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Modeling the Cases of Road Traffic Crashes:           
A Case of Exponential Smoothing Approach 

Eze, C. M. α, Asogwa, O. C. σ, & Okonkwo, C.  R. ρ 

Abstract- This study was carried out using the monthly 
(January 2007 to December 2017 with a total of 108 data 
points) reported road traffic crashes along the roads 
connecting the main city of Enugu State Nigeria. In this work, 
we gave a general overview of the three basic aspects                  
of exponential smoothing models proposed with their 
applications on the cases of road traffic crashes (accident). 
The relationship between autoregressive integrated moving 
average models and exponential smoothing models was also 
given. Using a grid search method for the estimation of 
smoothing parameters, the best exponential smoothing 
models for each of the cases was identified based on the 
Mean square error (MSE), Mean absolute error (MAE) and 
Mean absolute percentage error (MAPE). The Holt-Winter 
(Triple) exponential smoothing model expounded by Peter 
Winter (1960) yielded optimum value in each of the measures 
for each route since the series exhibit both trend and 
seasonality.  
Keywords: road traffic crashes, exponential smoothing, 
ARIMA models. 

I. Introduction 

ransportation plays a vital role in social and 
economic development of a nation, particularly in 
facilitating movement of people, goods and 

services from one point to another. In other words, the 
viability of an economy to an extent partially depends on 
the ease of moving people and goods from place to 
place. Eventhough modern means of transportation 
spurs the development pace of an economy, it has 
negative effects on the social life of the people. Sumaila 
(2013) succintly posited that although transportation has 
liberated man and makes him more mobile, his 
increasing reliance on vehicular movement has 
conferred great fatalities on him and his activities. These 
great fatalities as pointed out above are the results of 
traffic crashes along the roads. 

According to Salako et al (2014), the causes of 
road traffic crashes are multi-factorial and involve the 
interaction of a number of pre-crash factors. These 
factors can be divided broadly into driver factors, vehicle 
factors and road way factors. Accidents can be caused 
by a combination of these factors. Driver factors include 
driver’s behavior, visibility, decision making ability and 
sensitivity to speed. Drug and alcohol use while driving 
is  an  obvious  predictor  of  road  traffic  crash.  Human 
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error (Driver factor) contributes 64% to 95% traffic 
crashes in developing countries (Atubi, 2012). Road 
accidents statistics in Nigeria reveal a serious and 
growing problem with absolute fatality rate and casualty 
figure rising rapidly. To curtail the rate of accident 
occurence on the roads, viable programs have to be 
introduced by the Federal road safety commission and 
other personels whose operations are traffic centered. 
To come up with such a viable program, the knowledge 
of the future occurence of road traffic crashes is 
essential. Thus, we adopt exponential smoothing model 
to study the accident phenomenon and come up with a 
reliable forecast into the future of accident cases along 
the major roads connecting to the city of Enugu               
state, Nigeria. 

Exponential smoothing is a forecasting 
technique for smoothing time series data. This forecast 
technique systematically assigns weights to 
observations. By the procedure, the forecasts are 
continually revised in the light of more recent signals. 
One of the basic ideas of smoothing models is to 
construct forecasts of future values as weighted 
averages of past observations with the more recent 
observations carrying more weight in determining 
forecasts than observations in the more distant past. By 
forming forecasts based on weighted averages we are 
using a “smoothing” method (Fomby, 2008).  The 
exponential smoothing (single exponential smoothing) 
procedure has a similar concept as moving averages. 
Whereas in Moving Averages the past observations are 
weighted equally, Exponential Smoothing assigns 
exponentially (rapidly) decreasing weights as the 
observation get older. That is, recent observations are 
assigned relatively more weight than the older 
observations in forecasting. In the case of moving 
averages, the weights assigned to the observations are 
the same and are equal to 𝑁𝑁−1. However, in exponential 
smoothing, there are one or more parameters 
(smoothing parameters) to be determined (or estimated) 
and these parameters contribute in determining the 
weights to be assigned to the observations. Given a set 
of time dependent observations, 𝑧𝑧𝑡𝑡 ; 𝑡𝑡 = 1,2, …𝑇𝑇,  the 
generation process of the series can generally be 
represented using an additive exponential smoothing 
model given as follows: 

