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The study of non-arbitrage markets was begun for the first time in Bachelier’s work
[1]. Then, in the famous works of Black F. and Scholes M. [2] and Merton R. S. [3]
the formula was found for the fair price of the standard call option of European type.
The absence of arbitrage in the financial market has a very transparent economic
sense, since it can be considered reasonably arranged. The concept of non arbitrage
in financial market is associated with the fact that one cannot earn money without
risking, that is, to make money you need to invest in risky or risk-free assets. The
exact mathematical substantiation of the concept of non arbitrage was first made
in the papers [4], [5] for the finite probability space and in the general case in the
paper [6]. In the continuous time evolution of risky asset, the proof of absent of
arbitrage possibility see in [7]. The value of the established Theorems is that they
make it possible to value assets. They got a special name ”The First and The
Second Fundamental Asset Pricing Theorems.” Generalizations of these Theorems
are contained in papers [8], [9], [10].

If the martingale measure is not the only one for a given evolution of a risky
asset, then a rather difficult problem of describing all martingale measures arises in
order to evaluate, for example, derivatives.

Assessment of risk in various systems was begun in papers [11], [12], [13], [14].
Statistical studies of the time series of the logarithm of the price ratio of risky

assets contain heavy tails in distributions with strong elongation in the central re-
gion. The temporal behavior of these quantities exhibits the property of clustering
and a strong dependence on the past. All this should be taken into account when
building models for the evolution of risky assets.

In this paper, we generalize the results of the papers [15], [16], [17] and construct
the evolution of risky assets for which we completely describe the set of equivalent
martingale measures.

The aim of this study is to describe the family of martingale measures for a
wide class of risky asset evolutions. The paper proposes the general concept for
constructing the family of martingale measures equivalent to a given measure for a
wide class of evolutions of risky assets. In particular, it also contains the description
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Abstract- The general method is proposed for constructing a family of martingale measures for a wide class 
of evolution of risky assets. The sufficient conditions are formulated for the evolution of risky assets under 
which the family of equivalent martingale measures to the original measure is a non-empty set. The set of 
martingale measures is constructed from a set of strictly nonnegative random variables, satisfying certain 
conditions. The inequalities are obtained for the non-negative random variables satisfying certain conditions.
Using these inequalities, a new simple proof of optional decomposition theorem for the nonnegative super-
martingale is proposed. The family of spot measures is introduced and the representation is found for them. 
The conditions are found under which each martingale measure is an integral over the set of spot measures. 
On the basis of nonlinear processes such as ARCH and GARCH, the parametric family of random processes 
is introduced for which the interval of non-arbitrage prices are found. The formula is obtained for the fair price 
of the contract with option of European type for the considered parametric processes. The parameters of the 
introduced random processes are estimated and the estimate is found at which the fair price of contract with
option is the least.
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of the family of martingale measures for the evolution of risky assets given by the
ARCH [18] and GARCH [19], [20] models. In section 2, we formulate the conditions
relative to the evolution of risky assets and give the examples of risky asset evolution
satisfying these conditions. Section 3 contains the construction of measures by
recurrent relations. It is shown that under the conditions relative to the evolution
of risky assets such construction is meaningful. It is proved that the constructed set
of measures is equivalent to an initial measure. In theorem 1, we are proved that
under certain integrability conditions of risky asset evolution the set of constructed
measures is a set of martingale measures relative to this evolution of risky asset. In
Section 4 we prove the inequalities for the nonnegative random values very useful for
the proof of optional decomposition for the non negative super-martingales relative
to the set of all martingale measures.

First, we show an integral inequality for a nonnegative random variable under
the inequality for this nonnegative random variable with respect to the constructed
family of measures. Further, using this integral inequality for the non-negative
random variable, a pointwise system of inequalities is obtained for this non-negative
random variable for a particular case. After that, the pointwise system of inequalities
is obtained for the non-negative random variable in the general case. Then, using
the resulting pointwise system of inequalities, an inequality is established for this
non-negative random variable whose right-hand side is such that its conditional
mathematical expectation is equal to one.

On the basis of the results of Section 4, in Section 5, we prove the optional
decomposition for the non negative super-martingales. In Section 6, we introduce
the spot measures by the recurrent relations and find the representation for them.
Using these facts under certain conditions we prove integral representation for every
martingale measure over the set of spot measures.

First, the optional decomposition for diffusion processes super-martingale was
opened by by El Karoui N. and Quenez M. C. [21]. After that, Kramkov D. O.
and Follmer H. [22], [23] proved the optional decomposition for the nonnegative
bounded super-martingales. Folmer H. and Kabanov Yu. M. [24], [25] proved anal-
ogous result for an arbitrary super-martingale. Recently, Bouchard B. and Nutz
M. [26] considered a class of discrete models and proved the necessary and sufficient
conditions for the validity of the optional decomposition.

Section 7 contains applications of the results obtained. A class of random pro-
cesses is considered, which contains well-known processes of the type ARCH and
GARCH ones. Two types of random processes are considered, those for which the
price of an asset cannot go down to zero and those for which the price can go down
to zero during the period under consideration. The first class of processes describes
the evolution of well-managed assets. We will call these assets relatively stable. For
the evolution of relatively stable assets in the period under consideration, the family
of martingale measures is one and the same. The family of martingale measures
for the evolution of risky assets whose price can drop to zero is contained in the
family of martingale measures for the evolution of relatively stable assets. Each of
the martingale measures for the considered class of evolutions is an integral over the
set of spot martingale measures.

The interval of non-arbitrage prices is found for a wide class of payoff functions in
the case when evolution describes relatively unstable assets. This range is quite wide
for the payoff functions of standard put and call options. The fair price of the super
hedge is in this case the starting price of the underlying asset. The estimates are
found for the fair price of the super-hedge for the introduced class of evolutions with
respect to stable assets. The formulas are found for the fair price of contracts with
call and put options for the evolution of assets described by parametric processes.

The same formulas are found for Asian-type put and call options. A characteris-
tic feature of these estimates is that for the evolution of relatively stable assets the
fair price of the super hedge is less than the price of the underlying asset.

In Section 8, the estimates of the parameters of risky assets included in the
evolution are obtained. The formulas are found for the fair price of contracts with
call and put options for the obtained parameter estimates, and the interval of non-
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Let {ΩN ,FN , PN} be a direct product of the probability spaces {Ω0
i ,F0

i , P
0
i }, i =

1, N, ΩN =
N∏
i=1

Ω0
i , PN =

N∏
i=1

P 0
i , FN =

N∏
i=1

F0
i , where the σ-algebra FN is a min-

imal σ-algebra, generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i . On the measurable space

{ΩN ,FN}, under the filtration Fn, n = 1, N, we understand the minimal σ-algebra

generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i , where Gi = Ω0

i for i > n. We also intro-

duce the probability spaces {Ωn,Fn, Pn}, n = 1, N, where Ωn =
n∏
i=1

Ω0
i , Fn =

n∏
i=1

F0
i ,

. There is a one-to-one correspondence between the sets of the σ-algebra

Fn, belonging to the introduced filtration, and the sets of the σ-algebra Fn =
n∏
i=1

F0
i

of the measurable space {Ωn,Fn}, n = 1, N. Therefore, we don’t introduce new
denotation for the σ-algebra Fn of the measurable space {Ωn,Fn}, since it always
will be clear the difference between the above introduced σ-algebra Fn of filtration
on the measurable space {ΩN ,FN} and the σ-algebra Fn of the measurable space
{Ωn,Fn}, n = 1, N.

We assume that the evolution of risky asset {Sn}Nn=0, given on the probabil-
ity space {ΩN ,FN , PN}, is consistent with the filtration Fn, that is, Sn is a Fn-
measurable. Due to the above one-to-one correspondence between the sets of the
σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-algebra
Fn of the measurable space {Ωn,Fn}, n = 1, N, we give the evolution of risky assets
in the form {Sn(ω1, . . . , ωn)}Nn=0, where Sn(ω1, . . . , ωn) is an Fn-measurable random
variable, given on the measurable space {Ωn,Fn}. It is evident that such evolution
is consistent with the filtration Fn on the measurable space {ΩN ,FN , PN}.

Further, we assume that

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0) > 0,

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn < 0) > 0, n = 1, N, (1)

where ∆Sn = Sn(ω1, . . . , ωn)− Sn−1(ω1, . . . , ωn−1), n = 1, N.

