

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F
MATHEMATICS & DECISION SCIENCE
Volume 20 Issue 4 Version 1.0 Year 2020
Type : Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Fuzzy Foldness of BCI-Commutative Ideals in BCI -Algebras

By Mahasin. A. Ahmed & Esmat A. Amhed

Sudan University of Science and Technology

Abstract- This paper aims to introduce new notions of (fuzzy) n -fold BCI- commutative ideals, and (fuzzy) n -fold weak BCI- commutative ideals in BCI –algebras, and investigate several properties of foldness theory of BCI- commutative ideals in BCI -algebras. Finally, we construct some algorithms for studying the foldness theory of BCI- commutative ideals in BCI -algebras.

Keywords: *BCK/BCI algebras, BCI – commutative ideals of BCI-algebras, Fuzzy BCI – a commutative ideal of BCI –algebra, Fuzzy point, (fuzzy) n -fold BCI- commutative ideals, (fuzzy) n -fold weak positive implicative ideals.*

GJSFR-F Classification: *MSC 2010: 08A72*

FUZZYFOLDNESSOFBCI COMMUTATIVE IDEALSINBCIALGEBRAS

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

R_{ref}

Fuzzy Foldness of BCI-Commutative Ideals in BCI -Algebras

Mahasin. A. Ahmed ^α & Esmat A. Amhed ^ο

Abstract- This paper aims to introduce new notions of (fuzzy) n -fold BCI- commutative ideals, and (fuzzy) n -fold weak BCI- commutative ideals in BCI -algebras, and investigate several properties of foldness theory of BCI-commutative ideals in BCI -algebras. Finally, we construct some algorithms for studying the foldness theory of BCI-commutative ideals in BCI -algebras.

Keywords: BCK/BCI algebras, BCI – commutative ideals of BCI-algebras, Fuzzy BCI – a commutative ideal of BCI – algebra, Fuzzy point, (fuzzy) n -fold BCI- commutative ideals, (fuzzy) n -fold weak positive implicative ideals.

I. INTRODUCTION

The notions of BCK/BCI-algebras were introduced by Iséki [3] and were investigated by many types of research. The concept of fuzzy sets was introduced by Zadeh [12] In 1991, Xi [11] applied the concept to BCK-algebras. From then on, Jun, Meng et al. [10] applied the concept to the ideals.

The notions of n -fold implicative ideal and n -fold weak commutative ideals were introduced by Huang and Chen [1]. Y. B. Jun [4] discussed the fuzzification of n -fold positive implicative, commutative, and implicative ideal of BCK-algebra.

In this paper, we redefined a BCI – commutative ideals of BCI-algebra and studied the foldness theory of fuzzy BCI – commutative ideals, BCI – commutative weak ideals, fuzzy weak BCI – commutative ideals and weak BCI – commutative weak ideals in BCI-algebras. This theory can be considered as a natural generalization of BCI – commutative ideals. Indeed, given any BCI - algebra X , we use the concept of fuzzy point to characterize n -fold BCI - commutative ideals in X . Finally, we construct some algorithms for studying foldness theory of BCI – commutative ideals in BCI -algebra.

Author α: College of Science, Department of Mathematics, Sudan University of Science and Technology, Khartoum, Republic of Sudan. e-mail: mahasiniahmed@gmail.com

Author ο: College of Electrical Engineering & IT Department of Electrical Engineering, Onaizah Colleges, KSA. e-mail: esmatphysics72@gmail.com

II. PRELIMINARIES

Here we include some elementary aspects of BCI that are necessary for this paper, and for more detail, we refer to [1, 3].

An algebra $(X ; *, 0)$ of type (2,0) is called BCI-algebra 1f

$\forall x, y, z \in X$ the following conditions hold:

BCI-1. $((x * y) * (x * z)) * (z * y) = 0$;

BCI-2. $(x * (x * y)) * y = 0$;

BCI-3. $x * x = 0$;

BCI-4. $x * y = 0$ and $y * x = 0 \Rightarrow x = y$

A binary relation \leq can be defined by

BCI-5. $x \leq y \Leftrightarrow x * y = 0$,

then (X, \leq) is a partially ordered set with least element 0.

The following properties also hold in any BCI-algebra ([5], [10]):

1. $x * 0 = x$;

2. $x * y = 0$ and $y * z = 0 \Rightarrow x * z = 0$;

3. $x * y = 0 \Rightarrow (x * z) * (y * z) = 0$ and $(z * y) * (z * x) = 0$;

4. $(x * y) * z = (x * z) * y$;

5. $(x * y) * x = 0$;

6. $x * (x * (x * y)) = x * y$; let $(X, *, 0)$ be a BCI-algebra.

Definition 2.1 (Zadeh [12]). A fuzzy subset of a BCI-algebra X is a function $\mu: X \rightarrow [0,1]$.

Definition 2.2 (C. Lele [6]). Let ξ be the family of all fuzzy sets in X . For $x \in X$ and $\lambda \in (0,1]$, $x_\lambda \in \xi$ is a fuzzy point iff

Notes

$$x_\lambda(y) = \begin{cases} \lambda & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

We denote by $\tilde{X} = \{x_\lambda : x \in X, \lambda \in (0,1]\}$ the set of all fuzzy points on X and we define a binary operation on \tilde{X} as follows :

Notes

$$x_\lambda * y_\mu = (x * y)_{\min(\lambda, \mu)}$$

It is easy to verify $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$, the following conditions hold:

$$\text{BCI-1'}. ((x_\lambda * y_\mu) * (x_\lambda * z_\alpha)) * (z_\alpha * y_\mu) = 0_{\min(\lambda, \mu, \alpha)};$$

$$\text{BCI-2'}. (x_\lambda * (x_\lambda * y_\mu)) * y_\mu = 0_{\min(\lambda, \mu)};$$

$$\text{BCI-3'}. x_\lambda * x_\mu = 0_{\min(\lambda, \mu)};$$

$$\text{BCK-5'}. 0_\mu * x_\lambda = 0_{\min(\lambda, \mu)};$$

Remark 2.3 (C. Lele [6]). The condition BCI-4 is not true $(\tilde{X}, *)$. So the partial order $\leq (X, *)$ can not be extended to $(\tilde{X}, *)$.

