1)

 

−

 

ψ𝑘𝑘  +  1,(𝑚𝑚)� ≤ 𝑇𝑇𝑇𝑇𝑙𝑙

 

is used as the stopping criterion. 

 

A correlation of the overall precision of the numerical outcomes got from various 
plans is not easy [15]. It is depending upon the objectives such as, global or local 
comparisons of water pressure or water content, minimum or maximum value of the 
compared variable, etc. One proportion of a numerical test system is its capacity to 
preserve global mass over the area of intrigue. Small mass balance error is necessary yet 
not totally satisfactory essential for a correct solution [4, 15, 31]. To quantify the 
capacity of the test system to conserve mass, one of the most broadly utilized models 
for assessing the accuracy of a numerical strategy is the mass balance error (MBE) 
given by [4]: 

 
Total additional mass in the domainMass Balance Error= 1- 

Total net flux into the domain

 
where the complete extra mass in the space is the distinction between the mass 

estimated at any moment 𝑡𝑡

 

and the underlying mass in the area, and the total net flux 
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into the region is the flux balance coordinated in time up to 𝑡𝑡. In this study, this is 
determined by the accompanying equation [4]:  

Ref
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− ∆

∑

∑
            

 

   (27) 

with

 

𝑁𝑁 = 𝐸𝐸 + 1

 

nodes {𝑧𝑧0, 𝑧𝑧1, 𝑧𝑧2, … … , 𝑧𝑧𝐸𝐸}, and constant nodal spacing ∆𝑧𝑧

 

is considered 

and 𝑞𝑞0

 

and 𝑞𝑞𝑁𝑁

 

being boundary fluxes evaluated from the finite element equations 

related with the boundary modes 𝑧𝑧0

 

and 𝑧𝑧𝑁𝑁. 

 
To solve the linearized system of equations, a main drawback of the Newton 

scheme is insufficiency of linear solvers for large, sparse non symmetric systems. This is 
not true anymore, as at present accessible form conjugate gradient-type algorithms

 

for 
handling non symmetric systems have gotten progressively steady and effective. In this 
work, bi-conjugate gradient stabilized algorithm (BICGSTAB) is used to solve the 
linear systems. For the symmetric system produced by Picard linearization, incomplete 
Cholesky conjugate gradient

 

strategy (ICCG) is joined. For all experiments, where 
ICCG, BICGSTAB, iterative solver, the linear solver boundaries tolcg (convergence 

tolerance 10−10) and maxitcg (maximum number of linear iterations is1000) was 
assigned.  Soil moisture properties are evaluated by analytical differentiation.

 
Hydrological model CATHY (CATchmentHYdrology) [11, 32], where the surface 

module

 

settles the one-dimensional diffusion wave condition and the subsurface module 
solves the three-dimensional Richards' equation, is used for all runs.

 

All simulations 
were executed on a Dell Inspiron 2.56-GHz laptop computer. 

 V.

 

Results

 

and Discussions

 Two challenging one-dimensional test examples are considered to validate the 

algorithm and to compare the accuracy of the numerical solution of Richards’
 

equation 
by the CATHY model. Time dependent boundary conditions with a sharp moisture 
front that infiltrates into the soil column [10, 16, 33] is the first test problem and the 
second test case involves flow into a layered soil with variable initial conditions [33, 34, 
35]. 

a)

 
Test problem 1

 This problem considers a soil column of 2 𝑚𝑚
 

deep with the initial pressure head 

distribution is 𝜓𝜓(𝑧𝑧, 0) = 𝑧𝑧 − 2. At the bottom of thecolumn, a water table boundary 

condition (i.e.,𝜓𝜓(0, 𝑡𝑡) = 0) is imposed, while a time-dependent

 

Dirichlet condition

 

𝜓𝜓(2, 𝑡𝑡) =

⎩
⎨

⎧ −0.05 + 0.03 sin �
2𝜋𝜋𝜋𝜋

100000
� if 0 < 𝑡𝑡 ≤ 100000

0.1                      if100000 < 𝑡𝑡 ≤ 180000

−0.05 + 2952.45 𝑒𝑒
− 𝑡𝑡

18204 .8if  180000 < 𝑡𝑡 ≤ 300000

�
 

is applied at the top boundary which is presented in Figure 1. The soil hydraulic 
properties are described by the van Genuchten model. The soil parameters are 

θs = 0.410, θr = 0.095, α = 1.9/m, n = 1.31  
and Ks = 0.062 m/day. 
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Figure 1:  Dirichlet boundary condition imposed at the top of the  soil column for Test 
problem 1  

The Dirichlet boundary condition leads to significant ponding between 

100000  𝑠𝑠and 200000  𝑠𝑠, and as will be found in the outcomes, this kind of boundary 
condition, leading in coupled groundwater water representation, is a wellspring of huge 
trouble in the iterative techniques.  

