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Abstract- This paper revisits the real symmetrizer equation in the literature to transform it into a 
reduced symmetrizer equation. This reduction can be accomplished by decomposing the 
symmetrizer of the equation. The reduced equation has a diagonal matrix as its symmetrizer and 
can be further decomposed into more such equations. These reduced equations are coexisting 
and synchronized with the original symmetrizer equation. Associated results concerning the 
reduced symmetrizer equation are introduced. A numerical algorithm for symmetrizer 
computation is developed based on these results. Typical symmetrizer problems in the literature 
are solved using the algorithm and the results are presented. 
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F.G Frobenius [6] introduced symmetric factorization of matrices in 1910.

Frobenius finding was that any given matrix A ∈ Rn×n can be factorized as

A = S1S2;S1 = ST
1 , S2 = ST

2 ;S1, S2 ∈ Rn×n. Frobenius also stated that one

among S1, S2 or both can be nonsingular. Thus Frobenius hints that there can

be left and right symmetrizers for A. Here for convenience, we choose S1 as

nonsingular. Accordingly there exists a matrix B = S−1 so that BA = S2 is

symmetric. The nonsingular symmetric matrix B is called a symmetrizer of

A [1,3,4,6,21]. In the same year, J. Marty [15] introduced symmetrization of

linear integral operators. They were the pioneers who worked in the area of

symmetrizing matrices. Their work remained dormant for quite some decades

till 1950s. Towards the end of 1950s, matrix symmetrization again drew the

attention of many researchers. Notably among them, Professor J.L Howland

[8] and his team of researchers, E.J Desautels [3], F.J. Farrel [9] and other

mathematicians, Olga Taussky and Hans Zassenhaus [22], Marcus and Khan [14]

actively pursued this work of symmetrizing A. Marcus and Khan [14] studied

in a detailed way, a more general equation XA = ATX where X need not

be symmetric and discussed its complete solution. These studies contributed to

strengthening many theoretical aspects of symmetrizers. It is reported in Dopico
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Reduced Symmetrizer Equation

abandoned mid-way. An account of those failed attempts is presented in Uhlig

[24]. It was Olga Taussky and Hans Zassenhaus [22] who gave a new definition

for the Frobenius equation as BA = ATB, or the similarity transformation

BAB−1 = AT . Later Taussky [21] independently developed the necessary and

sufficient conditions and associated theories for A to be symmetrized and the

role of symmetrizer B in the study of A. Due to these contributions, Frobenius

equation became known as Taussky’s Symmetrizer Equation. Sen and Venkaiah

[23] proposed a solution to similarity symmetrization in the context of solving

asymmetric control system problems. It is reported in [4] that method proposed

in [23] can be used for low dimensional matrices A.

Adhikari’s [1] work in year 2000 states that symmetrizing associated asym-

metric matrices of linear systems will be convenient. We can then extend the

application of established analytical tools for symmetric systems to such cases

also. Illustrative examples solving dynamic linear systems in this manner are

presented in [1]. What Adhikari [1] introduced is termed as equivalence sym-

metrization. In line with Adhikari, C.Q. Liu [11] introduced an alternative

equivalence symmetrization method. Liu also worked on Adhikari’s same illus-

trative examples in [1] for highlighting its easiness and effectiveness.

It is reported in [4] that first successful numerical computation of a sym-

metrizer was in 2013 by Frank Uhlig [24,25] based on an iterative linear equa-

tion solver of Huang and Nong[10]. Recently in 2016, Froilan Dopico and Frank

Uhlig [4] successfully came out with more methods of computing symmetrizers

using eigen data and linear equations solver.

The motivation behind [1] was that equivalence transformations are the most

general class of nonsingular linear transformations achieving more generality

and convenience. We here attempt to transform BA = ATB,A,B ∈ Rn×n, B =

BT , det(B(1 : k, 1 : k)) 6= 0, k = 1 : n, det(A) 6= 0 into a reduced symmetrizer

equation as DM = MTD;D,M ∈ Rn×n, where M is similar to A and D is a

non singular diagonal matrix. Parter and Youngs [17] considered this topic of

symmetrizing A by a diagonal matrix D ∈ Rn×n. Their work was to derive the

necessary and sufficient conditions on the existence of D symmetrizing A based

on probabilistic rules called conservation and reversibility laws. It was based

on George Pimbley’s [19] initial value problem for the multi-group transport

equation. Pimbley addressed the condition on a non-negative A ∈ Rn×n that

leads to the existence of a positive diagonal matrix D ∈ Rn×n such that DAD−1

is a nonnegative symmetric matrix.

The advantages and specialties of reduced symmetrizer equation are high-

lighted. Frobenius equation [6] is extended to this reduced symmetrizer equation

to decompose it into more such reduced equations. Based on this, we prove that

nonderogatory M can be expressed as a linear sum of n2 linearly independent

matrices having diagonal matrix symmetrizers. A numerical algorithm is devel-

oped based on these results for computing a symmetrizer of A. This is applied

and Uhlig [4] that several attempts by many researchers to compute numerically

a symmetrizer during 1960s to early half of 1970s landed into instability and were
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for symmetrizing those coefficient matrices of undamped and damped dynam-

ical systems from Adhikari [1]. We also discuss how Frobenius and Taussky’s

equations are linked to each other.

Taussky and Zassenhaus [22] and Taussky [21] introduced the conditions

of symmetrizability of an asymmetric matrix. According to that, for every

A ∈ Rn×n there is a nonsingular symmetric matrix S ∈ Rn×n transforming it

into AT . The conditions are :

i) A is the product of two symmetric matrices, one of which is positive definite.

ii) A is similar to a symmetric matrix.

iii)AT = S−1AS with S = ST � 0.

iv) A has real characteristic roots and a full set of characteristic vectors.

