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. [NTRODUCTION

Integral representations of hypergeometric functions have found applica-
tions in divers fields such as mathematics, physics, statistics, and engi-
neering. Hasanov et al. [9] studied some of the properties of the Horn
type second-order double hypergeometric function H5 involving integral
representations, differential equations, and generating functions. Choi et
al. [6] introduced certain integral representations for Srivastava’s triple
hypergeometric functions Ha, Hg and H¢. Younis and Bin-Saad [19, 20]
establish several integral representations and operational relations involv-
ing quadruple hypergeometric functions XZ.(4) (i = 38,40, 45,48,50). You-
nis and Nisar [21] introduce new integral representations of Euler-type
for Exton’s hypergeometric functions of four variables D1, D2, D3, D4 and
Ds. Also, in [2-5], authors introduced many integral representations for
certain hypergeometric functions in four variables.

Let us recall the Gauss hypergeometric function o F} is defined as (see,
e.g., [14] and [16, Section 1.5])

2 F1 abcxzi

m=0

m
m!’

,(Jz| < 1), (1.1)

where (a)r, is the well known Pochhammer symbol given by (see, e.g., [16,
p- 2 and pp. 4-6))

_Tla+m)
N O
ala+1)...(a+m—1) (meN:={1,2,..}).
(1.2)

Euler’s integral representation of 2 Fy is defined by (see, e.g., [14, p. 85]
and [16, p. 65])

Author: Department of Mathematics, Aden University, Yemen.
e-mail: jihadalsaqgaf@gmail.com

New Integrals for Horn Hypergeometric

© 2020 Global Journals

Year 2020

N
w

Global Journal of Science Frontier Research (F) Volume XX Issue VI Version I



Global Journal of Science Frontier Research (F) Volume XX Issue VI Version I E Year 2020

© 2020 Global Journals

P(C) ! a—1 c—a—1 —b

(Re(a) > 0,Re(c—a) > 0).

2F1 (a,b;¢2) =

Appell hypergeometric functions of two variables Fi, F» and F3 are
respectively defined by (see [17, p. 53, Eq. (4) - (6)])

Fi(a,b,cdyz,y) = Z —(a)m(tlgffj_:((j)n %%, (1.3)
F; (a,b,¢;d, e;z,y) = Z %%% (1.4)
and ,
Fs(a,b,c,d;e;z,y) = i —(a)m((b))”(c)m(d)” x—n:y—T: (1.5)
oo €)min m! n!

Integral representations of Euler type for the functions Fi, Fs, F3 were
already given by Appell [1, Chap. III]. For various integral representations
of hypergeometric functions, the interested reader may refer to [8-10, 12,
13, 15, 18].

Other hypergeometric functions of two variables are the following Horn’s
functions Gi1, G2, Gs, H1, He, H3, Hy, Hs, Hs and H; defined by (cf. [7],
(8], [11])

o m ,n

Gi(a,b,c;z,y) = m;zo(a)ern(b)n,m(c)m,n%%, (1.6)

Ga (a,b, ¢, ds,y) = mio(a)m(b)n(c)nm(d)mn%%, (L.7)

Gs (a, bz, y) = mio<a)2n_m<b)2m_n%%7 (1.8)

Hi (a,b,c;d;z,y) = m,i:j—o (a)m’"((j):*" (©n %% (1.9)

Hy (a,b,c,d; e;2,y) = mio (“)m‘”((be)fn (©n(d)n %W: ?TT (1.10)

H; (a,b;¢;2,y) = mi:;) W%% (1.11)

Hay(a,bc, dz,y) = mio %%% (1.12)

Hs (a,b; ¢;2,y) =m§;0%%%, (1.13)

He (a,b,c;x,y) = i (a)gm_n(b)n_m(c)n%yn—r:, (1.14)
R I 7l

Hr(a,b,¢;d;2,y) = mi::_() W%Z—T (1.15)
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Notes

In this paper, we aim to establish the further integral representation of
Euler type for Horn double hypergeometric functions G1, G2, Gs, H1, Ha,
H 5, H@ and H 7

I[I. MAIN RESULTS

Theorem 2.1. The following integral representations hold:

/ oo ,
Gl (av b7 Gz, Z/) = M/ ab71 (1 + a)i(lﬂrb ) H, <67 CL,b+ b/;b/; g’ oY ) dOéa
0

L)) (1+a)
(Re(b) > 0,Re(t)) >0), (1)
Db+ b)(c+c vt b1 b1 o1
G1(a,b,c;z,y) = 2b+b,+c+(c,,ZP()b)é(b,)ch)F(c,) /_1 g A+a) '1-a)" ' (1+8)

x(1—B) " Fy <a,c +c b+, ¢ +208(_1 ;)ﬂ) z a *208 (_1 Jﬁr)ﬂ) y

> dadf,

(Re(b) > 0, Re(b') > 0, Re(c) > 0, Re(c') > 0), (2)

61 (@b2.0) = et e [0 T S @) (S @) 0 - B)al
. (a—2|—b7 a+;)+1;1 Ol () (f’s—_aj)%); (o= R)’ ] y) dor

(Re(a) > 0,Re(b) > 0,R<S),  (3)
G (a,b, c; 3, y) = % /0  (sin?a)"} (cos?a) 4 (cos?a+ Msina) ™"
x [M — zcot’a — M*ytan®a] “ da,

(Re(b) > 0,Re(c) > 0,M > 0).  (4)

Proof. To prove the result in equality (1) asserted in Theorem 2.1, let U
denote the right-hand side of the equality (1). Then from the definition
of Horn’s function H; in (1.9), we obtain

_L0+) s @men(@minbt V)0 [ ot
0= INQINCY m;:() (V) m /0 (1+a)b+b’+nd : (5)

Employing the integral representation of the Beta function (see, e.g., [7,
p. 9, Eq. (2)])

B(a,b) = /OOO ujaﬁda, (Re(a) > 0, Re(b) > 0),

in (5), we have
CT(h+V)

()m=-n(@)min(0+V)nB(b+n—m,b +m) (6)
ERYONCS

(§] ) .

m,n=0

© 2020 Global Journals

Global Journal of Science Frontier Research (F) Volume XX Issue VI Version I E Year 2020



(F) Volume

Research

Frontier

Global Journal of Science

Now applying well known beta function (see, e.g., [16, Section 1.1])

[(a)I'(b)

Bla.b) = T rp)

in (6), we are led to the desired result. Then, the similar way we can
easily get (2)-(4).

The following theorem can be proved, like Theorem 2.1. So the details
are omitted.

Theorem 2.2. The following integral representations holds:

T'(a+b)I(c+)(d+d) / / / a—%
G2 (a,b,¢,ds2,y) = gatbretre +d+d =67 (q) T (b) (T (\D(AT(@) J_, J_, ), (1 +a)”

b—1

F+a?) T [ T -0 (14 67)

(c+c

x[(1 = )?] [(1+7)7) 2

% [(1 _7)2](1_% (1 +72)—(d+d/)

/ P, (1+0‘)2 (1+ﬁ)2 (1_7)29” (1_0‘)2 1 B) (1+’7)
X Fy <a+b,d+d,c+c,c,d,4(1+a2)(1_ﬂ)2(1+72),4(1+a2)( +52)(1—’Y) )d dpdy,
(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(c’) > 0, Re(d) > 0, Re(d’) > 0) , (7)
. T(a+b)I'(c+d) + b)I'( C+ d) b—1 / _a\¢© o\ atbtd—1
Gz (a,b,c,d;z,y) = ()T ()T (c / / (1—e?) (e '6) (l—e '6)
% |:(1 _ 6_’6) _emotB (1 — e_ﬁ)2 z—e P (1 — e_a) y:| Sl dadf3,
(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(d) > 0), (8)

T(a+ T(b+d) (S — T)* (R — T1)" " (S5 — Tp)" (Rp — To)*+eH
() (0L (QT(d)