𝑧𝑧𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝛽𝛽𝑡𝑡 + 𝑠𝑠𝑡𝑡 ,𝑚𝑚 + 𝜀𝜀𝑡𝑡                            (1) 
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Where 𝜇𝜇𝑡𝑡  is the time dependent mean (level) term, 𝛽𝛽𝑡𝑡 is 
the time dependent slope also known as the trend term, 
𝑠𝑠𝑡𝑡  𝑚𝑚  is the time dependent seasonal term for period 
𝑚𝑚 (𝑚𝑚 = 1, 2, … ,𝑀𝑀)  and 𝜀𝜀𝑡𝑡  is the error term. Assuming 
that the series have no trend (𝛽𝛽𝑡𝑡 = 0) and no seasonal 
term (𝑆𝑆𝑡𝑡 ,𝑚𝑚 = 0), the model reduces to single exponential 
smoothing. As the series are being smoothed at each 
time 𝑡𝑡 , the parameters �𝜇𝜇𝑡𝑡 ,𝛽𝛽𝑡𝑡 ,𝑆𝑆𝑡𝑡 ,𝑚𝑚�  are estimated. In 
other words, the estimates of these parameters vary 
based on time. Because the process is recursive, it is 
necessary to determine the initial estimates first. 

a) Single (Simple) Exponential Smoothing 
Single exponential Smoothing does not fair well 

in a series of data which has trend. This is so because it 
assumes that data fluctuates around a reasonable 
stable mean. By the assumption of the model, the series 
have only level and random component thus, the 
general model equation reduces to 

𝑧𝑧𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡                                  (2) 

It is used for short range forecasting and this 
situation exposes the shortfalls of single exponential 
smoothing. 

b) Derivation of the Single Exponential Smoothing 
Formula 

Let the smoothing parameter for single 
exponential smoothing be denoted as 𝛼𝛼. Also, let the 
smoothed level that estimates 𝜇𝜇𝑡𝑡  in (2) be denoted as 
𝐿𝐿𝑡𝑡 .  The weighted expression for 𝐿𝐿𝑡𝑡  is 

𝐿𝐿𝑡𝑡 = 𝛼𝛼𝑧𝑧𝑡𝑡 + 𝛼𝛼(1 − 𝛼𝛼)𝑧𝑧𝑡𝑡−1 + 𝛼𝛼(1 − 𝛼𝛼)2𝑧𝑧𝑡𝑡−2 +
𝛼𝛼(1 − 𝛼𝛼)3𝑧𝑧𝑡𝑡−3 + 𝛼𝛼(1− 𝛼𝛼)4𝑧𝑧𝑡𝑡−4                 (3) 

It follows that, 

𝐿𝐿𝑡𝑡−1 = 𝛼𝛼𝑧𝑧𝑡𝑡−1 + 𝛼𝛼(1− 𝛼𝛼)𝑧𝑧𝑡𝑡−2 + 𝛼𝛼(1− 𝛼𝛼)2𝑧𝑧𝑡𝑡−3 +
𝛼𝛼(1 − 𝛼𝛼)3𝑧𝑧𝑡𝑡−4                                       (4) 

Multiplying (4) by (1− 𝛼𝛼), we have 

𝐿𝐿𝑡𝑡−1(1− 𝛼𝛼) = 𝛼𝛼(1− 𝛼𝛼)𝑧𝑧𝑡𝑡−1 + 𝛼𝛼(1− 𝛼𝛼)(1 − 𝛼𝛼)𝑧𝑧𝑡𝑡−2 +
𝛼𝛼(1 − 𝛼𝛼)(1− 𝛼𝛼)2𝑧𝑧𝑡𝑡−3 + 𝛼𝛼(1 − 𝛼𝛼)(1 − 𝛼𝛼)3𝑧𝑧𝑡𝑡−4     (5) 

Subtracting equation (5) from equation (3), implies that  

𝐿𝐿𝑡𝑡 = 𝛼𝛼𝑧𝑧𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿𝑡𝑡−1                      (6) 

For single (simple) exponential smoothing, (6) is 
used to smoothen the series and it is called the 
smoothing equation for (SES). 