We can also establish the following conditions $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$:

$$1'. x_\lambda * 0_\mu = x_{\min(\lambda, \mu)};$$

$$2'. x_\lambda * y_\mu = 0_{\min(\lambda, \mu)} \text{ and } y_\mu * z_\alpha = 0_{\min(\mu, \alpha)} \Rightarrow x_\lambda * z_\alpha = 0_{\min(\lambda, \alpha)};$$

$$3'. x_\lambda * y_\mu = 0_{\min(\lambda, \mu)} \Rightarrow (x_\lambda * z_\alpha) * (y_\mu * z_\alpha) = 0_{\min(\lambda, \mu, \alpha)} \text{ and}$$

$$(z_\alpha * y_\mu) * (z_\alpha * x_\lambda) = 0_{\min(\lambda, \mu, \alpha)};$$

$$4'. (x_\lambda * y_\mu) * z_\alpha = (x_\lambda * z_\alpha) * y_\mu;$$

$$5'. (x_\lambda * y_\mu) * x_\lambda = 0_{(\lambda, \mu)};$$

$$6'. x_\lambda * (x_\lambda * (x_\lambda * y_\mu)) = x_\lambda * y_\mu;$$

We recall that if A is a fuzzy subset of a BCI-algebra X , then we have the following:

$$\tilde{A} = \{x_\lambda \in \tilde{X} : A(x) \geq \lambda, \lambda \in (0,1]\}. \quad (\text{i})$$

$$\forall \lambda \in (0,1], \tilde{X}_\lambda = \{x_\lambda : x \in X\}, \text{ and } \tilde{A}_\lambda = \{x_\lambda \in \tilde{X}_\lambda : A(x) \geq \lambda\} \quad (\text{ii})$$

also have $\tilde{X}_\lambda \subseteq \tilde{X}$, $\tilde{A} \subseteq \tilde{X}$, $\tilde{A}_\lambda \subseteq \tilde{A}$, $\tilde{A}_\lambda \subseteq \tilde{X}_\lambda$ and one can easily check that $(\tilde{X}_\lambda; *, 0_\lambda)$ is a BCK-algebra.

Notes

Definition 2.4 (Iseki [2]). A nonempty subset of BCI-algebra X is called an ideal of X if it satisfies

$$1. 0 \in I;$$

$$2. \forall x, y \in X, (x * y \in I \text{ and } y \in I) \Rightarrow x \in I$$

Definition 2.5 (Liu and Meng [7]). A nonempty subset I of BCI-algebra X is BCI-commutative ideal if it satisfies:

$$1. 0 \in I;$$

$$2. \forall x, y, z \in X$$

$$((x * y) * z) \in I \text{ and } z \in I \Rightarrow (x * ((y * (y * x))) * (0 * (0 * (x * y)))) \in I$$

Definition 2.6 Xi [11]. A fuzzy subset A of a BCI-algebra X is a fuzzy ideal if

$$1. \forall x \in X, A(0) \geq A(x);$$

$$2. \forall x, y \in X, A(x) \geq \min(A(x * y), A(y)).$$

Definition 2.7 (Xi [11]). A fuzzy subset A of a BCI-algebra X is called a fuzzy BCI-commutative ideal of X if

$$1. \forall x \in X, A(0) \geq A(x);$$

$$2. \forall x, y, z \in X$$

$$A(x * ((y * (y * x))) * (0 * (0 * (x * y)))) \geq (A((x * y) * z), A(z))$$

Definition 2.8(C . Lele, [6]). \tilde{A} is a weak ideal of \tilde{X} if

$$1. \forall v \in \text{Im}(A) ; 0_v \in \tilde{A} ;$$

2. $\forall x_\lambda, y_\mu \in X$. Such that $x_\lambda * y_\mu \in \tilde{A}$ and $y_\mu \in \tilde{A}$, we have

$$x_{\min(\lambda, \mu)} \in \tilde{A} .$$

Theorem 2.9 (Lele, [6]). Suppose that A is a fuzzy subset of a BCK - algebra X , then the following conditions are equivalent:

1. A is a fuzzy ideal ;

2. $\forall x_\lambda, y_\mu \in \tilde{A}$, $(z_\alpha * y_\mu) * x_\lambda = 0_{\min(\lambda, \mu, \alpha)} \Rightarrow z_{\min(\lambda, \mu, \alpha)} \in \tilde{A}$;

3. $\forall t \in (0,1]$, the t-level subset $A^t = \{x \in X : A(x) \geq t\}$ is an ideal when $A^t \neq \emptyset$;

4. \tilde{A} is a weak ideal.

III. FUZZY N-FOLD BCI-COMMUTATIVE IDEALS IN BCI - ALGEBRAS

Throughout this paper \tilde{X} is the set of fuzzy points on BCI-algebra X and $n \in \mathbb{N}$ (where \mathbb{N} the set of all the natural numbers).

Let us denote $(\cdots((x * y) * y) * \cdots) * y$ by $x * y^n$

and $(\cdots((x_{\min(\lambda, \mu)} * 0_\mu) * 0_\mu) * \cdots) * 0_\mu$ by $x_\lambda * y_\mu^n$ (where y and y_μ

occurs respectively n times) with $x, y \in X$, $x_\lambda, y_\lambda \in \tilde{X}$.

Definition 3.1. A nonempty subset I of a BCI -algebra X is an n -fold BCI-commutative ideal of X if it satisfies :

1. $0 \in I$;

2. $\forall x, y, z \in X$;

$$((x * y) * z) \in I \text{ and } z \in I \Rightarrow \left(x * \left((y * (y * x)) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \in I$$

Definition 3.2 A fuzzy subset A of X is called a fuzzy n-fold BCI-commutative ideal of X if it satisfies :

$$1. \forall x \in X, A(0) \geq A(x) ;$$

$$2. \forall x, y, z \in X,$$

$$A\left(\left(x * \left(y * \left(y * x\right)\right) * \left(0 * \left(0 * \left(x * y^n\right)\right)\right)\right) \geq \min(A((x * y) * z), A(z)).$$