Attributes of such soil compare to an unconsolidated clay loam with a 
nonuniform grain size circulation [36]. Antecedent experiment [37] completed a 
comparative correlation utilizing a moisture-based type of Richards' equation and an 
alternate experiment that doesnot include time-differing boundary conditions with 
surface ponding.  

Due to the positive value of pressure head in the second period of simulation 

time (100000 < 𝑡𝑡 ≤ 180000  𝑠𝑠), to achieve the numerical convergence is very challenging 
for any algorithm. In light of unexpected increment of the upper Dirichlet boundary 

condition to a positive estimation of 0.1 𝑚𝑚, it makes a sharp moisture front that 

infiltrates into the soil section. Toward the start of the third time frame (𝑡𝑡 > 180000  𝑠𝑠) 
ponding diminishes exponentially, arriving at asymptotically a last worth −0.05  𝑚𝑚, and 
before the finish of the simulation the whole section is near tofull saturation.

 

The moisture retention curve is monotonic with a point of inflection that gives 
the moisture capacity function its typical shape. The soil moisture retention curves for 
this test problem using the van Genuchten model are represented in Figure 2. 

 

 

Figure 2:

 

Soil moisture characteristic curves for Test problem 1
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In order to assess the robustness and efficiency of the method, we used three set 

of grid sizes, i.e.,∆𝑧𝑧= 0.004  𝑚𝑚, 0.008 𝑚𝑚  and 0.04 𝑚𝑚  and each grid  discretization is 

simulated with three temporal sizes∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 1000  𝑠𝑠, 100𝑠𝑠  and 10𝑠𝑠.  
The computed pressure head profiles at various meshing obtained with a small 

tolerance (10−4  𝑚𝑚) are displayed in Figure 3. These solutions are very similar to those 
reported in the literature [10, 16, 33]. Figure 3 shows the initial conditions and pressure 

head solution profiles at three different times (e.g., 0 𝑠𝑠, 35000  𝑠𝑠, 155000𝑠𝑠  and 

300000  𝑠𝑠). It is evident that the solution profiles are affected by the spatial resolutions. 
The red profiles, which falls inside the ponding time frame, shows the abundance water 
that structures at the soil surface and the fairly sharp moisture front that is produced. 

 

Figure 3:  Pressure head profiles at different times for ∆𝑧𝑧 = 0.04  𝑚𝑚  (red) and ∆𝑧𝑧 =
0.008  𝑚𝑚  (blue) of Test problem 1  

Adaptive time stepping algorithm is applied to the iteration techniques Newton 
and Picard for all vertical discretizations and three different time stepping scales for 
investigating the step size behavior. We discovered generally striking here the 
altogether different conduct between the Newton and Picard methodologies during the 
ponding time frame. Though the Newton model is compelled to make extremely little 
step sizes just at the absolute starting point and end of the ponding time frame, the 
Picard plot needs to arrange a wide scope of step sizes all through the ponding time 

range, and surely for the ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 1000  𝑠𝑠  case, it never accomplishes this most extreme 
incentive during ponding, for any of the vertical grid resolutions.  Small time step size is 

observed from 100000  𝑠𝑠  to 200000  𝑠𝑠, as ponding progressively diminishes to zero. Step 

size is quickly increasing and reaches maximum allowable time step size 1000  𝑠𝑠  in the 

simulation period 200000  𝑠𝑠  to 300000  𝑠𝑠  for both iteration schemes. This demonstrates 
simpler nonlinear solver conditions because of smoother infiltration fronts and surface 
conditions that are no longer fully saturated. Compelling an iteration scheme to take 
extremely small time steps for prolonged periods during a simulation can represent a 
massive computational trouble for subsurface solvers. The time stepping behavior of 

Picard and Newton can be found in the Figure 4 for ∆𝑧𝑧 = 0.008 𝑚𝑚  and 0.04 𝑚𝑚  cases 
with various time step sizes.  
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Figure 4:  Dynamic time stepping behavior of Picard (top row)and Newton (bottom 

row) schemes for ∆𝑧𝑧 = 0.04  𝑚𝑚  (left) and ∆𝑧𝑧 = 0.008  𝑚𝑚  (right)of Test problem 1  