Let us introduce the denotations

Ω−n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn ≤ 0}, Ω+
n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0}, (2)

∆S−n = −∆SnχΩ−
n

(ω1, . . . , ωn), ∆S+
n = ∆SnχΩ+

n
(ω1, . . . , ωn), (3)

Vn(ω1, . . . , ωn−1, ω
1
n, ω

2
n) = ∆S−n (ω1, . . . , ωn−1, ω

1
n) + ∆S+

n (ω1, . . . , ωn−1, ω
2
n),

Derivatives Pricing in Non-Arbitrage Market
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arbitrage prices for different statistics is found. The same results are obtained for
Asian-style call and put options.

II. Evolutions of Risky Assets

Pn =
n∏
i=1

P 0
i



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We use the following denotation Ωa
n, n= 1, N, where a takes two values − and +.

Our assumption, in this paper, is that for Ωa
n, a = −,+, the representations

Ω−n =
Nn⋃
k=1

[A0,k−
n × V k

n−1], Ω+
n =

Nn⋃
k=1

[A0,k+
n × V k

n−1], Nn ≤ ∞, (5)

are true, where

Ωn−1 =
Nn⋃
k=1

V k
n−1, A

0,k−
n , A0,k+

n ∈ F0
n, A0,k−

n ∪ A0,k+
n = Ω0

n,

A0,k−
n ∩ A0,k+

n = ∅, V k
n−1 ∩ V

j
n−1 = ∅, k 6= j, V k

n−1 ∈ Fn−1. (6)

The number Nn may be finite or infinite. Since Ω−n ∪ Ω+
n = Ωn, Ω−n ∩ Ω+

n = ∅, and
Pn(Ω−n ) > 0, Pn(Ω+

n ) > 0, we have

Pn(Ω−n ) =
Nn∑
k=1

P 0
n(A0,k−

n )Pn−1(V k
n−1),

Pn(Ω+
n ) =

Nn∑
k=1

P 0
n(A0,k+

n )Pn−1(V k
n−1), P 0

n(A0,k−
n ) + P 0

n(A0,k+
n ) = 1. (7)

Further, in this paper, we assume that P 0
n(A0,k−

n ) > 0, P 0
n(A0,k+

n ) > 0, n =
1, N, k = 1, Nn. We also assume some technical suppositions: there exist subsets
B0,k−
n,i ∈ F0

n, i = 1, In, In > 1, and B0,k+
n,s ∈ F0

n, s = 1, Sn, Sn > 1, satisfying the
conditions

B0,k−
n,i ∩B

0,k−
n,j = ∅, i 6= j, B0,k+

n,s ∩B
0,k+
n,l = ∅, s 6= l, k = 1, Nn,

P 0
n(B0,k−

n,i ) > 0, i = 1, In, P
0
n(B0,k+

n,s ) > 0, s = 1, Sn, k = 1, Nn,

A0,k−
n =

In⋃
i=1

B0,k−
n,i , A0,k+

n =
Sn⋃
s=1

B0,k+
n,s , k = 1, Nn. (8)

Below, we give the examples of evolutions {Sn(ω1, . . . , ωn)}Nn=1 for which the
representations (5) are true.

Suppose that the random values ai(ω1, . . . , ωi), ηi(ωi) satisfy the inequalities
0 < ai(ω1, . . . , ωi) ≤ 1, 1 + ηi(ωi) ≥ 0, P 0

i (ηi(ωi) < 0) > 0, P 0
i (ηi(ωi) > 0) > 0,

i = 1, N. If Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), n = 1, N, (9)

Derivatives Pricing in Non-Arbitrage Market

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (4)
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then

{ωi ∈ Ω0
i , ηi(ωi) ≤ 0} = A0,1−

i , {ωi ∈ Ω0
i , ηi(ωi) > 0} = A0,1+

i ,

V 1
i−1 = Ωi−1, Ω−i = A0,1−

i × Ωi−1, Ω+
i = A0,1+

i × Ωi−1, i = 1, N. (10)

In general case, let us consider the evolution of risky asset {Sn(ω1, . . . , ωn)}Nn=1, given
by the formula

Sn(ω1, . . . , ωn) =

S0

n∏
i=1

(1 +

Ni∑
k=1

ηki (ωi)χV k
i−1

(ω1, . . . , ωi−1)aki (ω1, . . . , ωi)), n = 1, N, (11)

where the random values aki (ω1, . . . , ωi), η
k
i (ωi) satisfy the inequalities

0 < aki (ω1, . . . , ωi) ≤ 1, 1 + ηki (ωi) ≥ 0, P 0
i (ηki (ωi) < 0) > 0, P 0

i (ηki (ωi) > 0) > 0,

i = 1, N, k = 1, Nn, and
Ni⋃
k=1

V k
i−1 = Ωi−1, , k 6= s. Then, if to put

{ωi ∈ Ω0
i , η

k
i (ωi) ≤ 0} = A0,k−

i , {ωi ∈ Ω0
i , η

k
i (ωi) > 0} = A0,k+

i ,

we obtain

Ω−i =

Ni⋃
k=1

[A0,k−
i × V k

i−1], Ω+
i =

Ni⋃
k=1

[A0,k+
i × V k

i−1], i = 1, N. (12)

∆Sn(ω1, . . . , ωn−1, ωn) ≤ 0, (ω1, . . . , ωn−1, ωn) ∈ Ω−n , , n = 1, N,

∆Sn(ω1, . . . , ωn−1, ωn) > 0, (ω1, . . . , ωn−1, ωn) ∈ Ω+
n , n = 1, N. (13)

In this section, we present the construction of the set of measures on the ba-
sis of evolution of risky assets given by the formulas (9), (11) on the measur-
able space {ΩN ,FN}. For this purpose, we use the set of nonnegative random
values αn({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), given on the probability space

{Ω−n × Ω+
n ,F−n × F+

n , P
−
n × P+

n }, n = 1, N, where F−n = Fn ∩ Ω−n , F+
n = Fn ∩ Ω+

n .
The measure P−n is a contraction of the measure Pn on the σ-algebra F−n and the
measure P+

n is a contraction of the measure Pn on the σ-algebra F+
n . After that, we

prove that this set of measures, defined the above set of random values, is equiv-
alent to the measure PN . At last, Theorem 1 gives the sufficient conditions under
that the constructed set of measures is a set of martingale measures for the con-
sidered evolution of risky assets. Sometimes, we use the abbreviated denotations
{ω1

1, . . . , ω
1
n} = {ω}1

n, {ω2
1, . . . , ω

2
n} = {ω}2

n.

We assume that the set of random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

αn({ω}1
n; {ω}2

n), ({ω}1
n; {ω}2

n) ∈ Ω−n × Ω+
n , n = 1, N, satisfies the following con-

ditions:

Derivatives Pricing in Non-Arbitrage Market
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III. Construction of the Set of Martingale Measures

V k
i−1 ∩ V s

i−1 = ∅



 
 

 
 

 
 
 
 
 
 
 
 
 
 

P−n × P+
n (({ω}1

n; {ω}2
n) ∈ Ω−n × Ω+

n , αn({ω}1
n; {ω}2

n) > 0) =

Pn(Ω−n )× Pn(Ω+
n ), n = 1, N ; (14)∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1,

(ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N ; (15)∫
Ω0

n×Ω0
n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1, n = 1, N. (16)

In the next Lemma 1, we give the sufficient conditions under which the conditions
(14) - (16) are valid.

Suppose that for Ωa
n, a = −,+, n = 1, N, the representations (5) are

true. If the conditions

inf
1≤k≤Nn

P 0
n(A0,k−

n \B0,k−
n,i ) > 0, i = 1, In, In > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(A0,k+

n \B0,k+
n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(B0,k−

n,i ) > 0, i = 1, In, In > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(B0,k+

n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

∫
ΩN

∆S−n (ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N, (17)

are true, then the set of bounded random values αn({ω}1
n; {ω}2

n), satisfying the con-
ditions (14) - (16), is a nonempty set.
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Lemma 1. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Proof. Let us put

αi−n (ω1
1, . . . , ω

1
n) =

Nn∑
k=1

α−n,k,i(ω
1
n)χA0,k−

n
(ω1

n)χV k
n−1

(ω1
1, . . . , ω

1
n−1),

αs+n (ω2
1, . . . , ω

2
n) =

Nn∑
k=1

α+
n,k,s(ω

2
n)χA0,k+

n
(ω2

n)χV k
n−1

(ω2
1, . . . , ω

2
n−1),

where

α−n,k,i(ω
1
n) = (1− δni )

χB0,k−
n,i

(ω1
n)

P 0
n(B0,k−

n,i )
+ δni

χA0,k−
n \B0,k−

n,i
(ω1

n)

P 0
n(A0,k−

n \B0,k−
n,i )

,

0 < δni < 1, i = 1, In, k = 1, Nn, (18)

α+
n,k,s(ω

2
n) = (1− µns )

χB0,k+
n,s

(ω2
n)

P 0
n(B0,k+

n,s )
+ µns

χA0,k+
n \B0,k+

n,s
(ω2

n)

P 0
n(A0,k+

n \B0,k+
n,s )

,

0 < µns < 1, s = 1, Sn, k = 1, Nn. (19)

If to introduce the nonnegative set of real numbers

γi,s ≥ 0, i = 1, In, s = 1, Sn,

In,Sn∑
i,s=1

γi,s = 1, n = 1, N, (20)

then

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

In,Sn∑
i,s=1

γi,sα
i−
n (ω1

1, . . . , ω
1
n)αs+n (ω2

1, . . . , ω
2
n), n = 1, N, (21)

satisfies the condition (14) - (16).