Taussky’s similarity symmetrization of A and conditions are also discussed

in [1,11]. Symmetrization of A can also be achieved by other type of trans-

formations such as equivalent [1], (A + AT )/2, AAT , ATA, elementary symm-

metrization [20] etc. Adhikari [1] classified the similarity transformation based

symmetrization as first kind. He introduced the equivalence transformation

based symmetrization and termed it as second kind. This second kind of sym-

metrization is defined as follows:

v) A matrix A is symmetrizable of the second kind if and only if there exist two

nonsingular matrices L,R such that Ã = LTAR is symmetric.

This is a more general classification. It includes the first kind as a special

case, LT = R−1 = R−T . Let A ∈ Rn×n be nonsingular as well as all its

leading principal submatrices, A(1 : k, 1 : k), k = 1 : n− 1. Recalling from [7],

consider elementary reduction, LTAR = D, L,R = U,D ∈ Rn×n, L,U are unit

upper triangular matrices and D is a nonsingular diagonal matrix. Thus it is

of the second kind. In a reverse way, this second kind symmetrization can be

expressed in terms of diagonalization of A as well. We have LTAU = D. Let

B = LLT . Then B is symmetric positive definite and nonsingular. Consider

the nonsingular matrices S1, S2 ∈ Rn×n given by S1 = LB and S2 = UB.

Ã = ST
1 AS2 (1)

Same B = LLT applied in (1) may be used for simultaneously symmetrizing

other coefficient matrices of a given linear system. Now from the definition of a

symmetrizer in Frobenious [6], Taussky [21] and Desautels [3], we shall transform

the symmetrizer equation using elementary reduction of its symmetrizer.

Let A ∈ Rn×n be nonsingular. Let it be a symmetrizable matrix as discussed

in [1,6,20]. Let B = BT ∈ Rn×n, det(B(1 : k, 1 : k)) 6= 0, k = 1 : n be a

symmetrizer of A. Recalling from [7], we can decompose B as LBLT = D

applying Gauss Elimination (GE) and is unique. Matrices D,L ∈ Rn×n. Here

L is a unit lower triangular matrix and D is a nonsingular diagonal matrix.

Reduced Symmetrizer Equation

II. Reduced Symmetrizer Equation
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We may note that LBLT = D will be stable if B is positive definite by the

Cholesky theorem [7]. Recalling from Desautels [3], if A is nonderogatory, B

will be diagonalizable as it is congruent to diagonal matrix of eigen values of A.

Also recall from [7] that if B is column diagonally dominant, we may be able to

apply GE without pivoting. If B is symmetric positive definte or semidefinite

and ill-conditioned, referring to [7], we may apply permutation matrices for

symmetric pivoting and diagonal dominance so that L(PBPT )LT = D. Here P

is an appropriate permutation matrix and D = diag(d1, d2, ..., dn), di ≥ di+1, i =

1 : n− 1.

BA = ATB. (2)

Consider LBLT = D. We shall rewrite (2) as

L−1DL−TA = ATL−1DL−T . (3)

Let M = L−TALT . Then equation (3) can be represented as

DM = MTD. (4)

Given a symmetrizer B ∈ Rn×n, det(B(1 : k, 1 : k)), k = 1 : n 6= 0

of A ∈ Rn×n, the symmetrizer equation BA = ATB can be transformed into

DM = MTD by decomposing B as LBLT = D, L is unit lower triangular, D

is diagonal and M = L−TALT .

The proof follows from (2), (3) and (4). Uniqueness of matrices L,D

as a pair follows as the decomposition LBLT = D is unique [7].

We see that M is similar to A and D is congruent to B. From (4) it becomes

clear that the symmetrizer B should be nonsingular. Frobenius [6] states that

in A = S1S2, S
T
1 = S1, S

T
2 = S2, either S1 or S2 can be nonsingular so that A

can have a left or right symmetrizer. In (2), we consider the case B = S1 as

nonsingular for convenience. Equations (3) and (4) prove that symmetrizing A

by B is synchronized with symmetrizing M by D. This leads us to,

Consider B = BT ∈ Rn×n, det(B(1 : k, 1 : k)), k = 1 : n 6= 0. Let

LBLT = D, L is unit lower triangular and D diagonal. Then B symmetrizes

A ∈ Rn×n iff D symmetrizes M = L−TALT .

We have

DM = MTD ⇔DL−TALT = LATL−1D

⇔L−1DL−TA = ATL−1DL−T

⇔BA = ATB

(5)

Thus (5) is a necessary and sufficient condition for similarity symmetry.

Reduced Symmetrizer Equation

Lemma 1. 

Proof. 

Proof. 

Lemma 2. 
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Let BA = ATB,A,B = BT ∈ Rn×n, det(B(1 : k, 1 : k)), k =

1 : n 6= 0 so that LBLT = D, L is unit lower triangular and D is diagonal.

Consider M = L−TALT = (mij); i, j = 1 : n where mij ,mji 6= 0, j = 1 : n. Let

Di = diag(x1, x2, ..., xn), xi 6= 0, i = 1 : n such that ximij = xjmji, j = 1 : n.

Then Di is a symmetrizer of M and Bi = L−1DiL
−T is a symmetrizer of A.

Let D = diag(d1, d2, ..., dn). Since column-i and row-i of M are without

zeros and from the hypothesis and by Lemma 2, we have

ximij = xjmji, dimij = djmji, j = 1 : n. (6)

From (6), we get

xi/xj = di/dj , j = 1 : n⇒ dj = xjdi/xi, j = 1 : n.