 

 

Figure 5:
 

Nonlinear convergence behavior of Picard (top row) and Newton (bottom 

row) schemes for ∆𝑧𝑧 = 0.04
 

𝑚𝑚
 

(left) and ∆𝑧𝑧 = 0.008
 

𝑚𝑚
 

(right)
 

of Test problem 1
 

Graphical representation of convergence nature on the basis of number of 
nonlinear iterations required at each step of Picard and Newton iteration schemes are 
shown in the Figure 5. Here, we observed that a smoother transition into and out of the 
ponding period, and without the need for time step adaptation. Solver needs to 
negotiate a wide range of iteration to achieve converge.
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Using Picard and Newton techniques, cumulative mass balance error (CMBE) 
plot is presented in the Figure 6 for all temporal discretizations. The mass balance error 

almost closes to zero with the exception of a couple of cases around 100000  𝑠𝑠  implied 
that the accurate solution is ensured. Nonlinear iteration, time stepping and CMBE 

behavior of ∆𝑧𝑧 = 0.004  𝑚𝑚  case is not presented graphically as they are almost same as 

for ∆𝑧𝑧 = 0.008  𝑚𝑚. Note that Newton method cannot converge for ∆𝑡𝑡 = 100  𝑠𝑠  and 1000  𝑠𝑠  

for grid spacing ∆𝑧𝑧 = 0.004 𝑚𝑚. 
The computational statistics of the methods under all the cases are summarized 

in Table 1 and Table 2. The performance indicators are the total number of iterations, 
cumulative mass balance error, the average number of Picard and Newton iterations 
taken at each time step, the number of back stepping occurrences i.e., failure of Picard 
or Newton to converge within the assigned maximum number of iterations, the number 
of linear solver failures and the computational time (CPU). Examining more closely 
both iterative results, we note that Newton scheme resulted in significantly fewer back-
stepping occurrences. Graphical results and statistics of the simulation clearly indicate 
that the technique is adequate.  

 

 

Figure 6:  Cumulative mass balance error behavior of Picard (top row) and Newton 

(bottom row) schemes for ∆𝑧𝑧 = 0.04  𝑚𝑚  (left) and  ∆𝑧𝑧 = 0.008 𝑚𝑚  (right)  of Test                   

problem 1 

Another precision of simulation is assessed by the root mean squared error 
(RMSE) as for the reference solution which is made utilizing very fine grid with very 
small nonlinear tolerance. Errors are measured at three different times, explicitly, at 

35000  𝑠𝑠, 155000  𝑠𝑠, and 300000  𝑠𝑠  for all the temporal discretizations of Picard and 
Newton techniques (Table 3). We have appeared (Figure 7) that the normal errors are 
most noteworthy at the coarsest spatial and temporal discretizations, and the pinnacle 
errors spread with the moisture front that is moving downwards into the soil. 
Furthermore, Picard scheme gives little higher errors than Newton scheme and sharp 
increment in absolute error in the range of ponding time is observed. Choice of the 
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discretization method of spatial and temporal domain has a great impact on handling 
soil properties, as a result, numerical accuracy can be affected significantly including the 
stability and rate of convergence of the numerical scheme.  

Table 1:  Computational statistics of Picard scheme for Test problem 1  

∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔) →  10  100  1000  

∆𝑧𝑧  (𝑚𝑚) →  0.04  0.008  0.004  0.04  0.008  0.004  0.04  0.008  0.004  

MBE (𝑚𝑚3) -2.11e-5 8.12e-6 8.44e-6 -2.13e-5 9.85e-6 4.95e-6 -2.11e-5 8.12e-6 8.44e-6 

No. of time step  42583  136622  186242  303006  364601  403462  42583  136622  186242  

NL Ite/Step  2.22  2.44  2.37  1.43  1.65  1.70  2.22  2.44  2.37  

Back step  1084  7911  11419  367  6290  9564  1084  7911  11419  

Solver failures  0 0 0 0 0 0 0 0 0 

CPU (s)  5546  80729  202349  3679  69892  74496  3055  7790  183895  

* NL Ite=Nonlinear Iteration  

Table 2:  Computational statistics of Newton scheme for Test problem 1  

∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔) →  10  100  1000  

∆𝑧𝑧  (𝑚𝑚) →  0.04  0.008  0.004  0.04  0.008  0.004  0.04  0.008  0.004  

MBE (𝑚𝑚3) -2.09e-5 1.40e-5 5.90e-6 -1.52e-5 2.24e-5 Div  -1.65e-5 3.19e-5 Div  

No. of time step  30149  30247  30266  3187  3737  Div  1281  2237  Div  
NL Ite/Step  1.86  2.05  2.08  3.38  4.26  Div  5.58  5.93  Div  