Definition 3.3. \tilde{A} is BCI-commutative weak ideal of \tilde{X} if

$$1. \forall v \in \text{Im}(A), 0_v \in \tilde{A} ;$$

$$2. \forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$$

$$(x_\lambda * y_\mu) * z_\alpha \in I \text{ and } z_\alpha \in I \Rightarrow \left(\left(x_\lambda * \left(y_\mu * \left(y_\mu * x_\lambda\right) \right) * \left(0_\alpha * \left(0_\alpha * \left(x_\lambda * y_\mu\right) \right) \right) \right) \in I \right)$$

Definition 3.4. \tilde{A} is n-fold BCI-commutative weak ideal of \tilde{X} if

$$1. \forall v \in \text{Im}(A), 0_v \in \tilde{A} ;$$

$$2. \forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$$

$$(x_\lambda * y_\mu) * z_\alpha \in I \text{ and } z_\alpha \in I \Rightarrow \left(x_\lambda * \left(\left(y_\mu * \left(y_\mu * x_\lambda\right) \right) * \left(0_\alpha * \left(0_\alpha * \left(x_\lambda * y_\mu^n\right) \right) \right) \right) \in I \right)$$

Example 3.5. Let $X = \{0, a, b, c, d\}$ with $*$ defined by the following table

*	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	0	0
b	b	a	0	a	0
c	c	c	c	0	0
d	d	d	d	d	0

By simple computations, one can prove that $(X, *, 0)$ is BCI-algebra. let $t_1, t_2 \in (0, 1]$ and define a fuzzy subset $t_1 = A(0) = A(a) = A(b) = A(c) \geq A(d) = t_2$.

One can easily check that for any $n \geq 3$

$$\tilde{A} = \{0_\lambda : \lambda \in (0, t_1]\} \cup \{a_\lambda : \lambda \in (0, t_1]\} \cup \{b_\lambda : \lambda \in (0, t_1]\} \cup \{c_\lambda : \lambda \in [0, t_1)\} \cup \{d_\lambda : \lambda \in (0, t_2]\}$$

It is an n-fold BCI- commutative weak ideal.

Remark 3.6. \tilde{A} Is a 1-fold BCI- commutative weak ideal of a BCK-algebra \tilde{X} if \tilde{A} is BCI- commutative weak ideal of \tilde{X} .

Proposition 3.7 An ideal I of BCI -algebra X Is an n-fold BCI - commutative ideal if

$$\forall x, y \in X, x * y \in I \Rightarrow \left(x * \left((y * (y * x)) * (0 * (0 * (x * y^n))) \right) \right) \in I$$

Proof. If an ideal I is an n-fold BCI - commutative and $x * y \in I$ then $(x * y) * 0 \in I$ and $0 \in I$, then we have

$$\left(x * \left((y * (y * x)) * (0 * (0 * (x * y^n))) \right) \right) \in I ,$$

thus this means that the condition satisfies.

Conversely, let an I an ideal satisfies the condition. If $(x * y) * z \in I$ and $z \in I$, then by the definition of ideas we have $x * y \in I$. It follows from the given condition that $\left(x * \left((y * (y * x)) * (0 * (0 * (x * y^n))) \right) \right) \in I$; this means that I is an n-fold BCI - commutative ideal .this finishes the proof.

Proposition 3.8. An n-fold BCI - commutative weak ideal is a weak ideal.

Proof. $\forall x_\lambda, y_\mu \in \tilde{X}$ let $x_\lambda * y_\mu = (x_\lambda * 0_\lambda) * y_\mu \in \tilde{A}$ and $y_\mu \in \tilde{A}$, since \tilde{A} n-fold BCI - commutative ideal we have

$$x_{\min(\lambda, \mu)} = \left(\left(x_\lambda * \left(0_\mu * \left(0_\mu * x_\lambda \right) \right) * \left(0_\mu * \left(0_\mu * \left(x_\lambda * 0_\mu^n \right) \right) \right) \right) \right) = x_{\min(\lambda, \mu)} \in \tilde{A} ,$$

Thus \tilde{A} is a weak ideal.

Proposition 3.9. Any fuzzy n-fold BCI - commutative ideal of BCI – algebras X is the fuzzy ideal of X .

Proof. let A be a fuzzy n-fold BCI - commutative ideal of X and let $x, z \in X$.

Then

$$\begin{aligned}
 & \min(A(x * z), A(z)) \\
 &= \min(A((x * 0) * z), A(z)) \\
 &\leq A\left(\left(x * (0 * (0 * x)) * (0 * (0 * (x * 0^n)))\right)\right) \\
 &= A\left(\left(x * (0 * (0 * x)) * (0 * (0 * (x * 0)))\right)\right) \\
 &= A(x * 0) \\
 &= A(x)
 \end{aligned}$$

Notes

- Let $x, y, z \in X$ and let $A((x * y) * z) = \beta$ and $A(z) = \alpha$, then

$$((x * y) * z)_{\min(\beta, \alpha)} = (x_\beta * y_\alpha) * z_\alpha \in \tilde{A} \text{ and } z_\alpha \in \tilde{A}.$$

Since \tilde{A} is n-fold BCI -commutative weak ideal, we have

$$\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) \right) * \left(0_\alpha * \left(0_\alpha * (x_\lambda * y_\mu^n) \right) \right) \right) =$$

$$\left(x * \left((y * (y * x)) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right)_{\min(\lambda, \mu, \alpha)} \in \tilde{A}$$

$$\text{Thus } \left(x * \left((y * (y * x)) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \geq \min(\beta, \alpha)$$

$$= \min(A((x * y) * z), A(z))$$

Theorem 3.11. Suppose that \tilde{A} is a weak ideal (namely A is a fuzzy ideal by Theorem 2.12), then the following conditions are equivalent:

1. A is a fuzzy n-fold BCI - commutative ideal ;

2. $\forall x_\lambda, y_\mu \in \tilde{X}$ such that $x_\lambda * y_\mu \in \tilde{A}$, we have

$$\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) \right) * \left(0_\alpha * \left(0_\alpha * (x_\lambda * y_\mu^n) \right) \right) \right) \in \tilde{A} ;$$

3. $\forall t \in (0,1]$, the t-level subset $A^t = \{x \in X : A(x) \geq t\}$ is an n-fold BCI – commutative ideal when $A^t \neq \emptyset$;

4. $A \left(\left(x * (y * (y * x)) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \geq A(x * y)$

5. \tilde{A} is an n-fold BCI – commutative weak ideal.

