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Integral representations of hypergeometric functions have found applica-
tions in divers fields such as mathematics, physics, statistics, and engi-
neering. Hasanov et al. [9] studied some of the properties of the Horn
type second-order double hypergeometric function H∗

2 involving integral
representations, differential equations, and generating functions. Choi et
al. [6] introduced certain integral representations for Srivastava’s triple
hypergeometric functions HA,HB and HC . Younis and Bin-Saad [19, 20]
establish several integral representations and operational relations involv-
ing quadruple hypergeometric functions X

(4)
i (i = 38, 40, 45, 48, 50). You-

nis and Nisar [21] introduce new integral representations of Euler-type
for Exton’s hypergeometric functions of four variables D1,D2,D3,D4 and
D5. Also, in [2-5], authors introduced many integral representations for
certain hypergeometric functions in four variables.

Let us recall the Gauss hypergeometric function 2F1 is defined as (see,
e.g., [14] and [16, Section 1.5])

2F1 (a, b; c; x) =
∞∑

m=0

(a)m(b)m
(c)m

xm

m!
, (|x| < 1), (1.1)
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where (a)m is the well known Pochhammer symbol given by (see, e.g., [16,
p. 2 and pp. 4-6])

(a)m =
Γ(a+m)

Γ(a)
=






1 (m = 0),

a(a+ 1)...(a+m− 1) (m ∈ N := {1, 2, ...}).

(1.2)

Euler’s integral representation of 2F1 is defined by (see, e.g., [14, p. 85]
and [16, p. 65])
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2F1 (a, b; c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

α
a−1 (1− α)c−a−1 (1− xα)−b dα,

(Re(a) > 0, Re(c− a) > 0) .

Appell hypergeometric functions of two variables F1, F2 and F3 are
respectively defined by (see [17, p. 53, Eq. (4) - (6)])

F1 (a, b, c; d;x, y) =

∞∑

m,n=0

(a)m+n(b)m(c)n
(d)m+n

xm

m!

yn

n!
, (1.3)

F2 (a, b, c; d, e;x, y) =

∞∑

m,n=0

(a)m+n(b)m(c)n
(d)m(e)n

xm

m!

yn

n!
(1.4)

and

F3 (a, b, c, d; e;x, y) =

∞∑

m,n=0

(a)m(b)n(c)m(d)n
(e)m+n

xm

m!

yn

n!
. (1.5)

Integral representations of Euler type for the functions F1, F2, F3 were
already given by Appell [1, Chap. III]. For various integral representations
of hypergeometric functions, the interested reader may refer to [8-10, 12,
13, 15, 18].

Other hypergeometric functions of two variables are the following Horn’s
functions G1, G2, G3,H1, H2,H3,H4,H5,H6 and H7 defined by (cf. [7],
[8], [11])

G1 (a, b, c;x, y) =

∞∑

m,n=0

(a)m+n(b)n−m(c)m−n
xm

m!

yn

n!
, (1.6)

G2 (a, b, c, d;x, y) =
∞∑

m,n=0

(a)m(b)n(c)n−m(d)m−n
xm

m!

yn

n!
, (1.7)

G3 (a, b;x, y) =

∞∑

m,n=0

(a)2n−m(b)2m−n
xm

m!

yn

n!
, (1.8)

H1 (a, b, c; d;x, y) =

∞∑

m,n=0

(a)m−n(b)m+n(c)n
(d)m

xm

m!

yn

n!
, (1.9)

H2 (a, b, c, d; e;x, y) =
∞∑

m,n=0

(a)m−n(b)m(c)n(d)n
(e)m

xm

m!

yn

n!
, (1.10)

H3 (a, b; c;x, y) =
∞∑

m,n=0

(a)2m+n(b)n
(c)m+n

xm

m!

yn

n!
, (1.11)

H4 (a, b; c, d;x, y) =
∞∑

m,n=0

(a)2m+n(b)n
(c)m(c)n

xm

m!

yn

n!
, (1.12)

H5 (a, b; c;x, y) =
∞∑

m,n=0

(a)2m+n(b)n−m
(c)n

xm

m!

yn

n!
, (1.13)

H6 (a, b, c; x, y) =
∞∑

m,n=0

(a)2m−n(b)n−m(c)n
xm

m!

yn

n!
, (1.14)

H7 (a, b, c; d;x, y) =
∞∑

m,n=0

(a)2m−n(b)n(c)n
(d)m

xm

m!

yn

n!
. (1.15)

7.
A

. E
rd

´e ly
i, W

. M
a
g
n
u
s, F

. O
b
erh

ettin
g
er an

d
 F

.G
. T

rico
m

i, 
H

igh
er

T
r an

scen
d
en

tal F
u
n
ction

s, V
o
l. 

