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Modeling the Cases of Road Traffic Crashes:
A Case of Exponential Smoothing Approach
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Absiract- This study was carried out using the monthly
(January 2007 to December 2017 with a total of 108 data
points) reported road ftraffic crashes along the roads
connecting the main city of Enugu State Nigeria. In this work,
we gave a general overview of the three basic aspects
of exponential smoothing models proposed with their
applications on the cases of road traffic crashes (accident).
The relationship between autoregressive integrated moving
average models and exponential smoothing models was also
given. Using a grid search method for the estimation of
smoothing parameters, the best exponential smoothing
models for each of the cases was identified based on the
Mean square error (MSE), Mean absolute error (MAE) and
Mean absolute percentage error (MAPE). The Holt-Winter
(Triple) exponential smoothing model expounded by Peter
Winter (1960) yielded optimum value in each of the measures
for each route since the series exhibit both trend and
seasonality.

Keywords: road traffic crashes, exponential smoothing,
ARIMA models.

l. [NTRODUCTION

ransportation plays a vital role in social and
economic development of a nation, particularly in

facilitating movement of people, goods and
services from one point to another. In other words, the
viability of an economy to an extent partially depends on
the ease of moving people and goods from place to
place. Eventhough modern means of transportation
spurs the development pace of an economy, it has
negative effects on the social life of the people. Sumaila
(2013) succintly posited that although transportation has
liberated man and makes him more mobile, his
increasing reliance on vehicular movement has
conferred great fatalities on him and his activities. These
great fatalities as pointed out above are the results of
traffic crashes along the roads.

According to Salako et al (2014), the causes of
road traffic crashes are multi-factorial and involve the
interaction of a number of pre-crash factors. These
factors can be divided broadly into driver factors, vehicle
factors and road way factors. Accidents can be caused
by a combination of these factors. Driver factors include
driver's behavior, visibility, decision making ability and
sensitivity to speed. Drug and alcohol use while driving
is an obvious predictor of road traffic crash. Human
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error (Driver factor) contributes 64% to 95% traffic
crashes in developing countries (Atubi, 2012). Road
accidents statistics in Nigeria reveal a serious and
growing problem with absolute fatality rate and casualty
figure rising rapidly. To curtail the rate of accident
occurence on the roads, viable programs have to be
introduced by the Federal road safety commission and
other personels whose operations are traffic centered.
To come up with such a viable program, the knowledge
of the future occurence of road ftraffic crashes is
essential. Thus, we adopt exponential smoothing model
to study the accident phenomenon and come up with a
reliable forecast into the future of accident cases along
the major roads connecting to the city of Enugu
state, Nigeria.

Exponential smoothing is a forecasting
technique for smoothing time series data. This forecast
technique  systematically  assigns  weights 1o
observations. By the procedure, the forecasts are
continually revised in the light of more recent signals.
One of the basic ideas of smoothing models is to
construct forecasts of future values as weighted
averages of past observations with the more recent
observations carrying more weight in determining
forecasts than observations in the more distant past. By
forming forecasts based on weighted averages we are
using a “smoothing” method (Fomby, 2008). The
exponential smoothing (single exponential smoothing)
procedure has a similar concept as moving averages.
Whereas in Moving Averages the past observations are
weighted equally, Exponential Smoothing assigns
exponentially (rapidly) decreasing weights as the
observation get older. That is, recent observations are
assigned relatively more weight than the older
observations in forecasting. In the case of moving
averages, the weights assigned to the observations are
the same and are equal to N=1. However, in exponential
smoothing, there are one or more parameters
(smoothing parameters) to be determined (or estimated)
and these parameters contribute in determining the
weights to be assigned to the observations. Given a set
of time dependent observations, z;t=1,2,..T, the
generation process of the series can generally be
represented using an additive exponential smoothing
model given as follows:

Zg =W+ P t+s;mte (1)
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Where y, is the time dependent mean (level) term, S,is
the time dependent slope also known as the trend term,
S;m 1S the time dependent seasonal term for period
m(@m=1,2,..,M) and ¢, is the error term. Assuming
that the series have no trend (B8, = 0) and no seasonal
term (S, ,, = 0), the model reduces to single exponential
smoothing. As the series are being smoothed at each
timet, the parameters (u, B, S.n) are estimated. In
other words, the estimates of these parameters vary
based on time. Because the process is recursive, it is
necessary to determine the initial estimates first.