Really, due to the Lemma 1 conditions, the random values αn({ω}1
n; {ω}2

n}),
n = 1, N, are strictly positive by construction. Therefore, the conditions (14) are
true.

Due to the boundedness of αn({ω}1
n; {ω}2

n}) ≤ C, n = 1, N, 0 < C < ∞, the
inequalities ∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) ≤
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are true for almost everywhere (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N, relative to the

measure Pn−1, owing to the inequalities (17) and Foubini Theorem. This proves
the inequality (15). The equality (16) is also satisfied due to the construction of
αn({ω}1

n; {ω}2
n). Lemma 1 is proved.

The values, which the random variables αn({ω}1
n; {ω}2

n}), n = 1, N, constructed
in Lemma 1, take, are determined by the values at points ω1

n ∈ Ω0−
n and ω2

n ∈ Ω0+
n

for all (ω1, . . . , ωn−1) ∈ Ωn−1.

On the basis of the set of random values αn({ω}1
n; {ω}2

n), n = 1, N, constructed
in Lemma 1, let us introduce into consideration the family of measure µ0(A) on the
measurable space {ΩN ,FN} by the recurrent relations

µ
(ω1,...,ωN−1)
N (A) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
dP 0

N(ω1
N)dP 0

N(ω2
N), (23)

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 2, N, (24)

µ0(A) =

∫
Ω0

1×Ω0
1

χΩ−
1

(ω1
1)χΩ+

1
(ω2

1)α1(ω1
1;ω2

1)×

[
∆S+

1 (ω2
1)

V1(ω1
1, ω

2
1)
µ

(ω1
1)

1 (A) +
∆S−1 (ω1

1)

V1(ω1
1, ω

2
1)
µ

(ω2
1)

1 (A)

]
dP 0

1 (ω1
1)dP 0

1 (ω2
1), (25)

”

C

∫
Ω0

n

∆S−n (ω1, . . . , ωn−1, ω
1
n)dP 0

n(ω1
n) <∞, n = 1, N, (22)
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Suppose that the conditions of Lemma 1 are true. For the measure µ0(A)
A ∈ FN , constructed by the recurrent relations (23) - (25), the representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (27)

is true and µ0(ΩN) = 1, that is, the measure µ0(A) is a probability measure being
equivalent to the measure PN , where we put

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (28)

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (29)

2
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (30)

Proof. Due to Lemma 1 conditions, the set of the strictly positive bounded random
values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions (14) - (16), is a non empty

set. We prove Lemma 2 by induction down. Let us denote

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN). (31)

Then, ∫
Ω0

N

N(ω1, . . . , ωN−1, ωN)µ
(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

where we put

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN−1, ωN), A ∈ FN . (26)
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∫
Ω0

N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N) 1

N(ω1, . . . , ωN−1, ω
1
N)µ

(ω1,...,ωN−1,ω
1
N )

N (A)dP 0
N(ω1

N)+

∫
Ω0

N

χΩ+
N

(ω1, . . . , ωN−1, ω
2
N) 2

N(ω1, . . . , ωN−1, ω
2
N)µ

(ω1,...,ωN−1,ω
2
N )

N (A)dP 0
N(ω2

N). (32)

Substituting 1
N(ω1, . . . , ωN−1, ω

1
N), ψ2

N(ω1, . . . , ωN−1, ω
2
N) into (32), we obtain

∫
Ω0

N

N(ω1, . . . , ωN−1, ωN)µ
(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
dP 0

N(ω1
N)dP 0

N(ω2
N) =

µ
(ω1,...,ωN−1)
N−1 (A). (33)

Suppose that we are proved that

µ(ω1,...,ωn−1,ωn)
n (A) =

∫
N∏

i=n+1
Ω0

i

N∏
i=n+1

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)
N∏

i=n+1

dP 0
i (ωi). (34)

Let us calculate

∫
Ω0

N

χΩ+
N

(ω1, . . . , ωN−1, ωN) 2
N(ω1, . . . , ωN−1, ωN)µ

(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

∫
Ω0

N

χΩ−
N

(ω1, . . . , ωN−1, ωN) 1
N(ω1, . . . , ωN−1, ωN)µ

(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN)+
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∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)

n (A)dP 0
n(ωn)+

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)

n (A)dP 0
n(ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n) 1

n(ω1, . . . , ωn−1, ω
1
n)µ(ω1,...,ωn−1,ω1

n)
n (A)dP 0

n(ω1
n)+

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n) 2

n(ω1, . . . , ωn−1, ω
2
n)µ(ω1,...,ωn−1,ω2

n)
n (A)dP 0

n(ω2
n). (35)

Substituting 1
n(ω1, . . . , ωn−1, ω

1
n), ψ2

n(ω1, . . . , ωn−1, ω
2
n) into (35), we obtain

∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n). (36)

From the recurrent relations (23) - (25), we have

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

µ(ω1,...,ωn−1,ω1
n)

n (A)+
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∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N. (37)

From the last equality, we have

Substituting into (38) the induction supposition (34), we obtain

µ
(ω1,...,ωn−1)
n−1 (A) =∫

N∏
i=n

Ω0
i

N∏
i=n

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)
N∏
i=n

dP 0
i (ωi). (39)

To prove that µ0(ΩN) = 1, let us prove the equality∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) = 1, (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (40)

We have ∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1. (41)

The last equality follows from the fact that the set of random values αn({ω1}1
n; {ω1}2

n),
n = 1, N, satisfies the condition (16). The equalities (40) proves that every measure
(27), defined by the set of random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N,

satisfying the conditions (14), (16), is a probability measure being equivalent to the
measure PN .
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µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn), n = 1, N. (38)𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Due to the equality (40), the contraction of measure µ0(A), A ∈ FN , on
the σ-algebra Fn of filtration we denote by µn0 . If A belongs to the σ-algebra Fn
of filtration, then A = B ×

N∏
i=n+1

Ω0
i , where B belongs to the σ-algebra Fn of the

measurable space {Ωn,Fn}, therefore, for this contraction we obtain the formula

µn0 (A) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi), B ∈ Fn. (42)

Further, we also use the probability spaces {Ωn,Fn, µn0}, n = 1, N, where under the
measure µn0 (B), B ∈ Fn, we understand the measure, given by the formula

µn0 (B) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi), B ∈ Fn. (43)

Assume that for αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), constructed in

Lemma 1, the inequalities

0 < cn ≤ αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) ≤ Cn <∞,

are true. Suppose that the conditions

∆S−n (ω1, . . . , ωn−1, ωn) ≤ Bn <∞, n = 1, N, (44)

are valid, where cn, Cn, Bn are constant, then the set of equivalent measures to the
measure PN , described in Lemma 2, is nonempty one.

Proof. Due to Lemma 2 conditions, the equality (14) is true. Further,∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) ≤ Bn,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1, (ω1, . . . , ωn−1) ∈ Ωn−1,∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1. (45)

This proves Lemma 2
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The last inequality and the equality (45) means that the conditions (14) - (16)
are satisfied. Note 2 is proved.

For the nonnegative random value αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), given on the

measurable space {Ω−n × Ω+
n ,F−n × F+

n }, F−n = Fn ∩ Ω−n , F+
n = Fn ∩ Ω+

n , n = 1, N,
let us define the integral for the nonnegative random value fN(ω1, . . . , ωN) relative
to the measure µ0(A) using the recurrent relations

µfNn−1(ω1, . . . , ωn−1) =∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µfNn (ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µfNn (ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N, (46)

µfNN−1(ω1, . . . , ωN−1) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×[

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
fN(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
fN(ω1, . . . , ωN−1, ω

2
N)

]
dP 0

N(ω1
N)dP 0

N(ω2
N). (47)

From the formula (27) of Lemma 2, it follows that

Eµ0fN =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)fN(ω1, . . . , ωN−1, ωN)
N∏
i=1

dP 0
i (ωi) (48)

for every nonnegative FN -measurable random value fN(ω1, . . . , ωN−1, ωN).