I, 
M

c G
ra

w
-H

ill 
B

o
o
k
 

C
om

p
an

y
, N

ew
Y

ork
, T

oron
to an

d
 L

on
d
on

, 1953.

Ref



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this paper, we aim to establish the further integral representation of
Euler type for Horn double hypergeometric functions G1, G2, G3,H1,H2,

H5, H6 and H7

The following integral representations hold:

G1 (a, b, c;x, y) =
Γ(b+ b′)

Γ(b)Γ(b′)

∫
∞

0

α
b−1 (1 + α)−(b+b

′)
H1

(
c, a, b+ b

′; b′;
x

α
,

αy

(1 + α)

)
dα,

(
Re(b) > 0, Re(b′) > 0

)
, (1)

G1 (a, b, c;x, y) =
Γ(b+ b′)Γ(c+ c′)

2b+b′+c+c′−2Γ(b)Γ(b′)Γ(c)Γ(c′)

∫ 1

−1

∫ 1

−1

(1 + α)b
′
−1 (1− α)b−1 (1 + β)c

′
−1

×(1− β)c−1 F2

(
a, c+ c

′
, b+ b

′; b′, c′;
(1 + α) (1− β)x

2 (1− α)
,

(1− α) (1 + β) y

2 (1− β)

)
dαdβ,

(
Re(b) > 0, Re(b′) > 0, Re(c) > 0, Re(c′) > 0

)
, (2)

G1 (a, b, c;x, y) =
Γ(a+ b)

Γ(a)Γ(b)(S −R)a+b−1

∫ S

R

(α−R)a−1 (S − α)b+c−1 [(S − α)− (α−R)x]−c

×2F1

(
a+ b

2
,
a+ b+ 1

2
; 1− c;

−4
[
(α−R) (S − α)− (α−R)2 x

]
y

(S −R)2

)

dα,

(Re(a) > 0, Re(b) > 0, R < S) , (3)

G1 (a, b, c;x, y) =
2Ma+bΓ(b+ c)

Γ(b)Γ(c)

∫ π

2

0

(sin2α)b−
1

2 (cos2α)c−
1

2

(
cos

2
α+Msin

2
α
)−(b+c)

×
[
M − xcot2α−M2

ytan
2
α
]−a

dα,

(Re(b) > 0, Re(c) > 0,M > 0) . (4)

Proof. To prove the result in equality (1) asserted in Theorem 2.1, let ℧
denote the right-hand side of the equality (1). Then from the definition
of Horn’s function H1 in (1.9), we obtain

℧ =
Γ(b+ b′)

Γ(b)Γ(b′)

∞∑

m,n=0

(c)m−n(a)m+n(b+ b′)n
(b′)m

∫
∞

0

αb+n−m−1

(1 + α)b+b
′+n

dα. (5)

Employing the integral representation of the Beta function (see, e.g., [7,
p. 9, Eq. (2)])

B(a, b) =

∫
∞

0

αa−1

(1 + α)a+b
dα, (Re(a) > 0, Re(b) > 0) ,

in (5), we have

℧ =
Γ(b+ b′)

Γ(b)Γ(b′)

∞∑

m,n=0

(c)m−n(a)m+n(b+ b′)nB(b+ n−m, b′ +m)

(b′)m
. (6)

New Integrals for Horn Hypergeometric Functions in Two Variables

II. Main Results

Theorem 2.1.
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Now applying well known beta function (see, e.g., [16, Section 1.1])

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

in (6), we are led to the desired result. Then, the similar way we can
easily get (2)-(4).

New Integrals for Horn Hypergeometric Functions in Two Variables

The following theorem can be proved, like Theorem 2.1. So the details
are omitted.