⇒ xj = ximij/mji, j = 1 : n. (7)

Consider any other row-k, column-k of DM . Applying dj , j = 1 : n of (7)

dkmkj = djmjk ⇒ dk/dj = mjk/mkj ; j = 1 : n

⇒xk/xj = mjk/mkj ⇒ xkmkj = xjmjk, j = 1 : n, k = 1 : n.
(8)

From (8), Di symmetrizes M,det(Di) 6= 0. So Di is a symmetrizer of M . Hence

by Lemma 2, Bi = L−1DiL
−T is a symmetrizer of A.

If M in Lemma 3 has at least one row-i, column-i of non-zero

entries, then it has a diagonal matrix symmetrizer Di as derived in (7). This

diagonal matrix symmetrizer Di of M is embedded in M itself.

As diagonal matrix Di can be derived from (7) using arbitrary

scalar x = xi 6= 0, infinitely many symmetrizers of A exist against LBLT = D.

This result can be used to test the symmetrizability of a given

matrix M by a diagonal matrix Di as well as to derive Di using (7). Coupled

with Lemma 2, it can also be used to test the symmetrizability of A by B.

Let B = BT ∈ Rn×n, det(B(1 : k, 1 : k)), k = 1 : n 6= 0, LBLT = D,

be a symmetrizer of A ∈ Rn×n, L unit lower triangular and D diagonal. If

M = L−TALT has a column-i and row-i are without zeros, and D1, D2 ∈ Rn×n

are its two diagonal matrix symmetrizers, then they are linearly dependent.

Let D1 = diag(x1, x2, ...., xn), D2 = diag(y1, y2, ..., yn). Then we have

xj = ximij/mji; yj = yimij/mji; j = 1, 2, ..., n (9)

From (9), it follows that D1 = (xi/yi)D2, (xi/yi) 6= 0. Hence the result.

If M is without zero entries, then the n symmetrizers Di of M

derived from column-i, row-i; i = 1 : n using (7) will be linearly dependent.

Reduced Symmetrizer Equation

Lemma 3. 

Proof. 

Corollary 3.1. 

Corollary 3.2. 

Remark 3.1.

Lemma 4. 

Proof. 

Corollary 4.1. 

Notes
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Let A ∈ Rn×n and Bi ∈ Rn×n = L−1DiL
−T , i = 1 : n are n

diagonalizable symmetrizers of A where L is a unit lower triangular matrix and

Di, i = 1 : n are diagonal matrices. Then Bi, i = 1 : n are linearly dependent.

Proof. Let M = L−TALT . By Lemma 2, Di are symmetrizers of M . So by

Lemma 4, they are linearly dependent and hence Bi, i = 1 : n are so.

Let A,B = BT ∈ Rn×n. Let B be diagonalizable symmetrizer

of A so that B = L−1DL−T and BA = ATB, L a unit lower triangular matrix

and D a nonsingular diagonal matrix. Let D =
∑n

i=1 αiDi where Di, i = 1 : n

constitute a basis of subspace of all diagonal matrices of Rn×n. Consider B =∑n
i=1 αiBi where Bi = L−1DiL

−T , i = 1 : n. Then Bi, Di, i = 1 : n are not

symmetrizers of A and M = L−TALT respectively.

From Corollary 4.3, we see that in several occasions of handling

Bi, i = 1 : n, we may miss L but if we use Lemma 3, this will not happen.

Reduced equation DM = MTD is more convenient to handle

than BA = ATB and from equation (5), these are inter-dependent. As the

decomposition LBLT = D is unique in Lemma 4, M = L−TALT has only one

linearly independent diagonal matrix symmetrizer D. If M1,M2 ∈ Rn×n are

linearly dependent, so do their diagonal matrix symmetrizers, say, D1, D2.

We shall extend the Frobenius equation [6] as applicable to diagonal matrix

symmetrizers. We have for D,Z ∈ Rn×n, DZD is always symmetric where D

is a nonsingular diagonal matrix and Z is any symmetric matrix.

A nonsingular diagonal matrix D ∈ Rn×n will be a symmetrizer of

M ∈ Rn×n iff there exists a matrix Z = ZT ∈ Rn×n such that M = ZD.

Suppose D is a symmetrizer of M . Then we have

DM = MTD ⇔MD−1 = D−1MT ⇔M = D−1MTD. (10)

In (10), let Z = D−1MT and the result follows. Then Z will be nonsingular if

and only if M is so. In M , if r columns are dependent then in Z, so much rows

will be dependent. Conversely, if there is a matrix Z;Z = ZT such that

M = ZD ⇔ DM = DZD (11)

Thus from (11), it is confirmed that D is a symmetrizer of M .

As DM = MTD ⇔M = ZD, let M = (mij), Z = (zij); i, j =

1 : n, then mij = mji = 0 iff zij = zji = 0; i, j = 1 : n.

Reduced Symmetrizer Equation

If A,B = BT ∈ Rn×n, then B will be a symmetrizer of A iff

there exists a matrix S = ST ∈ Rn×n such that A = SB.

By Corollary 5.1, in Z,M ∈ Rn×n, zeros can be only in identical,

symmetric positions (i, j), (j, i), 1 ≤ i, j ≤ n. This result is stochastically termed

Corollary 4.2. 

Corollary 4.3. 

Remark 4.1.

Remark 4.2.

Lemma 5. 

Proof. 

Corollary 5.1. 

Corollary 5.2. 

Remark 5.1
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Consider Z = D−1MT = MD−1 in (10). Accounting both the

terms, we may assume Z = (D−1MT +MD−1)/2.

Adapting the expression of Z in Remark 5.2 into Frobenius equa-

tion [6] and treating S2 = B as nonsingular, we have S1 = (B−1AT +AB−1)/2.