G2 (aa b> C, d; T, y) =

X / / a — Rl a—1 (Sl _ a)b+0+d—1 (5 _ R2)b—1 (52 _ ﬂ)a+c+d—1

X[(R1 —T1) (S1 — a) (S2 — Ra) (B — T2) — (S1 — T1) (. — Ry) (Ra — T») (Sa — B) ]~ *FD

x[(S1 = Ru) (a = Ty) (Re — T2) (S2 — ) — (R1 = T1) (S1 — ) (S2 — T2) (B — Ra) 9]~ “* dadB,

(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(d) > 0), 9)
2MG+CF(C + d) o0 . .2 yatd— (c+d)
Gs (a,b,c,d;z,y) = —/ cosha (sinh”« 1+ Msinh*a
2 ( ) F(C)F(d) o ( ) ( )
x (Msinh>a — z) “(1- Mysz'nh%z)il7 do,
(Re(c) > 0, Re(d) > 0, M > 0). (10)
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Theorem 2.3. The following integral representations hold:

2M“T(a +a’)

G3 (a’? b,w,y) = F(a)F(a')

s
E _ ’
/ (sinza)afé (003204)“/7% (cosza + Msinza) (ata)
0

, . 1 9 M2ysin2atan2a
He <b,a+a 1—d; <1+M00t @) e+ Meinra )

Notes (Re(a) > 0,Re(a’) > 0,M > 0), (11)

Gg(a,b;m,y)_g((z)i}':(zll))/_; <%+a>a'—1 <%_O‘>G_1

|

x Hr <b, aJ;a ,a+a2 Jr1;a/; (;lltz;i)x,(l—Qa)Qy> da,
(Re(a) >0, Re(a’) > 0), (12)
a b / ,
Gs (a, by, y) = 2H20) 15(1;; I(a’ ;rru()?ﬂ o / / (1= )" (14 Mro)=(+)

_ r_ Y b+b b+b +1 41+ M2)? (1 — 2
Xﬁb 1(17/3)17 1(1+M2,3) (b+b)2F1< + + + 'G,/' ( + 2) ( a)/@ ZL')

27 2 T (1+M1)Q(1+M2ﬁ)2

’ / 2 2
o (a—|—a7a—|—a +1;b';4(1+M1) «@ (1_ﬂ2)y>dadﬂ,
2 2 (11 M) (1+ Mia)23

(Re(a) > 0,Re(a’) > 0, Re(b) > 0, Re(b') > 0, M1 > —1, My > —1), (13)

a+2b =
Gs (a,b;m,y) = Lhe P18 /2 (Sin2a)b’%(cos2a)a’%
0

I'(a)T'(b)
X [(1 + M) (1 + Msinza) -1+ M)3wsin2atan2a — ycosQacotQa] ~(at) da,
(Re(a) > 0, Re(b) > 0,M > —1), (14)

Theorem 2.4. The following integral representations hold:

.- — F(2d) s 2d—a—1 a—1
H; (a7 ba &) daxvy) - F(G)F(2d— a)(S — R)2d71 /R (a - R) ¢ (S - Oé)

1 o 4@-R)(S—a)z (a—R)y
Fl(b,d+§,c72d—av S—Rp ’(S—a))da’

(Re(a) > 0,Re(2d—a) >0,R<S), (15)

2I( a,—l—a,

Hi (a,b,c;d;z,y) = T @) / (sina)" " (cos’a)” "2

X Fo (b, a+d,cd d;zsin’a, ycotQa) da,

(Re(a) > 0, Re(a’) > 0), (16)
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I'(d)(S—-T)"(R—-T)*"

H, (a,b, (&4 de:y) = F(b)F(d — b)(S — R)dfafl

/ % (=R (S—a)' " (a—T)*
R

x[(S=R)(a—=T)—(S—T)(a— R)z]™*

b (e1ab il o S=D@ = R)(S— R)(@—T) (S~ T)(o— R)aly) .
oFi (e1ro-di-a (R T)(S - B(S —a)a 1) ) e

(Re(b) > 0,Re(d—b) >0,T < R < 8), (17)

(1+ M)*T°T'(a +b)

Hi(a,b,¢dsa,y) = ['(a)L'(b)