The following integral representations holds:

G2 (a, b, c, d;x, y) =
Γ(a+ b)Γ(c+ c′)Γ(d+ d′)

2a+b+c+c′+d+d′−6Γ(a)Γ(b)Γ(c)Γ(c′)Γ(d)Γ(d′)

∫ 1

−1

∫ 1

−1

∫ 1

−1

[
(1 + α)2

]a− 1

2

×
[
(1− α)2

]b− 1

2
(
1 + α

2)−(a+b) [(1 + β)2
]c′− 1

2
[
(1− β)2

]c− 1

2
(
1 + β

2)−(c+c′) [(1 + γ)2
]d′− 1

2

×
[
(1− γ)2

]d− 1

2
(
1 + γ

2)−(d+d′)

×F2

(
a+ b, d+ d

′
, c+ c

′; c′, d′;
(1 + α)2 (1 + β)2 (1− γ)2x

4 (1 + α2) (1− β)2 (1 + γ2)
,

(1− α)2 (1− β)2 (1 + γ)2y

4 (1 + α2) (1 + β2) (1− γ)2

)
dαdβdγ,

(
Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(c′) > 0, Re(d) > 0, Re(d′) > 0

)
, (7)

G2 (a, b, c, d;x, y) =
Γ(a+ b)Γ(c+ d)

Γ(a)Γ(b)Γ(c)Γ(d)

∫
∞

0

∫
∞

0

(
e
−α
)a (

1− e−α
)b−1 (

e
−β
)c (

1− e−β
)a+b+d−1

×

[(
1− e−β

)
− e−α+β

(
1− e−β

)2
x− e−β

(
1− e−α

)
y

]
−(a+b)

dαdβ,

(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(d) > 0) , (8)

G2 (a, b, c, d;x, y) =
Γ(a+ c)Γ(b+ d) (S1 − T1)

a (R1 − T1)
b+c+d (S2 − T2)

b (R2 − T2)
a+c+d

Γ(a)Γ(b)Γ(c)Γ(d)

×

∫ S1

R1

∫ S2

R2

(α−R1)
a−1 (S1 − α)b+c+d−1 (β −R2)

b−1 (S2 − β)a+c+d−1

×[(R1 − T1) (S1 − α) (S2 −R2) (β − T2)− (S1 − T1) (α−R1) (R2 − T2) (S2 − β)x]−(b+d)

×[(S1 −R1) (α− T1) (R2 − T2) (S2 − β)− (R1 − T1) (S1 − α) (S2 − T2) (β −R2) y]
−(a+c)

dαdβ,

(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(d) > 0) , (9)

Theorem 2.2. 

G2 (a, b, c, d;x, y) =
2Ma+cΓ(c+ d)

Γ(c)Γ(d)

∫
∞

0

coshα
(
sinh

2
α
)a+d− 1

2
(
1 +Msinh

2
α
)−(c+d)

×
(
Msinh

2
α− x

)−a (
1−Mysinh2α

)−b
dα,

(Re(c) > 0, Re(d) > 0,M > 0) . (10)

© 2020 Global Journals
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The following integral representations hold:

G3 (a, b; x, y) =
2MaΓ(a+ a′)

Γ(a)Γ(a′)

∫ π

2

0

(sin2α)a−
1

2 (cos2α)a
′
−
1

2

(
cos

2
α+Msin

2
α
)−(a+a′)

×H6

(
b, a+ a

′
, 1− a′;

(
1 +

1

M
cot

2
α

)
x,−

M2ysin2αtan2α

cos2α+Msin2α

)
dα,

(
Re(a) > 0, Re(a′) > 0,M > 0

)
, (11)

G3 (a, b; x, y) =
Γ(a+ a′)

Γ(a)Γ(a′)

∫ 1

2

−
1

2

(
1

2
+ α

)a′−1(
1

2
− α

)a−1

×H7

(
b,
a+ a′

2
,
a+ a′ + 1

2
; a′;

(1 + 2α)x

(1− 2α)
, (1− 2α)2 y

)
dα,

(
Re(a) > 0, Re(a′) > 0

)
, (12)

New Integrals for Horn Hypergeometric Functions in Two Variables

Theorem 2.3. 

G3 (a, b; x, y) =
(1 +M1)

a(1 +M2)
bΓ(a+ a′)Γ(b+ b′)

Γ(a)Γ(a′)Γ(b)Γ(b′)

∫ 1

0

∫ 1

0

α
a−1 (1− α)a

′
−1 (1 +M1α)−(a+a

′)

×βb−1 (1− β)b
′
−1 (1 +M2β)−(b+b

′)
2F1

(
b+ b′

2
,
b+ b′ + 1

2
; a′;

4(1 +M2)
2 (1− α)β2x

(1 +M1)α (1 +M2β)2

)

× 2F1

(
a+ a′

2
,
a+ a′ + 1

2
; b′;

4(1 +M1)
2α2 (1− β) y

(1 +M2) (1 +M1α)2 β

)
dαdβ,

(
Re(a) > 0, Re(a′) > 0, Re(b) > 0, Re(b′) > 0,M1 > −1,M2 > −1

)
, (13)

