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Abstract-

 

A homogeneous, thermally conducting cubic crystal, elastic half-plane subjected to normal, tangential force 
and thermal source under the effect of dependence of reference temperature on all elastic and thermal parameters is 
investigated. The interaction due to two types of loading: instantaneous and continuous has been considered. The 
Laplace and Fourier transforms technique has been used to obtain the components of displacement, stresses and 
temperature

 

distribution for Lord and Shulman (L-S), Green and Lindsay (G-L), Green and Naghdi(G-N) and 
Chandrasekharaiah and Tzou (CTU) theories of generalized thermoelasticity. The concentrated and distributed loads 
have been taken to illustrate the utility of the approach. particular case is also deduced. The numerical inversion 
technique has been used to invert the integral transforms. The comparison of Linear case, quadratic case and 
exponential case, respectively, are depicted graphically for thermal source for L-S theory.
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I.

 

Introduction

 
In anisotropic bodies, it is necessary to study the response of thermally induced 

disturbances, which may happen during the manufacturing stages. For example, during 
the curing stages of filament bound bodies, thermal disturbances may be induced by the 
heat buildup and cooling processes. The level of these disturbances may exceed the 
ultimate strength of the material. In the last century, a considerable interest is 
developed in the theory of thermoelasticity that includes such thermal disturbances. 
After studying the second sound effect in materials as solid helium, bismuth, and 
sodium fluoride, a systematic research get started. 

The classical dynamical coupled theory of thermoelasticity has been extended to 
generalized thermoelasticity theories by Lord and Shulman (1967) and Green and 
Lindsay (1972). Dhaliwal and Sherief (1980) extended the generalized theory of 
thermoelasticity

 

(1967) to anisotropic media. Green and Naghdi (1993) proposed a new 
theory of thermoelasticity without energy dissipation and presented the derivation of a 
complete set of governing equations of the linearized version of the theory for 
homogenous and isotropic materials in terms of displacement and temperature fields. 

 

Chandrasekharaiah (1998) and Tzou (1995) proposed another generalization to 
coupled theory is known as dual-phase-lag thermoelasticity, in which Fourier law is 
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replaced by an approximation to a modification of the Fourier law with two different 
translations for the heat flux and temperature gradient. Lin (2004) studied 
thermoelastic problems in anisotropic half-plane. Kumar and Rani (2007) discussed 
disturbances due to thermomechanical sources in orthorhombic thermoelastic 
material.Beom (2013) considered thermoelastic in-plane problems in linear anisotropic 

solid. Valès  et al. (2016) studied determination of heat source dissipation from infrared 
thermographic measurements. Bockstal and Marin(2017) discussed recovery of a space 
dependent vector source in anisotropic thermoelastic system. Rani and Singh (2018) 
studied thermal disturbances in twinned orthotropic thermoelastic material. Zhang  et 
al. (2019) discussed thermo-mechanical coupling analysis of the orthotropic structures 
by using element-free Galerkin method. Zhou et al. (2020) solved transient heat 
conduction problems in general anisotropic media and derived three-dimensional 

Green’s functions in bimaterial.  

Nowinski (1959,1960,1962) developed thermoelasticity of bodies with temperature 
dependent properties.  Noda (1991) considered thermal stresses in materials with 
temperature dependent properties. Ezzat et al. (2001) solved a problem of generalized 
thermoelasticity with two relaxation times in an isotropic elastic medium with 
temperature-dependent  mechanical properties. Othman and Kumar (2009) studied the 

reflection of magneto-thermoelastic waves with temperature dependent properties in 
generalized thermoelasticity. Kalkal and Deswal (2014) adopted normal mode technique 
to investigate the effect of phase lags on three-dimensional wave propagation with 
temperature-dependent properties. Matysiak et al. (2017) studied temperature and 
stresses in a thermoelastic half-space with temperature dependent properties.  Zhang  et 
al. (2019) studied the  effect of temperature dependant material properties on 
thermoelastic damping in thin beams.  