The h-step ahead prediction equation therefore
 

becomes 𝑧̂𝑧𝑡𝑡+ℎ = 𝐿𝐿𝑡𝑡−1+ℎ ;
 
ℎ = 1, 2, 3, . ..

 
.This forecast 

model is restricted to short term forecasting, mostly one 
step ahead. With the use of the simple exponential 
smoothing procedure, each smoothed observation is 
expressed as a weighted average of present 
observation and previous smoothed value. The 
smoothing parameter

 
𝛼𝛼   can take any value between 

     

0
 
and 1.

 

If 𝛼𝛼 = 0, the new smoothed value (forecast) is 
expressed as the immediate past smoothed value 
(𝐿𝐿𝑡𝑡−1). This implies that all the smoothed values will be 
constant and equal to the initial starting value. However, 
if 𝛼𝛼 = 1, the previous smoothed value is ignored and the 
new smoothed value becomes equivalent to the present 
(current) observation. Since when𝛼𝛼 = 1 ,𝐿𝐿𝑡𝑡 = 𝑍𝑍𝑡𝑡 , it is 
assumed that smoothing is silent since there is no 
parameter to weigh the observations. Values of the 
smoothing parameter (𝛼𝛼) close to one have less of a 
smoothing effect and gives heavier weight to recent 
changes in the data, while values of 𝛼𝛼  closer to zero 
have a greater smoothing effect and are less responsive 
to recent changes. Generally, the large values of            
𝛼𝛼  actually reduces the level of smoothing. The single 
exponential smoothing model has an equivalent Box-
Jenkins ARIMA model given as ARIMA (0, 1, 1). That is 
(1 −𝐵𝐵)𝑧𝑧𝑡𝑡 = (1− 𝜃𝜃𝜃𝜃)𝜀𝜀𝑡𝑡 , where 𝑧𝑧𝑡𝑡  is the series, 𝐵𝐵  is a 
backward shift operator, 𝜃𝜃(𝜃𝜃 = 1 − 𝛼𝛼) is the parameter 
associated with the moving average part of the model, 
and 𝜀𝜀𝑡𝑡  is the white noise. This relationship will be 
established later in this work. 

c) Double Exponential Smoothing 
This procedure is specifically used for series 

assumed to have level, trend and noise but no 
seasonality. The general model equation is given as  

𝑧𝑧𝑡𝑡 = μt + βt + εt                             (7) 

For the fact that it has two basic components: 
level and trend, the smoothing equation is split into two: 
one for the level and the other for the trend. Let 𝐿𝐿𝑡𝑡  and 
𝑇𝑇𝑡𝑡  be the smoothed values that estimates the level and 
the trend respectively. Therefore,  

𝐿𝐿𝑡𝑡 = 𝛼𝛼𝑧𝑧𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿𝑡𝑡−1 

               𝑇𝑇𝑡𝑡 = 𝜏𝜏(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝜏𝜏)𝑇𝑇𝑡𝑡−1 

Where 𝛼𝛼  and 𝜏𝜏  (each lying between 0  and 1 ) are the 
smoothing parameters for the level and the trend 
respectively. After smoothing the level at time 𝑡𝑡 and the 
trend at time 𝑡𝑡 with the two smoothing equations above, 
respectively, the h-step ahead forecast can then be 
made using a prediction equation 

𝑧̂𝑧𝑡𝑡+ℎ = 𝐿𝐿𝑡𝑡−1+ℎ + � 𝜏𝜏
1−𝛼𝛼

�𝐵𝐵𝐿𝐿𝑡𝑡+ℎ + �1−𝜏𝜏
1−𝛼𝛼

�𝑇𝑇𝑡𝑡−1+ℎ ;  ℎ = 1,2,3 …  

𝐵𝐵 is a backward shift operator such tha 𝐵𝐵𝐿𝐿𝑡𝑡 = 𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1  
Also, the double exponential smoothing model has 
ARIMA (0, 2, 2) model equivalence. This relationship will 
also be established later in this work. 