G3 (a, b; x, y) =
2(1 +M)a+2bΓ(a+ b)

Γ(a)Γ(b)

∫ π

2

0

(sin2α)b−
1

2 (cos2α)a−
1

2

×
[
(1 +M)

(
1 +Msin

2
α
)
− (1 +M)3xsin2αtan2α− ycos2αcot2α

]−(a+b)
dα,

(Re(a) > 0, Re(b) > 0,M > −1) , (14)

The following integral representations hold:

H1 (a, b, c; d;x, y) =
Γ(2d)

Γ(a)Γ(2d− a)(S −R)2d−1

∫ S

R

(α−R)2d−a−1 (S − α)a−1

× F1

(
b, d+

1

2
, c; 2d− a;

4 (α−R) (S − α)x

(S −R)2
,

(α−R) y

(S − α)

)
dα,

(Re(a) > 0, Re(2d− a) > 0, R < S) , (15)

H1 (a, b, c; d;x, y) =
2Γ(a+ a′)

Γ(a)Γ(a′)

∫ π

2

0

(sin2α)a−
1

2 (cos2α)a
′
−
1

2

× F2
(
b, a+ a

′
, c; d, a′;xsin2α, ycot2α

)
dα,

(
Re(a) > 0, Re(a′) > 0

)
, (16)

Theorem 2.4. 
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H1 (a, b, c; d;x, y) =
Γ(d)(S − T )b(R− T )d−b

Γ(b)Γ(d− b)(S −R)d−a−1

∫ S

R

(α−R)b−1(S−α)d−b−1(α−T )a−d

× [(S −R)(α− T )− (S − T )(α−R)x]−a

×2F1

(
c, 1 + b− d; 1− a;

(S − T )(α−R) [(S −R)(α− T )− (S − T )(α−R)x] y

(R− T )(S −R)(S − α)(α− T )

)
dα,

(Re(b) > 0, Re(d− b) > 0, T < R < S) , (17)

H1 (a, b, c; d;x, y) =
(1 +M)a+cΓ(a+ b)

Γ(a)Γ(b)

∫ 1

0

α
a−1 (1− α)b−1 (1 +Mα)−(a+b)

×[(1 +M)α− (1− α) y]−c 2F1

(
a+ b

2
,
a+ b+ 1

2
; d;

4(1 +M)α (1− α)x

(1 +Mα)2

)
dα,

(Re(a) > 0, Re(b) > 0,M > −1) . (18)

Let y = 0 in (18). Then the following result holds true:

2F1 (a, b; d;x) =
(1 +M)aΓ(a+ b)

Γ(a)Γ(b)

∫ 1

0

α
a−1 (1− α)b−1 (1 +Mα)−(a+b)

× 2F1

(
a+ b

2
,
a+ b+ 1

2
; d;

4(1 +M)α (1− α)x

(1 +Mα)2

)
dα,

(Re(a) > 0, Re(b) > 0,M > −1) . (19)

New Integrals for Horn Hypergeometric Functions in Two Variables

Corollary 2.5.

The following integral representations hold:

H2 (a, b, c, d; e;x, y) =
Γ(b+ c)Γ(2e)

Γ(a)Γ(b)Γ(c)Γ(2e− a)(S1 −R1)b+c−1(S2 −R2)2e−1

∫ S1

R1

∫ S2

R2

× (α−R1)
b−1 (S1 − α)c−1 (β −R2)

a−1 (S2 − β)2e−a−1

×F1

(
b+ c, e+

1

2
, d; 2e− a;

4 (α−R1) (β −R2) (S2 − β)x

(S1 −R1)(S2 −R2)2
,

(S1 − α) (S2 − β) y

(S1 −R1) (β −R2)

)
dαdβ,

(Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(2e− a) > 0, R1 < S1, R2 < S2) , (20)

H2 (a, b, c, d; e;x, y) =
Γ(2e)

22(e−1)Γ(a)Γ(2e− a)

∫ 1

−1

[
(1 + α)2

]2e−a− 1

2
[
(1− α)2

]a− 1

2

×
(
1 + α

2)−e
F3

(

b, c, e+
1

2
, d; 2e− a;

(
1− α2

1 + α2

)2
x,

(
1 + α

1− α

)2
y

)

dα,

(Re(a) > 0, Re(2e− a) > 0) , (21)

Theorem 2.6. 