a) Single (Simple) Exponential Smoothing

Single exponential Smoothing does not fair well
in a series of data which has trend. This is so because it
assumes that data fluctuates around a reasonable
stable mean. By the assumption of the model, the series
have only level and random component thus, the
general model equation reduces to

Zp = U+ & 2

It is used for short range forecasting and this
situation exposes the shortfalls of single exponential
smoothing.

b) Derivation of the Single Exponential Smoothing
Formula
Let the smoothing parameter for single
exponential smoothing be denoted as a. Also, let the
smoothed level that estimates p, in (2) be denoted as
L,. The weighted expression for L, is

L=az, +a(l —a)z,_4 +a(l —a)’z,_, +
a(l—a)iz,_5+a(l—a)z._, (3)

It follows that,

Liy=az_ +a(l—a)z,_, +a(l—a)’z,_;+
a(l—a)iz_, (4)

Multiplying (4) by (1 — ), we have

Li_i(l-a)=a(l-a)z,_1+a(l—a)(1 —a)z,_, +
a(l-—a)(1—a)z_3+a(l—a)1 —a)z_y (5)

Subtracting equation (5) from equation (3), implies that
Ly=azz+(1—-a)L,_ (6)

For single (simple) exponential smoothing, (6) is
used to smoothen the series and it is called the
smoothing equation for (SES).

The h-step ahead prediction equation therefore
becomes Z.,., =Li_14; h=1,2,3,... This forecast
model is restricted to short term forecasting, mostly one
step ahead. With the use of the simple exponential
smoothing procedure, each smoothed observation is
expressed as a weighted average of present
observation and previous smoothed value. The
smoothing parameter a« can take any value between
0and 1.
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If @ = 0, the new smoothed value (forecast) is
expressed as the immediate past smoothed value
(Ly—1). This implies that all the smoothed values will be
constant and equal to the initial starting value. However,
if & = 1, the previous smoothed value is ignored and the
new smoothed value becomes equivalent to the present
(current) observation. Since whena =1,L, =Z,, it is
assumed that smoothing is silent since there is no
parameter to weigh the observations. Values of the
smoothing parameter () close to one have less of a
smoothing effect and gives heavier weight to recent
changes in the data, while values of a closer to zero
have a greater smoothing effect and are less responsive
to recent changes. Generally, the large values of
a actually reduces the level of smoothing. The single
exponential smoothing model has an equivalent Box-
Jenkins ARIMA model given as ARIMA (O, 1, 1). That is
(1 —B)z, = (1 - 8B)¢,, where z, is the series, B is a
backward shift operator, 8(8 = 1 — ) is the parameter
associated with the moving average part of the model,
and ¢, is the white noise. This relationship will be
established later in this work.

c) Double Exponential Smoothing

This procedure is specifically used for series
assumed to have level, trend and noise but no
seasonality. The general model equation is given as

Ze =W+ B+ e (7)

For the fact that it has two basic components:
level and trend, the smoothing equation is split into two:
one for the level and the other for the trend. Let L, and
T, be the smoothed values that estimates the level and
the trend respectively. Therefore,

Li=az,+(1—a)L,_4
T, =t(L; —Li—y) + (1 =0T

Where a and t (each lying between 0 and 1) are the
smoothing parameters for the level and the trend
respectively. After smoothing the level at time t and the
trend at time t with the two smoothing equations above,
respectively, the h-step ahead forecast can then be
made using a prediction equation

Zeyn = Leqqn + (ﬁ) BLiyp + (11) Tio11ns h=123 ...