The singularity of S1 is depending on the singularity of A. Then we have

A = S1B, BA = BS1B = ATB. The symmetrizer B has an independent exis-

tence and S1 is dependent on A,AT and B. This is how the Frobenius equation

[6] is extended and how the Taussky’s and Frobenius equations are linked.

We may see how Pimbley’s [19] condition is true for non-negative

M , D > 0, DMD−1 = DZ is non-negative and symmetric. From (11), Pimb-

ley’s equation [19] can be true if Z is a non-negative diagonal matrix.

From (11), it follows that if Z is nonsingular, then Z−1, Z are

symmetrizers ofM,MT respectively. From Desautels [3], the set of symmetrizers

of M is a linear subspace of Rn×n of dimension n.

Consider the set of those matrices M , symmetrized by D and may be denoted

as D(M). We see that cardinality of largest possible set of linearly independent

symmetric matrices Zi; i = 1, 2, ... ∈ Rn×n which can be applied in M = ZD of

(11) is n(n + 1)/2. Hence D will be a symmetrizer of matrices Mi = ZiD, i =

1 : n(n + 1)/2 ∈ Rn×n, which are linearly independent. If D symmetrizes

M1,M2, then it also symmetrizes α1M1 + α2M2 for nonzero scalars α1, α2. So

α1M1 + α2M2 ∈ D(M). Zero matrix also belongs to D(M). Hence we see

that D(M) is a linear subspace of Rn×n of dimension n(n+ 1)/2. Additionally

In,M,M−1 ∈ D(M). Suppose Zi; i = 1, 2, ...n are nonsingular and linearly

independent set of n diagonal matrices. Then ZiD; i = 1, 2, ..., n also will be so.

This set of diagonal matrices will span the whole subspace of diagonal matrices

of Rn×n and is also a subspace of D(M).

Let D(M) ⊂ Rn×n denotes the subspace of matrices symmetrized

by a diagonal matrix D ∈ Rn×n. If N ∈ D(M) is nonderogatory, then it can be

expressed as a linear sum of n nonsingular matrices Ni, i = 1 : n ∈ D(M).

Recall from Desautels [2,3,13,18] that when N ∈ Rn×n is nonderoga-

tory, it has n simple eigen values as well as n distinct symmetrizers spanning

the subspace of symmetrizers of N . Any symmetrizer B of N will be congruent

to the diagonal matrix of its eigen values and so will be diagonalizable [3]. By

Lemma 5, we have N = ZD,Z = α1Z1 +α2Z2 + ...+αnZn, where Zi, i = 1 : n

Reduced Symmetrizer Equation

in Parter and Youngs [17] as conservative law. If mij = mji = 0, in every

column-i, row-i for some 1 ≤ i, j ≤ n of M , we see from (11) that there can

exist D symmetrizing M . In such situations, the test in Lemma 3 is invalid.

are symmetrizers of NT , αi, i = 1 : n are real scalars, as NT as well is nonderoga-

tory and as ZNT = NZ. Hence N =
∑n

i=1 αiNi =
∑n

i=1 αiZiD ∈ D(M) and

are nonsingular.

Remark 5.2

Remark 5.3

Remark 5.4

Remark 5.5

Lemma 6. 

Proof. 

Ref

19
.H

. 
G

. 
P

im
b
le

y
, 

S
ol

u
ti
o
n
 o

f 
an

 i
n
it
ia

l 
v
al

u
e 

p
ro

b
le

m
 f

o
r 

th
e 

m
u
lt

i-
v
el

o
ci

ty
n
eu

tr
on

 
tr

a
n
sp

o
rt

 
eq

u
at

io
n
 

w
it

h
 

a
 

sl
a
b
 

ge
om

et
ry

, 
J
. 
M

at
h
. 
an

d
 M

ec
h
. 
8(

19
59

) 
83

7{
86

6.

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

IX
Y
ea

r
20

20

21

  
 

(
F
)

© 2020 Global Journals



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let A ∈ Rn×n be a nonderogatory matrix so that Bi ∈ Rn×n =

L−1
i DL−T

i , i = 1 : n are n diagonalizable and linearly independent symmetrizers

of A where Li, i = 1 : n are distinct unit lower triangular matrices and D is a

nonsingular diagonal matrix. Then Mi = L−T
i ALT

i ∈ D(M) will span M .

Taking further, the expression A = SB of Corollary 5.2, A itself

will be symmetric if and only if SB = BS. Such a situation M = ZD = DZ is

there only when Z is zero or is a diagonal matrix. Also if A is nonderogatory,

we can find exactly n symmetric matrices Si; i = 1, 2, ..., n and A = SiBi;Si =

(B−1
i AT + AB−1

i )/2, i = 1, 2, ..., n. The corresponding scenario with diagonal

matrix symmetrizer will be Mi = ZiDi; i = 1, 2, ..., n. According to Frobe-

nius[4,6], for a given matrix A ∈ Rn×n, there is a symmetrizer B ∈ Rn×n. But,

this is not true with diagonal matrix symmetrization. As in Lemma 5, only to

matrices M = ZD;Z = ZT have diagonal matrix D as symmetrizer.

Let B = BT , det(B(1, k : 1, k), k = 1 : n) 6= 0 ∈ Rn×n be a

symmetrizer of A ∈ Rn×n. Let LBLT = D where L is unit lower triangular

and D diagonal. Consider M = L−TALT so that D is a symmetrizer of M . If

DM is diagonalizable, then DM and symmetrizer BA of A are congruent.

We have D,DM i, i = 1, 2, ... are symmetrizers of M . Consider

DM = L−1
1 D1L

−T
1 . (12)

Now by analogy, L−1
1 D1L

−T
1 is a symmetrizer of M , D1 is a symmetrizer of

M1 = L−T
1 MLT

1 , D1M1 is a symmetrizer of M1. From (12), we have,

L−1
1 D1L

−T
1 L−TALT = LATL−1L−1

1 D1L
−T
1 . (13)

Equation (13) can be rearranged as below.

