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l. [NTRODUCTION

The notions of BCK/BClI-algebras were introduced by Iséki [3] and were
investigated by many types of research. The concept of fuzzy sets was
introduced by Zadeh [12] In 1991, Xi [11] applied the concept to BCK-algebras.
From then on, Jun, Meng et al. [10] applied the concept to the ideals.

The notions of n-fold implicative ideal and n-fold weak commutative
ideals were introduced by Huang and Chen [1]. Y. B. Jun [4] discussed the
fuzzification of n-fold positive implicative, commutative, and implicative ideal
of BCK-algebra.

In this paper, we redefined a BCI — commutative ideals of BCI-algebra
and studied the foldness theory of fuzzy BCI — commutative ideals, BCI —
commutative weak ideals, fuzzy weak BCI — commutative ideals and weak BCI
— commutative weak ideals in BCI-algebras. This theory can be considered as a
natural generalization of BCI — commutative ideals. Indeed, given any BCI -
algebra X, we use the concept of fuzzy point to characterize n-fold BCI -
commutative ideals in X . Finally, we construct some algorithms for studying
foldness theory of BCI — commutative ideals in BCI -algebra.
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1. PRELIMINARIES

Here we include some elementary aspects of BCI that are necessary for
this paper, and for more detail, we refer to [1, 3].

An algebra (X ; *,0) of type (2,0) is called BCI-algebra 1f
VX,Y,ze X the following conditions hold:

BCI-1. ((x*y)*(X*2))*(z*Yy)=0 ;

BCI-2. (X *(X *y))*y =0 ;

BCI-3. X *X =0 ;

BCI4. x *y =0 and y *X =0=>X =Yy

A binary relation < can be defined by

BCI-5. x £y & x *xy =0,

then (X ,<) is a partially ordered set with least element 0.

The following properties also hold in any BCI-algebra ([5], [10]):
I.Xx*0=xX ;
2.Xx*y =0 and y *zZ =0=>X *z =0;
3.X*y =0=>(X*z2)*(y *z2)=0and (Z *y)*(z *x)=0;
4. (X *y)*zZ =(X*Z2)*y ;
5. X *xy)*x =0 ;
6. X *(X *(X *y))=x*y ; let (X, *,0) be a BCIl-algebra.

Definition 2.1 (Zadeh [12]). A fuzzy subset of a BCl-algebra X is a function
u: X —[0,1].

Definition 2.2 (C. Lele [6]). Let & be the family of all fuzzy sets in X . For
X eX and A€(0,1],x, €& is a fuzzy point iff
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A ifx =y,
X/l(y):{

0 otherwise.

We denote by X = {x X eX ,4€(0,1]} the set of all fuzzy points on X and

we define a binary operation on X as follows :

X, *Y, = (X *xy )min(/i,u)
It is easy to verify VX ,,y ,,Z, € X', the following conditions hold:
BCI-1". ((x, *yﬂ) *(X,*2,))*(zZ, *yﬂ) = Omin(ﬂ,yﬂ);

BCI-2°. (x (X, *y )*y, =0

min(A,) >

BCI-3". X, *X , =0

min(4,u) 2

BCK-5". 0, %X ,=0

min(4,u)

Remark 2.3 (C. Lele [6/). The condition BCI-4 is not true ()Z ,*). So the
partial order < (X ,*) can not be extended to (X ,*).

We can also establish the following conditions VX ,,y ,,Z € X :
1°. x,*0,=X

U min(A,u) *

2’° Xﬂ, * y,u = Omin(ﬂ.,,u) and y/,z *Z a = Omin(u,a) - X/l *Z a = Omin(/l,a);

30 X, %Y, = Oy = (X, *Z ) *(Y %2 ,) = 0,01,y and
(z, *y#)*(Za *X/'L):Omin(/l,/,z,a);

. (X, %Y )*¥Z,=(X,*Z,)*Y ,;

5. (Xﬂ,*y/u)*xﬂ. :0(/1,;1) 5

6. X, % (X, ¥ (X, *Y ) =X, *Y ;

We recall that if A is a fuzzy subset of a BCl-algebra X, then we have the
following:
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A={x,eX :AXx)=A, 1e(0,1]}. ()
VAe(0,1],X,={x,:xeX},and A, ={x, eX ,:A(X)> 1} (ii)

also have X~/1 gXN,A: X ,A:l cA ,A:/l g)(N/1 and one can easily check that
(X, ;%,0,) is a BCK-algebra.