d) Holt-Winter (Triple) Exponential Smoothing 
This is third order exponential smoothing which 

is the recursive application of an exponential filters three 
times. The smoothing method is used when the             
series shows level, trend and seasonality. To handle 
seasonality, we have to add a third parameter 𝛾𝛾  and 
introduce a third equation to take care of seasonality 
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with seasonal length, m=12 (since we are considering 
monthly series). The general model equation is given as 

𝑍𝑍𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝛽𝛽𝑡𝑡 + 𝑆𝑆𝑡𝑡,𝑚𝑚 + 𝜀𝜀𝑡𝑡 .                         (8) 

Let m be the length of the season. The seasonal 
indices are defined such that they sum to zero. That 
is ∑ 𝑆𝑆𝑡𝑡 = 0𝑚𝑚

𝑡𝑡=1 . 
The model has three smoothing equations 

which are defined as follows; 

                  𝐿𝐿𝑡𝑡 = 𝛼𝛼(𝑧𝑧𝑡𝑡 − 𝑆𝑆𝑡𝑡−𝑚𝑚 ) + (1 − 𝛼𝛼)(𝐿𝐿𝑡𝑡−1 + 𝑇𝑇𝑡𝑡−1) 

                  𝑇𝑇𝑡𝑡 = 𝜏𝜏(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝜏𝜏)𝑇𝑇𝑡𝑡−1 

                  𝑆𝑆𝑡𝑡 = 𝛾𝛾(𝑧𝑧𝑡𝑡 − 𝐿𝐿𝑡𝑡) + (1 − 𝛾𝛾)𝑆𝑆𝑡𝑡−𝑚𝑚  

The h-step prediction equation is 𝑧̂𝑧𝑡𝑡+ℎ = � 𝜏𝜏−𝛾𝛾
1−𝛼𝛼−𝛾𝛾

�𝐿𝐿𝑡𝑡+ℎ +

�1−𝛼𝛼−𝜏𝜏
1−𝛼𝛼−𝛾𝛾

�𝐿𝐿𝑡𝑡−1+ℎ + �2−𝛼𝛼−𝜏𝜏
1−𝛼𝛼−𝛾𝛾

�𝑇𝑇𝑡𝑡−1+ℎ − �𝛼𝛼+𝛾𝛾+1
1−𝛼𝛼−𝛾𝛾

�𝑆𝑆𝑡𝑡−𝑚𝑚+ℎ  , 

h=1,2,… that is forecasting z  h-steps ahead by using 
the last available estimated level state and incrementing 
it by h times using the last available trend while at the 
same time adding the last available smoothed seasonal 
factor, 𝑆𝑆𝑡𝑡−𝑚𝑚+ℎ  that matches the month of the forecast 
horizon. 

e) Determination or Choosing of Initial/ Starting Values  
In order to implement these methods 

mentioned above, the user must provide starting values 
for the level 𝐿𝐿𝑡𝑡 , trend 𝑇𝑇𝑡𝑡 and seasonal indices 𝑆𝑆𝑡𝑡  at the 
beginning of the series in order to initiate the updating 
procedure. There are many different ways of choosing 
these initial values. 

For simple exponential smoothing, the initial 
value can be determined by taking the average of 
observations in the first year or simply setting  
𝐿𝐿𝑜𝑜=𝑧𝑧1 (the first observation). 