Suppose that the conditions of Lemma 1 are true. Then, the set of
nonnegative random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (49)
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is a nonempty one and the convex linear span of the set of measures (27), defined
by the random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the con-

ditions (49), is a set of martingale measures being equivalent to the measure PN .

Proof. Taking into account the equality (40), the conditions (49) can be written in
the form ∫

ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
n∏
i=1

dP 0
i (ωi) =

2

∫
Ωn−1

n−1∏
i=1

i(ω1, . . . , ωi)

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

×

dP 0
n(ω1

n)dP 0
n(ω2

n)
n−1∏
i=1

dP 0
i (ωi), n = 1, N. (50)

Since the conditions of Lemma 1 are true, then the the set of bounded random
values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, constructed in Lemma 1, satisfy

the conditions (14) - (16).
From the equality (50) for the set of bounded random values αn({ω}1

n; {ω}2
n),

n = 1, N, satisfying the conditions (14) - (16), we obtain the inequality∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) ≤

C

∫
ΩN

∆S−n (ω1, . . . , ωn−1, ω
1
n)dPN <∞, n = 1, N, (51)

for a certain constant 0 < C <∞. This proves that the set of nonnegative random
values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the conditions (49), is a

non empty set.
Let us prove that∫

Ω0
n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) = 0,

(ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (52)
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Really, ∫
Ω0

n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
− ∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

∆S−n (ω1, . . . , ωn−1, ω
1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) = 0, (53)

due to the condition (15).

To complete the proof of Theorem 1, let A belongs to the filtration Fn−1, then

A = B ×
N∏
i=n

Ω0
i , where B belongs to the σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Taking into account the equality (41), (53), we have, due to Foubini
theorem,

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)∆Sn(ω1, . . . , ωn)
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) =

∫
Ωn−1

n−1∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn−1)
n−1∏
i=1

dP 0
i (ωi)×

(54)

The last means that Eµ0{Sn(ω1, . . . , ωn)|Fn−1} = Sn−1(ω1, . . . , ωn−1). Since every
measure, belonging to the convex linear span of the measures considered above, is
a finite sum of such measures, then it is a martingale measure being equivalent to
the measure PN . Theorem 1 is proved.

Our aim is to describe this convex span of martingale measures in particular
cases.
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Ω0

n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) = 0.𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section, we prove some inequalities, which will be very useful for to prove
optional decomposition for super-martingale relative to all martingale measures.
First, we prove an integral inequality for a nonnegative random variable under the
fulfillment of the inequality for this nonnegative random variable with respect to
the constructed family of measures µ0(A). Further, using this integral inequality for
the non-negative random variable, a pointwise system of inequalities is obtained for
this non-negative random variable for a particular case. After that, the pointwise
system of inequalities is obtained for the non-negative random variable in the general
case. Then, using the resulting pointwise system of inequalities, the inequality is
established for this non-negative random variable whose right-hand side is such that
its conditional mathematical expectation is equal to one.

Let {Ω1,F1} be a measurable space. The decomposition An,k, n, k =
1,∞, of the space Ω1 we call exhaustive one, if the following conditions are valid:

1) An,k ∈ F1, An,k ∩ An,s = ∅, k 6= s,
∞⋃
k=1

An,k = Ω1, n = 1,∞;

2) the (n + 1)-th decomposition is a sub-decomposition of the n-th one, that is, for
every j, An+1,j ⊆ An,k for a certain k = k(j);
3) the minimal σ-algebra containing all An,k, n, k = 1,∞, coincides with F1.

Let {Ω1,F1} be a measurable space with a complete separable metric
space Ω1 and Borel σ-algebra F1 on it. Then, {Ω1,F1} has an exhaustive decompo-
sition.

The proof of Lemma 3 see, for example, in [15], [16].
For the proof of integral inequalities, we cannot require the fulfillment for the

random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, the condition (15) in the

Lemma 4.

Suppose that Ω0
n is a complete separable metric space, F0

n is a correspond-
ing Borel σ-algebra on Ω0

n, n = 1, N, and the conditions of Lemma 1 are valid. If,
on the probability space {Ωn−1,Fn−1, µ

n−1
0 }, for each B ∈ Fn−1, µ

n−1
0 (B) > 0, the

nonnegative random value fn(ω1, . . . , ωn−1, ωn) satisfies the inequality

1

µn−1
0 (B)

∫
B

∫
Ω0

n

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) ≤ 1, B ∈ Fn−1, (55)

then the inequality ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1,

{ω1, . . . , ωn−1} ∈ Ωn−1, n = 1, N, (56)

is true almost everywhere relative to the measure Pn−1.

Proof. The metric space Ωn−1 is a complete separable metric space with the met-

ric ρ(x, y) =
n−1∑
i=1

ρi(xi, yi), where x = (x1, . . . , xn−1), y = (y1, . . . , yn−1) ∈ Ωn−1,

(xi, yi) ∈ Ω0
i , ρi(xi, yi) is a metric in Ω0

i . This means that the metric space
Ωn−1 has an exhaustive decomposition{Bmk}∞m,k=1. Suppose that (ω1, . . . , ωn−1) ∈
Bm,k for a certain k, depending on m, and there exists an infinite number
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IV. Inequalities for the Nonnegative Random Values

Lemma 3. 

Lemma 4. 

Definition 1. 
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𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

of m for which µn−1
0 (Bm,k) > 0. On the probability space {Ωn−1,Fn−1, µ

n−1
0 },

for every integrable finite valued random value ϕn−1(ω1, . . . , ωn−1) the sequence

Eµn−1
0 {ϕn−1(ω1, . . . , ωn−1)|F̄m} converges to ϕn−1(ω1, . . . , ωn−1) with probability

one, as m → ∞, since it is a regular martingale. Here, we denoted F̄m the σ-
algebra, generated by the sets Bm,k, k = 1,∞.

It is evident that for those Bm,k, for which µn−1
0 (Bm,k) 6= 0,

Eµn−1
0 {ϕn−1(ω1, . . . , ωn)|F̄m} =∫

Bm,k

ϕn−1(ω1, . . . , ωn−1)dµn−1
0

µ
n−1
0 (Bm,k)

, (ω1, . . . , ωn) ∈ Bm,k. (57)

Denote Am = Am(ω1, . . . , ωn−1) those sets Bm,k for which (ω1, . . . , ωn) ∈ Bm,k for
a certain k, depending on m, and µn−1

0 (Am) > 0. Then, for every integrable finite
valued ϕn−1(ω1, . . . , ωn−1)

lim
m→∞

∫
Am

ϕn−1(ω1, . . . , ωn−1)dµn−1
0

µn−1
0 (Am)

= ϕn−1(ω1, . . . , ωn−1) (58)

almost everywhere relative to the measure µn−1
0 . If to put

ϕn−1(ω1, . . . , ωn−1) =

(59)

then we obtain the proof of Lemma 4.

In Theorem 2, we assume that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the repre-
sentation

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ωn)ηn(ωn) =

dn(ω1, . . . , ωn−1, ωn)ηn(ωn), n = 1, N, S0 > 0, (60)

is true, where the random values dn(ω1, . . . , ωn−1, ωn), an(ω1, . . . , ωn−1, ωn), ηn(ωn),
n = 1, N, given on the probability space {Ωn,Fn, Pn}, satisfy the conditions

0 < an(ω1, . . . , ωn−1, ωn) ≤ 1, 1 + an(ω1, . . . , ωn−1, ωn)ηn(ωn) > 0,

dn(ω1, . . . , ωn−1, ωn) > 0, P 0
n(ηn(ωn) > 0) > 0, P 0

n(ηn(ωn) < 0) > 0. (61)

From these conditions we obtain Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1, where

Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0}.
From the suppositions above, it follows that P 0

n(Ω0−
n ) > 0, P 0

n(Ω0+
n ) > 0. The

measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n = Ω0−

n ∩ F0
n,

P 0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩ F0
n.
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∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn), (ω1, . . . , ωn−1) ∈ Ωn−1,𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let Ω0
i be a complete separable metric space and let F0

i be a Borell
σ-algebra on Ω0

i , i = 1, N. Suppose that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the
representation (60) is valid and Lemma 4 conditions are true. Then, for the non-
negative random value fn(ω1, . . . , ωn−1, ωn) the inequalities

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1,

(ω1, . . . , ωn−1) ∈ Ωn−1, (ω1
n, ω

2
n) ∈ Ω0−

n × Ω0+
n , n = 1, N, (62)

are true almost everywhere relative to the measure Pn−1 × P 0−
n × P 0+

n on the mea-
surable space {Ωn−1 × Ω0−

n × Ω0+
n ,Fn−1 ×F0−

n ×F0+
n }.