To the best of my knowledge the problem of homogeneous, thermally conducting, 
cubic crystal material under the effect of dependence of reference temperature on all  

elastic and thermal parameters has not yet been investigated. In the present problem 
the component of  displacements, stresses  and  temperature distribution are determined 
due to mechanical and thermal sources.  The solutions are obtained by using Laplace 
and Fourier technique. The comparison of Linear case, quadratic case and exponential 
case, respectively, are shown graphically for thermal source for L-S theory.  

II.
 

Formulation
 

of
 

the  Problem
 

We consider a homogenous, thermally conducting cubic crystal, elastic half-space 
in the undeformed state at uniform  temperature To.  The rectangular Cartesian co-
ordinate system (x,y,z) having  origin on  the plane surface z=0 with  z-axis  pointing 
vertically into medium is introduced. A concentrated and uniformly distributed 
mechanical or thermal source is assumed to be acting at the origin of the rectangular 
Cartesian co-ordinates. Here we consider plane strain problem parallel  to  xz-plane  

with  displacement  vector u
 

= (u,0,w) and  temperature T(x, z, t), then the field 
equations and constitutive relations for such a medium in the absence of body forces 
and heat sources can be written, by following the equations  given by Lord-Shulman 
(1967), Green and Lindsay (1972) and Dhaliwal and Sherief (1980) as 
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where

 

( )         ,  c 2 c  1211 α+=β  

and  cij are isothermal elastic parameters, 10e , and c , ττρ  are, respectively, the density, 

specific  heat  at  constant  strain  and  thermal relaxation times. α  is the coefficient of 
thermal   expansion, kk 21 ,δδ are  Kroneck er deltas,  K  is  the  coefficient  of   thermal  
conductivity. u and w are displacement components along  x  and  z directions 
respectively,  t is  time,  T is temperature change,   tzx  and  tzz  are  stresses. Lord-
Shulman (L-S) theory,  t1= 1τ = 0, 00 >τ ,k =1, 1nnn 1o

* === , and for Green and 

Lindsay (G-L) theory, t1=0, 001 >τ≥τ , 1nn,0n 1
*

o === . For Green and Naghdi 

theory(G-N) (type II) ,1n,0,0 o1
* ==> nn 1,0 011 === ττt . where *n =constant has the 

dimension of [1/s], and *n K=K*= 4
cc 11e is a    characteristic constant this theory.

 For Chandrasekharaiah and Tzou (CTU) theory is such a modification of 
classical thermoelasticity model in which Fourier law is replaced by an approximation of 
the equation 

                                       ,),(),(q ,i θττ +−=+ txKTtx iq                                  
(4a)

 
where iq

 

is the heat flux vector. The model transmits thermoelastic disturbances in a 

wave like manner (1986) if   Eq. (4a) is approximated by 
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where qττθ <≤0 .and  t1= 0>θτ  and 0>= qττθ ,   1nn 1o
* ===n , qττθ <≤0 ,  01 =τ . 
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satisfies the (Green)

 

symmetry conditions:

 .cccc jiklijlkklijijkl ===

 The initial and regularity conditions are given by
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For dependency of all elastic and thermal parameters on reference temperature 
we have taken three cases (i) Linear case (ii) quadratic case (iii) Exponential case  
The material constants are given as (2016, 2001)  
For Linear case  
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For quadratic case
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For exponential case  
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where 0000ij0 ,,,,c ecvKβ
 

are considered as constants, *α is called empirical material 

constant. In case of the system independent of reference temperature,  
*α =0.  

III.  Solution  of the Problem  

We introduce dimensionless quantities as
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where  

 

K
c  c  and  c  
0

110e0*
1

2
1
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
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


= ω

ρ
v are, respectively,

 

the velocity of compressional  

waves in x-direction and characteristic frequency of the medium.

