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Absiract- A homogeneous, thermally conducting cubic crystal, elastic half-plane subjected to normal, tangential force
and thermal source under the effect of dependence of reference temperature on all elastic and thermal parameters is
investigated. The interaction due to two types of loading: instantaneous and continuous has been considered. The
Laplace and Fourier transforms technique has been used to obtain the components of displacement, stresses and
temperature distribution for Lord and Shulman (L-S), Green and Lindsay (G-L), Green and Naghdi(G-N) and
Chandrasekharaiah and Tzou (CTU) theories of generalized thermoelasticity. The concentrated and distributed loads
have been taken to illustrate the utility of the approach. particular case is also deduced. The numerical inversion
technique has been used to invert the integral transforms. The comparison of Linear case, quadratic case and
exponential case, respectively, are depicted graphically for thermal source for L-S theory.
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[. [NTRODUCTION

In anisotropic bodies, it is necessary to study the response of thermally induced
disturbances, which may happen during the manufacturing stages. For example, during
the curing stages of filament bound bodies, thermal disturbances may be induced by the
heat buildup and cooling processes. The level of these disturbances may exceed the
ultimate strength of the material. In the last century, a considerable interest is
developed in the theory of thermoelasticity that includes such thermal disturbances.
After studying the second sound effect in materials as solid helium, bismuth, and
sodium fluoride, a systematic research get started.

The classical dynamical coupled theory of thermoelasticity has been extended to
generalized thermoelasticity theories by Lord and Shulman (1967) and Green and
Lindsay (1972). Dhaliwal and Sherief (1980) extended the generalized theory of
thermoelasticity (1967) to anisotropic media. Green and Naghdi (1993) proposed a new
theory of thermoelasticity without energy dissipation and presented the derivation of a
complete set of governing equations of the linearized version of the theory for
homogenous and isotropic materials in terms of displacement and temperature fields.

Chandrasekharaiah (1998) and Tzou (1995) proposed another generalization to
coupled theory is known as dual-phase-lag thermoelasticity, in which Fourier law is
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replaced by an approximation to a modification of the Fourier law with two different
translations for the heat flux and temperature gradient. Lin (2004) studied
thermoelastic problems in anisotropic half-plane. Kumar and Rani (2007) discussed
disturbances due to thermomechanical sources in orthorhombic thermoelastic
material. Beom (2013) considered thermoelastic in-plane problems in linear anisotropic
solid. Valés et al. (2016) studied determination of heat source dissipation from infrared
thermographic measurements. Bockstal and Marin(2017) discussed recovery of a space
dependent vector source in anisotropic thermoelastic system. Rani and Singh (2018)
studied thermal disturbances in twinned orthotropic thermoelastic material. Zhang et
al. (2019) discussed thermo-mechanical coupling analysis of the orthotropic structures
by using element-free Galerkin method. Zhou et al. (2020) solved transient heat
conduction problems in general anisotropic media and derived three-dimensional

Green's functions in bimaterial.

Nowinski (1959,1960,1962) developed thermoelasticity of bodies with temperature
dependent properties. Noda (1991) considered thermal stresses in materials with
temperature dependent properties. Ezzat et al. (2001) solved a problem of generalized
thermoelasticity with two relaxation times in an isotropic elastic medium with
temperature-dependent mechanical properties. Othman and Kumar (2009) studied the

reflection of magneto-thermoelastic waves with temperature dependent properties in
generalized thermoelasticity. Kalkal and Deswal (2014) adopted normal mode technique
to investigate the effect of phase lags on three-dimensional wave propagation with
temperature-dependent properties. Matysiak et al. (2017) studied temperature and
stresses in a thermoelastic half-space with temperature dependent properties. Zhang et
al. (2019) studied the effect of temperature dependant material properties on
thermoelastic damping in thin beams.

To the best of my knowledge the problem of homogeneous, thermally conducting,
cubic crystal material under the effect of dependence of reference temperature on all
elastic and thermal parameters has not yet been investigated. In the present problem
the component of displacements, stresses and temperature distribution are determined
due to mechanical and thermal sources. The solutions are obtained by using Laplace
and Fourier technique. The comparison of Linear case, quadratic case and exponential
case, respectively, are shown graphically for thermal source for L-S theory.