L−1L−1
1 D1L

−T
1 L−TA = ATL−1L−1

1 D1L
−T
1 L−T (14)

Let this derived symmetrizer of A from (14) be B1 so that we have

B1 =L−1L−1
1 D1L

−T
1 L−T

=L−1DML−T = BA. (15)

We may generalize this result that if LBLT = D, the symmetrizers

D,DM,DM2, ... of M are congruent to the symmetrizers B,BA,BA2.... of A.

The specialty of the congruence is presented in (15) and is that the matrices

L,LT , L−1, L−T are commonly applied for these congruences. The point is that

only diagonalization of B is in demand for these congruences. According to

Reduced Symmetrizer Equation

Corollary 6.1. 

Remark 6.1

Lemma 7. 

Proof. 

Remark 7.1
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Desautels [3], Taussky [21], symmetrizers D,DM,DM2, ...DMn−1 of M span a

subspace with dimension n if and only if M , to that effect A is nonderogatory.

We shall see when M in Lemma 1 will be symmetric.

Let for a given matrix A ∈ Rn×n, B = BT , det(B(1 : k, 1 : k), k =

1 : n) 6= 0 be a symmetrizer. Let LBLT = D, L,D ∈ Rn×n,L unit lower

triangular and D diagonal. Then M = L−TALT will be a symmetric matrix iff

the positive definite symmetric matrix Λ = L−1L−T is a symmetrizer of A.

If M = L−TALT is symmetric, then we get

L−TALT =LATL−1 ⇔

L−1L−TA =ATL−1L−T .

(16)

From (16), positive definite symmetric matrix Λ = L−1L−T symmetrizes A.

We may break equation (11) further.

Let M ∈ Rn×n and D ∈ Rn×n be a nonsingular diagonal matrix.

Consider N = (M +D−1MTD)/2. Then N = M iff D is a symmetrizer of M .

We have if N = M , then DM = (DM + MTD)/2 and hence D is

a symmetrizer of M . Conversely, if D is a symmetrizer of M , then DN =

(DM +MTD)/2 = DM and so N = M .

Recall that in (11), Z = (D−1MT + MD−1)/2 and N = ZD.

In this context, we may recall from K.Y. Fan and A.J. Hoffman [5] that for

A ∈ Rn×n, S = (A + AT )/2 is the closest to A of all the symmetric matrices

X ∈ Rn×n. Thus

‖ A− S ‖≤ ‖ A−X ‖. (17)

Analogues to (17), if D symmetrizes M , and K any other nonsingular diagonal

matrix, D,M,K ∈ Rn×n, let Z = (KM +MTK)/2. Then from Lemma 9,

M − (M +MT )/2 =(M − Z)/2 + (Z −MT )/2)⇒

‖M − (M +DMD−1)/2 ‖≤‖M − (KM +MTK)/2 ‖

(18)

In (18), because of von Neumann’s [16] characterization of all unitary invariant

norms in Rn×n, we have ‖ M ‖=‖ MT ‖, ‖ (M − Z)/2 ‖=‖ (Z −MT )/2 ‖.
From (18) we have the result that among all nonsingular diagonal matrices

K 6= In and as K → D, the symmetric matrix (N + NT )/2 → (M + MT )/2

will be closest to M than any other symmetric matrices (KM + MTK)/2.

Reduced Symmetrizer Equation

Lemma 8. 

Proof. 

III. Decomposition of Reduced Symmetrizer Equation

Lemma 9. 

Proof. 

Remark 9.1
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Analogously ‖ A− (A+BAB−1)/2 ‖≤‖ A− (A+ SAS−1)/2 ‖ where B is a

symmetrizer of A and S is any other symmetric matrix, A,B, S ∈ Rn×n.

Let M = (N +D−1NTD)/2,M ∈ Rn×n. We have M = ZD and

Z = (D−1MT +MD−1)/2 = MD−1 = (D−1NT +ND−1)/2.

So MT −NT = D(N −M)D−1. We have another situation that Pimbley’s

[19] condition is met when MT − NT is nonnegative and symmetric and it is

possible even when M,N are not symmetric.

Let D(M) ⊂ Rn×n denotes the subspace of matrices symmetrized

by a diagonal matrix D ∈ Rn×n. If N ∈ D(M) has n simple eigen values, then

N =
∑n2

i=1Mi,Mi = 1 : n2 ∈ Rn×n all having diagonal matrix symmetrizers.

From Lemma 5, we have N = ZD where Z = ZT ∈ Rn×n is non-

singular. Now D =
∑n

i=1 αiDi, Di, i = 1 : n ∈ Rn×n are nonsingular and

diagonal. Since N = ZD ∈ D(M), by Lemma 6, N =
∑n

i=1 βiZiD,ZiD ∈
D(M); i = 1 :, n. Here αi, βi, i = 1 : n are nonzero scalars. Hence,

N =α1β1Z1D1 + α1β2Z1D2 + ...+ α1βnZ1Dn

+α2β1Z2D1 + α2β2Z2D2 + ...+ α2βnZ2Dn + ....

+αnβ1ZnD1 + αnβ2ZnD2 + ...+ αnβnZnDn ⇒

(19)

N = M1 +M2 + ....+Mk; k = n2. (20)

Since none of the scalars, αiβj = 0, i, j = 1 : n is zero in (19), the n2 matrices in

(20) are linearly independent. Each matrix Mi is nonsingular as it is a product of

nonsingular matrices. Also Di; i = 1 : n symmetrizes Mn(j−1)+i, i, j = 1 : n.

Under certain conditions, converse of the Lemma 10 is also true.