Proof. $1 \Rightarrow 2$ Let $x_\lambda, y_\mu \in \tilde{A}$ such that $x_\lambda * y_\mu \in \tilde{A}$. Since A is a fuzzy n-fold BCI - commutative ideal, we have

$$A \left(\left(x * (y * (y * x)) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \geq \min(A((x * y) * (x * y)), A(x * y))$$

$$= \min(A(0), A(x * y)) = A(x * y) \geq \min(\lambda, \mu).$$

Therefore $\left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right)_{\min(\lambda, \mu, \alpha)} =$

$$\left(x_\lambda * \left(\left(y_\mu * (y_\mu * x_\lambda) \right) * \left(0_\alpha * \left(0_\alpha * (x_\lambda * y_\mu^n) \right) \right) \right) \right) \in \tilde{A}$$

Notes

$$2 \Rightarrow 3 \quad \forall t \in (0,1], 0 \in A^t.$$

Let $(x * y) * z \in A^t$ and $z \in A_t$ then we have $((x * y) * z)_t = (x_t * y_t) * z_t \in \tilde{A}$ and $z_t \in \tilde{A}$.

Since \tilde{A} it is a weak ideal, we have $x_t * y_t = (x * y)_t \in \tilde{A}$.

Using the hypothesis, we obtain

$$\left(x_t * \left(\left(y_t * (y_t * x_t) \right) * \left(0_t * \left(0_t * (x_t * y_t^n) \right) \right) \right) \right) =$$

$$\left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right)_t \in \tilde{A} \text{ hence}$$

$\left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \in A^t$. By Proposition 3.7, we obtain that $A^t = \{x \in X : A(x) \geq t\}$ is an n-fold BCI - commutative ideal.

$$3 \Rightarrow 4 \text{ Let } x, y \in X \text{ and } t = A(x * y), \text{ then } x * y \in A^t.$$

Since A^t is an n-fold BCI – commutative ideal, we have

$$\left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \in A^t. \text{ Hence}$$

$$A \left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * (x * y^n) \right) \right) \right) \right) \geq t = A(x * y) 4. \Rightarrow 5. \text{ Let}$$

$\lambda \in \text{Im}(A)$. Obviously $0_\lambda \in \tilde{A}$.

- Let $(x_\lambda * y_\mu) * z_\alpha \in \tilde{A}$ and $z_\alpha \in \tilde{A}$. Since \tilde{A} is a weak ideal, we obtain $(x * y)_{\min(\lambda, \mu, \alpha)} \in \tilde{A}$. According to the hypothesis, we obtain

$A \left(x * \left((y * (y * x)) * (0 * (0 * (x * y^n))) \right) \right) \geq A(x * y) \geq \min(\lambda, \mu, \alpha)$, hence

$$\left(x * \left((y * (y * x)) * (0 * (0 * (x * y^n))) \right) \right)_{\min(\lambda, \mu, \alpha)} =$$

$$\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \right) \in \tilde{A}.$$

5. \Rightarrow 1. Follows from Theorem 3.10

Theorem 3.12 Let $\{\tilde{A}_{i \in I}\}$ be a family of n -fold BCI – commutative weak ideals and $\{A_{i \in I}\}$ be a family of fuzzy n -fold BCI – commutative ideals. then: (1) $\bigcap_{i \in I} \tilde{A}_i$ is an n -fold BCI – commutative weak ideal.

(2) $\bigcup_{i \in I} \tilde{A}_i$ is an n -fold BCI – commutative weak ideal.

(3) $\bigcap_{i \in I} A_i$ is a fuzzy n -fold BCI – commutative ideal.

(4) $\bigcup_{i \in I} A_i$ is a fuzzy n -fold BCI – commutative ideal.

Proof. (1) $\forall \lambda \in \text{Im} \left(\bigcap_{i \in I} \tilde{A}_i \right)$, then $\lambda \in \text{Im}(\tilde{A}_i)$, $\forall i$, so, $0_\lambda \in \tilde{A}_i$, $\forall i$, i.e. $0_\lambda \in \bigcap_{i \in I} \tilde{A}_i$

. For every $x_\mu, y_\lambda, z_\alpha \in \tilde{X}$, if $((x_\lambda * y_\mu) * z_\alpha) \in \bigcap_{i \in I} \tilde{A}_i$ and $z_\alpha \in \bigcap_{i \in I} \tilde{A}_i$, then

$((x_\lambda * y_\mu) * z_\alpha) \in \tilde{A}_i$ and $z_\alpha \in \tilde{A}_i \ \forall i$, thus

$$\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \right) \in \tilde{A}_i$$

So $\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \right) \in \bigcap_{i \in I} \tilde{A}_i$. Thus $\bigcap_{i \in I} \tilde{A}_i$ is an

n -fold BCI - commutative weak ideals.

(2) $\forall \lambda \in \text{Im} \left(\bigcup_{i \in I} \tilde{A}_i \right)$, then $\exists i_0 \in I$, such, that $\lambda \in \tilde{A}_{i_0}$, so, $0_\lambda \in \tilde{A}_{i_0}$, i.e.

$0_\lambda \in \bigcup_{i \in I} \tilde{A}_i$. For every $x_\mu, y_\lambda, z_\alpha \in \tilde{X}$, if

$((x_\lambda * y_\mu) * z_\alpha) \in \bigcup_{i \in I} \tilde{A}_i$ and $z_\alpha \in \bigcup_{i \in I} \tilde{A}_i$, then $\exists i_0 \in I$ such that

$((x_\lambda * y_\mu) * z_\alpha) \in \tilde{A}_{i_0}$ and $z_\alpha \in \tilde{A}_{i_0} \forall i$, thus

$$\left(x_\lambda * \left(\left(y_\mu * (y_\mu * x_\lambda) \right) \right) * \left(0_\alpha * \left(0_\alpha * (x_\lambda * y_\mu^n) \right) \right) \right) \in \tilde{A}_{i_0}$$

So $\left(x_\lambda * \left(\left(y_\mu * (y_\mu * x_\lambda) \right) \right) * \left(0_\alpha * \left(0_\alpha * (x_\lambda * y_\mu^n) \right) \right) \right) \in \bigcup_{i \in I} \tilde{A}_i$. Thus $\bigcup_{i \in I} \tilde{A}_i$ is an

n -fold BCI – commutative weak ideals.