No. of back step  6 16  14  7 12  Div  15  22  Div  
Solver failures  0 2 1 0 1 Div  1 3 Div  

CPU (s)  6949  52378  70347  1385  11303  Div  911  7790  Div  

   * Div=Divergent  

 

 

Figure 7:  RMSE behavior of Picard (top row) and Newton (bottom row) schemes for 

∆𝑧𝑧 = 0.04  𝑚𝑚  (left) and ∆𝑧𝑧 = 0.008  𝑚𝑚  (right)of Test problem 1.Errors at 35000s, 155000s 
and 300000s are marked by solid, dash-dotted, dashed lines with green, magenta, blue 
colors respectively  
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 Table 3:
 

RMSE of Picard and Newton schemes for Test problem 1
 

∆𝒛𝒛 (𝒎𝒎) ∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎 (𝒔𝒔) 
Time (s)→

 35000 155000 300000 
Method↓

 
 
 0.04

 

 10
 

Picard
 

5.76e-2 4.93e-2 9.33e-4 

Newton
 

5.76e-2 4.94e-2 9.33e-4 

 100
 

Picard
 

5.61e-2 4.98e-2 9.37e-4 

Newton
 

5.62e-2 4.73e-2 9.19e-4 

 1000
 

Picard
 

4.38e-2 4.54e-2 9.15e-4 

Newton
 

5.01e-2  4.12e-2  9.05e-4  

 
 
 0.008

 

 10
 

Picard
 

4.20e-3 2.50e-3 6.62e-5 

Newton
 

4.20e-3 1.90e-3 6.89e-5 

 100
 

Picard
 

1.50e-3 9.80e-3 9.69e-5 

Newton
 

3.20e-3 4.50e-3 3.32e-4 

 1000
 

Picard
 

6.60e-3 1.00e-3 5.98e-4 

Newton
 

3.37e-3 8.10e-3 6.36e-4 

b)  Test problem 2 
The simulations of this test case with different layer thicknesses with the 

heterogeneity in the soil moisture retention curves, represented with the Brooks–Corey 
model. This case involves vertical drainage from initially saturated conditions. At time 

𝑡𝑡 = 0 𝑠𝑠, the pressure head at the base of the column is reduced from 2 𝑚𝑚 to 0 𝑚𝑚. During 
the subsequent drainage, a no-flow boundary condition is applied to the top of the soil 
column. These forcing conditions lead to the development of a sharp discontinuity in 
the moisture content occurs at the interface between two material layers [33, 34, 35]. 
This type of problem provides a rigorous test case for a numerical algorithm and is well 
suited for the analysis of numerical convergence and efficiency. 

During downward draining, the middle coarse soil tends to restrict drainage from 
the upper fine soil, and high saturation levels are maintained in the upper fine soil for a 
considerable period of time. The hydraulic properties of the soils are given in Table 4. 

The soil profile is Soil 1 for 0 < 𝑧𝑧 < 60  𝑐𝑐𝑐𝑐  and 120  𝑐𝑐𝑐𝑐 < 𝑧𝑧 < 200  𝑐𝑐𝑐𝑐  and Soil 2 for 

60  𝑐𝑐𝑐𝑐 < 𝑧𝑧 < 120  𝑐𝑐𝑐𝑐.  

Table 4:  Soil hydraulic properties used in Test problem 2  

Parameters Soil 1 Soil 2 

𝜃𝜃𝑠𝑠 0.35 0.35 

𝜃𝜃𝑟𝑟 0.07 0.035 

𝛼𝛼 (cm−1) 0.0286 0.0667 

𝑛𝑛 1.5 3.0 

𝐾𝐾𝑠𝑠 (cm/s) 9.81 × 10-5 9.81 × 10-3 

The soil moisture curves of the moisture content (𝜃𝜃)
 
and specific moisture 

capacity (𝐶𝐶) are evaluated by the Brooks–Corey model (Figure 8). The shape of the soil 
moisture capacity is very sharp near the saturation implies the rigorous complexities are 
encountered when the analytical differentiation of fluid content is used. As a 
consequence,

 
numerical accuracy can be affected significantly. To handle such 

difficulties efficiently, proper choice of grid resolution and temporal discretization is 
required for heterogeneous porous media.
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Figure 8:  Soil moisture characteristic curves for Test problem 2  