Definition 2.4(Is€ki [2/). A nonempty subset of BCI-algebra X is called an
ideal of X if it satisfies

1.0el ;
2.Vx,yeX ,(Xx*y el and y el)=x el

Definition 2.5 (Liu and Meng [7]). A nonempty subset | of BCl-algebra X is
BCIl-commutative ideal if it satisfies:

1.0l ;
2. VX,y,zeX

(x *y)*z)el and z el):>(x *((y *(y *x)))*(O*(O*(x *y))))el

Definition 2.6Xi [11] ). A fuzzy subset A of a BCl-algebra X is a fuzzy ideal
if

1.VxeX ,A0)>AX) ;

2. Vx,y eX ,AX)=2min(A(X *y),A(Y)).

Definition 2.7 (Xi [11]). A fuzzy subset A of a BCl-algebra X is called a fuzzy

BCI- commutative ideal of X if.

1.VxeX ,A0)>A(X);

2. VX,y,zeX

A(x *((y *(y *x)))*(O*(O*(x *y))))Z(A((x xy)*z),A(z ))
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Definition 2.8(C . Lele, [6]). A is a weak ideal of X if
1. Vvelm(A);0, €A ;

2. VX,,y,€X . Such that Xl*yﬂe,& and yﬂeﬂ,wehave

Notes X min(A,u) € A .

Theorem 2.9 (Lele, [6]). Suppose that A is a fuzzy subset of a BCK - algebra

X, then the following conditions are equivalent:

1. A is a fuzzy ideal ;

2.9X,,y,€A,(Z,*Y,)*x,=0 = eA;

min(A,u,a) min(A,u,a)

3. Vt €(0,1], the t-level subset A' = {x € X :A(X) >t} is anideal when A' # ¢;
4. A is a weak ideal.

111.  Fuzzy N-ForLp BCI-CoMMUTATIVE IDEALS IN BCI - ALGEBRAS

Throughout this paper X is the set of fuzzy points on BCI-algebraX and
n eN (where N the set of all the natural numbers).

Let us denote (---((X *y)*y)*--)*y by X *y"

and (---((X #0,)%0,)%--)*0, by X,*y | (where y and y,

min(A,4)
occurs respectively n times) with X,y e X ,X,,y, X .

Definition 3.1. A nonempty subset | of a BCI -algebra X is an n-fold BCI-
commutative ideal of X if it satisfies :

1.0l ;

2. VX,y,2 eX;

(x *y)*z)el and z el):>(x *((y *(y *x)))*(O*(O*(x *y”))))el

© 2020 Global Journals

Global ]()urnal of Science Frontier Research (F) Volume XX Issue IV Version I E Year 2020



Global Journal of Science Frontier Research (F) Volume XX Issue IV Version I E Year 2020

Definition 3.2 A fuzzy subset A of X is called a fuzzy n-fold BCI-

commutative ideal of X if it satisfies :
1. Vx eX ,A(0)>AX) ;

2.VX,y,zeX ,

A((x *(y *(y *x))*(O*(O*(x *y”)))))Zmin(A((x xy)*2),A(z ))

Definition 3.3. A is BCl-commutative weak ideal of X if
1. Vvelm(A), 0, eh ;

2.X,,Y,.2,€X

(x.*y,)*z,)el and zael):((xl*(yﬂ*(yﬂ*xi))

(0, (0,% (x,» yy)))))e !

Definition 3.4. A is n-fold BCI- commutative weak ideal of X if
1. VveIm(A),0, €A ;

2.X,,Y,.2,€X
((Xi*yﬂ)*za)el and Zae|)3(xi*((yy*(yy*xz)))
*(Oa*(Oa*(xﬂ*yﬂ”))))el

Example 3.5. Let X ={0,a,b,c,d } with*defined by the following table

* |0la|b|c|d
0/010{0]0]O0
alal0[0[0/O0
b|/bjal0O|a|0
clclclc|0]|O0
d{d|d|d|d]|O

By simple computations, one can prove that
t,,t, €(0,1]and define a fuzzy subset t, = A (0)
t,.