1-a

B is a backward shift operator such tha BL, = L, — L,_;
Also, the double exponential smoothing model has
ARIMA (0, 2, 2) model equivalence. This relationship will
also be established later in this work.

d) Holt-Winter (Triple) Exponential Smoothing

This is third order exponential smoothing which
is the recursive application of an exponential filters three
times. The smoothing method is used when the
series shows level, trend and seasonality. To handle
seasonality, we have to add a third parameter y and
introduce a third equation to take care of seasonality



with seasonal length, m=12 (since we are considering
monthly series). The general model equation is given as

Zy =l + B + Sim + & (8)

Let m be the length of the season. The seasonal
indices are defined such that they sum to zero. That
isym, S, =0.

The model has three smoothing equations
which are defined as follows;

Ly=a(z,—S_ )+ A —-a)(Li—y +T,—y)
T,=t(L, — L)+ A -0DT,,4
S=v(@z —L)+ A —y)Sim

=y

The h-step prediction equation is Z,,;, = (m) Ligp +
(i—Z—;) Lt—1+h + (i_;;_;) Tt—1+h - (Tj;:)st—rrwh )
h=1,2,... that is forecasting z h-steps ahead by using
the last available estimated level state and incrementing
it by h times using the last available trend while at the
same time adding the last available smoothed seasonal
factor, S,_,,4, that matches the month of the forecast
horizon.

e) Determination or Choosing of Initial/ Starting Values

In order to implement these methods
mentioned above, the user must provide starting values
for the level L,, trend T, and seasonal indices S, at the
beginning of the series in order to initiate the updating
procedure. There are many different ways of choosing
these initial values.

For simple exponential smoothing, the initial
value can be determined by taking the average of
observations in the first year or simply setting
L, =z, (the first observation).

In double exponential smoothing, we set L, =z,
and Ty = z,-z;

For Holt-Winter, we set L, equal to the average
observation in the first year. That is

m
Lo = 12
0= Zt
i=1

Where m is the number of seasons in the year. The
starting value for the trend

1 m
To = EZI(ZmH - Zi)
i=

Finally, the seasonal index starting value (S;)
can be calculated as follows

S, =7, —1,
S,=Z S, =2, -,

) Choosing the Best Value for the Smoothing Constant
The accuracy of the forecasting depends on the
smoothing constant. The user must also provide values

m-1" -m+1

for the three smoothing parameters (a,t, 8). There are
two general ways of selecting the parameters. The first
is to estimate them by minimizing sum function of the
forecast errors of the historical data. The second is
simply guestimate (an estimate that combines
reasoning with guessing). Selecting a smoothing
constant is basically a matter of judgment or trial and
error, using forecast errors to guide the decision. The
goal is to select a smoothing constant that balances the
benefits of smoothing random variations with the
benefits of responding to real changes if and when they
occur. The smoothing constant serves as the weighting
factor. When a is close to 1, the new forecast will include
a substantial adjustment for any error that occurred in
the preceding forecast. When a is close to 0, the new
forecast is very similar to the old forecast. The
smoothing constant is not an arbitrary choice. Low
values of a gives less weight to recent data while higher
values of o permit the more recent data to have a
greater influence on the predictions. In practice, the
smoothing constant is chosen by a grid search within
the parameter space. That is, different solutions for
a are tried starting, for example, with a =0.1 to a =0.9,
with increment of 0.1. The value of a with the smallest
MAE, MSE or MAPE is chosen for use in producing the
future forecasts.

g) Discussions on the Results of the Exponential
Smoothing Models

In previous section, we established that there is
seasonality in the series of each of the routes. This
informs the use of Holt-Winter (Triple) exponential
smoothing model which will inculcate the seasonality
that is visible in the series. Here, the analysis was run
using the non-adaptive technique for additive triple
exponential smoothing model. The non-adaptive
technique uses the data set to build the model and
establish smoothing factors. Since it is non-adaptive,
once the optimum smoothing factors a, t and y are
established, they are not modified again. In this
research work, a grid search was adopted to identify the
optimum smoothing factors (that is the smoothing
factors that gives minimum MAE, MSE, SSE and MAPE).
However, we still considered single and double
exponential smoothing models assuming that there is
no seasonality. The essence of doing this is to know
whether the model (single or double) will perform better
if seasonal component is ignored. We are applying the
models on the cases of road traffic crashes along three
routes: Enugu-Abakeliki (ENU-ABK), Nsukka-9" miles
(NSK-OMILE) and Enugu-Onitsha (ENU-ONITSHA),
connecting Enugu State, Nigeria. The results are given
in the table below:
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Table 1: Single Exponential Smoothing Model for the Routes