Proof. Under Theorem 2 conditions, the set of martingale measures is a nonempty
one. Due to the equality (40), we obtain∫

ΩN

N∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi). (63)

Further, ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n). (64)

χΩ−
n

(ω1, . . . , ω
1
n) = χΩn−1(ω1, . . . , ωn−1)χΩ0−

n
(ω1

n),

χΩ+
n

(ω1, . . . , ω
2
n) = χΩn−1(ω1, . . . , ωn−1)χΩ0+

n
(ω2

n). (65)
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Due to Lemma 4, the inequality∫
Ω0

n

∫
Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1, (66)

is true almost everywhere relative to the measure Pn−1 on the σ-algebra Fn−1. Let
us put

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n}) = αn(ω1

n;ω2
n), (67)

where αn(ω1
n;ω2

n) satisfy the condition∫
Ω0−

n

∫
Ω0+

n

αn(ω1
n;ω2

n)dP 0
n(ω1

n)dP 0
n(ω2

n) = 1. (68)

Since, on the probability space {Ω0−
n ×Ω0+

n ,F0−
n ×F0+

n , P 0−
n ×P 0+

n }, there exists an
exhaustive decomposition {Am,k}∞m,k=1, let us put

αn(ω1
n;ω2

n) = (1− ε)
χAm,k

(ω1
n;ω2

n)

µn(Am,k)
+ ε

χΩ0−
n ×Ω0+

n \Am,k
(ω1

n;ω2
n)

µn(Ω0−
n × Ω0+

n \ Am,k)
, (69)

where µn(A) = [P 0−
n ×P 0+

n ](A), A ∈ F0−
n ×F0+

n , and we assume that µn(Am,k) > 0,
µn(Ω0−

n × Ω0+
n \ Am,k) > 0. Suppose that (ω1

n;ω2
n) ∈ Am,k and µn(Am,k) > 0 for the

infinite number of m and k. Then,∫
Ω0

n

∫
Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
(1− ε)

χAm,k
(ω1

n;ω2
n)

µn(Am,k)
+ ε

χΩ0−
n ×Ω0+

n \Am,k
(ω1

n;ω2
n)

µn(Ω0−
n × Ω0+

n \ Am,k)

]
×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1. (70)

Going to the limit as m, k →∞ and then as ε→ 0, we obtain the inequality

χΩ0,−
n

(ω1
n)χΩ0,+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1 (71)
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Let Ω0
n be a complete separable metric space and let F0

n be a Borel σ-
algebra on Ω0

n, n = 1, N . If the conditions of Lemma 4 are true, then the inequality

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1, (72)

is valid almost everywhere relative to the measure Pn−1×[P 0
n×P 0

n ] on the measurable
space {Ωn−1 × Ω0

n × Ω0
n,Fn−1 ×F0

n ×F0
n}.

Proof. Due to the conditions for Ωa
n, a = −,+, the representation

Ωa
n =

Nn⋃
k=1

[A0,ka
n × V k

n−1] (73)

is true. Owing to Lemma 5 conditions, there exists an exhaustive decomposition

Dn
mi, m, i = 1,∞, such that

∞⋃
i=1

Dn
mi = Ω0

n, m = 1,∞. Let us denote A0,ka
n ∩Dn

mi =

Enka
mi . It is evident that Enka

mi forms an exhaustive decomposition of sets A0,ka
n , n =

1, N, k = 1,∞, a = −,+, correspondingly. Due to Lemma 4, the inequality∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1, (74)

is true almost everywhere relative to the measure Pn−1. The equality∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) (75)

which is valid almost everywhere relative to the measure µn. Theorem 2 is proved.
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𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

is valid. From the equality (75) and Lemma 4, the inequality∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1, (76)

is true almost everywhere relative to the measure Pn−1 on the σ-algebra Fn−1. Let
us put

αm,i+n (ω2
1, . . . , ω

2
n) =

Nn∑
k=1

α+
n,k,m,i(ω

2
n)χA0,k+

n
(ω2

n)χV k
n−1

(ω2
1, . . . , ω

2
n−1),

αr,s,m,in ({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) = αr,s−n (ω1

1, . . . , ω
1
n)αm,i+n (ω2

1, . . . , ω
2
n), (77)

where

α−n,k,r,s(ω
1
n) =

[
(1− δ)

χEnk−
rs

(ω1
n)

P 0
n(Enk−

rs )
+ δ

χA0k−
n \Enk−

rs
(ω1

n)

P 0
n(A0k−

n \ Enk−
rs )

]
,

α+
n,k,m,i(ω

2
n) =

[
(1− δ)

χEnk+
mi

(ω2
n)

P 0
n(Enk+

mi )
+ δ

χA0k+
n \Enk+

mi
(ω2

n)

P 0
n(A0k+

n \ Enk+
mi )

]
, 0 < δ < 1. (78)

In the formulas (78), we assume that the inequalities

P 0
n(Enk−

rs ) > 0, P 0
n(A0k−

n \ Enk−
rs ) > 0, P 0

n(Enk+
mi ) > 0, P 0

n(A0k+
n \ Enk+

mi ) > 0, (79)

are true. Let us consider

αr,s,m,in ({ω1, . . . , ωn−1, ω
1
n−1}; {ω1, . . . , ωn−1, ω

2
n}) =

αr,s−n (ω1, . . . , ωn−1, ω
1
n)αm,i+n (ω1, . . . , ωn−1, ω

2
n). (80)

Suppose that (ω1, . . . , ωn−1) ∈ V k
n−1 for a certain k. Then,
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αr,s−n (ω1
1, . . . , ω

1
n) =

Nn∑
k=1

α−n,k,r,s(ω
1
n)χA0,k−

n
(ω1

n)χV k
n−1

(ω1
1, . . . , ω

1
n−1),



 
 

 
 

 
 
 
 
 
 
 
 
 
 

αr,s,m,in ({ω1, . . . , ωn−1, ω
1
n−1}; {ω1, . . . , ωn−1, ω

2
n}) =[

(1− δ)
χEnk−

rs
(ω1

n)

P 0
n(Enk−

rs )
+ δ

χA0k−
n \Enk−

rs
(ω1

n)

P 0
n(A0k−

n \ Enk−
rs )

]
×

[
(1− δ)

χEnk+
mi

(ω2
n)

P 0
n(Enk+

mi )
+ δ

χA0k+
n \Enk+

mi
(ω2

n)

P 0
n(A0k+

n \ Enk+
mi )

]
. (81)

We assume that the point (ω1
n, ω

2
n) ∈ Enk−

rs × Enk+
mi for the infinite number of r, s

and m, i , where P 0
n(Enk−

rs ) > 0, P 0
n(Enk+

mi ) > 0.
Substituting (81) into (76) and going to the limit as m, k → ∞ r, s → ∞ and

then as δ → 0, we obtain the needed inequality. Lemma 5 is proved.

Suppose that the conditions of Theorem 2 are true. If for a certain
ω1
n ∈ Ω0−

n and ω2
n ∈ Ω0+

n the inequalities

sup
(ω1,...,ωn−1)∈Ωn−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
<∞,

sup
(ω1,...,ωn−1)∈Ωn−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
<∞, n = 1, N, (82)

are true, then the nonnegative random values fn(ω1, . . . , ωn−1, ωn), n = 1, N, satisfy
the inequalities

fn(ω1, . . . , ωn−1, ωn) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (83)

where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.

Proof. From the inequality (71), it follows the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤

1 +
1− fn(ω1, . . . , ωn−1, ω

1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n), ω1

n ∈ Ω0−
n , ω2

n ∈ Ω0+
n . (84)

Let us define

γn−1(ω1, . . . , ωn−1) = inf
{ω1

n,η
−
n (ω1

n)>0}

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)
, (85)

then, taking into account the inequality (84), we obtain the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 + γn−1(ω1, . . . , ωn−1)∆S+

n (ω1, . . . , ωn−1, ω
2
n). (86)

From the definition of γn−1(ω1, . . . , ωn−1), we obtain the inequality
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fn(ω1, . . . , ωn−1, ω
1
n) ≤ 1− γn−1(ω1, . . . , ωn−1)∆S−n (ω1, . . . , ωn−1, ω

1
n). (87)

The inequalities (86), (87) give the inequality

fn(ω1, . . . , ωn−1, ωn) ≤ 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn). (88)

Let us prove the boundedness of γn−1(ω1, . . . , ωn−1). From the inequalities (86), (87)
we obtain

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≥

γn−1(ω1, . . . , ωn−1) ≥ − 1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
. (89)

Due to Theorem 3 conditions, we obtain the boundedness of γn−1(ω1, . . . , ωn−1).
The Fn−1 measurability of the random value γn−1(ω1, . . . , ωn−1) follows from the
fact that Ω0

n is separable metric space and infimum is reached on the countable set,
which is dense in Ω0

n. Theorem 3 is proved.