In double exponential smoothing, we set 𝐿𝐿𝑜𝑜=𝑧𝑧1 
and 𝑇𝑇0 = 𝑧𝑧2-𝑧𝑧1 

For Holt-Winter, we set 𝐿𝐿𝑜𝑜  equal to the average 
observation in the first year. That is  

𝐿𝐿0 =
1
𝑚𝑚
�𝑧𝑧𝑡𝑡

𝑚𝑚

𝑖𝑖=1

 

Where m is the number of seasons in the year. The 
starting value for the trend 

𝑇𝑇0 =
1
𝑚𝑚
�(𝑧𝑧𝑚𝑚+𝑖𝑖 − 𝑧𝑧𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

 

Finally, the seasonal index starting value (𝑆𝑆0) 
can be calculated as follows 

0 0

1 1 0 1 1 0

,
,...,

m

m m

S Z l
S Z l S Z l− − − +

= −
= − = −

 

f) Choosing the Best Value for the Smoothing Constant 
The accuracy of the forecasting depends on the 

smoothing constant. The user must also provide values 

for the three smoothing parameters (𝛼𝛼, 𝜏𝜏,𝛽𝛽). There are 
two general ways of selecting the parameters. The first 
is to estimate them by minimizing sum function of the 
forecast errors of the historical data. The second is 
simply guestimate (an estimate that combines 
reasoning with guessing). Selecting a smoothing 
constant is basically a matter of judgment or trial and 
error, using forecast errors to guide the decision. The 
goal is to select a smoothing constant that balances the 
benefits of smoothing random variations with the 
benefits of responding to real changes if and when they 
occur. The smoothing constant serves as the weighting 
factor. When α is close to 1, the new forecast will include 
a substantial adjustment for any error that occurred in 
the preceding forecast. When α is close to 0, the new 
forecast is very similar to the old forecast. The 
smoothing constant is not an arbitrary choice. Low 
values of α gives less weight to recent data while higher 
values of α permit the more recent data to have a 
greater influence on the predictions. In practice, the 
smoothing constant is chosen by a grid search within 
the parameter space.  That is, different solutions for       
α are tried starting, for example, with α =0.1 to α =0.9, 
with increment of 0.1. The value of α with the smallest 
MAE, MSE or MAPE is chosen for use in producing the 
future forecasts. 

g) Discussions on the Results of the Exponential 
Smoothing Models 

In previous section, we established that there is 
seasonality in the series of each of the routes. This 
informs the use of Holt-Winter (Triple) exponential 
smoothing model which will inculcate the seasonality 
that is visible in the series. Here, the analysis was run 
using the non-adaptive technique for additive triple 
exponential smoothing model. The non-adaptive 
technique uses the data set to build the model and 
establish smoothing factors. Since it is non-adaptive, 
once the optimum smoothing factors α, τ and γ are 
established, they are not modified again. In this 
research work, a grid search was adopted to identify the 
optimum smoothing factors (that is the smoothing 
factors that gives minimum MAE, MSE, SSE and MAPE). 
However, we still considered single and double 
exponential smoothing models assuming that there is 
no seasonality. The essence of doing this is to know 
whether the model (single or double) will perform better 
if seasonal component is ignored. We are applying the 
models on the cases of road traffic crashes along three 
routes: Enugu-Abakeliki (ENU-ABK), Nsukka-9th miles 
(NSK-9MILE) and Enugu-Onitsha (ENU-ONITSHA), 
connecting Enugu State, Nigeria. The results are given 
in the table below: 
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Table 1: Single Exponential Smoothing Model for the Routes 