Let N ∈ Rn×n be the sum of n2 linearly independent non-

singular matrices Mi, i = 1 : n2 ∈ Rn×n such that (D−1
i MT

j + MjD
−1
i )/2 =

(D−1
i MT

n(i−1)+j + Mn(i−1)+jD
−1
i )/2; i, j = 1 : n where Di, i = 1 : n ∈ Rn×n

are diagonal matrix symmetrizers of Mn(i−1)+j ; i, j = 1 : n. If all the matrices

Mi, i = 1 : n2 are with n simple eigen values, then N also will be symmetrized

by a diagonal matrix D ∈ Rn×n and it has n simple eigen values.

From the hypothesis and Lemma 6, if Di symmetrizes Mn(i−1)+j , let

Zj =(D−1
i MT

n(i−1)+j +Mn(i−1)+jD
−1
i )/2⇒

ZjDi =Mn(i−1)+j ; i, j = 1 : n⇒

N =Z1D1 + Z1D2 + ...+ Z1Dn + Z2D1 + Z2D2 + ...+ Z2Dn + ....+

ZnD1 + ZnD2 + ...+ ZnDn ⇒ N = ZD

(21)

Reduced Symmetrizer Equation
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In (21) Z1 + Z2 + ... + Zn = Z and D1 + D2 + .... + Dn = D are assigned. As

Z is nonsingular, Z−1 is a symmetrizer of N . Hence Z will be a symmetrizer of

NT . From Desautels [3] , NT is nonderogatory and hence N is so.

The n2 symmetrizer equationsD−1
i MT

n(i−1)+j=Mn(i−1)+jD
−1
i ; i, j =

1 : n in (21), where D = D1 + D2 + ...Dn and Z = Z1 + Z2 + ... + Zn;Zi =

(D−1
j MT

n(j−1)+i +Mn(j−1)+iD
−1
j )/2; i, j = 1 : n are synchronized among them-

selves and with equation (2) as M = ZD and M similar to A.

Recall from Lemma 5 that a nonsingular diagonal matrix D ∈ Rn×n will be

a symmetrizer of M ∈ Rn×n if and only if M = ZD,Z ∈ Rn×n, Z = ZT . We

see that Z will be then a symmetrizer of M if it is nonsingular. In a general

way, it may be noted that if we can derive a diagonal matrix D at each step,

then Z = (DM +MTD) ∗ 0.5 can be computed as an approximate symmetrizer

of M for that step. This D has to be improved upon, in an iterative manner

so that DM is arbitrarily close to symmetry. Note that it is not essential to

decompose Z or M for deriving D as presented in the algorithm below:

Initialize iteration index k=1, row index r=3 and current row index

c=3. Initially let Mr(k) = (mij(k)); i, j = 1 : n is set as a matrix similar to A.

Set ε > 0 to an arbitrarily chosen small quantity, say ε = 1.0e − 15. Initialize

matrix M = A,Z = In, D = In.

Consider the principal submatrix Mr(k)(1 : 1, 1 : 1). It is the scalar

m11(k) and is symmetric. Correspondingly to compose a diagonal matrix Dk =

diag(d1(k), d2(k), ...dn(k) for this step-k, we choose d1(k) = 1. For the prin-

cipal submatrix Mr(k)(1 : 2, 1 : 2) we choose d2(k) = m12(k)/m21(k) so that

Mr(k)(1 : 2, 1 : 2) is symmetric in Dr(k)Mr(k).

Now consider the principal submatrix Mr(k)(1 : r, 1 : r). There are

r − 1 pair of entries mrj(k),mjr(k), j = 1 : r − 1 to be addressed in row-r

and column r. By Corollary 5.1, if any of the row entries mrj(k) is zero, then

corresponding column entry mjr(k) also should be zero and in this case we

may consider dr(k) = 1. If non of these pairs are zeros, As a trail, taking

into account the first pair, consider dr(k) = m1r(k)/mr1(k). Thus (r,1) and

(1,r) entries in Dr(k)Mr(k) are identical. Now the effect of this is computed as

er1(k) =
∑r

i=1

∑r
j=1(mij(k)−mji(k))2. This computation of error in symmetry

is repeated out of row-r and column-r of Dr(k)−1Mr(k)T and added together to

store as er1(k). Repeat this error computations eri(k), i = 1 : r − 1 in a similar

way with respect to other pairs by applying dr(k) = mir(k)/mri(k), i = 1 : r−1.

Among these (r-1) errors, let erl(k) be the minimum against row-r for iteration-k

and correspondingly we choose dr(k) = mlr(k)/mrl(k).

Reduced Symmetrizer Equation

Remark 10.1

a) Symmetrizer Computation Algorithm

Step-1:

Step-2:

Step-3:
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Remaining entries of Dr(k), dr+1(k), dr+2(k), ...dn(k) we set di(k) =

1, i = r+1 : n. Compute the approximate symmetrizer for submatrix Mr(k)(1 :

r, 1 : r) as Zr(k) = 0.5 ∗ (Dr(k)Mr(k) +Mr(k)TDr(k)). Set column-i and row-i

in Zr(k) as that of In for i = r + 1 : n.

If iteration index k = 1, set ermin = erl(k), otherwise if erl(k)< ermin

set set ermin = erl(k). In this case the iteration-k is treated as a success. If

erl(k) > ermin it is a failure. If iteration-k is a success, store M = Mr(k), D =

Dr(k), Z = Zr(k). Compute B = ZD−1Z as an approximate symmetrizer of A

at iteration-k as A = Z−1MTZ.

Test whether ermin(k)< ε. If it is so, check whether current row c = r.

If it is true, set c = c + 1. Exchange row-c with row-r and column-c with

column-r. Loop back for carrying out step-2 through step-6. If r < c, set r = c.