[I. FORMULATION OF THE PROBLEM

We consider a homogenous, thermally conducting cubic crystal, elastic half-space
in the undeformed state at uniform temperature T,. The rectangular Cartesian co-
ordinate system (x,y,z) having origin on the plane surface z=0 with z-axis pointing
vertically into medium is introduced. A concentrated and uniformly distributed
mechanical or thermal source is assumed to be acting at the origin of the rectangular
Cartesian co-ordinates. Here we consider plane strain problem parallel to xz-plane
with displacement vector U = (u,0,w) and temperature T(x, z, t), then the field
equations and constitutive relations for such a medium in the absence of body forces

and heat sources can be written, by following the equations given by Lord-Shulman
(1967), Green and Lindsay (1972) and Dhaliwal and Sherief (1980) as

o%u
ot?’

o%u o%u W d T45 aT,
Cll@xz +C44822 +(012+C44)%'B&( + 2kT1§)—P

(1)
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B:(C11+2C12)a

and c; are isothermal elastic parameters, p,Cgandtg,t; are, respectively, the density,
specific heat at constant strain and thermal relaxation times. a is the coefficient of
thermal expansion, &,,d, are Kroneck er deltas, K is the coefficient of thermal
conductivity. u and w are displacement components along x and z directions
respectively, t is time, T is temperature change, t,, and t, are stresses. Lord-
Shulman (L-S) theory, t,=7,= 0, 1,>0k =1, n'=n,=n,=1, and for Green and
Lindsay (G-L) theory, t,=0, 1, >1,>0, n,=0, n =n,=1. For Green and Naghdi
theory(G-N) (type II) ' >0,n =0, n,=1 t, =7, =0, 7, =1. where n"=constant has the
dimension of [1/s], and n'K=K'= Cecly is a  characteristic constant this theory.

For Chandrasekharaiah and Tzou (CTU) theory is such a modification of
classical thermoelasticity model in which Fourier law is replaced by an approximation of
the equation

q(Xt+7,)=-KT;(xt+7,), (4a)

where @, is the heat flux vector. The model transmits thermoelastic disturbances in a
wave like manner (1986) if Eq. (4a) is approximated by

0 0
(L+7, E)Qi =-K(+7, a)T,i’

*

where 0<7,<7,.and t,=7,>0 andz,=7,>0, n =n,=n=1, 0<7,<7,, 7,=0.

Cij satisfies the (Green) symmetry conditions:
Cijki = Cxiij = Cijik = Cijiki -
The initial and regularity conditions are given by

u(x, z,0)=0=u(x, z,0),

w(x,2,0)=0=WXx,z0),
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T(x,20)=0=T(x,z0) for z>0, —c0<x<w, (5)
and u(x zt)=w(x zt)=T(x,zt)=0 fort>0 when z -, (6)

For dependency of all elastic and thermal parameters on reference temperature
we have taken three cases (i) Linear case (ii) quadratic case (iii) Exponential case
The material constants are given as (2016, 2001)
For Linear case

Ci=Cpd-a'T), B =p0-aTy), K =Kjd-a'T), v, =v,(1-a'Ty),

C, =Cy(1- a*TO). (7)
For quadratic case

C;=Cil-aT))?, B =f1-aTy)? K =K,1-a'Ty)? v, =v,(1-a'T,)?,

C,=C,(l-a'T,)>. (8)

For exponential case
G = Cijoea *, B = Boe” *, K = Koe” ", Vp = Vyp€” o, Ce = Ceo€” . (9)

where Cyy, 5,,K,V,,Cy are considered as constants, o is called empirical material
constant. In case of the system independent of reference temperature,

a =0.
[II.  SoLuTION OF THE PROBLEM

We introduce dimensionless quantities as

@, X oA \ V, @, V, 0,
X=—=, z=—"2= t=ot, =Ly w20y
Vl Vl ﬂOTO IBOTO
2
* C = Cas _ Gt Gy @ BT,
To=WTg, C=—", 2= ’ = ST o
Ciio Ciio @, P CeoVp
. ® a T P
T, =1 a=—"—, T'=— p'= (10)
Vi To BoTo
t t hv,
tep gede.weD (11)
olo olo 1

E . CuC . . :

where v :(ﬁ] and w, =—2° are, respectively, the velocity of compressional
Yy 0

waves in x-direction and characteristic frequency of the medium.