Let the conditions of Lemma 5 be valid. If there exist ω1
n ∈ A0k−

n , ω2
n ∈

A0k+
n , and the real numbers ak, bk, k = 1, Nn, such that

sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)

= ank <∞,

sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
= bnk <∞, k = 1, Nn, n = 1, N,

max
1≤n≤N

sup
1≤k≤Nn

max{ank , bnk} <∞, (90)

then there exists a bounded Fn−1-measurable random value γn−1(ω1, . . . , ωn−1) such
that the inequalities

fn(ω1, . . . , ωn−1, ωn)) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (91)

are true.

Proof. For ω1
n ∈ A0k−

n , ω2
n ∈ A0k+

n and (ω1, . . . , ωn−1) ∈ V k
n−1, we have that

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . Then, from the inequality (72),
we obtain the inequality[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1. (92)
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From the inequality (92), it follows the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 +

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n). (93)

Let us define

γkn−1(ω1, . . . , ωn−1) =

inf
{ω1

n∈A
0,k−
n }

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)
, (ω1, . . . , ωn−1) ∈ V k

n−1, (94)

then, taking into account the inequality (93), we have the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 + γkn−1(ω1, . . . , ωn−1)∆S+

n (ω1, . . . , ωn−1, ω
2
n). (95)

From the definition of γkn−1(ω1, . . . , ωn−1), we obtain the inequality

fn(ω1, . . . , ωn−1, ω
1
n) ≤ 1− γkn−1(ω1, . . . , ωn−1)∆S−n (ω1, . . . , ωn−1, ω

1
n). (96)

The inequalities (95), (96) give the inequality

fn(ω1, . . . , ωn−1, ωn) ≤ 1 + γkn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn). (97)

Let us prove the boundedness of γkn−1(ω1, . . . , ωn−1). From the inequalities (95), (96),
we obtain the inequalities

ank = sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≥

γkn−1(ω1, . . . , ωn−1) ≥ − sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
= −bnk . (98)

From this, it follows the boundedness of γkn−1(ω1, . . . , ωn−1). The Fn−1 measurability
of the random value γkn−1(ω1, . . . , ωn−1) follows from the fact that Ω0

n is separable
metric space and infimum is reached on the countable set, which is dense in Ω0

n. To
complete the proof of Theorem 4, let us put

γn−1(ω1, . . . , ωn−1) =
Nn∑
k=1

χV k
n−1

((ω1, . . . , ωn−1)γkn−1(ω1, . . . , ωn−1), (99)

then for such γn−1(ω1, . . . , ωn−1) the inequality (91) are satisfied. Theorem 4 is
proved.
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In this section, we give simple proof of optional decomposition for the nonnegative
super-martingale relative to the set of equivalent martingale measures. Such a proof
first appeared in the paper [16]. First, the optional decomposition for diffusion
processes super-martingale was opened by El Karoui N. and Quenez M. C. [21]. After
that, Kramkov D. O. and Follmer H. [22], [23] proved the optional decomposition for
the nonnegative bounded super-martingales. Folmer H. and Kabanov Yu. M. [24],
[25] proved analogous result for an arbitrary super-martingale. Recently, Bouchard
B. and Nutz M. [26] considered a class of discrete models and proved the necessary
and sufficient conditions for the validity of the optional decomposition.

Let Ω0
i be a complete separable metric space and let F0

i be a Borell
σ-algebra on Ω0

i , i = 1, N. Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of risky
assets satisfies the conditions of Theorems 1, 2, 3, 4, then for every nonnegative
super-martingale {f 1

n(ω1, . . . , ωn)}Nn=0 relative to the set of martingale measure M,
described in Theorem 1, the optional decomposition is true.

Proof. Without loss of generality, we assume that f 1
n(ω1, . . . , ωn) ≥ a, where a is

a real positive number. If it is not so, then we can come to the super-martingale
f 1
n(ω1, . . . , ωn) + a. Let us consider the set of random values

fn(ω1, . . . , ωn) =
f 1
n(ω1, . . . , ωn)

f 1
n−1(ω1, . . . , ωn−1)

, n = 1, N. (100)

Every random value fn(ω1, . . . , ωn) satisfies the conditions of Lemma 4. Due to
Theorems 3, 4, the inequalities

f 1
n(ω1, . . . , ωn)

f 1
n−1(ω1, . . . , ωn−1)

≤ 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn), n = 1, N, (101)

are true, where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.
Since EQ|∆Sn(ω1, . . . , ωn)| <∞, Q ∈M, we have

EQ{γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn)|Fn−1} = 0, Q ∈M, n = 1, N. (102)

Let us denote

ξ0
n(ω1, . . . , ωn) = 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn), n = 1, N. (103)

Then, from the inequalities (101), we obtain the inequalities

f 1
n(ω1, . . . , ωn) ≤

f 1
n−1(ω1, . . . , ωn−1) + f 1

n−1(ω1, . . . , ωn−1)[ξ0
n(ω1, . . . , ωn)− 1], n = 1, N. (104)

Introduce the denotations

gn(ω1, . . . , ωn) =

−f 1
n(ω1, . . . , ωn) + f 1

n−1(ω1, . . . , ωn−1)ξ0
n(ω1, . . . , ωn), n = 1, N. (105)

Then, gn(ω1, . . . , ωn) ≥ 0, n = 1, N, and
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EQgn(ω1, . . . , ωn) ≤ EQf 1
n(ω1, . . . , ωn) + EQf 1

n(ω1, . . . , ωn−1). (106)

The equalities (105) give the equalities

f 1
n(ω1, . . . , ωn) =

f 1
0 +

n∑
i=1

f 1
i−1(ω1, . . . , ωn−1)[ξ0

i (ω1, . . . , ωi)− 1]−
n∑
i=1

gi(ω1, . . . , ωi), n = 1, N.(107)

Let us put

Mn(ω1, . . . , ωn) = f 1
0 +

n∑
i=1

f 1
i−1(ω1, . . . , ωi−1)[ξ0

i (ω1, . . . , ωi)− 1], n = 1, N, (108)

then EQ{Mn(ω1, . . . , ωn)|Fn−1} = Mn−1(ω1, . . . , ωn−1). Theorem 5 is proved.

In this section, we introduce the family of spot measures. After that, we obtain
the representations for the family of spot measures and define integral over these
set of measures. The sufficient conditions are found, under which the integral over
these set of measures is a set of martingale measures being equivalent to the initial
measure. The introduced family of spot measures is a family of extreme points for
these set of equivalent measures.

We give an evident construction of the set of martingale measures for risky
assets evolution, given by the formula (9). First of all, to do that we consider a
simple case as the measures P 0

n is concentrated at two points ω1
n, ω

2
n ∈ Ω0

n, where
ω1
n ∈ A0k−

n , ω2
n ∈ A0k+

n for a certain k, depending on n, for the representation Ω−n
and Ω+

n , given by the formula (5). Let us put P 0
n(ω1

n) = pkn, P
0
n(ω2

n) = 1− pkn, where
0 < pkn < 1. Then, to satisfy the conditions (14) - (16), we need to put

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

1

pkn(1− pkn)
, n = 1, N, (109)

and to require that

∆S−n (ω1, . . . , ωn−1, ω
1
n) <∞, (ω1, . . . , ωn−1, ω

1
n) ∈ Ω−n ,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) <∞, (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (110)

Let us denote µ{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}(A) the measure, generated by the recurrent relations

(23) - (25), for the measures P 0
n , n = 1, N, concentrated at two points. For the point

{ω1
n, ω

2
n}, . . . , {ω1

N , ω
2
N} ∈ ΩN × ΩN , the recurrent relations (23) - (25) is converted

relative to the set of measures µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) into the recurrent relations

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) = χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×
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VI. Spot Measures and Integral Representation for
Martingale Measures



 
 

 
 

 
 
 
 
 
 
 
 
 
 

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
, A ∈ FN , (111)

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) = χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
, n = 2, N, A ∈ FN , (112)

µ{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}(A) = χΩ−

1
(ω1

1)χΩ+
1

(ω2
1)×

[
∆S+

1 (ω2
n)

V1(ω1
1, ω

2
1)
µ

(ω1
1)

{ω1
2 ,ω

2
2},...,{ω1

N ,ω
2
N}

(A) +
∆S−1 (ω1

1)

V1(ω1
1, ω

2
1)
µ

(ω2
1)

{ω1
2 ,ω

2
2},...,{ω1

N ,ω
2
N}

(A)

]
, (113)

where we put

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN−1, ωN), A ∈ FN . (114)

The recurrent relations (111) - (113) we call the recurrent relations for the spot
measures µ{ω1

n,ω
2
n},...,{ω1

N ,ω
2
N}(A).