—
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One can easily check that for any n >3

A={0,:2 (0t 1}Ufa,: 20,1} Ufb,: 20t 1} Ufc,:2 [0t} U{d, : 1 e(0.t,]}

It 1s an n-fold BCI- commutative weak ideal.

Remark 3.6. ATs a 1-fold BCI- commutative weak ideal of a BCK-algebra X if

A is BCI- commutative weak ideal of X .

Proposition 3.7 An ideal I of BCI -algebra X Is an n-fold BCI - commutative
ideal if

VX,y eX ,x *y el :>(x *((y *(y *x)))*(O*(O*(x *y”))))el

Proof. If an ideal 1 is an n-fold BCI - commutative and X *Yy el then
(X *y)*OeI and O el , then we have

(x #((y *(y *x)))*(O*(O*(x *y”))))el ,

thus this means that the condition satisfies.

Conversely, let an I an ideal satisfies the condition. If (x *y )*z e and

Z €l, then by the definition of ideas we have X *y € |. It follows from the
given condition that (x *((y #(y *X ))) *(0 *(O* (x xy " )))) e | ; this means
that | is an n-fold BCI - commutative ideal .this finishes the proof.
Proposition 3.8. An n-fold BCI - commutative weak ideal is a weak ideal.

Proof. VX .Y , eX letxi*yﬂz(xi*oﬁ)*y#e/&and Y. €A | since A n-

fold BCI - commutative ideal we have

X min(ip) = ((x/1 *(Oﬂ *(Oﬂ *xl))*(oﬂ *(0# >x<(x/1 *On#))))):xmm(m) eA,

Thus A is a weak ideal.

Proposition 3.9. Any fuzzy n-fold BCI - commutative ideal of BCI — algebras
X is the fuzzy ideal of X .
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Proof. let A be a fuzzy n-fold BCI - commutative ideal of X and let X,Z € X.
Then min (A (x *2),A(z))
= min(A((x %0)*2),A(z))
A((x (0 #(0 #x ))(0 #(0 #(x +0r )
A ([ +(0 (0 s )+(0 (0 +(x »0 )

Notes

IA

Thus A is a fuzzy ideal of X.

Theorem 3.10. If A is a fuzzy subset of X , then A is a fuzzy n-fold BCI -

commutative ideal if A is an n-fold BCI -commutative weak ideal.
Proof. = - Let AeIm(A), it is easy to prove that 0, € A

-Let (X, *y , )*z, eA and Zae,&

A(X *y)*z)>min(A, u,a) and A(Z)> .

Since A is a fuzzy n-fold BCI -commutative ideal, we have
A((x *(y *(y *x))*(O*(O*(x *y”)))))Zmin(A((x +y)*z),A(z))

> min(min(/i,,u,a),a) =min (A, i, ).

Therefore (X *((y *(y *X)))*(O*(O*(x *y”)))) =

min(A,u.a)
(Xﬂ*((yﬂ*(y#*xﬂ)))*(oa*(Oa*(xﬁ*y#n))))e'&
< -Let x eX ,itis easy to prove that A(0)>A(X);

2020 Global Journals



Notes

-Let X,y,z eX andlet A(x *y)*z)=/ and A(Z)=«, then
((X *y)*z)min(ﬂ,a) :(Xﬂ*ya)*ZaEA and Za EAN'

Since A is n-fold BCI -commutative weak 1deal, we have

(Xﬂ (v, (v,#x,)))*(0, (0, *(x, *yﬂn)))):
[y {0 0str oy ) <A

min(A,x,a)

Thus (x *((y *(y *x)))*(O*(O*(x *y”)))) >min(f,a)
:min(A((x xy)*2),A(z ))

Theorem 3.11. Suppose that A is a weak ideal (namely A is a fuzzy ideal by

Theorem 2.12), then the following conditions are equivalent:

1. A is a fuzzy n-fold BCI - commutative ideal ;

2. V’X/I,y#e)(~ suchthatxi*yﬂe,&,wehave

() (0, (0 (9, A

3. Vt €(0,1], the t-level subset A'={x eX :A(x)>t} is an n-fold BCI —

commutative ideal when A' # ¢ ;

. A([xe(y oy ox))<(0n(0x(x oy ")) J2A0xey)

5. A is an n-fold BCI — commutative weak ideal.

Proof. 1 =2 Let X,,Y, e A such thatx , *Y €A . Since A is a fuzzy n-fold

BCI - commutative ideal, we have
A((x x(y *(y *x))*(O*(O*(x *y”)))))Zmin(A((x xy )x(x +y)),A(X *y))
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=min(A(0),A(X *y ))=A(x *y )>min(4,x).

Therefore (X *((y #(y *X )))*(O*(O*(x *y”)))) =

min(A,u,a)

(5,0 ) (0, 00,53, ) o4

2 =3Vt e(0,1],0eA".

Let(x* y)* zeA'andz € A, then we have (( X * Y) *Z), =(X, *Y,)*Z, cA
andz, €A .

Since Ait is a weak ideal, we have X, ¥y, =(X *y), eA .

Using the hypothesis, we obtain

(Xt *((yt (Y, *xt)))*(ot >x<(0t >x<(xt *yt”)))):
(x *((y *(y *x)))*(O*(O*(x *y”)))) c A hence

t

(X *((y #(y *X )))*(O*(O*(x *y”))))e A'. By Proposition 3.7, we

obtain that A' ={X € X :A(X)>t}is an n-fold BCI - commutative ideal.

3 =4Lletx,yeX andt=A(X *y), thenx *y eA',

Since A' is an n-fold BCI — commutative ideal, we have

(x #((y *(y *x)))*(O*(O*(x *y“))))e A'. Hence

A(x *((y *(y *x)))*(O*(O*(x *y”))))zt =A(x *y)4. =5. Let
AeIm(A). Obviously 0, eA.

-Let (X, *y )*z, eAand z, €A . Since A is a weak ideal, we obtain

X * Y )mingipan) € A . According to the hypothesis, we obtain
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A(x #((y *(y *x)))*(O*(O*(x *y”))))ZA(x %y )>min(A, ), hence

(X “((y *(y #x ))*(0 (0 %(x *y n)))) _

min(ﬂ,,u,a)

Notes (X/1 *((yy *(y# *Xi)))*(oa *(()a *(xﬂ *y#”))))eﬂ.

5. = 1. Follows from Theorem 3.10

Theorem 3.12 Let {A,
and {A,_, } be a family of fuzzy n-fold BCI — commutative ideals. then: (1) ) A

iel

} be a family of n-fold BCI — commutative weak ideals

1s an n-fold BCI — commutative weak ideal.

(2))U,_, A, is an n-fold BCI — commutative weak ideal.

(3) )N A, is a fuzzy n-fold BCI — commutative ideal.

iel

(4))U,_ A is a fuzzy n-fold BCI — commutative ideal.

Proof (1) Vielm(ﬂ,&i) ,then AeIm(A),Vi,so, 0, A, Vi, ie. 0,eNA,

iel iel

. Forevery X,,Y,,2, eX,if (X, *y )*z,)eN, A andz, e, A, then

iel

((x,*y )*z,)eAand z, €A, Vi, thus

(Xz *((yy *(yﬂ *Xﬂ)))*(oa *(Oa *(Xz *yﬂn))))e,&i
So (xﬂ *((yﬂ*( Y, * xl)))*(oa * (Oa * (x/1 * yﬂ”))))e N, A, . Thus ig A, is an
n-fold BCI - commutative weak ideals.

(2) Vielm(U;4 Ay ), then Ji, el such that Ae A, ,s0, 0, €A, ,ie.