 

Equations (1)-(3) with the help of equations (7)-(9), can be written in non-
dimensional form as (dropping the dashes for convenience)
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Applying the Laplace and Fourier transforms
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on equations (12) – (14)  and   eliminating  T~ ,w~ ,u~   from  the resulting expressions, we 

obtain 
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The roots of Eq. (16) are )3,2,1i( i =λ± . Using regularity condition (6),the 

solutions of Eq. (16) may be written as 
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with  )3,2,1(A =  being arbitrary constants.  

IV.  Application  

a)  Instantaneous Load  

i.  Mechanical boundary conditions  
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where )t(δ
 

is the  Dirac’s delta  function and    )x(   ),x( ζψ specify the vertical and 
horizontal source distribution functions, respectively, along x-axis. h is heat transfer 
coefficient. 

 

Using equations (4),(10)-(11),(15), in the boundary conditions given by Eq. (20)  
and  with the help of Eqs. (17) - (19), we obtain the expressions for displacement 
components, stresses and temperature distribution as
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Case I:  Concentrated Force

 In this case, we take 
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in equation (20). 
Using the Laplace and Fourier transforms defined by equations (15) in equation 

(22), we get 
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  , )}]a i(b)a i(b{p )}a i(b                      

)a i(b{p )}a i(b)a i(b{[-p X   

1122221131133

33112223333221
**

1

λ−ξλ−λ−ξλ+λ−ξ+λ

−λ−ξλ+λ−ξλ−λ−ξλ=∆

  

                                                  ,  )]bpb(p h)bpb[(p X   

,  )]bpb(p h)bpb[(p X   

 , )]bpb(p h)bpb[(pX   

1221221112
*

6

1331331113
*

5

2332332223
*

4

−+λ−λ=∆

−+λ−λ=∆

−+λ−λ=∆

,  )}]a i( b)a i( b{p-  )}a i( b                       

)a i( b{p)}a i( b)a i( b{[-p  X    

2211123331

11323322231
**

2

λ−ξ−λ−ξλ−ξ

−λ−ξ+λ−ξ−λ−ξ=∆

( ) ( ){ }[

( ) ( ){ } ] ,
 

33ai1b11ai3bh                    

11ai33b33ai11b*X2            

λ−ξ−λ−ξ+

λ−ξλ−λ−ξλ=∆

( ) ( ){ }[
( ) ( ){ } ] ,  33ai2b22ai3bh           

22ai33b33ai22b*X1

λ−ξ−λ−ξ+

λ−ξλ−λ−ξλ=∆
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Case II:  Uniformly Distributed Force  
The solution due to uniformly distributed force applied on the half-space surface 

is obtained by setting  







>

≤
=  , x   if    0

    , x   if     1
} )(),({

a

a
xx ζψ  

in equation (20). Taking Laplace and Fourier transforms with respect to the pair (x,ξ),  
we obtain  

                            

.0  ,sin2} )(~),(~ {
1

2 ≠



















= ξξ

ω
ξ

ξζξψ
ac

                               (25) 

The expressions for  displacement components, stresses and temperature 
distribution are obtained for concentrated force, and uniformly distributed force by 

replacing  )(~),(~ ξζξψ from equations (23),(25) respectively, in equation (20).  

b)  Thermal boundary conditions  

0zat             ,0t            ,0t zxzz ===  

                                           boundary,.input  ure  temperatfor the  0,zat     )t()x( T
or

boundary,gradient  ure  temperatfor the  0,zat    )t()x( 
z
T  

=δη=

=δη=
∂
∂

 

Using  equations (4), (10)-(11),(15), in the boundary conditions given by Eq. (26)  
and  with the help of Eqs. (17) - (19), we obtain the expressions for displacement 
components, stresses and temperature distribution as  

( ),eeeP)(~u~ z
3

z
2

z
11

321 λλλ ∆′+∆′−∆′ξη=  

( ),eaeaeaP)(~w~ z
33

z
22

z
111

321 λλλ ∆′+∆′−∆′ξη=  

( ) ( )[
( ) ],ea i                                 

eaieaiXP)(~ t)z, ,(t~

z
333

z
222

z
111

*
1zx

3

21

λ

λλ

∆′λ−ξ+

∆′λ−ξ−∆′λ−ξξη=ξ  

( ) ( ),epepepP)(~ tz, ,t~ z
33

z
22

z
111zz

321 λλλ ∆′+∆′−∆′ξη=ξ
 

                     
( ) .eAbeAbeAbP)(~ t)z, ,(T~ z

63
z

42
z

211
321 λλλ ++ξη=ξ

 