Let us consider the random values

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (115)

where

1
n(ω1, . . . , ωn−1, ωn) = χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (116)

2
n(ω1, . . . , ωn−1, ωn) = χΩ−

n
(ω1, . . . , ωn−1, ω

1
n)×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (117)
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For the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (118)

is true.

Proof. The proof of Lemma 6 we lead by induction down. Let us prove the equality

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) =

2∑
iN=1

N(ω1, . . . , ωN−1, ω
iN
N )χA(ω1, . . . , ωN−1, ω

iN
N ). (119)

Really,

N(ω1, . . . , ωN−1, ω
1
N)χA(ω1, . . . , ωN−1, ω

1
N)+

N(ω1, . . . , ωN−1, ω
2
N)χA(ω1, . . . , ωN−1, ω

2
N) =[

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

+

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

1
N)

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

]
×

χA(ω1, . . . , ωN−1, ω
1
N)+

Derivatives Pricing in Non-Arbitrage Market

[
χΩ−

N
(ω1, . . . , ωN−1, ω

2
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

+

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

]
×

χA(ω1, . . . , ωN−1, ω
2
N) =

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN . (120)
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The last prove the needed. Suppose that we proved that the equality

µ
(ω1,...,ωn−1,ωn)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A) =

2∑
in+1=1

. . .

2∑
iN=1

N∏
j=n+1

j(ω1, . . . , ωn, ω
in+1

n+1 , . . . , ω
ij
j )χA(ω1, . . . , ωn, ω

in+1

n+1 , . . . , ω
iN
N ),

A ∈ FN , (121)

is true. By the same way as above, we have

2∑
in=1

n(ω1, . . . , ωn−1, ω
in
n )µ

(ω1,...,ωn−1,ω
in
n )

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A) =

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
=

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A), A ∈ FN . (122)

The last proves Lemma 6.

Let us define the integral for the random value fN(ω1, . . . , ωN−1, ωN) relative to
the measure µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) by the formula∫

ΩN

fN(ω1, . . . , ωN−1, ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )fN(ωi11 , . . . , ω

iN
N ). (123)

To describe the convex set of equivalent martingale measures, we introduce the
family of α-spot measures, depending on the point ({ω1

1, {ω2
1}, . . . , {ω1

N , {ω2
N}) be-

longing to ΩN × ΩN and the set of strictly positive random values

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, (124)

at points Wn = ({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), being constructed by the point

({ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}).
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Further, in this section, we assume that the evolution of risky asset is given by
the formula (9). Therefore, in this case

Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1, n = 1, N, (125)

and the condition (16) is formulated, as follows:∫
Ω0

n×Ω0
n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

dP 0
n(ω1

n)dP 0
n(ω2

n) = 1, n = 1, N. (126)

Let us determine the random values

α
n(ω1, . . . , ωn) = χΩ−

n
(ω1, . . . , ωn−1, ωn) 1

n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (127)

1
n(ω1, . . . , ωn−1, ωn) =

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (128)

2
n(ω1, . . . , ωn−1, ωn) =

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})χΩ−

n
(ω1, . . . , ωn−1, ω

1
n)×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (129)

Let us define the set of α-spot measures on the σ-algebra FN by the formula

µαWN
(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

α
j (ωi11 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (130)

and the set of the measures

µ0(A) =∫
ΩN×ΩN

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

α
j (ωi11 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N )dPN × dPN , A ∈ FN . (131)
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Suppose that the conditions of Lemma 1 are true. If the strictly positive
random values

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, (132)

given on the probability space {Ωn × Ωn,Fn × Fn, Pn × Pn}, n = 1, N, satisfy the
conditions (126), then for the measure µ0(A), given by the formula (131), the rep-
resentation

µ0(A) =∫
ΩN×ΩN

N∏
i=1

αi({ω1
1, . . . , ω

1
i }; {ω2

1, . . . , ω
2
i })µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A)dPN × dPN (133)

is true.

Proof. Due to Lemma 1, the set of random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}),

n = 1, N, satisfying the conditions (126), is a non empty set.

We prove Theorem 6 by induction down. For the spot measure the relation

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) =

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN , (134)

is true. Multiplying the relation (134) on αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})

and after that, integrating relative to the measure P 0
N ×P 0

N on the set Ω0
N ×Ω0

N , we
obtain ∫

Ω0
N

∫
Ω0

N

αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})×

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A)dP 0
N(ω1

N)dP 0
N(ω2

N) =

∫
Ω0

N

∫
Ω0

N

αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})×

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×
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[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
dP 0

N(ω1
N)dP 0

N(ω2
N) =

µ
(ω1,...,ωN−1)
N−1 (A), A ∈ FN . (135)

Suppose that we proved the equality∫
N∏

i=n+1
[Ω0

i×Ω0
i ]

N∏
i=n+1

αi({ω1
1, . . . , ω

1
n, ω

1
n+1, . . . , ω

1
i }; {ω2

1, . . . , ω
2
n, ω

2
n+1, . . . , ω

2
i })×

µ
(ω1,...,ωn)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)
N∏

i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = µ(ω1,...,ωn)
n (A). (136)

Then, using the induction supposition (136), the relation for the spot measure

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) =

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
, A ∈ FN , (137)

and multiplying it on
N∏
i=n

αi({ω1
1, . . . , ω

1
n−1, ω

1
n, . . . , ω

1
i }; {ω2

1, . . . , ω
2
n−1, ω

2
n, . . . , ω

2
i })

and then integrating relative to the measure
N∏
i=n

[P 0
i × P 0

i ] on the set
N∏
i=n

[Ω0
i × Ω0

i ],

we obtain the equality∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n})
[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+
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∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

µ
(ω1,...,ωn−1)
n−1 (A), n = 1, N. (138)

Thus, we proved the following recurrent relations

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n})
[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N. (139)

To finish the proof of Theorem 6, let us calculate∫
Ω0

N×Ω0
N

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N )dP 0

N(ω1
N)dP 0

N(ω2
N). (140)

Calculating the expression

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N ) =

α
N(ω1, . . . , ωN−1, ω

1
N)χA(ω1, . . . , ωN−1, ω

1
N)+

α
N(ω1, . . . , ωN−1, ω

2
N)χA(ω1, . . . , ωN−1, ω

2
N) =

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})×

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN , (141)

and substituting (141) into (140), we obtain the equality∫
Ω0

N×Ω0
N

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N )dP 0

N(ω1
N)dP 0

N(ω2
N) =
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µ
(ω1,...,ωN−1)
N−1 (A). (142)

Suppose that we already proved the equality∫
N∏

i=n+1
Ω0

i×Ω0
i

2∑
in+1=1

. . .
2∑

iN=1

N∏
j=1

α
j (ω1, . . . , ωn, ω

in+1

n+1 . . . , ω
ij
j )

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i ) =

µ(ω1,...,ωn)
n (A). (143)

Then, acting as above, we obtain the equalities∫
Ω0

n×Ω0
n

2∑
in=1

α
n(ω1, . . . , ωn−1, ω

in
n )µ(ω1,...,ωn−1,ω

in
n )

n (A)dP 0
n(ω1

n)dP 0
n(ω2

n) =

∫
Ω0

n×Ω0
n

αn({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})×

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

µ
(ω1,...,ωn−1)
n−1 (A), A ∈ FN . (144)

We proved that the recurrent relations (144) are the same as the recurrent relations
(139). This proves Theorem 6.

Let us introduce the denotations

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j ),

WN = {ω1
1, . . . , ω

1
N ;ω2

1, . . . , ω
2
N} = {{ω}1

N , {ω}2
N}. (145)

Further, only those points ({ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}) ∈ ΩN ×ΩN play important role

for which µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) 6= 0.