0, U, A, . Forevery X,> Y52, e X, if
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(X, *y )*z,)eU, A andz, el A, then i, el such that

((x,*y )*z,)eA and z, €A, Vi, thus

(Xﬁ *((yﬂ *(yﬂ *X‘)))*(O“ *(O“ *(Xi *yﬂn))))e'&io

So (xi *((y# *(yﬂ *xi)))*(oa *(Oa >|<(xi *yﬂ”))))eUiel A, . Thus iLEJI A, is an

n-fold BCI — commutative weak ideals.

(3) Follows from (1) and Theorem 3.10.

(4) Follows from (2) and Theorem 3.10.

IV.  Fuzzy N - FoLb WEak BCI — COMMUTATIVE IDEALS IN BCI - ALGEBRAS

In this section, we define and give some characterizations of (fuzzy) n-
fold weak BCI - commutative( weak) ideals in BCK-algebras.

Definition 4.1. A nonempty subset | of X 1is called an n-fold weak BCI1 - a
commutative ideal of X 1f it satisfies

1.0l ;
2. VXx,y,zeX ,(x *y”)*z el,and,z 1l

< o((y #(y ) #{05(0% (x =y )y ) <!

Lemma 4.2, An ideal | of X 1s called an n-fold weak BCI - commutative ideal
if
vX,y,z e X ,(x *y”)*z el =x *((y *(y *x))*(O*(O*((x *y)*y))))el

Definition 4.3. A fuzzy subset A of X is called a fuzzy n-fold weak BCI —
commutative ideal of X if it satisfies

1. VX eX ,A0)=AX):
2. VX,y,z,A(x *((y *(y *x))*(O*(O*((x *y)*y)))))zmin(A((x xy" )z ),A(z ))
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Definition 4.4. A is a weak BCI — commutative weak ideal of X~ if
1. Vvelm(A),0 €A ;

2. VX,,Y .2, €X
(x,*y, )*z,el,z, €l :xi*((y#*(y#*xl))

* (Oa* (()a* ((xﬂ* yﬂ)* yu))))e I
Definition 4.5. A is an n-fold a weak BCI — commutative weak ideal of X if
1. Vvelm(A), O, eA ;
2. VX,,Y .2, €X;

(xﬂ*yy”)*zael,zael :xﬂ*((y#*(yy*xi))

o 0,(0,%((x, %y, ) yﬂ))))e !

Example 4.6 Let X ={0,1,2,3} in which * is given by the following table

* [0la|b|c
0/0(0]|0]O0
alal0(0/0
b|/b|b[0]O0
clclclc|O

Then (X;*,0)it is a BCI-algebra. Lett ,t, €(0,1] and let us define a fuzzy

subset A: X —[0,1] by
t,=A0)=A(a)=A(b)>A(c)=t,
It is easy to check that for any n >2
A={0,:2e(0t,]} Uda,:2€(0,t,13U{b, : 2e(0t,]}U{c,: 2e(0.t,]}

It 1s an n-fold weak BCI — commutative weak ideal.

Remark 4.7 A is a 1-fold weak BCI— commutative weak ideal of a BCK-

algebra X if A is a weak BCI — commutative weak ideal.
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Theorem 4.8 If A1itis a fuzzy subset of X , then A is a fuzzy n-fold weak BCI

— commutative ideal if A is an n-fold weak BCI — commutative weak ideal.

Proof. = -Let A eIm(A) obviously 0, € A ;

- Let (Xl*y#n )*Za €A and z €A, then
A((X *y”)*Z)Zmin()L,,u,a) and A(z)>«.

Since A is a fuzzy n-fold weak BCI - commutative ideal, we have

VX,y,z,A(x *((y *(y *x))*(O*(O*((x *y)*y)))))zmin(A((x *y“)*z )

Az )) > min (min(A, i, @), @) = min(4, 1, @).
Therefore (X/1 *((yﬂ *(yﬂ % X ﬂ))*(oa *(Oa >x<((x/1 * yﬂ)* yy)))))e,&:

(xi *((y# #(y, *x ﬁ))*(oa (0, %((x, *y#)*y#)))))e,&.

< -Let X e X , itis easy to prove that A(0)>A(X) ;
-Let x,y,zeX ,A((x *y”)*z):ﬂand AZ)=«.