(3) Follows from (1) and Theorem 3.10.

(4) Follows from (2) and Theorem 3.10.

Notes

IV. FUZZY N - FOLD WEAK BCI – COMMUTATIVE IDEALS IN BCI - ALGEBRAS

In this section, we define and give some characterizations of (fuzzy) n -fold weak BCI - commutative(weak) ideals in BCK-algebras.

Definition 4.1. A nonempty subset I of X is called an n -fold weak BCI – a commutative ideal of X if it satisfies

1. $0 \in I$;

2. $\forall x, y, z \in X, (x * y^n) * z \in I$, and $z \in I$

$$\Rightarrow x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \in I$$

Lemma 4.2. An ideal I of X is called an n -fold weak BCI - commutative ideal if

$$\forall x, y, z \in X, (x * y^n) * z \in I \Rightarrow x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \in I$$

Definition 4.3. A fuzzy subset A of X is called a fuzzy n -fold weak BCI – commutative ideal of X if it satisfies

1. $\forall x \in X, A(0) \geq A(x)$;

$$2. \forall x, y, z, A \left(x * \left(\left(y * (y * x) \right) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \geq \min \left(A \left((x * y^n) * z \right), A(z) \right)$$

Definition 4.4. \tilde{A} is a weak BCI – commutative weak ideal of \tilde{X} if

1. $\forall v \in \text{Im}(A), 0_v \in \tilde{A}$;

2. $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$

Notes

$$(x_\lambda * y_\mu) * z_\alpha \in I, z_\alpha \in I \Rightarrow x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * (0_\alpha * (0_\alpha * ((x_\lambda * y_\mu) * y_\mu))) \right) \in I$$

Definition 4.5. \tilde{A} is an n-fold a weak BCI – commutative weak ideal of \tilde{X} if

1. $\forall v \in \text{Im}(A), 0_v \in \tilde{A}$;

2. $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$;

$$(x_\lambda * y_\mu^n) * z_\alpha \in I, z_\alpha \in I \Rightarrow x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * (0_\alpha * (0_\alpha * ((x_\lambda * y_\mu) * y_\mu))) \right) \in I$$

Example 4.6 Let $X = \{0,1,2,3\}$ in which $*$ is given by the following table

*	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	c	c	0

Then $(X; *, 0)$ it is a BCI-algebra. Let $t_1, t_2 \in (0,1]$ and let us define a fuzzy subset $A : X \rightarrow [0,1]$ by

$$t_1 = A(0) = A(a) = A(b) > A(c) = t_2$$

It is easy to check that for any $n > 2$

$$\tilde{A} = \{0_\lambda : \lambda \in (0, t_1]\} \cup \{a_\lambda : \lambda \in (0, t_2]\} \cup \{b_\lambda : \lambda \in (0, t_1]\} \cup \{c_\lambda : \lambda \in (0, t_2]\}$$

It is an n-fold weak BCI – commutative weak ideal.

Remark 4.7 \tilde{A} is a 1-fold weak BCI – commutative weak ideal of a BCK-algebra X if \tilde{A} is a weak BCI – commutative weak ideal.

Theorem 4.8 If A it is a fuzzy subset of X , then A is a fuzzy n-fold weak BCI – commutative ideal if \tilde{A} is an n-fold weak BCI – commutative weak ideal.

Proof. \Rightarrow - Let $\lambda \in \text{Im}(A)$ obviously $0_\lambda \in \tilde{A}$;

- Let $(x_\lambda * y_\mu^n) * z_\alpha \in \tilde{A}$ and $z_\alpha \in \tilde{A}$, then

$$A((x * y^n) * z) \geq \min(\lambda, \mu, \alpha) \text{ and } A(z) \geq \alpha.$$

Since A is a fuzzy n-fold weak BCI - commutative ideal, we have

$$\forall x, y, z, A\left(x * \left(y * (y * x)\right) * \left(0 * \left(0 * ((x * y) * y)\right)\right)\right) \geq \min\left(A\left((x * y^n) * z\right), A(z)\right) \geq \min(\min(\lambda, \mu, \alpha), \alpha) = \min(\lambda, \mu, \alpha).$$

$$\text{Therefore } \left(x_\lambda * \left(y_\mu * \left(y_\mu * x_\lambda\right)\right) * \left(0_\alpha * \left(0_\alpha * \left((x_\lambda * y_\mu) * y_\mu\right)\right)\right)\right) \in \tilde{A} = \left(x_\lambda * \left(y_\mu * \left(y_\mu * x_\lambda\right)\right) * \left(0_\alpha * \left(0_\alpha * \left((x_\lambda * y_\mu) * y_\mu\right)\right)\right)\right) \in \tilde{A}.$$

\Leftarrow - Let $x \in X$, it is easy to prove that $A(0) \geq A(x)$;

- Let $x, y, z \in X, A((x * y^n) * z) = \beta$ and $A(z) = \alpha$.

Then $((x * y^n) * z)_{\min(\beta, \alpha)} = ((x_\beta * y_\beta^n) * z_\alpha) \in \tilde{A}$ and $z_\alpha \in \tilde{A}$

Since \tilde{A} is n-fold weak BCI - commutative weak ideal, we have

$$\begin{aligned} & \left(x_\lambda * \left(y_\mu * \left(y_\mu * x_\lambda\right)\right) * \left(0_\alpha * \left(0_\alpha * \left((x_\lambda * y_\mu) * y_\mu\right)\right)\right)\right) = \\ & \left(x_\lambda * \left(y_\mu * \left(y_\mu * x_\lambda\right)\right) * \left(0_\alpha * \left(0_\alpha * \left((x_\lambda * y_\mu) * y_\mu\right)\right)\right)\right) \in \tilde{A} \end{aligned}$$

Hence

$$\begin{aligned}
A \left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) &\geq \min(\beta, \alpha) \\
&= \min \left(A \left((x * y^n) * z \right), A(z) \right)
\end{aligned}$$

Proposition 4.9. Any fuzzy n-fold weak BCI – commutative ideal of X is the fuzzy ideal of X .