H2 (a, b, c, d; e;x, y) =
(1 +M)aΓ(a+ b)

Γ(a)Γ(b)

∫ 1

0

α
a−1 (1− α)b−1 (1 +Mα)−(a+b)

×H7

(
a+ b, c, d; e;

(1 +M)α (1− α)x

(1 +Mα)2
,

(1 +Mα) y

(1 +M)α

)
dα,

(Re(a) > 0, Re(b) > 0,M > −1) , (22)
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H2 (a, b, c, d; e;x, y) =
2Me−bΓ(e)

Γ(b)Γ(e− b)

∫ π

2

0

(sin2α)e−b−
1

2 (cos2α)b−
1

2

(
cos

2
α+Msin

2
α
)a−e

×
[(
cos

2
α+Msin

2
α
)
− xcos2α

]−a
2F1

(
c, d; 1− a;

[
xcos2α

(cos2α+Msin2α)
− 1

]
y

)
dα,

(Re(b) > 0, Re(e− b) > 0,M > 0) . (23)

The following integral representations hold:

H5 (a, b; c;x, y) =
Γ(2c)

Γ(b)Γ(2c− b)

∫
∞

0

(
e
−α
)b (

1− e−α
)2c−b−1

×H3

(
a, c+

1

2
; 2c− b; (eα − 1)x, 4e−α

(
1− e−α

)
y

)
dα,

(Re(b) > 0, Re(2c− b) > 0) , (24)

H5 (a, b; c;x, y) =
Γ(b+ b′)

2b+b′−1Γ(b)Γ(b′)

∫ 1

−1

(1 + α)b
′
−1 (1− α)b−1

×H4

(
a, b+ b

′; b′, c;

(
1 + α

1− α

)
x,

(1− α)

2
y

)
dα,

(
Re(b) > 0, Re(b′) > 0

)
, (25)

H5 (a, b; c;x, y) =
2MaΓ(c)

Γ(a)Γ(c− a)

∫
∞

0

coshα
(
sinh

2
α
)a− 1

2
(
1 +Msinh

2
α
)b−c

×
[(

1 +Msinh
2
α
)
−Mysinh2α

]−b

×2F1

(
1 + a− c

2
,
a− c

2
+ 1; 1− b;−

4M2xsinh4α
[(

1 +Msinh2α
)
−Mysinh2α

]

(1 +Msinh2α)

)

dα,

(Re(a) > 0, Re(c) > 0,M > 0) , (26)

New Integrals for Horn Hypergeometric Functions in Two Variables

Theorem 2.7. 

H5 (a, b; c;x, y) =
2M c−aΓ(c)

Γ(a)Γ(c− a)

∫
∞

0

coshα
(
sinh

2
α
)c−a− 1

2
(
1 +Msinh

2
α
)b−c

×
[(

1 +Msinh
2
α
)
− y

]−b

×2F1

(
1 + a− c

2
,
a− c

2
+ 1; 1− b;−

4x
[(

1 +Msinh2α
)
−Mysinh2α

]

M2sinh4α (1 +Msinh2α)

)
dα,

(Re(a) > 0, Re(c) > 0,M > 0) . (27)

Let x = 0 in (26). Then the following result holds true:Corollary 2.8.

2F1 (a, b; c; y) =
2MaΓ(c)

Γ(a)Γ(c− a)

∫
∞

0

coshα
(
sinh

2
α
)a− 1

2

(
1 +Msinh

2
α
)b−c

×
[(

1 +Msinh
2
α
)
−Mysinh2α

]−b
dα,

(Re(a) > 0, Re(c) > 0,M > 0) . (28)
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The following integral representations hold:

H6 (a, b, c;x, y) =
Γ(a+ c)Γ(b+ b′)

Γ(a)Γ(b)Γ(b′)Γ(c)

∫ 1

2

−
1

2

∫ 1

2

−
1

2

(
1

2
+ α

)c−1(
1

2
− α

)a−1

×

(
1

2
+ β

)b′−1(
1

2
− β

)b−1

F3

(
a+ c

2
,
b+ b′

2
,
a+ c+ 1

2
,
b+ b′ + 1

2
; b′;

(1− 2α)2 (1 + 2β)x

(1− 2β)
,

(1 + 2α)
(
1− 4β2

)
y

(1− 2α)

)

dαdβ,

(
Re(a) > 0, Re(b) > 0, Re(b′) > 0, Re(c) > 0

)
, (29)

H6 (a, b, c;x, y) =
Γ(a+ a′)

Γ(a)Γ(a′)