Then((x *y”)*z) =((xﬁ*yﬂ“)*za) eAandz, A

min(4,a)

Since A is n-fold weak BCI - commutative weak 1deal, we have

(v, (v,x) 20, #(0, #((x: 4y, )+,)))-

(Xi*((yy *(y,u *xi))*(oa*(Oa*((xﬂ*y#)*y#)))))ep:

Hence
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A(x *((y *(y *x))*(O*(O*((x *y)*y)))))Zmin(,B,a)
:min(A((X *y”)*z),A(z ))

Proposition 4.9. Any fuzzy n-fold weak BCI— commutative ideal of X is the
fuzzy ideal of X.

Proof. Let A be an n-fold weak BCI — commutative ideal of X and let

X,z €X , then min{A(x *z),A(z)}
min{A ((x *0)*z ),A(z)}
<A #((0%(0%x))%(0%(0%((x *0)0)))))
~A(x #((0%(0%x)) (0% (0%x))))
_A(x *0)
~A(X).

Thus A is a fuzzy ideal of X .

Corollary 4.10. An n-fold weak BCI — commutative weak ideal is a weak ideal.

Theorem 4.11. Suppose that A is a weak ideal (namely A is a fuzzy ideal by

Theorem 2.9), then the following conditions are equivalent:

1. A is a fuzzy n-fold weak BCI — commutative ideal ;

2.9%,,Y, e X such that (x, *y;m(ﬁ,#))e/&, we have

({7, ) (0, =0, (60, 3,) <A

3. Vt €(0,1], the t-level subset A" ={x e X :A(x)>t},
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is an n-fold weak IBCI — commutative ideal when A' # ¢ ;
4. ,Vx,y eX ,A(x *((y *(y *x))*(O*(O*((x *y)*y)))))zA(x *y”) :
5. A is an n-fold weak BCI — commutative weak ideal

Proof. 1 =2 - Let (X, *Y m)eﬂ. Since A is a fuzzy n-fold weak BCI —

commutative 1deal, we have

A(x *((y *(y *x))*(O*(O*((x *y)*y)))))kmin(A((x *y”)*O),A(O))

= A(((X *y ")) > min(4, ) > min (A, g, ).

Therefore (X *((y *(y *x ))*(O*(O*((X *y)*y)))))

min(A,u,)

:(xi*((yﬂ*(y#*xl))(oa*(Oa*((xi*yﬂ)*y#)))))e,&

2 =3 — Obviously, Vt €(0,1],0€A" .
Let (x *y")e A", we have

(X *yn)t:(xt*ytn)EA-

By the hypothesis, one obtains,

O ) (R U AR

therefore (x *((y *(y *X ))(0 *(O* ((x *y )*y ))))) e A'. Using Lemma 4.2. ,
we can conclude that

A' ={x e X :A(x)>t}itis an n-fold weak BCI — commutative ideal.
3=4-Letx,yeX andt=A(x *y"),then (x *y")eA'.

Since A' is an n-fold weak is BCI — commutative
1deal, we have

2020 Global Journals

Notes



Notes

(x *((y *(y *X ))(0*(0*((X *y)*y)))))eAt,therefore
Al #((y =y =x))(0%(0x((x =y)#y))))) 2t =A(x *y").

4 =5—Let AeIm(A), it is clear that 0, eA.

~

- Let (Xi*yz)*zaeﬂand z €A. Since A itis a weak ideal,

a

X *Y ") mina € A . Using the hypothesis, we obtain

A(x *((y *(y *x))(O*(O*((x *y)*y)))))ZA(x *y”)zmin(i,,u,a).

From this, one can deduce that

(x (v =y #x))=(0%(0%((x *y)*y)))))

min(A,u,a)

:(xl *((yﬂ #(y, *xﬂ))*(oa *(oa «((x, *yﬂ)*yﬂ)))))e'&

5 = 1 Follows from Theorem 4.8

Theorem 4.12. Let {A._} be a family of n-fold weak BCI — commutative weak
ideals and {A,_ } be a family of fuzzy n-fold weak BCI — commutative ideals.

then (1)) Ai is an nN-fold weak BCI — commutative weak ideal.

iel

(2))U,_ A, is an n-fold weak BCI — commutative weak ideal.