               (27) 

where

 

( ) ( )[ ]
 

,aipaipX 332223
*

1 λ−ξ−λ−ξ=∆′

 

( ) ( )[ ] ,aipaipX 331113
*

2 λ−ξ−λ−ξ=∆′

 

( ) ( )[ ].  aipaipX 221112
*

3 λ−ξ−λ−ξ=∆′
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On replacing *
20

*
1110 T  and )/v(T  by ∆∆ω∆ in Eq. (27), we obtain the expressions 

for temperature gradient boundary and temperature input boundary, respectively.  
For temperature gradient boundary we replace and for temperature input 

boundary we take in Eq. (27). 
Case I: Thermal Point Source 
In this case 

),()( xx δη =  

with 

                                                  1)(~ =ξη                                            (28) 

Case II:  Uniformly Distributed Thermal Source 
 

 
Here  

 







>

≤
=  

, x   if    0

    , x   if     1
)( 

a

a
xη

 

with
 

                                  
.0  ,acsin2)(~ 

1

2 ≠ξ







ξ








ω
ξ

=ξη                              (29) 

Replacing )(~ ξη
 

from equations (28)-(29) in equation (27), we obtain the 
corresponding expressions for thermal point source and uniformly distributed

 
thermal 

source, respectively.
 

c)
 
Continuous Load

 

i.
 

Mechanical sources on the surface of half-space  
 

The boundary conditions in this case are
 

        ),t(H)x(P)t,z,x(t  ),t(H)x(P)t,z,x(t zxzz ζ−=ψ−= ,0zat  0hT
z
T

 
==+

∂
∂

 

  (30) 

 

where )t(H
 

is the Heaviside unit step function,

 

P is the magnitude of the force, 

   )x(   ),x( ζψ specify the vertical and horizontal source distribution functions, 

respectively, along x-axis. h is heat transfer coefficient. 

 

Adopting the same procedure of previous section (4.1a), using the boundary 

conditions (30), replacing ),8......,3,2,1()8......,3,2,1( =
∆

=∆  
 p

with respectively, in equation 

(21), we obtain the corresponding expressions for the components of displacement, 
stresses and temperature distribution.

 

The corresponding expressions for concentrated force and uniformly distributed 

force are obtained by replacing )(~),(~ ξζξψ  and ),8......,3,2,1()8......,3,2,1( =
∆

=∆  
 p

with  

from equations (23), (25) in equation (21), respectively. 

ii. Thermoelastic Interactions due to Thermal Source  
The boundary conditions in this case are 
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0zat                                 ,0     t,0  t zxzz ===  

 , )t(H)x( 0)z(x,
z
T

 η==
∂
∂

for the temperature gradient boundary,  

or   

                    
),t(H)x( )0z,x(T η== for the temperature input boundary,            (31) 

Adopting the same procedure of previous section (4.1b), using the boundary 

conditions (31) and replacing  )8......,3,2,1( =∆′  with ),8......,3,2,1( =
∆′


p

respectively, in 

equation (27), we obtain the corresponding expressions for the components of 
displacement, stresses and temperature distribution.  

Replacing )(~ ξη  from equations (28)-(29), in equation (27) we obtain the 
corresponding expressions for thermal point source and uniformly distributed thermal 
source respectively.  

Sub-case 1:  If h →  0, Eq. (21) yield the considered variables for the insulated 
boundary.  

Sub-case 2:   If h  →∞, Eq. (21) yield considered variables for the isothermal boundary.  

Particular Case  
Taking  

µ=λ=µ+λ= 441211 c,c,2c  

we obtain the corresponding expressions for the isotropic thermoelasic  material.  