Routes Smoothing Factors Performance Measures
o« MAE MSE SSE MAPE
ENU-ABK 0.3 2.9189 16.3905 177017 o0
NSK-9MILE 0.4 2.7829 15.3718 1660.16 0
ENU-ONITSHA 0.2 3.2404 19.3095 2085.43 47.4046
Table 2: Double Exponential Smoothing Model for the Routes
Routes Smoothing Factors Performance Measures
o« T MAE MSE SSE MAPE
ENU-ABK 0.3 0.1 2.9531 17.2853 1866.81 0
NSK-OMILE 0.4 0.1 2.8496 16.4398 1775.50 00
ENU-ONITSHA 0.2 0.1 3.3121 20.9090 2258.17 45.2986

Table 3: Holt-Winter (Triple) Exponential Smoothing Model For The Routes

Routes Smoothing Factors Performance Measures
o« T Y MAE MSE SSE MAPE
ENU-ABK 0.3 0.1 0.1 2.8879 14.9525 1614.87 0
NSK-9MILE 05 0.1 0.1 2.5364 12.5325 1353.51 ©
ENU-ONITSHA 0.2 0.1 0.1 3.0174 14.8241 1601.00 | 42.5465

The results of the exponential smoothing
models put in the table above shows that the Holt-winter
exponential smoothing model forecasts each of the
series better as it yields minimum values of the model
performance measures considered in the work. As
stated earlier, H-W exponential smoothing model
acknowledges the presence of seasonal effects in the
series. Therefore, it gives better results since we have
been able to establish in previous section that the rate of
accident occurrence is generally, seasonal.

h) Establishment of the Relationships between ARIMA
and Exponential Smoothing Models

Exponential smoothing and ARIMA models are
the two most widely used approaches to time series
forecasting. They provide complementary approaches
to a problem. While exponential smoothing models were
based on a description of trend and seasonality in
the data, ARIMA models aim to describe the
autocorrelations in the data. ARIMA model has been
pioneered by Box and Jenkins (1976). These models are
intended for the forecasting of traffic flow data and have
since been successfully used.

As stated earlier, the simple/single exponential
smoothing is optimal for an ARIMA (0,1,1) model while
double exponential smoothing(two parameter model)
model is optimal for an ARIMA (0,2,2) model. The
3-parameter  Holt-Winters  method  with  additive
seasonality is so complicated that it would never be
identified in practice (Chatfield and Mohammad, 1988).
The multiplicative Holt-Winter does not have an ARIMA
equivalent at all. These relationships (that is ARIMA
equivalence to exponential smoothing) can be proved
using their innovation state space model. Each model
consists of a measurement equation that describes the
observed data and some ftransition equations that

© 2020 Global Journals

describe how the unobserved components or states
(level, trend, seasonal) change over time.

i. For simple exponential smoothing, we have that
The ARIMA model equivalence to simple
exponential smoothing is ARIMA (0, 1, 1) written as

(1-B)Z, =(1-6B)s,, whered =1-q.
Here we try to prove the relationship using the

innovation state space model and the transition
equation.

z, = U,_1 + & This is the innovation state space model
(1-B)u, = ag, (Transition equation)

Apply the difference operator (1-B) to both
sides of innovation state space model

(1-B)z, = (1 — B)y—1 + (1 — B)e,

(1-B)z, = ag,_q + &84

(1-B)z,=ag,_1 — &1 + &
=5-(1-a)&g_4

let(1—a)=16

(1-B)z, = &,-0¢,_4

(1-B)z, = (1-6B)¢,

ii. Fordouble exponential smoothing
The ARIMA equivalence to double exponential
smoothing is the ARIMA (0, 2, 2) model written as
(1-B)?Z, =(1-6B)%, , where 6 =1-a

Z, = Uy_1 + B_1 + & innovation state space model for
double exponential smoothing

(1-B)uy = Br—1 + ag,
(1-B)B, = t&,



To create the relationship, multiply both sides of ISSM by (1 — B)? and apply the transition equations

appropriately.