(3) )N A, is a fuzzy n-fold weak BCI — commutative ideal.

iel

(4))U,_ A is a fuzzy n-fold weak BCI — commutative ideal.

Proof. (1) V/Ielm(_ﬂ Ai) ,then AeIm(A),Vi,so, 0,eA,Vi,ie. 0,eNA,

iel iel

A, , then

iel

_Forevery X,,Y,,2, € X ,if (x, *y" )*z, &N, A and,z, €N

(x,*y",)*eA and,z, €A Vi, thus
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(xﬁ *((y# (y,0x,)) (0, (0, *((x *y#)*yﬂ)))))eﬂ:iVi

So (Xi *((yﬂ *(yu *xl))(oa *(Oa >x<((x/1 *yﬂ)*yu)))))eﬂiel A, . Thus NA,

iel

1s an n-fold weak BCI — commutative weak ideals

(2) V/Ielm(Uiel Ai) , then 3i, €1, such, thatle'Aio ,s0, 0, eAiO, 1.e.
0, U, A,.Forevery X,>Y,,2, € X, if
(xi>x<y”ﬂ)>x<zaniel A, and,z_ eU,_ A, ,then 3i, el such that

(x,*y",)*z, €A, and,z, €A, Vi, thus

o0, )

So (xi *((y,, #(y, *Xi))(Oa *(oa #((x, *yﬂ)*yu)))))euie, A, . Thus UA.

iel

1s an n-fold weak BCI — commutative weak 1deals.
(3) Follows from (1) and Theorem 4.8.

(4) Follows from (2) and Theorem4.8.

V.  ALGORITHMS

Here We Give Some Algorithms For Studding The Structure Of The Foldness Of ( Fuzzy
BCI- COMMUTATIVE Ideals In BCI-Algebras)
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Algorithm for ABCI- Commutative Ideals of BCI-Algebra

Input (X :BCl-algebra, * : binary operation, | : subset of X);
Output(“| is a BCI- commutative ideal of X or not”);
Begin

Ifl =¢ then

N N go to (1.);
ores End If

If0O¢ | then

go to (1.);
End If
Stop:=false;
i=1;
While i S| X| and not (Stop) do
j=1

While j <|X| and not (Stop) do
k:=1;

While k <|X| and not (Stop) do

If (X;*y;)*z, €l and z, el then

it (x#((y #(y #x)))#(0%(0%(x #y )))) !

Stop:=true,
EndIf

End If
Endwhile

Endwhile
Endwhile
If Stop then
Output (“ | is a BCI- commutative ideal of X )
Else
(1.) Output (I is not a BCI- commutative ideal of X )
End If

End
Algorithm for N-Fold BCI- Commutative Ideals of BCI - Algebra

Input (X :BCI -algebra, * : binary operation, | : subset of X);

Output(“l 18 n-fold BCI - commutative ideal of X or not”);
Begin
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Ifl1 =¢ then
go to (1.);
End If
If0¢ | then
go to (1.);
End If

Stop:=false; Not .
i:=1;

While i S|X| and not (Stop) do
j=1
While j <|X| and not (Stop) do
k:=1;
While k <|X| and not (Stop) do

If (X;*y,;)*z, €l and z, €l then

If (x *((y *(y *x)))*(O*(O*(x *y”))))el
Stop:=true,

EndIf
Endwhile
Endwhile
Endwhile

If Stop then

Output (“I is an n-fold BCI - commutative ideal of X )
Else

(1.) Output (“ I is not an n-fold BCI - commutative ideal of X )
End If
End

Algorithm for Fuzzy BCI- Commutative Ideals of Bcialgebra
Input (X : BCl-algebra, * : binary operation, A : the fuzzy subset of X);
Output(“ A is a fuzzy BCI- commutative ideal of X or not”);
Begin
Stop:=false;
i:=1;
While i S|X| and not (Stop) do
If A(0) < A(X;) then
Stop:=true;
End If
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j=1
While j S|X| and not (Stop) do
k:=1;
While k S| X| and not (Stop) do