V.  Inversion  of  the  Transforms  

To  obtain  the  solution  of  the  problem  in  the  physical  domain,  we  must  
invert the  transformed  equations  (21) and (27), for  the  four  theories, i.e.,  L-S, G-
L, G-N and CHT by using the method of inversion described by Kumar and 
Rani(2007).  

VI.  Numerical  Result  and  Discussion  

Following Dhaliwal and Singh (1980), we take the case of magnesium crystal-like 
material for numerical calculations. The physical constants used are:

 

ε
 

= 0.0202,  c11

 
= 5.974 x 1010

 
Nm-2, 12c = 2.624 x 1010

 
Nm-2,   ρ

 
= 1.74 x 103

 
kgm-3,     

c44

 
= 3.278 x 1010

 
Nm-2, ce= 1.04 x 103 J kg–1degree–1 11*

1 10x58.3=ω s-1, K = 1.7 x 102
 

Wm-1degree-1, β= 2.68 x 106
 

Nm-2degree-1,
 

P=1,  P1=1 T0

 
= 298 0

 
K. 

The variations of normal boundary displacement w
 

and boundary temperature 
field T

 
with distance x

 
at non-dimensional time t = 1.0 are shown graphically in figures 

1-4, for L-S, for non-dimensional relaxation times 02.00 =τ . The computations were 

carried out for time t=1.0 and α*
 

=0.00051 at  z=1.0  in the range .10x0 ≤≤
 

The  solid  

lines  ( –––),  the  small  dashed  lines (--------) and the long dashed lines (–
 

–
 

–
 

–), in 
graphs represent the variations for Linear case, quadratic case and exponential case, 
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respectively for L-S theory. The results for distributed thermal source are presented for 
dimensionless width a=1. The figures (1)-(4) are depicted for thermal source. 

 
a) Instantaneous Load 
i. Thermal source  on  the  surface  of  half-space  (Temperature gradient boundary) 

a. Thermal point source 
Figure 1. shows the variation of normal displacement ‘w’ with distance x. The 

values of normal displacement starts with sharp increase and then become oscillatory in 
the whole range for Linear case, quadratic case and exponential case. The values of 
normal displacement for linear and quadratic case are more than the exponential case in 

the whole range 0≤
 
x ≤10. 

Figure 2. depicts the variation of temperature distribution T with distance x. 
Initially the values of T start with sharp decrease and then become oscillatory about 
zero in the whole range for Linear case, quadratic case and exponential case. The values 

of ‘T’ shows appreciable effect for all the three cases. 
b. Uniformly Distributed Thermal Source  

Figure 3. depicts the variation of normal displacement w with distance x .The  
values of normal displacement in all the three cases start with sharp increase, the values 
show very small variation about zero in the whole range for linear and quadratic case. 
The values of normal displacement for exponential case are more than linear and 
quadratic case in the range 0≤ x ≤10, which shows the appreciable effect of  exponential 
case. 

Figure 4. depicts the variation of temperature distribution T with distance x. At 
the point of application of source, the values of T decrease sharply for all the three 
cases. The values of T for linear and quadratic case are more than exponential case in 
the range 0.5≤ x ≤6. In range 6≤ x ≤10, the values of ‘T’ for quadratic case shows 
opposite oscillatory pattern in comparison to linear and exponential case.  

VII. Conclusion 

1. The comparison of linear and quadratic and exponential case has been depicted for 
L-S theory for temperature gradient boundary. 

2. As ‘x’ diverse from the point of application of source the components of normal 
displacement and temperature are observed to follow small variations about zero in 

the range 1≤ x ≤10 for instantaneous load. 
3. The variations of normal displacement and temperature distribution for uniformly 

distributed thermal source  are same as those of Thermal point source with 
difference in their magnitude for all the three cases. 
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Figure 1: Variation of normal displacement w with distance x.
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Figure 3: Variation of Normal displacement w with distance x.
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Figure 2: Variation of Temperature T with distance x.
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Figure 4: Variation of Temperature T with distance x.
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