Equations (1)-(3) with the help of equations (7)-(9), can be written in non-
dimensional form as (dropping the dashes for convenience)
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For linear case A" =————, forquadratic case A’ ;2
(1-o ) 1-aT,)
and for exponential case A" = %T
S
Applying the Laplace and Fourier transforms
f(x z p)=j f(x,zt)e™dt and
0
f(& 2z p)=] f(x z p)ax (15)
on equations (12) — (14) and eliminating U, VTI,'~|' from the resulting expressions, we
obtain
6 4 2 ~ o~ =
(V'+ Qv +NV'+ 1) (0,W,T)=0 (16)
where

Q= _Ci [ Cl{(1+ PTi6, ) (P+ 7061kp2) € +(p+ Topz) +E2+(p*+ &201) }

1

+(p?+E%)+ &%k |,

N=2 [ ) 0748+ (e (7 427 )47 (0742

+(P2 £ £72C){ (p+1p?) +E2 €, + (14 PT,d, ) (P+ TduP?) &

{(p*+87)- 287, +&2)] |

| :ci[{(p+rop2)+ E}+(p* +8%¢)(p" +£°) — & (1+ P18, )(P+ 760y P°)

x €, (p°
=123). Using regularity condition (6),the

The roots of Eq. (16) are xA; (i
solutions of Eq. (16) may be written as

+ azcl)].

U=A, e+ A, e + A e 17
wW=-(@A, e +a,A, e’ +a,A,e’¥), (18)
T=bA, e +b,A,e" +b,A, e’ (19)
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where
A (-Q A2 +R") ] VW

R = (i=1,2,3),
P22 +N

a;

* b

32 -S
P =(1-c), N =(-p°-&%), R =(i&c,-M),

(1+ pT162k)(p+T081kp2) =1 C,

S =[{&" +(p+1p")}+ ] Q=2
C, 1§
., C +1,0,p° \ 2y’
_4as (IO ToOw P ), v =—(|O+1051kp2) [ & —ige],
@ig)c, icc,
2 2
and M’ :_[p .+§ )
IS
with A,(¢/=1273) being arbitrary constants.
[V.  APPLICATION
a) Instantaneous Load
i. Mechanical boundary conditions
t,,(X,z,t) =—Py(x)o(t), t, (X,z,t) =—-PL(x)d(t), Z—T+ hT=0atz=0, (20)
z

where 6(t) is the Dirac’s delta function and w(Xx), {(X) specify the vertical and
horizontal source distribution functions, respectively, along x-axis. h is heat transfer
coefficient.

Using equations (4),(10)-(11),(15), in the boundary conditions given by Eq. (20)
and with the help of Egs. (17) - (19), we obtain the expressions for displacement
components, stresses and temperature distribution as

ozl e 8% 8,0 fhe -0 e )
W=PR [\]}(&) {alAle‘xlz —a,A, 87 +a,Ae™ }+ () {alA L7 —a,A 8 +aAe }]
T, =-PX [F©){iea, -1, )Ae™ —(iEa, -1, A8 +(iEa, — 1y )A,e™ |
+2E) g, — 1 )AL — (2R, — 1, )AGE™ + (iEa, -y )Ae ™ | ]
t,=-P [\|7(§) {|01Ale‘”1Z —P,ALE + A’ }— '(;'(c’;){plAAe‘MZ —P,AET +pAET }],

T=P[iE)bAe™ —b,A,8 +bae™ 1+ (&) Ae™ —b,AE* +bae™ || (21)

where

A= A7 +hA,
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bah3 +(i§ag — A1)} +p3{brrg(i€ap —Ap) —boho(iGag —1p)},

Ay= X [-p{bs(iEay —Ay)—by (i ag —hg)} +pa{bs (iEay —Aq) -
Notes b1 (i€as—A3)} -P3{b2 (ifa; —Aq1)—by (i€az —A2)}H,

Ay = X [lbghlicag - 15)-bgglizay -, )

+h balica, —1p)-bylicag - 24)f .
8 = X [{bpylitag - 25)- by sliza; - )
+ hibglizay ~1)- b (iEag ~.5)} 1.
A= X lbgiglcay -15)-byplcey 1)
+fofizay ~1y )b iEa, <2, ) |
A, =X"[(Psby2, = P,b315) +h (p,b; — psb,)],

Ag = X’ [(Psb, Ay —p,bsA ;) +h(p by —psb,)]

Ag= X [(pzblxl - plbz}hz) +h (ple - pzbl)] '