To compare the performance of the algorithm, simulations are performed on two 
fine mesh of 300 and 150 elements and a coarser mesh of 50 elements with three time 

step sizes (∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 =10  𝑠𝑠, 100  𝑠𝑠  and 1000  𝑠𝑠) via dynamic time stepping control for 
nonlinear iterations with mass lumping. The algorithm is used to simulate the 

experiment and the comparison of water saturation prediction after 1050000  𝑠𝑠is 
depicted in Figure 9, which is similar to those presented in the published result                     
[33, 34, 35].  Some  oscillations are produced in the middle coarse soil in the solution 
profile, as our expectation. These oscillations have been attributed to insufficient spatial 
resolution.  

The simulations conducted with small grid spacing produce more acceptable 
results in that the overall shape of the soil hydraulic characteristic. However, that use 
of even smaller grid  spacing may not significantly improve the simulation results.  It is 
recommended that the computed saturation is sensitive about grid spacing.  

 
Figure 9:  Saturation predictions after 1050000 s for different spatial discretizations of 

Test problem 2  

Adaptive time stepping behavior (Figure 10), nonlinear iterations per time step 
(Figure 11) and cumulative mass balance error (Figure 12) are presented graphically for 

the case ∆𝑧𝑧 = 0.04  𝑚𝑚  and ∆𝑧𝑧 = 0.0133  𝑚𝑚. Almost similar results are recorded for 150  

and 300  elements. So, in the figure analysis on the basis of the mentioned factors are 

excluded for 300  elements. Time stepping plots shows that Picard scheme has to face 

very little trouble at 2 × 105  𝑠𝑠, whereas Newton scheme is highly affected during the 
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simulation for ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 100 𝑠𝑠 and 1000 𝑠𝑠. But note that, the large time step size 
speedup to complete the simulation. Convergence plots demonstrated that, Picard and 

Newton techniques need only one iteration during entire simulation for ∆𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 10 𝑠𝑠. 
There are some differences are observed for other time scales as well grid spacing. 
Cumulative mass balance errors are almost approaching to zero. This implies that the 
numerical results are strictly maintained accuracy. Table 5 and 6 summarized the 
simulation statistics for Picard and Newton iteration methods respectively. The mass 
balance error at any given time step is calculated as the absolute difference between the 
changes in water storage during that time step. In this test case, Newton technique 
needs many back-stepping to achieve the convergence for all spatial and temporal 
discretizations. RMSE evaluated with respect to the surrogate exact solution with very 
small nonlinear tolerance. Errors are measured at the three different times, specifically, 

at 250000 𝑠𝑠, 550000 𝑠𝑠, and 1050000 𝑠𝑠 for all the temporal discretizations of Picard and 
Newton techniques (Table 7). 

 

 

Figure 10:
 
Dynamic time stepping behavior of Picard (top row) and Newton (bottom 

row) schemes for ∆𝑧𝑧 = 0.04
 
𝑚𝑚

 
(left) and ∆𝑧𝑧 = 0.0133
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Figure 11:  Nonlinear convergence behavior of Picard (top row) and Newton (bottom 

row) schemes for ∆𝑧𝑧 = 0.04  𝑚𝑚  (left) and ∆𝑧𝑧 = 0.0133  𝑚𝑚  (right)of Test problem 2

 

 

Figure 12:
 

Cumulative mass balance error behavior of Picard (top row) and Newton 

(bottom row) schemes for ∆𝑧𝑧 = 0.04
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Table 5: Computational statistics of Picard scheme for Test problem 2 

∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔) →
 

10
 

100
 

1000
 

∆𝑧𝑧
 

(𝑚𝑚) →
 

0.04
 

0.0133
 

0.0067
 

0.04
 

0.0133
 

0.0067
 

0.04
 

0.0133
 

0.0067
 

MBE (𝑚𝑚3) 1.88e-6 1.72e-6 1.43e-6 8.03e-6 0.0067
 

3.11e-6 -6.23e-5 6.59e
 

-7.44e-5 

No. of time step
 

105051
 

105051
 

105051
 

10566
 

5.28e-6 10556
 

1146
 

43602
 

1136
 

NL Ite/Step
 

1.00
 

1.00
 

1.00
 

1.04
 

1.03
 

7.56
 

1.62
 

3.62
 

1.58
 

No. of back step
 

15
 

15
 

15
 

20
 

1.03
 

16
 

29
 

28
 

25
 

Solver failures
 

0 0 0 0 19
 

0 0 0 0 

CPU (s)
 