If A(x *((y #(y *X )))*(O*(O*(x *y )))) <(A((x xy )*2),A(z )) then
Stop=true;

End If
Endwhile
Endwhile
Endwhile

If Stop then

Output (“ Ais not a fuzzy BCI- commutative ideal of X )

Else
Output (“ Ais a fuzzy BCI- commutative ideal of X )
End If
End

Algorithm for Fuzzy N —Fold BCI- Commutative Ideals of BCI-Algebra
Input (X : BCl-algebra, * : binary operation, A : the fuzzy subset of X);
Output(“ A is a fuzzy n- fold BCI- commutative ideal of X or not”);
Begin
Stop:=false;
i:=1;
While i S|X| and not (Stop) do
If A(0) < A(X;) then
Stop:=true;
End If
j=1
While j <|X| and not (Stop) do
k:=1;
While k <|X| and not (Stop) do

A(x #((y *(y *x)))*(O*(O*(x *y“))))<(A((x +y)*z),A(z))
Stop=true;
End If

Endwhile

Endwhile
Endwhile
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If Stop then
Output (“ Ais not a fuzzy n- fold BCI- commutative ideal of X )
Else
Output (“ Ais a fuzzy n- fold BCI- commutative ideal of X )
End If
End

Algorithm for N-Fold Weak BCI- Commutative Ideals of BCI-Algebra

Input( X :BCl-algebra, I : subset of X,neN);
Output(“| is an n-fold weak BCI - commutative ideal of X or not”);
Begin
If1 =¢ then
go to (1.);
End If
IfO¢ 1 then
go to (1.);
End If
Stop:=false;
i:=1;

While i <|X| and not (Stop) do

j=1;
While j <|X| and not (Stop) do
k:=1;

While k <|X| and not (Stop) do
If (x *y”)*z el,and,z €l then

(g #(y ) (02(05((x 2 )=y )

Stop:=true;
EndIf
EndIf
Endwhile
Endwhile
Endwhile
If Stop then
Output (“ I is an n-fold weak BCI - commutative ideal of X )
Else
(1.) Output (“ I is not an n-fold weak BCI - commutative ideal of X )
End If
End
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Algorithm for Fuzzy N-Fold Weak BCI- Commutative Ideals of BCI-Algebra

Input( X : BCl-algebra, * : binary operation, A fuzzy subset of X ),
Output(“ Ais a fuzzy n-fold weak BCI -commutative ideal of X or not”);
Begin
Stop:=false;
i:=1;
While i <|X| and not (Stop) do
If A(0) < A(X;) then

Stop:=true,
End If
j=1;
While j <|X| and not (Stop) do
k:=1;

While k <|X| and not (Stop) do

If (x *((y #(y *X ))(0*(0*((x *y )y )))))< m in(A((x %y ”)*z ),A(z ))
then
Stop=true;
End If
Endwhile
Endwhile
Endwhile
If Stop then
Output (“ Ais not a fuzzy n-fold weak BC I-a commutative ideal of X )
Else
Output (“ Ais a fuzzy n-fold weak BCI ~commutative ideal of X )
End If
End

VL CONCLUSION AND FUTURE RESEARCH

In this paper we introduce new notions of (fuzzy) n-fold BCI-
commutative ideals, and (fuzzy) n-fold weak BCI - commutative ideals in BCI -
algebras ., Then we studied relationships between different type of n- fold BCI -
commutative ideals and investigate several properties of foldness theory of BCI -
commutative ideals in BCI -algebras. Finally, we construct some algorithms for
studying foldness theory of BCI - commutative ideals in BCI -algebras.
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In our future study of foldness ideals in BCK/BCI algebras, maybe the

following topics should be considered :

10.

11
12

(1) developing the properties of foldness of positive implicative ideals of
BCK/BCI algebras.

(2) finding useful results on other structures of foldness theory of ideals of
BCK/BCI algebras.

(3) constructing the related logical properties of such structures.

(4) one may also apply this concept to study some applications in many
fields like decision making knowledge base systems, medical diagnosis,
data analysis, and graph theory.
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