* C440
X' =40 P=—

JA'A A

1 .
Pn = 7 (_ 1EC,, + CllOanbn)_an (1+Ptdy),(n=123) .
pVi

Case I Concentrated Force
In this case, we take

y(X) = 5(x), ¢(x)=4(x), (22)
in equation (20).
Using the Laplace and Fourier transforms defined by equations (15) in equation
(22), we get
w($)=1 () =1 (23)
where 0(X) is the Dirac delta function having the property
[s(ax=1 (24)
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Case II: Uniformly Distributed Force
The solution due to uniformly distributed force applied on the half-space surface

is obtained by setting
if |[x|<a,
if [x>a,

1
{v(x),¢(3} ={0

in equation (20). Taking Laplace and Fourier transforms with respect to the pair (x,§),

we obtain
T . [ &c,a
{l//(f),é”(f)}{ZSm[ J/S} §#0. (25)

o,

The expressions for  displacement components, stresses and temperature
distribution are obtained for concentrated force, and uniformly distributed force by

replacing v/ ,~ from equations (23),(25) respectively, in equation (20).
placing v ($),¢($) q : p y, in eq

b) Thermal boundary conditions

tZZ:O, tZX:O’ aIZZO
oT _
e =n(x)o(t) atz=0, for the temperaturegradient boundary,
Z
or
T=n(x)8(t) atz=0, for the temperatureinput boundary,. (26)

Using equations (4), (10)-(11),(15), in the boundary conditions given by Eq. (26)
and with the help of Egs. (17) - (19), we obtain the expressions for displacement
components, stresses and temperature distribution as

T=ROR(A; e - A + A
W = T(E)R(ad; e —a,nE +a e,
1, (620 =RE)PX [(ga, -1, A - (iga, - 1, )ALE"
+(Ea, - nge
t,(6.2.t)=AE)P(p, AjE™ —p,AE" +p,ALE™),
T, 2,1 =7(E)P,(b, A, +b,A &7 + b,AE7) . (27)
where
Ay =X [py(iga, = 2,) - p,(iEa = 14)],
Ay =X [psliga, —2y) - piiga; —As)],

A; =X [pz(i&a1 _7‘1)_ pl(iE.'aZ _7‘2)]'
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On replacing A by (T,o,/v,)A, and T,A,in Eq. (27), we obtain the expressions
for temperature gradient boundary and temperature input boundary, respectively.

For temperature gradient boundary we replace and for temperature input
boundary we take in Eq. (27).
Case I: Thermal Point Source
In this case

n(x) = &(x),
with

n()=1 (28)

Case II: Uniformly Distributed Thermal Source

Here
- 1 if |x|<a,
X) =
n 0 i

if [x>a,
nE) = {25”{

j/i} £#0. (29)

Replacing 77(£) from equations (28)-(29) in equation (27), we obtain the
corresponding expressions for thermal point source and uniformly distributed thermal
source, respectively.

with

¢) Continuous Load

i. Mechanical sources on the surface of halt-space
The boundary conditions in this case are

t,(X,z,t) =Py (x)H(t), t, (X,z,t) = —PC(X)H(t), 2—Z+ hT =0atz=0, (30)

where H(t) is the Heaviside unit step function, P is the magnitude of the force,
y(x), C(x) specify the vertical and horizontal source distribution functions,
respectively, along x-axis. h is heat transfer coefficient.

Adopting the same procedure of previous section (4.la), using the boundary
conditions (30), replacing A, (¢=123....,.8) with ﬂ((: 1,2,3......,8),respectively, in equation
(21), we obtain the corresponding expressions for the components of displacement,
stresses and temperature distribution.

The corresponding expressions for concentrated force and uniformly distributed
force are obtained by replacing w(£),¢ () and A, (£=123......8) with ﬂ(€=ZI.,2,3 ...... 8),
from equations (23), (25) in equation (21), respectively. P

ii. Thermoelastic Interactions due to Thermal Source
The boundary conditions in this case are
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t,=0 t,=0 az=0

Z—T (X,z=0)=n(x)H(t), for the temperature gradient boundary,
z

or

T(X,z=0)=n(x)H(t), for the temperature input boundary, (31)

Adopting the same procedure of previous section (4.1b), using the boundary
conditions (31) and replacing A'(/=123.....,.8) with A(€=],2,3 ...... 8), respectively, in

equation (27), we obtain the corresponding expressions for the components of
displacement, stresses and temperature distribution.

Replacing mM(E) from equations (28)-(29), in equation (27) we obtain the
corresponding expressions for thermal point source and uniformly distributed thermal
source respectively.