Proof. Let A be an n-fold weak BCI – commutative ideal of X and let

$$\begin{aligned}
x, z \in X, \text{ then } \min \{A(x * z), A(z)\} \\
&\min \{A((x * 0) * z), A(z)\} \\
&\leq A \left(x * \left((0 * (0 * x)) * \left(0 * \left(0 * ((x * 0) * 0) \right) \right) \right) \right) \\
&= A \left(x * \left((0 * (0 * x)) * \left(0 * (0 * x) \right) \right) \right) \\
&= A(x * 0) \\
&= A(x).
\end{aligned}$$

Thus A is a fuzzy ideal of X .

Corollary 4.10. An n-fold weak BCI – commutative weak ideal is a weak ideal.

Theorem 4.11. Suppose that \tilde{A} is a weak ideal (namely A is a fuzzy ideal by Theorem 2.9), then the following conditions are equivalent:

1. A is a fuzzy n-fold weak BCI – commutative ideal ;

2. $\forall x_\lambda, y_\mu \in \tilde{X}$ such that $(x_\lambda * y_{\min(\lambda, \mu)}) \in \tilde{A}$, we have

$$\left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * \left(0_\alpha * \left(0_\alpha * ((x_\lambda * y_\mu) * y_\mu) \right) \right) \right) \right) \in \tilde{A}.$$

3. $\forall t \in (0,1]$, the t-level subset $A^t = \{x \in X : A(x) \geq t\}$,

is an n-fold weak IBCI – commutative ideal when $A^t \neq \phi$;

$$4. , \forall x, y \in X, A \left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \geq A \left(x * y^n \right) ;$$

5. \tilde{A} is an n-fold weak BCI – commutative weak ideal

Proof. $1 \Rightarrow 2$ - Let $(x_\lambda * y_{\min(\lambda, \mu)}) \in \tilde{A}$. Since A is a fuzzy n-fold weak BCI – commutative ideal, we have

$$\begin{aligned} A \left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) &\geq \min \left(A \left((x * y^n) * 0 \right), A \left(0 \right) \right) \\ &= A \left(((x * y^n)) \right) \geq \min(\lambda, \mu) \geq \min(\lambda, \mu, \alpha). \end{aligned}$$

$$\begin{aligned} \text{Therefore } &\left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right)_{\min(\lambda, \mu, \alpha)} \\ &= \left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) \left(0_\alpha * \left(0_\alpha * ((x_\lambda * y_\mu) * y_\mu) \right) \right) \right) \right) \in \tilde{A} \end{aligned}$$

$2 \Rightarrow 3$ – Obviously, $\forall t \in (0,1] , 0 \in A^t$.

Let $(x * y^n) \in A^t$, we have

$$(x * y^n)_t = (x_t * y_t^n) \in \tilde{A} .$$

By the hypothesis, one obtains,

$$\left(x_t * \left((y_t * (y_t * x_t)) \left(0_t * \left(0_t * ((x_t * y_t) * y_t) \right) \right) \right) \right) \in \tilde{A}$$

therefore $\left(x * \left((y * (y * x)) \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \in A^t$. Using Lemma 4.2. , we can conclude that

$A^t = \{x \in X : A(x) \geq t\}$ it is an n-fold weak BCI – commutative ideal.

$3 \Rightarrow 4$ - Let $x, y \in X$ and $t = A(x * y^n)$, then $(x * y^n) \in A^t$.

Since A^t is an n-fold weak is BCI – commutative ideal, we have

Notes

$\left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \in A^t$, therefore

$$A \left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \geq t = A(x * y^n).$$

Notes

4 \Rightarrow 5 – Let $\lambda \in \text{Im}(A)$, it is clear that $0_\lambda \in \tilde{A}$.

- Let $(x_\lambda * y_\mu^n) * z_\alpha \in \tilde{A}$ and $z_\alpha \in \tilde{A}$. Since \tilde{A} it is a weak ideal, $(x * y^n)_{\min(\lambda, \mu)} \in \tilde{A}$. Using the hypothesis, we obtain

$$A \left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right) \geq A(x * y^n) \geq \min(\lambda, \mu, \alpha).$$

From this, one can deduce that

$$\left(x * \left((y * (y * x)) * \left(0 * \left(0 * ((x * y) * y) \right) \right) \right) \right)_{\min(\lambda, \mu, \alpha)}$$

$$= \left(x_\lambda * \left((y_\mu * (y_\mu * x_\lambda)) * \left(0_\alpha * \left(0_\alpha * ((x_\lambda * y_\mu) * y_\mu) \right) \right) \right) \right) \in \tilde{A}$$

5 \Rightarrow 1 Follows from Theorem 4.8

Theorem 4.12. Let $\{\tilde{A}_{i \in I}\}$ be a family of n -fold weak BCI – commutative weak ideals and $\{A_{i \in I}\}$ be a family of fuzzy n -fold weak BCI – commutative ideals. then (1) $\bigcap_{i \in I} \tilde{A}_i$ is an n -fold weak BCI – commutative weak ideal.

(2) $\bigcup_{i \in I} \tilde{A}_i$ is an n -fold weak BCI – commutative weak ideal.

(3) $\bigcap_{i \in I} A_i$ is a fuzzy n -fold weak BCI – commutative ideal.

(4) $\bigcup_{i \in I} A_i$ is a fuzzy n -fold weak BCI – commutative ideal.

Proof. (1) $\forall \lambda \in \text{Im} \left(\bigcap_{i \in I} \tilde{A}_i \right)$, then $\lambda \in \text{Im}(\tilde{A}_i)$, $\forall i$, so, $0_\lambda \in \tilde{A}_i$, $\forall i$, i.e. $0_\lambda \in \bigcap_{i \in I} \tilde{A}_i$

. For every $x_\mu, y_\lambda, z_\alpha \in \tilde{X}$, if $(x_\lambda * y_\mu^n) * z_\alpha \in \bigcap_{i \in I} \tilde{A}_i$ and $, z_\alpha \in \bigcap_{i \in I} \tilde{A}_i$, then

$(x_\lambda * y_\mu^n) * z_\alpha \in \tilde{A}_i$ and $, z_\alpha \in \tilde{A}_i \forall i$, thus

$$\left(x_{\lambda} * \left(\left(y_{\mu} * \left(y_{\mu} * x_{\lambda} \right) \right) \left(0_{\alpha} * \left(0_{\alpha} * \left(\left(x_{\lambda} * y_{\mu} \right) * y_{\mu} \right) \right) \right) \right) \right) \in \tilde{A}_i \forall i$$