If c >= n and ermin < ε stop the process, otherwise set c = n, loop back to

step-2 and repeat the steps 2 through 6.

The target is to compute a symmetrizer B ∈ Rn×n of a given nonsingular

matrix A ∈ Rn×n. A is assumed to be as in [3,6,20].

1. So far, we were using the decomposition LBLT = D for developing the theo-

retical background, deriving D from B and similar matrix M from A. Against

this, now both B,D are derived from M itself at each iteration. Reduction

of assumed symmetrizers Zr(k) is not essential for the procedure. It is thus

more practical by avoiding the usual difficulties of round off or truncation er-

rors, pivoting, permutations, division by zero or singularities etc. faced in such

a decomposition. The basic assumption about symmetrizer Zr(k) is that be-

cause of the KY Fan and A.J. Hoffman [5] result, it is sufficiently close to the

symmetrizer of Mr(k) at iteration k. The fact is that when n = 3, for row-3 and

column-3, only one of the pairs of entries, (m31(k),m13(k) and (m32(k),m23(k))

remains non-identical at iteration-k. In order to carry forward this situation to

problems with n >= 4, we address first it as a problem with n = 3 and once the

error is minimized to the preset and specified tolerance vale ε > 0, row-3 and

column-3 are exchanged with row-4 and column-4 and again treat the problem

as if it is of dimension n=3. Once these two levels of minimization with n = 3

are accomplished, stage is set ready for n = 4 as implemented in step-6. Now

the procedure treats the 4×4 submatrix of the problem and so on. This way, the

n-dimensional symmetrization is conducted in a conducive environment so that

the computed symmetrizers remain close to any actual existing symmetrizer if

any, obeying the result we derived here from [5].

2. In step-3, we individually compute errors for symmmetrizing Mr(k),Mr(k)T

by Dr(k), Dr(k)−1 respectively and add both them as a single error value as

eri(k), i = 1 : r− 1. This for the stability of the process. If we depend only one

of them, soon D may converge to either zero or infinity. Also note that if D is

a symmetrizer of M then D−1 symmetrizes MT . Thus it is also a theoretical

requirement.

Reduced Symmetrizer Equation

Step-4:

Step-5:

Step-6:

b) Assumptions, Theory and Convergence of the Algorithm
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3. When ermin < ε, the matrix is assumed to be a symmetrizer of Mrk. Corre-

sponding to r = n, DM will be symmetric, BA will be symmetric. The process

is terminated as it marks the successful convergence of the procedure.

4. We know from Desautels [3] that if D is a symmetrizer of M so do

DM,DM2, ...etc.. Hence Zr(k) = 0.5 ∗ (Dr(k)Mr(k) + Mr(k)TDr(k)) will be

closer to Dr(k)Mr(k) as and when the successive computations approach DM

at successful iteration-k = 1, 2, .... and converges to it when ermin < ε.

The numerical strategy explained in Section 3 is implemented in MATLAB.

The coefficient matrices cited in Adhikari [1] of dynamic systems associated

with equations of motion of undamped linear systems and that of equations of

motion describing free vibration of a viscously damped linear system are con-

sidered here to test the practical use of the procedure. There are real coefficient

matrices with complex eigen system. Dopico and Uhlig [4] prove that if A is

diagonalizable then the two eigen vectors corresponding to a pair of complex

conjugate eigen values of A can be chosen of complex conjugates of each other.

Then the symmetrizer built from such an eigen vector basis will be real. We

may note that all these examples from Adhikari [1] are diagonalizable. (Results

are rounded to 4 decimals). For all the problems ε = 1.0e− 15 is fixed.

This is the first real asymetric matrix cited by Adhikari which

is reported as not satisfying Taussky’s condition of symmetrizability.

The matrix is A =


1.0 −2.0 1.5

12.0 6.0 7.0

−2.0 4.0 9.0

. Its eigen values are

(1.5543+5.0507i ,1.5543-5.0507i, 12.8914). After 32 iterations, the error reduced

to 6.107564e-16, the matrix M similar to A is computed as

M =


1.1262 −2.1628 1.1215

11.5416 6.4407 7.9459

−2.9727 3.9469 8.4331

.

Its symmetrizer is D = diag(1.0000,−0.1874,−0.3773). The symmetrization of

M is DM =


1.1262 −2.1628 1.1215

−2.1628 −1.2069 −1.4890

1.1215 −1.4890 −3.1814

. Now the symmetrizer of A is

computed as B =


−18.1025 −6.6674 −1.7944

−6.6674 −1.9765 −9.7041

−1.7944 −9.7041 −14.1343

. Symmetrization of A is
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carried out as BA =


−94.5221 −10.9766 −89.9748

−10.9766 −37.3404 −111.1730

−89.9748 −111.1730 −197.8291

.

Adhikari [1] considers only real square matrices as these are

the coefficient matrices in the equations of motion of linear vibrations. In

this case of undamped system Xẍ(t) + Y x(t) = 0, t > 0, the coefficient ma-

trices X and Y are real and symmetrizable of first kind. These matrices

are taken from Ma and Caughey [12] . We may consider the matrix X =
0.5740 1.3858 1.3858

0.7070 0.7070 −0.7070

0.4620 −0.1914 −0.1914

. Results are presented below:

Eigen Values :-1.1360, 1.6648, 0.5608 ; No. of iterations : 72

Error Value : 8.988429e-16 : Symmetrizer D = diag(1.0000, 1.5931, 3.7701)

Similar Matrix M =


0.5069 1.2911 1.3981

0.8104 0.7382 −0.7057

0.3708 −0.2982 −0.1555

.

Symmetrization of M : DM =


0.5069 1.2911 1.3981

1.2911 1.1761 −1.1242

1.3981 −1.1242 −0.5864

.