Sub-case 1: If h — 0, Eq. (21) yield the considered variables for the insulated
boundary.

Sub-case 2:  If h >, Eq. (21) yield considered variables for the isothermal boundary.

Particular Case
Taking

Cy=A+2p, Cp, = A, Cu =H
we obtain the corresponding expressions for the isotropic thermoelasic material.
V.  INVERSION OF THE TRANSFORMS

To obtain the solution of the problem in the physical domain, we must
invert the transformed equations (21) and (27), for the four theories, i.e., L-S, G-
L, G-N and CHT by using the method of inversion described by Kumar and
Rani(2007).

VI. NUMERICAL RESULT AND DISCUSSION

Following Dhaliwal and Singh (1980), we take the case of magnesium crystal-like
material for numerical calculations. The physical constants used are:

e = 0.0202, c¢; = 5.974 x 10" Nm?, ¢p= 2.624 x 10" Nm? p = 1.74 x 10° kgm™,
¢y = 3.278 x 10" Nm?, c¢,= 1.04 x 10* J kg'degree ' @, = 3.58x10" s, K = 1.7 x 10’
Wm'degree”, B= 2.68 x 10° Nm™ degree”, P=1, P,=1 T, = 298 ° K.

The variations of normal boundary displacement w and boundary temperature
field 7" with distance x at non-dimensional time t = 1.0 are shown graphically in figures

1-4, for L-S, for non-dimensional relaxation times t,=0.02. The computations were

carried out for time t=1.0 and o =0.00051 at z=1.0 in the range 0<x <10. The solid

lines ( —), the small dashed lines (------—-- ) and the long dashed lines (— - ——), in
graphs represent the variations for Linear case, quadratic case and exponential case,
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respectively for L-S theory. The results for distributed thermal source are presented for
dimensionless width a=1. The figures (1)-(4) are depicted for thermal source.

a) Instantaneous Load
i. Thermal source on the surface of half-space (Temperature gradient boundary)
a. Thermal point source

Figure 1. shows the variation of normal displacement ‘w’ with distance x. The
values of normal displacement starts with sharp increase and then become oscillatory in
the whole range for Linear case, quadratic case and exponential case. The values of
normal displacement for linear and quadratic case are more than the exponential case in
the whole range 0< x <10.

Figure 2. depicts the variation of temperature distribution 7" with distance x.
Initially the values of T start with sharp decrease and then become oscillatory about
zero in the whole range for Linear case, quadratic case and exponential case. The values
of ‘T’ shows appreciable effect for all the three cases.

b.  Uniformly Distributed Thermal Source

Figure 3. depicts the variation of normal displacement w with distance x .The
values of normal displacement in all the three cases start with sharp increase, the values
show very small variation about zero in the whole range for linear and quadratic case.
The values of normal displacement for exponential case are more than linear and
quadratic case in the range 0< x <10, which shows the appreciable effect of exponential
case.

Figure 4. depicts the variation of temperature distribution 7" with distance x. At
the point of application of source, the values of 7' decrease sharply for all the three
cases. The values of T for linear and quadratic case are more than exponential case in
the range 0.5< x <6. In range 6< x <10, the values of ‘1" for quadratic case shows
opposite oscillatory pattern in comparison to linear and exponential case.

VII. CONCLUSION

1. The comparison of linear and quadratic and exponential case has been depicted for
L-S theory for temperature gradient boundary.

2. As ‘x’ diverse from the point of application of source the components of normal
displacement and temperature are observed to follow small variations about zero in
the range 1< x <10 for instantaneous load.

3. The variations of normal displacement and temperature distribution for uniformly
distributed thermal source are same as those of Thermal point source with
difference in their magnitude for all the three cases.

REFERENCES REFERENCES REFERENCIAS

1. Lord HW and Shulman Y (1967) A generalized dynamical theory of thermoelasticity.
J. Mech. Phys.Solids 15:299-309.

2. Green AE and Lindsay KA (1972)Thermoelasticity. J.Elasticity 2:1-7.

3. Dhaliwal RS and Sherief HH(1980) Generalized thermoelasticity for anisotropic
media. Quart. of Applied Mathematics 38:1-8.