Routes Smoothing Factors Performance Measures 
 ∝ MAE MSE SSE MAPE 

ENU-ABK 0.3 2.9189 16.3905 1770.17 ∞ 
NSK-9MILE 0.4 2.7829 15.3718 1660.16 ∞ 

ENU-ONITSHA 0.2 3.2404 19.3095 2085.43 47.4046 

Table 2:  Double   Exponential Smoothing Model for the Routes 

Routes Smoothing Factors Performance Measures 
 ∝ Τ MAE MSE SSE MAPE 

ENU-ABK 0.3 0.1 2.9531 17.2853 1866.81 ∞ 
NSK-9MILE 0.4 0.1 2.8496 16.4398 1775.50 ∞ 

ENU-ONITSHA 0.2 0.1 3.3121 20.9090 2258.17 45.2986 

Table 3: Holt-Winter (Triple) Exponential Smoothing Model For The Routes 

Routes Smoothing Factors Performance Measures 

 ∝ Τ γ MAE MSE SSE MAPE 

ENU-ABK 0.3 0.1 0.1 2.8879 14.9525 1614.87 ∞ 

NSK-9MILE 0.5 0.1 0.1 2.5364 12.5325 1353.51 ∞ 
ENU-ONITSHA 0.2 0.1 0.1 3.0174 14.8241 1601.00 42.5465 

The results of the exponential smoothing 
models put in the table above shows that the Holt-winter 
exponential smoothing model forecasts each of the 
series better as it yields minimum values of the model 
performance measures considered in the work. As 
stated earlier, H-W exponential smoothing model 
acknowledges the presence of seasonal effects in the 
series. Therefore, it gives better results since we have 
been able to establish in previous section that the rate of 
accident occurrence is generally, seasonal.

 

h)
 

Establishment of
 
the Relationships between ARIMA 

and Exponential Smoothing Models
 

Exponential smoothing and ARIMA models are 
the two most widely used approaches to time series 
forecasting. They provide complementary approaches 
to a problem. While exponential smoothing models were 
based on a description of trend and seasonality in           
the data, ARIMA models aim to describe the 
autocorrelations in the data. ARIMA model has been 
pioneered by Box and Jenkins (1976). These models are 
intended for the forecasting of traffic flow data and have 
since been successfully used. 

 

As stated earlier, the simple/single exponential 
smoothing is optimal for an ARIMA (0,1,1) model while 
double exponential smoothing(two parameter model) 
model is optimal for an ARIMA (0,2,2) model.

 
The          

3-parameter Holt-Winters method with additive 
seasonality is so complicated that it would never be 
identified in practice

 
(Chatfield and

 
Mohammad, 1988). 

The multiplicative Holt-Winter does not have an ARIMA 
equivalent at all. These relationships (that is ARIMA 
equivalence to exponential smoothing) can be proved 
using their innovation state space model. Each model 
consists of a measurement equation that describes the 
observed data and some transition equations that 

describe how the unobserved components or states 
(level, trend, seasonal) change over time. 

 

i.
 

For simple exponential smoothing,
 
we have that

 

The ARIMA model equivalence to simple 
exponential smoothing is ARIMA (0, 1, 1) written as 

(1 ) (1 )t tB Z Bθ ε− = −  
,

 
where

 
θ

 
=1-α.

 

Here we try to prove the relationship using the 
innovation state space model and the

 
transition 

equation.
 

𝑧𝑧𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝜀𝜀𝑡𝑡
  This is the innovation state space model

 

(1-B)𝜇𝜇𝑡𝑡 = 𝛼𝛼𝜀𝜀𝑡𝑡
 (Transition equation)

 

Apply the difference operator (1-B) to both 
sides of innovation state space model

 

       (1-B)𝑧𝑧𝑡𝑡 = (1 −𝐵𝐵)𝜇𝜇𝑡𝑡−1 + (1 −𝐵𝐵)𝜀𝜀𝑡𝑡
 

                      (1-B)𝑧𝑧𝑡𝑡 = 𝛼𝛼𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 -𝜀𝜀𝑡𝑡−1
 

                      (1-B)𝑧𝑧𝑡𝑡= 𝛼𝛼𝜀𝜀𝑡𝑡−1 − 𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡
 

      = 𝜀𝜀𝑡𝑡 − (1− 𝛼𝛼) 𝜀𝜀𝑡𝑡−1
 

                       Let (1 − 𝛼𝛼) = 𝜃𝜃 

                      (1-B)𝑧𝑧𝑡𝑡 = 𝜀𝜀𝑡𝑡-𝜃𝜃𝜀𝜀𝑡𝑡−1
 

                      (1-B)𝑧𝑧𝑡𝑡 = (1-𝜃𝜃𝜃𝜃)𝜀𝜀𝑡𝑡
 

ii.
 