1- B)Zzt =(1- B)Z.ut—l +(1- B)Zﬁt—l +(1- B)th

It (1-B)uy = By + ag, then (1-B)u,y = B2 + agr 4

a1- B)Z.ut—lz(l —B) By +a(l1—B)&4

For (1 — B)?B,_;,we know that (1-B)g, = t¢,

Therefore (1-B)B,_; = 16,.; = (1= B)?*B,_; =t (1 — B)g,_4
(1-B)?2z, =1 =B)B, + a(1 = B)e,_1+ (1 = B)g,_y +& — 261 + &,

Since (1-B), = t¢,
(1 —=B)By=18,

1- B)Zzt =15 tale g — &) t1les — &) +e — 281 +&,

=T g1 — A& 5 +TEG 1 —TE& o+ & — 261+ &,

=g+@+1-2)g 1 +(T—a—-1t+1eg_,
=-Q2-a—-1&_ 1+ —-a)g_,
= —-Q2-a-1&_; —(a—1)g_,

if,=2—-a-10,=a-1

Therefore (1 — B)?z, = &, — 6,&,_1 — 0,6, = (1-6,B — 6,B%)¢,

iii. For Holt-Winter exponential smoothing

The 3-parameter Holt-Winters method with
additive seasonality is so complicated that it would
never be identified in practice (Chatfield and
Mohammad, 1988). The multiplicative Holt-Winter does
not have an ARIMA equivalent at all.

All exponential smoothing methods need some
estimation of smoothing parameters which is either a, g,

1. The minimization of the mean square error is the
common method of estimating these parameters and
this is normally done through the grid search method.
Emperically, the relationship established above
can be pictured in the performance measures of the two
models (Exponential smoothing and ARIMA model)

Table 4: Comparison table for single Exponential Smoothing Model and ARIMA (0, 1, 1)

Routes Exponential Smoothing Model Arima Model
MAE RMSE MAPE MAE | RMSE MAPE
ENU-ABK 2.9189 4.048 0 2.87 4.107 64.143
NSK-9MILE 2.7829 | 3.9206 | o« 2.839 | 3.916 67.966
ENU-ONITSHA | 3.2404 | 4.3943 47.4046 | 3.274 | 4515 47172

Table 5: Comparison table for Double Exponential Smoothing Model and ARIMA (0, 2, 2)

Route Exponential Smoothing Model Arima Model
MAE RMSE MAPE MAE RMSE MAPE
ENU-ABK 2.9531 4.158 o0 3.177 4.555 63.378
NSK-OMILE 2.8496 4.055 0 2.945 4.322 66.611
ENU-ONITSHA | 3.3121 4.573 45.298 3.577 5.377 46.163
1. SUMMARY On the other hand, the series were smoothed
(remove irregularities from the series) using three
Holt-Winter  (Triple) ~exponential ~smoothing  different exponential smoothing methods. The first one

model expounded by Peter Winter (1960) is also used
when the series under study exhibit both trend and
seasonality. These informed the use of the two
approaches, in addition to the other two forms of
exponential smoothing models to study cases of Road
traffic crashes (RTC) in some selected routes in Enugu
state, Nigeria.

(single exponential smoothing method) assumed that
the series has no trend, the second one (double
exponential smoothing method) assumed that the series
has trend while the third one (Holt-winter (Triple)
exponential smoothing method) has the assumption that
the series has both trend and seasonality. From the
result of the exponential smoothing modeling, the
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acknowledgment of the presence of seasonality
improves the performance of the model. This is
obvious in the result of the Holt- Winters exponential
smoothing model.

Even as the smoothing models are reliable for
forecasting, it has some inherent shortfalls. As a
modeling technique, exponential smoothing methods
have a significant shortfall emanating from not having an
objective  statistical identification and diagnostic
checking system for evaluating the “goodness” of
competing exponential smoothing models. Because of
these shortfalls, exponential smoothing models are
statistically regarded as ad hoc models.
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