4. Green AE and Naghdi PM(1993) Thermoelasticity without energy dissipation. J.
Elasticity 31: 189-208.

© 2020 Global Journals

Volume

Frontier Research (F)

Global Journal of Science



Global Journal of Science Frontier Research (F) Volume XX Issue V Version I E Year 2020

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Tzou DY(1995) A Unified Field Approach for Heat Conduction from Macro to

Micro-Scales. ASME J. Heat Transf 117: 8-16.
Chandrasekharaiah DS (1998) Hyperbolic Thermoelasticity: A Review of Recent

Literature. Appl. Mech. Rev. 51:705-729.

Lin Y(2004) Thermoelastic Problems for the Anisotropic Elastic Half-Plane. J.
Tribol 126:459-465.

Kumar R and Rani L(2007) Disturbance due to mechanical and thermal sources in
orthorhombic thermoelastic material. [JAME, 12: 677-692.

Beom HG(2013) Thermoelastic in-plane fields in a linear anisotropic
solid.Int.j.Engg. sci 69:49-60.

Valés B Munoz VH, Welemane H,Pastor ML Trajin BPerrin M Cantarel A and
Karama M(2016) Heat source estimation in anisotropic materials, Composite
Structures, 136:287-296.

Bockstal KV and Marin L(2017) Recovery of a space dependent vector source in
anisotropic thermoelastic system;Comp. Method in Appl. Mech. and Eng.
321:269-293.

.Rani L and Singh V (2018) Thermal disturbances in twinned orthotropic

thermoelastic material. Int. J. of Applied Mechanics and Engineering. 23:897-910.
Zhou J Han X and Wang F(2020) Three-dimensional thermal Green’s functions of
quasi-steady-state motion in anisotropic bimaterials and some related problems.
European Journal of Mechanics - A /Solids 81:103940.

Nowinski J (1959) Thermoelastic problem for an isotropic sphere with temperature
dependent properties. Z Angew Math Phys 10:565-5752.

Nowinski J Betti A(1960) Rayleigh theorem for elastic bodies exhibiting

temperature dependent properties. Appl Sci Res 9, 429—436.

Nowinski J(1962) Transient thermoelastic problem for an infinite medium with
spherical cavity exhibiting temperature-dependent properties. J Appl Mech

29:399—407.

Noda N(1991) Thermal stresses in materials with temperature dependent properties.
Appl Mech Rev 44:383.

Ezzat MA Othman MIA El-Karamany AS(2001) The dependence of the modulus
of elasticity on the reference temperature in generalized thermoelasticity. J. Thermal
Stresses 24:1159-1176,

Othman, MIA. Kumar R(2009) Reflection of magneto-thermoelasticity waves with
temperature dependent properties in generalized thermoelasticity. Int. Commun.

Heat Mass Transf. 36:513-520.
Kalkal KK Deswal S (2014) Effect of phase lags on three-dimensional wave

propagation with temperature-dependent properties. Int. J. Thermophys 35: 952—
969.

Matysiak SJ Perkowski DM and Kulchytsky-Zhyhailo R(2017) Temperature and
stresses in a thermoelastic half-space with temperature dependent properties,
Meccanica, DOI 10.1007/s11012-016-0610-0

Zhang JP Wang SS Gong, SG Zuo QS and Hu HY(2019) Thermo-mechanical
coupling analysis of the orthotropic structures by using element-free Galerkin
method. Engineering Analysis with Boundary Elements 101:198-213.

Dhaliwal RS and Singh A (1980) Dynamic coupled thermoelasticity Hindustan Pub.
Corp.(India), Delhi.

2020 Global Journals

Notes


https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/article/pii/S0263822315009101#!�
https://www.sciencedirect.com/science/journal/09977538�
https://www.sciencedirect.com/science/journal/09977538/81/supp/C�
https://www.sciencedirect.com/science/article/abs/pii/S0955799718303692#!�
https://www.sciencedirect.com/science/article/abs/pii/S0955799718303692#!�
https://www.sciencedirect.com/science/article/abs/pii/S0955799718303692#!�
https://www.sciencedirect.com/science/article/abs/pii/S0955799718303692#!�
https://www.sciencedirect.com/science/article/abs/pii/S0955799718303692#!�

DEFORMATION DUE TO VARIOUS SOURCES IN A THERMALLY CONDUCING CUBIC CRYSTAL MATERIAL WITH REFERENCE
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Figure 1: Variation of normal displacement w with distance x. Figure 3: Variation of Normal displacement w with distance x.
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Figure 2: Variation of Temperature T with distance x. Figure 4: Variation of Temperature T with distance x.
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