Symmetrizer B =


3.2023 3.7397 0.0369

3.7397 6.1330 1.2816

0.0369 1.2816 1.8605

.

Symmetrization of X : BX =


4.4991 7.0747 1.7868

7.0747 9.2732 0.6011

1.7868 0.6011 −1.2111

.

Now we are considering coefficient matrices Y 1, Y 2 of an undamped system with

complex eigen values whereX is same as in example-1. Y 1 =


1.2044 −5.4424 2.7013

2.1007 0.893 0.1894

−1.8393 0.8953 2.5087

.

Eigen values are 1.05192517450474 + 4.01396879901174i,

1.05192517450474 - 4.01396879901174i, and 2.44854965099053.
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No.of Iterations: 21 Error Value : 3.245450e-16.

Similar Matrix M =


1.1739 −5.4028 2.8105

2.0130 0.8309 0.3480

−2.0081 0.6674 2.5477

.

Symmetrzation of M,DM =


1.1739 −5.4028 2.8105

−5.4028 −2.2300 −0.9341

2.8105 −0.9341 −3.5657

.

Symmetrizer B =


0.9933 −0.0510 −0.1018

−0.0510 −2.6624 −0.0623

−0.1018 −0.0623 −1.4524

.

Symmetrzation of Y 1 as BY 1 =


1.2764 −5.5399 2.4180

−5.5399 −2.0126 −0.7984

2.4180 −0.7984 −3.9306

.

Next exmple is Matirx Y 2 =


0.1995 1.8857 −3.2199

−2.1312 −0.2236 0.3609

1.0378 1.9501 −1.5606

 with coeffi-

cient matrix X same as in example-1. The solution is as follows.

Eigen values: -1.20087894725344 + 2.67720413881095i,

-1.20087894725344 - 2.67720413881095i and 0.813057894506878.

No.of iterations : 14. Error Value : 2.582360e-16.

Diagonal Matrix Symmetrizer D := diag(1.0000, 1.7457,−1.9129).

Similar Matrix M =


1.6391 1.7133 −5.6672

0.9814 1.1319 −1.3944

2.9626 1.2725 −4.3597

.

Symmetrzing M is DM =


1.6391 1.7133 −5.6672

1.7133 1.9760 −2.4341

−5.6672 −2.4341 8.3398

.

Symmetrizer B =


−0.6605 −6.2810 0.2562

−6.2810 1.0501 3.9742

0.2562 3.9742 7.5928

.

Symmetrzing Y2 is BY 2 =


13.5229 0.6586 −0.5400

0.6586 −4.3288 14.4011

−0.5400 14.4011 −11.2399

.
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Equations of motion describing free vibration of a viscously

damped linear system can be expressed as Xẍ(t) + Y ẍ(t) + Wx(t) = 0, t > 0.

The matrices X,Y,W are from Rn×n. When X,Y,W are symmetric and posi-

tive definite, they represent the mass, stiffness, and viscous damping matrices.

The scope of this work is limited to demonstrate the individual symmetrization

of these coefficient matrices. In this respect, matrix cited in Adhikari [1] in

place of W is considered. The matrix W from a damped system claimed to be

not symmetrizable of first kind has complex eigen values.

The matrix is W =


4.3160 −2.5771 −1.4626

2.7122 1.8365 −0.1999

1.3827 −2.5631 4.3419

.

But it is successfully solved using the decomposition method presented here and

the results are presented below.

Eigen Values:2.7938+2.8137i, 2.7938-2.8137i 4.9068;No. of iterations:44

Error :4.286294e-16 ; Symmetrizer D = diag(1.0000,−0.8916,−1.1189)

Similar Matrix M =


4.3537 −2.4003 −2.1766

2.6922 2.0645 −1.8430

1.9452 −1.4686 4.0761

.

Symmetrization of M : DM =


4.3537 −2.4003 −2.1766

−2.4003 −1.8407 1.6432

−2.1766 1.6432 −4.5609

.

Symmetrizer B =


5.9204 −16.2577 −0.7220

−16.2577 7.8400 4.0794

−0.7220 4.0794 −11.9274

.

Symmetrization of W : BW =


−19.5403 −43.2641 −8.5442

−43.2641 45.8402 39.9236

−8.5442 39.9236 −51.5470

.

Frobenius [6] or Taussky’s real symmetrizer equation [21] can be transformed

into a reduced symmetrizer equation (Lemma 1) when the symmetrizer of the

given equation is diagonalizable in elementary terms. This reduced equation

has a diagonal matrix as its symmetrizer. It is congruent to the symmetrizer

of Taussky’s equation. It symmetrizes a matrix similar to that of the original

equation. It is proved that diagonal matrix symmetrizer is embedded in the

concerned matrix itself. This property can be used as a test for diagonal matrix

symmetrization (Lemma 3). The reduced symmetrizer equation can be fur-

ther decomposed into more such reduced equations as proved in Corollary 10.1.
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V. Conclusions
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We conclude that symmetrization in Rn×n is mutually synchronized with sym-

metrization by diagonal matrices whenever the symmetrizer is diagonalizable.

This provides necessary and sufficient conditions for a matrix to be symmetrized

using Taussky’s equation(Lemma 2) as well as new approaches in solving it. The

second symmetric matrix factor of the Frobenius equation, which need not be a

symmetrizer, is expressed here in terms of the asymmetric matrix, its transpose

and the symmetrizer (Lemma 5). This is the matrix that bridges the Frobenius

and Taussky’s equations. It is attempted to explain or adapt certain results

in [5], [16], [17] and [19] using reduced symmetrizer equation. A symmetrizer

computing algorithm is introduced. It is applied on some practical problems in

the literature and results are presented.
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