6449
 

14034
 

47528
 

767
 

2506
 

4050
 

134
 

631
 

966
 

Table 6:

 

Computational statistics of Newton scheme for Test problem 2

 

∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎(𝒔𝒔) →

 

10

 

100

 

1000

 

∆𝑧𝑧

 

(𝑚𝑚) →

 

0.04

 

0.0133

 

0.0067

 

0.04

 

0.0133

 

0.0067

 

0.04

 

0.0133

 

0.0067

 

MBE (𝑚𝑚3) 2.20e-6 7.15e-7 7.32e-7 9.59e-6 8.26e-6 7.63e-6 -9.45e-6 7.69e-5 8.59e-5 
No. of time step

 
106217
 

240041
 

371587
 

29024
 

79014
 

143872
 

11137
 

43602
 

86856
 

NL Ite/Step 1.06 3.07 3.10 3.05 3.38 3.53 3.55 3.62 3.65 
No. of back step

 
663

 
49640
 

77980
 

5972
 

18698
 

36050
 

2682
 

11287
 

22697
 

Solver failures
 

0 0 0 0 19
 

0 0 0 0 
CPU (s)

 

14945

 

416403

 

1340

 

31101

 

145679

 

168846

 

11400

 

74944

 

367914

 
Table 7: RMSE of Picard and Newton schemes for Test problem 2

 

∆𝒛𝒛 (𝒎𝒎) ∆𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎 (𝒔𝒔) 

Time (s)→
 

250000
 

550000
 

1050000
 Method↓

 
 
 
 0.04

 

 10

 

Picard
 

4.70e-3 3.70e-3 3.60e-3 

Newton
 

5.30e-3 3.70e-3 3.60e-3 

 100

 

Picard
 

4.70e-3 3.70e-3 3.60e-3 

Newton
 

5.20e-3 3.90e-3 3.80e-3 

 1000

 

Picard
 

4.60e-3 3.70e-3 3.60e-3 

Newton
 

5.50e-3 3.30e-3 3.70e-3 

 
 
 0.0133

 

 10

 

Picard
 

1.10e-3 1.00e-3 8.21e-4 

Newton
 

1.10e-3 1.30e-3 8.95e-4 

 100

 

Picard
 

1.10e-3 1.00e-3 8.21e-4 

Newton
 

1.30e-3 1.00e-3 7.72e-4 

 1000

 

Picard
 

4.60e-3 3.70e-3 3.60e-3 

Newton
 

1.10e-3 9.83e-4 8.08e-4 

VI. Conclusions 

A finite element algorithm is introduced to solve the Richards’ equation for one-
dimensional flow problems in variably saturated soils. Specifically, the problem of mass-
balance errors is handled, which is in reality a pressing problem for the simulation of 
such highly nonlinear phenomena as the infiltration into soil column and drainage 
through layered soil from initially saturated condition. The effectiveness of the 
algorithm is demonstrated by compare with published results. The conduct of various 
techniques for solution estimates and adaptive time stepping were experimented for 

Richards’ equation model. Time step adaptation is essential to accomplish sensible 
figuring execution in reasonable uses of Richards' equation. Head based Picard and 
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Newton iteration schemes are compared, where three step-time sizes are implemented 
for each of three different spatial discretizations. It is demonstrated that both iterative 
schemes are mass conservative and efficient in terms of nonlinear iteration. For the 
most part, large time-step size requires modest number of iterations to converge the 
solution, however, Newton scheme is diverge for drainage problem, as well as 
significantly many back-stepping occurred. So, the size of the time step can be 
constrained by the convergence of the iterative scheme for simulating strong 
nonlinearities. Coarse grid spacing is caused for numerical oscillations for the both test 
experiments. Therefore, time step size and/ or grid size are the  influential factors for 
the numerical simulation of variably saturated flows. The model presents tremendous 
mass balance property over whole spatial and temporal mesh for the problems of 
infiltration fronts and drainage problems. The accomplishment of the  finite element 
algorithm in simulating an assortment of problems leads to confidence in its 
applicability to many dynamically saturated flow problems for its advantageous 
flexibility. Further research is needed in the development of multidimensional finite 

element model for solving problem in saturated–unsaturated regions without special 
treatment of fluid content discontinuities in heterogeneous porous media.  
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