So $\left(x_{\lambda} * \left(\left(y_{\mu} * \left(y_{\mu} * x_{\lambda} \right) \right) \left(0_{\alpha} * \left(0_{\alpha} * \left(\left(x_{\lambda} * y_{\mu} \right) * y_{\mu} \right) \right) \right) \right) \right) \in \bigcap_{i \in I} \tilde{A}_i$. Thus $\bigcap_{i \in I} \tilde{A}_i$ is an n -fold weak BCI – commutative weak ideals

(2) $\forall \lambda \in \text{Im}(\bigcup_{i \in I} \tilde{A}_i)$, then $\exists i_0 \in I$, such that $\lambda \in \tilde{A}_{i_0}$, so, $0_{\lambda} \in \tilde{A}_{i_0}$, i.e.

$0_{\lambda} \in \bigcup_{i \in I} \tilde{A}_i$. For every $x_{\mu}, y_{\lambda}, z_{\alpha} \in \tilde{X}$, if

$(x_{\lambda} * y_{\mu}) * z_{\alpha} \in \bigcup_{i \in I} \tilde{A}_i$ and, $z_{\alpha} \in \bigcup_{i \in I} \tilde{A}_i$, then $\exists i_0 \in I$ such that

$$(x_{\lambda} * y_{\mu}) * z_{\alpha} \in \tilde{A}_{i_0} \text{ and, } z_{\alpha} \in \tilde{A}_{i_0} \forall i, \text{ thus}$$

$$\left(x_{\lambda} * \left(\left(y_{\mu} * \left(y_{\mu} * x_{\lambda} \right) \right) \left(0_{\alpha} * \left(0_{\alpha} * \left(\left(x_{\lambda} * y_{\mu} \right) * y_{\mu} \right) \right) \right) \right) \right) \in \tilde{A}_{i_0}$$

So $\left(x_{\lambda} * \left(\left(y_{\mu} * \left(y_{\mu} * x_{\lambda} \right) \right) \left(0_{\alpha} * \left(0_{\alpha} * \left(\left(x_{\lambda} * y_{\mu} \right) * y_{\mu} \right) \right) \right) \right) \right) \in \bigcup_{i \in I} \tilde{A}_i$. Thus $\bigcup_{i \in I} \tilde{A}_i$ is an n -fold weak BCI – commutative weak ideals.

(3) Follows from (1) and Theorem 4.8.

(4) Follows from (2) and Theorem 4.8.

V. ALGORITHMS

Here We Give Some Algorithms For Studding The Structure Of The Foldness Of (Fuzzy BCI- COMMUTATIVE Ideals In BCI-Algebras)

Notes

Algorithm for ABCI- Commutative Ideals of BCI-Algebra

```

Input( $X$  :BCI-algebra,  $*$  : binary operation,  $I$  : subset of  $X$  );
Output(“ $I$  is a BCI- commutative ideal of  $X$  or not”);
Begin
  If  $I = \phi$  then
    go to (1.);
  End If
  If  $0 \notin I$  then
    go to (1.);
  End If
  Stop:=false;
   $i := 1$ ;
  While  $i \leq |X|$  and not (Stop) do
     $j := 1$ ;
    While  $j \leq |X|$  and not (Stop) do
       $k := 1$ ;
      While  $k \leq |X|$  and not (Stop) do
        If  $(x_i * y_j) * z_k \in I$  and  $z_k \in I$  then
          If  $(x * ((y * (y * x))) * (0 * (0 * (x * y)))) \notin I$ 
            Stop:=true;
        EndIf
      End If
      Endwhile
    Endwhile
    If Stop then
      Output (“ $I$  is a BCI- commutative ideal of  $X$  ”)
    Else
      (1.) Output (“ $I$  is not a BCI- commutative ideal of  $X$  ”)
    End If
  End

```

Algorithm for N-Fold BCI- Commutative Ideals of BCI - Algebra

```

Input( $X$  :BCI -algebra,  $*$  : binary operation,  $I$  : subset of  $X$  );
Output(“ $I$  is n-fold BCI - commutative ideal of  $X$  or not”);
Begin

```



```

If  $I = \phi$  then
  go to (1.);
End If

If  $0 \notin I$  then
  go to (1.);
End If

Stop:=false;
i:=1;

While  $i \leq |X|$  and not (Stop) do
  j:=1;
  While  $j \leq |X|$  and not (Stop) do
    k:=1;
    While  $k \leq |X|$  and not (Stop) do
      If  $(x_i * y_j) * z_k \in I$  and  $z_k \in I$  then
        If  $(x * ((y * (y * x))) * (0 * (0 * (x * y^n)))) \notin I$ 
          Stop:=true;
        EndIf
      EndIf
    Endwhile
  Endwhile
Endwhile
If Stop then
  Output (" $I$  is an n-fold BCI - commutative ideal of  $X$ ")
Else
  (1.) Output (" $I$  is not an n-fold BCI - commutative ideal of  $X$ ")
End If
End

```

Algorithm for Fuzzy BCI- Commutative Ideals of Bcialgebra

Input(X : BCI-algebra, $*$: binary operation, A : the fuzzy subset of X);

Output("A is a fuzzy BCI- commutative ideal of X or not");

Begin

```

Stop:=false;
i:=1;

While  $i \leq |X|$  and not (Stop) do
  If  $A(0) < A(x_i)$  then
    Stop:=true;
  End If

```

```

 $j := 1;$ 
  While  $j \leq |X|$  and not (Stop) do
     $k := 1;$ 
      While  $k \leq |X|$  and not (Stop) do
        If  $A(x * ((y * (y * x))) * (0 * (0 * (x * y)))) < (A((x * y) * z), A(z))$  then
          Stop=true;
        End If
      Endwhile
    Endwhile
  Endwhile
  If Stop then
    Output ("A is not a fuzzy BCI- commutative ideal of X ")
  Else
    Output ("A is a fuzzy BCI- commutative ideal of X ")
  End If
End

```

Algorithm for Fuzzy N-Fold BCI- Commutative Ideals of BCI-Algebra

Input (X : BCI-algebra, $*$: binary operation, A : the fuzzy subset of X);