∫
∞

0

α
a−1 (1 + α)−(a+a

′)
G2

(
a+ a

′
, c, b, 1− a′;

−α2x

(1 + α)
,
−y

α

)
dα,

(
Re(a) > 0, Re(a′) > 0

)
, (30)

H6 (a, b, c;x, y) =
Γ(b+ b′)

2b+b′−2Γ(b)Γ(b′)

∫ 1

−1

[
(1 + α)2

]b′− 1

2
[
(1− α)2

]b− 1

2
(
1 + α

2)−(b+b′)

×H6

(

a, 1− b′, c;−

(
1 + α

1− α

)2
x,−

(
1− α

1 + α

)2
y

)

dα,

(
Re(b) > 0, Re(b′) > 0

)
, (31)

H6 (a, b, c;x, y) =
4(1 +M1)

a+b+b′(1 +M2)
b′Γ(a+ c)Γ(b+ b′)

Γ(a)Γ(b)Γ(b′)Γ(c)

∫ π

2

0

∫ π

2

0

(
sin

2
α
)a− 1

2

×
(
cos

2
α
)c− 1

2
(
sin

2
β
)b′− 1

2
(
cos

2
β
)b− 1

2
(
1 +M1sin

2
α
)−(a+c)

×
[
(1 +M1)(1 +M2sin

2
β)− ycot2αcos2β

]−(b+b′)

New Integrals for Horn Hypergeometric Functions in Two Variables

Theorem 2.9. 

The following integral representations hold:

H7 (a, b, c; d;x, y) =
Γ(a+ a′)(S − T )a(R− T )a

′

Γ(a)Γ(a′)(S −R)a+a′−1

∫ S

R

(α−R)a−1(S−α)a
′
−1(α−T )−(a+a

′)

×2F1

(
a+ a′

2
,
a+ a′ + 1

2
; d;

(
2(S − T )(α−R)

(S −R)(α− T )

)2
x

)

2F1

(
b, c; a′;

(R− T )(S − α)y

(S − T )(α−R)

)
dα,

× 2F1

(
a+ c

2
,
a+ c+ 1

2
; b′;

4(1 +M1)
2(1 +M2)xsin

4αtan2β

(1 +M1sin2α)2

)
dαdβ,

(
Re(a) > 0, Re(b) > 0, Re(b′) > 0, Re(c) > 0,M1 > −1,M2 > −1

)
.

(32)

Theorem 2.10. 

(
Re(a) > 0, Re(a′) > 0, T < R < S

)
, (33)

© 2020 Global Journals

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

20

30

  
 

( F
)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

H7 (a, b, c; d;x, y) =
Γ(d)

Γ(b)Γ(d− b)

∫
∞

0

(
e
−α
)b (

1− e−α
)d−b−1

×H6

(
a, 1 + b− d, c;

(
e
−α − 1

)
x,

y

(1− eα)

)
dα,

(Re(b) > 0, Re(d− b) > 0) , (34)

H7 (a, b, c; d;x, y) =
Γ(a+ b)

Γ(a)Γ(b)(S −R)a+b−1

∫ S

R

(α−R)a+c−1 (S − α)b−1

× [(α−R)− (S − α) y]−c 2F1

(
a+ b

2
,
a+ b+ 1

2
; d; 4

(
α−R

S −R

)2
x

)

dα,

(Re(a) > 0, Re(b) > 0, R < S) , (35)

H7 (a, b, c; d;x, y) =
2Γ(a+ a′)

Γ(a)Γ(a′)

∫ π

2

0

(sin2α)a
′
−
1

2 (cos2α)a−
1

2

×H2

(
1− a′, a+ a

′
, b, c; d;−xcot2αcos2α,−ytan2α

)
dα,

(
Re(a) > 0, Re(a′) > 0

)
. (36)

Let y = 0 in (32). Then the following result holds true:

2F1

(
a

2
,
a+ 1

2
; d; 4x

)
=

Γ(a+ a′)(S − T )a(R− T )a
′

Γ(a)Γ(a′)(S −R)a+a′−1

∫ S

R

(α−R)a−1(S−α)a
′
−1

× (α−T )−(a+a
′)
2F1

(
a+ a′

2
,
a+ a′ + 1

2
; d; 4

(
(S − T )(α−R)

(S −R)(α− T )

)2
x

)

dα,

(
Re(a) > 0, Re(a′) > 0, T < R < S

)
. (37)

Corollary 2.11.

New Integrals for Horn Hypergeometric Functions in Two Variables
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