1
/ aa71 (1 _ Oc)b71 (1 + Ma)f(ajtb)
0

K[+ M)a— (1—a)y]~2F: <a—|—b a+b+1.d. 4(1+M)a(1—a)x> do,

) ) ) y &y (1 T Ma)2
(Re(a) > 0, Re(b) > 0,M > —1). (18)
Corollary 2.5. Let y =0 in (18). Then the following result holds true:

(1+M)°T'(a+0b)

2F1 (a,b;d; ) = T(@)T(b)

1
/ aail (1 _ Oﬁ)b71 (1 + Ma)f(a#»b)
0

o <a+b,a+b+1;d; 4(1+M)a(1—2a):c> do,
2 2 (1+ Ma)

(Re(a) > 0,Re(b) >0,M > —1). (19)

Theorem 2.6. The following integral representations hold:

o B (b + c)T'(2e) S1o S
H> (a,b, C,d,6,$7y) = F(a)F(b)F(c)F(Ze—a)(S1 _ Rl)b+c71(‘92 _ R2)2&71 /1;1 /1;2

X (Oé - Rl)b—l (Sl — a)C—l (B _ Rz)a_l (S2 _ /8)26—a—1

1 Ala—Ri)(B-Re)(S2 =Bz (S1—)(S2—B)y
><F1(b+c,e+§,d,26—a, G RS - )2 (5 —R1) (A— Fa)

) dadf3,

(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(2e —a) > 0,R1 < S1,R2 < S2), (20)

Ha(a,brc.die;m,y) = 22<e—1>F1;£L2)?(2e —a) /_1 [+ [0 -0y

—e 1 1—-a?\> [1+a)?
X(1+a2) Fy <b,c,e+§,d;2e—a;<1+32) x,<17§> y | da,

(Re(a) > 0, Re(2e — a) > 0), (21)

a 1
H: (a,b,c,d;e;z,y) = —(1 +1£\(43)1F((;)+ b) /0 a®t (1- a)b_l 1+ Ma)_(“+b)

x Hr (a+b,c,d;e; 1+ Mol —a)e (1+Ma)y>d ,

(1+ Ma)® " (14 M)a

(Re(a) > 0, Re(b) > 0,M > —1), (22)
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e—b z
H; (a,b,c,d;e;2,y) = I?(JZI?;_(% /02 (sin®a)®™"" é(cosﬁa)b*% (0032a + MsinQOz)aie

2 .2 2 —a :CCOSQOL
X [(cos a+ Msin a) — xcos a} oF1 | ¢e,d;1 — ay (cos?a + Msin?a) — 1]y | de,

(Re(b) > 0,Re(e —b) > 0,M > 0). (23)
q otes Theorem 2.7. The following integral representations hold:
I'(2¢) L _anb —an2e—b—1
H . . — «@ 1 _ «@
s(biny) = gppa—g [ ) (1)

x H3 <a,c+ %;20 —b(e* —1)z,4e @ (1 — eio‘) y) da,
(Re(b) > 0, Re(2¢ — b) > 0), (24)

r'(b+v) -
Hs (a,b;c;z,y) = I b’)/ 1—|—a) '1—a)!

X Hy (a,b—l—b/;b',c; (1—1—04)% (1_a)y> da,
l-« 2

(Re(b) > 0, Re(b') > 0), (25)

2M”‘F(C) &0 a—1 b—c

Hs (a,b;c;z,y) = m cosha (sz’nh2a) 2 (1 + Msinh2a)

X [(1 + MsinhQa) - MysinhQa] -

o F) 14+a-— c’ a—c L1 b _4M2xsinh4a [(1 + Mszinh2a) — Mysinhza] do,
2 2 (14 Msinh?a)
(Re(a) > 0, Re(c) > 0,M > 0), (26)
c—a oo a1 e
Hs (a,b;¢2,y) = I‘z(](\chF—(ca)) cosha (sinh®a)™ "2 (1 + MsinhQa)b
X [(1 + Msinh2a) — y]ib
l+a—ca—c 4z [(1 + Msinh®a) — Mysinh® o]
J o 11— b —
X2 ( 2 T2 b M2sinh*a (1 + Msinh2a) ) d,
(Re(a) > 0, Re(c) > 0,M > 0). (27)
Corollary 2.8. Let x =0 in (26). Then the following result holds true:
e _ 2MEF(C) e ) a*% . .2 \b—c
2F1 (a,b;¢;y) = T@T(c—a) cosha (smh a) (1 + Msinh a)
x [(1+ Msinh®a) — Mysinh®a] " da,
(Re(a) > 0, Re(c) > 0,M > 0). (28)
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Theorem 2.9. The following integral representations hold:

oobesn) = RO [ () (5-0)