For double exponential smoothing
 

The ARIMA equivalence to double exponential 
smoothing is the ARIMA (0, 2, 2) model written as            
(1-B)2Zt

 
=(1-θB)2ԑt

 
,
 
where θ

 
=1-α

 

𝑧𝑧𝑡𝑡 = 𝜇𝜇𝑡𝑡−1 + 𝛽𝛽𝑡𝑡−1 + 𝜀𝜀𝑡𝑡
  innovation state space model for 

double exponential
 
smoothing

 

(1-B)𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝛼𝛼𝛼𝛼𝑡𝑡
   

                            (1-B)𝛽𝛽𝑡𝑡=
 
𝜏𝜏𝜀𝜀𝑡𝑡
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To create the relationship, multiply both sides of ISSM by (1− 𝐵𝐵)2  and apply the transition equations 
appropriately. 

(1 −𝐵𝐵)2𝑧𝑧𝑡𝑡  =(1− 𝐵𝐵)2𝜇𝜇𝑡𝑡−1 + (1 −𝐵𝐵)2𝛽𝛽𝑡𝑡−1 + (1 −𝐵𝐵)2𝜀𝜀𝑡𝑡  

If (1-B)𝜇𝜇𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝛼𝛼𝛼𝛼𝑡𝑡   then (1-B)𝜇𝜇𝑡𝑡−1 = 𝛽𝛽𝑡𝑡−2 + 𝛼𝛼𝜀𝜀𝑡𝑡−1 

(1− 𝐵𝐵)2𝜇𝜇𝑡𝑡−1=(1 −𝐵𝐵) 𝛽𝛽𝑡𝑡−2 + 𝛼𝛼(1− 𝐵𝐵)𝜀𝜀𝑡𝑡−1 

For (1− 𝐵𝐵)2𝛽𝛽𝑡𝑡−1,we know that (1-B)𝛽𝛽𝑡𝑡= 𝜏𝜏𝜀𝜀𝑡𝑡  

Therefore (1-B)𝛽𝛽𝑡𝑡−1 =  𝜏𝜏𝜀𝜀𝑡𝑡−1 ⟹ (1−𝐵𝐵)2𝛽𝛽𝑡𝑡−1 = 𝜏𝜏 (1 −𝐵𝐵)𝜀𝜀𝑡𝑡−1 

(1 −𝐵𝐵)2𝑧𝑧𝑡𝑡 = (1 −𝐵𝐵)𝛽𝛽𝑡𝑡−2 +  𝛼𝛼(1 −𝐵𝐵)𝜀𝜀𝑡𝑡−1+ 𝜏𝜏(1 −𝐵𝐵)𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 − 2𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−2 

Since (1-B)𝛽𝛽𝑡𝑡= 𝜏𝜏𝜀𝜀𝑡𝑡  

(1 −𝐵𝐵)𝛽𝛽𝑡𝑡−2= 𝜏𝜏𝜀𝜀𝑡𝑡−2 

(1 −𝐵𝐵)2𝑧𝑧𝑡𝑡 = 𝜏𝜏𝜀𝜀𝑡𝑡−2 + 𝛼𝛼(𝜀𝜀𝑡𝑡−1 − 𝜀𝜀𝑡𝑡−2) + 𝜏𝜏(𝜀𝜀𝑡𝑡−1 − 𝜀𝜀𝑡𝑡−2) + 𝜀𝜀𝑡𝑡 − 2𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−2 

                    = 𝜏𝜏𝜀𝜀𝑡𝑡−2 + 𝛼𝛼𝜀𝜀𝑡𝑡−1 − 𝛼𝛼𝜀𝜀𝑡𝑡−2 + 𝜏𝜏𝜀𝜀𝑡𝑡−1 − 𝜏𝜏𝜀𝜀𝑡𝑡−2 + 𝜀𝜀𝑡𝑡 − 2𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡−2 