Output (" A is a fuzzy n- fold BCI- commutative ideal of X or not");

Begin

Stop:=false;

$i := 1;$

While $i \leq |X|$ and not (Stop) do

If $A(0) < A(x_i)$ then

Stop:=true;

End If

$j := 1;$

While $j \leq |X|$ and not (Stop) do

$k := 1;$

While $k \leq |X|$ and not (Stop) do

$A(x * ((y * (y * x))) * (0 * (0 * (x * y^n)))) < (A((x * y) * z), A(z))$

Stop=true;

End If

Endwhile

Endwhile

Endwhile

```

If Stop then
  Output (" A is not a fuzzy n- fold BCI- commutative ideal of X ")
Else
  Output (" A is a fuzzy n- fold BCI- commutative ideal of X ")
End If
End

```

Algorithm for N-Fold Weak BCI- Commutative Ideals of BCI-Algebra

Input(X :BCI-algebra, I : subset of $X, n \in \mathbb{N}$);
Output(" I is an n-fold weak BCI - commutative ideal of X or not");
Begin

```

If  $I = \emptyset$  then
  go to (1.);
End If
If  $0 \notin I$  then
  go to (1.);
End If
Stop:=false;
i := 1;
While  $i \leq |X|$  and not (Stop) do
  j := 1;
  While  $j \leq |X|$  and not (Stop) do
    k := 1;
    While  $k \leq |X|$  and not (Stop) do
      If  $(x * y^n) * z \in I, and, z \in I$  then
        If  $x * ((y * (y * x)) * (0 * (0 * ((x * y) * y)))) \notin I$ 
          Stop:=true;
        EndIf
      EndIf
    Endwhile
  Endwhile
Endwhile
If Stop then
  Output ("  $I$  is an n-fold weak BCI - commutative ideal of  $X$  ")
Else
  (1.) Output ("  $I$  is not an n-fold weak BCI - commutative ideal of  $X$  ")
End If
End

```

Notes

Algorithm for Fuzzy N-Fold Weak BCI- Commutative Ideals of BCI-Algebra

Input(X : BCI-algebra, $*$: binary operation, A a fuzzy subset of X);
 Output(“ A is a fuzzy n -fold weak BCI -commutative ideal of X or not”);
 Begin
 $Stop:=false$;
 $i:=1$;
 While $i \leq |X|$ and not ($Stop$) do
 If $A(0) < A(x_i)$ then
 $Stop:=true$;
 End If
 $j:=1$;
 While $j \leq |X|$ and not ($Stop$) do
 $k:=1$;
 While $k \leq |X|$ and not ($Stop$) do
 If $\left(x * \left(\left(y * \left(y * x \right) \right) \left(0 * \left(0 * \left(\left(x * y \right) * y \right) \right) \right) \right) < m \text{ in } \left(A \left(\left(x * y^n \right) * z \right), A(z) \right)$
 then
 $Stop=true$;
 End If
 Endwhile
 Endwhile
 Endwhile
 If $Stop$ then
 Output (“ A is not a fuzzy n -fold weak BCI -a commutative ideal of X ”)
 Else
 Output (“ A is a fuzzy n -fold weak BCI –commutative ideal of X ”)
 End If
 End
 End

VI. CONCLUSION AND FUTURE RESEARCH

In this paper we introduce new notions of (fuzzy) n -fold BCI-commutative ideals, and (fuzzy) n -fold weak BCI - commutative ideals in BCI - algebras ., Then we studied relationships between different type of n- fold BCI - commutative ideals and investigate several properties of foldness theory of BCI - commutative ideals in BCI -algebras. Finally, we construct some algorithms for studying foldness theory of BCI – commutative ideals in BCI -algebras.

In our future study of foldness ideals in BCK/BCI algebras, maybe the following topics should be considered :

- (1) developing the properties of foldness of positive implicative ideals of BCK/BCI algebras.
- (2) finding useful results on other structures of foldness theory of ideals of BCK/BCI algebras.
- (3) constructing the related logical properties of such structures.
- (4) one may also apply this concept to study some applications in many fields like decision making knowledge base systems, medical diagnosis, data analysis, and graph theory.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Y. Huang and Z. Chen, On ideals in BCK-algebra, *Math. Japonica*, 50 (1999), pp. 211-226.
2. K. Iséki, On ideals in BCK-algebras, *Math. Seminar Notes* (presently, *Kobe J. Math.*) 3(1975), 1-12.
3. K. Iséki and S. Tanaka, An Introduction to the theory of BCK-algebra, *Math. Japonica*, 23(1978), pp. 935-942.
4. Y. B. Jun, On n-fold fuzzy implicative/commutative ideals of BCK-algebras *IJMMS*, (2001), pp. 419-427.
5. Y. B. Jun, (2017) Neutrosophic subalgebras of several types In BCK /BCI-algebras, *Ann. Fuzzy Math Inform* 14 (1), PP 75-86.
6. C. Lele, C. Wu, P. Weke, T. Mamadou and C.E. Njock, Fuzzy ideals and weak ideals in BCK-algebras, *Scientiae Mathematicae Japonicae*, 54 (2001), pp. 323-336.
7. Y. Liu and J. Meng, Fuzzy Ideals in BCI-algebras, *Fuzzy sets, and systems* 123(2001) 227-237.
8. Muhiuddin, G., Kim S. J . and Jun Y. B. (2019) Implicative N – ideals of BCK – algebras based on Neutrosophic N – structures, *Discrete mathematics, algorithms, and Applications* 11 (1), 1950011.
9. G. Muhiuddin, Y. B. Jun, Further Results of Neutrosophic subalgebras in BCK/BCI -algebras based on Neutrosophic points, *TWMS J. App. Eng. Math.* V. 10 N. 2, 2020, PP 232-240.
10. J. Meng, Y. B Jun and H. S. KIM, Fuzzy implicative ideals of BCK-algebras, *Fuzzy sets, and systems* 89 (1997) pp. 243-248.
11. O. G. XI, Fuzzy BCK-algebras, *Math. Japonica*, 36 (1991), pp. 935-942.
12. L. A. Zadeh, Fuzzy sets, *Inform. and Control* 8(1965), pp. 338-353.