1 b —1 1 b—1
. (5 ”) (5 ‘ﬁ)

4 4 —20)? 14 2a) (1-—45°
A a—|—c7b—|—b7a—|—c+17b+b +1;b’;(1 2a) (1—|—2B):1c’( +2a) (1-48%)y dads,
2 2 2 2 (1-2p) 1-2a)
N
S
N (Re(a) > 0, Re(b) > 0, Re(b') > 0, Re(c) > 0), (29)
[s~]
-
. _ F(a+al) o a—1 —(a+a’) / /. *(1256 -y
Hg(a,b,c,x,y)—m/o a” (14 a) G> a+a,c,b,1fa,(1+a),7 da,
% (Re(a) > 0, Re(a’) > 0), (30)
= . __ T@+b) ' 21t~ % 21b-3% 2\ —(b+b)
o Hﬁ(a,b»cw’y)—m[1 (1+a)7] ?[1-a)7] *(1+a")
1+a)® 1—a)®
> b e — _
o, XHﬁ(a,l b, c (1—a) x, <1+a) y)da,
2 (Re(b) > 0, Re(b') > 0), (31)
>
= A+ M) (14 M) T(a+ T(b + ) /% /% !
t/ Hs (a,b,c;z,y) = NORORGRG) ) (sin’a)
5
@ c—1 /1 -1 —(a+c
~ X (005204) 2 (sinZ,B)b 2 (cosZB)b 2 (1 +M15in2a) (o)
E x [(1 4 M1)(1 + Masin®B) — ycot®acos” ] —(b+E)
E 2 . 4 2
2 o <a—|—c7 a+c+ 1;b'; 41+ My)*(1 —&—Mz)m&g atan ﬂ) dod,
32 2 2 (1+ Misin?)
= (Re(a) > 0, Re(b) > 0, Re(b') > 0, Re(c) > 0, My > —1, M > —1).
5 (32)
; Theorem 2.10. The following integral representations hold:
© Ma+d)(S—-T)(R-T)" [°
. _ —_ - _pya—lig_ a’—1 _ —(a+a’)
17 (b cidsany) = et [ e Ry (5-0) T )
a+ad a+ad+1 2(S —T)(a—R)\> , (R=T)(S—a)y
. X2 1( P) i P) 7d7((S_R)(a_T) X |2l b,c,a, (S—T)(CM—R) da7
(Re(a) > 0,Re(a’) >0,T <R<S), (33)
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Hr(a,b,c;d;x,y) = % /000 (e_a)b (1- e_o‘)dibil

x Hg (a,1+bfd,c; (e =1)uz, a _yea)>da,

(Re(b) > 0, Re(d — b) > 0) (34)

. b b+1 —R\’?
X [(a—R)— (S—a)y|2F (“; R ;d;4(§_R) x>da,

(Re(a) > 0, Re(b) > 0,R < 8), (35)

1

, Fd
Hlata) /2 (sin®a)” "% (cos®a)®" %
0

H7 (aa b: £ d; Zz, y) = F(a)F(a’)

X Ha (1 —a',a+d,b,cd; 79360152(16082(1, fytanQOz) da,
(Re(a) > 0,Re(a’) > 0) . (36)

Corollary 2.11. Let y = 0 in (32). Then the following result holds true:

a a+l .\ _TDa+a)(S-—T)"R-T)* [° a1 -1
21 <§’T’d’4w> = TT(@T(@)(S — Ryero 1 /R (a=R)™(5~a)

_lata’ a+ad a+d +1 S —T)(a— R)\?
X (a=T) (at )2F1< 7 2 ;d;4<ES—R))EOé—T;> :IJ)dCY,

(Re(a) > 0,Re(a’) >0,T<R<S). (37)
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