                  = 𝜀𝜀𝑡𝑡 + (𝛼𝛼 + 𝜏𝜏 − 2)𝜀𝜀𝑡𝑡−1 + (𝜏𝜏 − 𝛼𝛼 − 𝜏𝜏 + 1)𝜀𝜀𝑡𝑡−2 

                  = 𝜀𝜀𝑡𝑡 − (2− 𝛼𝛼 − 𝜏𝜏)𝜀𝜀𝑡𝑡−1 + (1 − 𝛼𝛼)𝜀𝜀𝑡𝑡−2 

                 =  𝜀𝜀𝑡𝑡 − (2− 𝛼𝛼 − 𝜏𝜏)𝜀𝜀𝑡𝑡−1 − (𝛼𝛼 − 1)𝜀𝜀𝑡𝑡−2 

 𝑖𝑖𝑖𝑖 𝜃𝜃1 = 2− 𝛼𝛼 − 𝜏𝜏, 𝜃𝜃2 =  𝛼𝛼 − 1 

Therefore (1 −𝐵𝐵)2𝑧𝑧𝑡𝑡 = 𝜀𝜀𝑡𝑡 − 𝜃𝜃1𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 ⟹ (1-𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2)𝜀𝜀𝑡𝑡 

iii. For Holt-Winter exponential smoothing 
The 3-parameter Holt-Winters method with 

additive seasonality is so complicated that it would 
never be identified in practice (Chatfield and 
Mohammad, 1988). The multiplicative Holt-Winter does 
not have an ARIMA equivalent at all. 

All exponential smoothing methods need some 
estimation of smoothing parameters which is either α, 𝛽𝛽, 

τ. The minimization of the mean square error is the 
common method of estimating these parameters and 
this is normally done through the grid search method.  

Emperically, the relationship established above 
can be pictured in the performance measures of the two 
models (Exponential smoothing and ARIMA model) 

Table 4: Comparison table for single Exponential Smoothing Model and ARIMA (0, 1, 1) 

Routes Exponential Smoothing Model Arima Model 
 MAE RMSE MAPE MAE RMSE MAPE 

ENU-ABK 2.9189 4.048 ∞ 2.87 4.107 64.143 
NSK-9MILE 2.7829 3.9206 ∞ 2.839 3.916 67.966 

ENU-ONITSHA 3.2404 4.3943 47.4046 3.274 4.515 47.172 

Table 5: Comparison table for Double Exponential Smoothing Model and ARIMA (0, 2, 2) 

Route Exponential Smoothing Model Arima Model 
 MAE RMSE MAPE MAE RMSE MAPE 

ENU-ABK 2.9531 4.158 ∞ 3.177 4.555 63.378 
NSK-9MILE 2.8496 4.055 ∞ 2.945 4.322 66.611 

ENU-ONITSHA 3.3121 4.573 45.298 3.577 5.377 46.163 
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II. Summary

Holt-Winter (Triple) exponential smoothing 
model expounded by Peter Winter (1960) is also used 
when the series under study exhibit both trend and 
seasonality. These informed the use of the two 
approaches, in addition to the other two forms of 
exponential smoothing models to study cases of Road 
traffic crashes (RTC) in some selected routes in Enugu 
state, Nigeria. 

On the other hand, the series were smoothed 
(remove irregularities from the series) using three 
different exponential smoothing methods. The first one 
(single exponential smoothing method) assumed that 
the series has no trend, the second one (double 
exponential smoothing method) assumed that the series 
has trend while the third one (Holt-winter (Triple) 
exponential smoothing method) has the assumption that 
the series has both trend and seasonality. From the 
result of the exponential smoothing modeling, the 
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acknowledgment of the presence of seasonality 
improves the performance of the model. This is             
obvious in the result of the Holt- Winters exponential 
smoothing model. 

Even as the smoothing models are reliable for 
forecasting, it has some inherent shortfalls. As a 
modeling technique, exponential smoothing methods 
have a significant shortfall emanating from not having an 
objective statistical identification and diagnostic 
checking system for evaluating the “goodness” of 
competing exponential smoothing models. Because of 
these shortfalls, exponential smoothing models are 
statistically regarded as ad hoc models.
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