Below, in the next two Theorems, we assume that the random value

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) (146)

given on the probability space {Ωn × Ωn,Fn × Fn, Pn × Pn}, n = 1, N, satisfy the
conditions (126).
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Under the above conditions, for the measure µ0(A), given by the formula (133),
the representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (147)

is true, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (148)

1
n(ω1, . . . , ωn−1, ωn) =

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n)αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (149)

2
n(ω1, . . . , ωn−1, ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (150)

Due to the conditions (126) relative to the random values αn({ω}1
n; {ω}2

n), we have∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) = 1, n = 1, N. (151)

for n(ω1, . . . , ωn), given by the formula (148). The proof of the equalities (151) is
the same as in Theorem 1.

Suppose that the conditions of Lemma 1 are true. Then, the set of
strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (152)

is a non empty set for the measures µ0(A), given by the formula (133). The measure
µ0(A), constructed by the strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N,

satisfying the conditions (126), (152) is a martingale measure for the evolution of
risky asset, given by the formula (9). Every measure, belonging to the convex linear
span of such measures, is also martingale measure for the evolution of risky asset,
given by the formula (9). They are equivalent to the measure PN . The set of spot
measures µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale measures for the evolution of

risky asset, given by the formula (9).
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Derivatives Pricing in Non-Arbitrage Market

Proof. The first fact, that the set of random values αn({ω}1
n; {ω}2

n), n = 1, N, satis-
fying the conditions (126), (152) is a non empty one, follows from Lemma 1. From
the representation (147) for the set of measures µ0(A), given by the formula (133), as
in the proof of Theorem 1, it is proved that this set of measures is a set of martingale
measures being equivalent to the measure PN .

Let us prove the last statement of Theorem 7. Since for the spot measure
µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (153)

is true, let us calculate

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j ) = j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j ) + j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ+
n

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j )+

χΩ+
n

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

+

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+
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χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j ) = χΩ0−

j
(ω1

j )χΩ0+
j

(ω2
j ) =

{
1, ω1

j ∈ Ω0−
j ω2

j ∈ Ω0+
j ,

0, otherwise,
, j = 1, N. (154)

Further,

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j )∆Sj(ω

i1
1 , . . . , ω

ij
j ) =

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )+

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
2
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )×[

−
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )+

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

]
= 0, j = 1, N. (155)

Let us prove that the set of measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale

measures. Really, for A, belonging to the σ-algebra Fn−1 of the filtration we have

A = B ×
N∏
i=n

Ω0
i , where B belongs to σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Then, ∫
A

∆Sn(ω1, . . . , ωn)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in=1

n∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in−1=1

n−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )×
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Derivatives Pricing in Non-Arbitrage Market

2∑
in=1

n(ωi11 , . . . , ω
in
n )∆Sn(ωi11 , . . . , ω

in
n ) = 0, A ∈ Fn−1. (156)

The last means the needed statement. Theorem 7 is proved.

Below, in Theorem 8, we present the consequence of Theorems 6, 7.

Let the evolution of risky asset be given by the formula (9) and let
Lemma 1 conditions be true. Suppose that the random value αN({ω}1

N ; {ω}2
N), given

on the probability space {Ω−N × Ω+
N ,F

−
N ×F

+
N , P

−
N × P

+
N }, satisfy the conditions

P−N × P
+
N (({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}), αN({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}) > 0) =

N∏
n=1

P 0
n(Ω0−

n )× P 0
n(Ω0+

n ); (157)

∫
Ω0−

n ×Ω0+
n

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

(ω1, . . . , ωn−1) ∈ Ωn−1; (158)

∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = 1, (159)

where

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = (160)

∫
N∏

i=n+1
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i )

∫
N∏

i=n
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n

dP 0
i (ω1

i )dP
0
i (ω2

i )

, n = 1, N.

If the set of strictly positive random values αn({ω}1
n; {ω}2

n), n = 1, N, given by
the formula (160), satisfies the condition

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =
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∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (161)

then, for the martingale measure µ0(A) the representation

µ0(A) =∫
ΩN×ΩN

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A)dPN × dPN (162)

is true.

Proof. The random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, sat-

isfy the conditions (14) - (16), due to the conditions of Theorem 8. It is evident
that

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
n=1

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}). (163)

Due to Theorem 7, µ0(A), given by the formula (162), is a martingale measure being
equivalent to the measure PN .

Let us indicate how to construct the random values αN({ω}1
N ; {ω}2

N), since these
random values determine the set of all martingale measures. Suppose that the
random value αki (ω

1
i , ω

2
i ), k = 1, K, is a bounded strictly positive random value,

given on the measurable space {Ω0−
i × Ω0+

i ,F0−
i × F0+

i }, i = 1, N, and satisfying
the conditions∫

Ω0−
i ×Ω0+

i

αki (ω
1
i , ω

2
i )dP

0
i (ω1

i )dP
0
i (ω2

i ) = 1, i = 1, N, k = 1, K. (164)

Let us denote

αkN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
i=1

αki (ω
1
i , ω

2
i ), k = 1, K, (165)

where K runs natural numbers. If γk, k = 1, K, are strictly positive real numbers

such that
K∑
k=1

γk = 1, then

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

K∑
k=1

γkα
k
N({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}) (166)

satisfy the conditions of Theorem 8. The set of random values (166) is dense in the
set of random values αN({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}), satisfying the condition (157)

- (159). Theorem 8 is proved.
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Another way to construct αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) is to use the equalities

(126). The set of αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) can construct as follows:

suppose that α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) satisfies the inequalities

0 < hn ≤ α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) ≤ Hn <∞ (167)

for a certain real positive numbers hn, Hn. If to put

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) =

α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})∫

Ω0−
n ×Ω0+

n

α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n)
, (168)

then the set of random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N,

is bounded and satisfy the conditions (14) - (16) under the conditions of Theorem
7. We can put

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
n=1

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}). (169)

It is evident that αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, must satisfy

the conditions (161).

In the papers [27], [28], the range of non arbitrage prices are established. In the
paper [27], for the Levy exponential model, the price of super-hedge for call option
coincides with the price of the underlying asset under the assumption that the
Levy process has unlimited variation, does not contain a Brownian component,
with negative jumps of arbitrary magnitude. The same result is true, obtained in
the paper [28], if the process describing the evolution of the underlying asset is a
diffusion process with the jumps described by Poisson jump process. In these papers
the evolution is described by continuous processes. Below, we consider the discrete
evolution of risky assets that is more realistic from the practical point of view. Two
types of risky asset evolutions are considered: 1) the price of an asset can take any
non negative value; 2) the price of the risky asset may not fall below a given positive
value for finite time of evolution. For each of these types of evolutions of risky assets,
the bounds of non-arbitrage prices for a wide class of contingent liabilities are found,
among which are the payoff functions of standard call and put options.

Below, on the probability space {ΩN ,FN , PN}, where ΩN =
N∏
i=1

Ω0
i , FN =

N∏
i=1

F0
i ,

PN =
N∏
i=1

P 0
i , Ω0

i is a complete separable metric space, F0
i is a Borel σ-algebra on

Ω0
i , P

0
i is a probability measure on F0

i , i = 1, N, we consider the evolution of risky
asset given by the formula

Sn(ω1, . . . , ωn) =
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S0

n∏
i=1

(1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1)), n = 1, N, (170)

where ai(ω1, . . . , ωi−1), σi(ω1, . . . , ωi−1) are Fi−1-measurable random values, satis-
fying the conditions 0 < ai(ω1, . . . , ωi−1) ≤ 1, σi(ω1, . . . , ωi−1) ≥ σi > 0, where
σi, i = 1, N, are real positive numbers. Further, we assume that the random value
εi(ωi) satisfy the conditions: there exists ω1

i ∈ Ω0
i such that εi(ω

1
i ) = 0, i = 1, N,

and for every real number t > 0, P 0
i (εi(ωi) < −t) > 0, P 0

i (εi(ωi) > t) > 0, i = 1, N.

For the evolution of risky asset (170), we have

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(eσn(ω1,...,ωn−1)εn(ωn) − 1) = (171)

dn(ω1, . . . , ωn−1, ωn)(eσnεn(ωn) − 1),

where

dn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)
(eσn(ω1,...,ωn−1)εn(ωn) − 1)

(eσnεn(ωn) − 1)
. (172)

It is evident that dn(ω1, . . . , ωn−1, ωn) > 0, therefore for ∆Sn(ω1, . . . , ωn−1, ωn) the
representation (60) is true with ηn(ωn) = (eσnεn(ωn) − 1). Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

eσn(ω1,...,ωn−1)εn(ω2
n) − 1

eσn(ω1,...,ωn−1)εn(ω2
n) − eσn(ω1,...,ωn−1)εn(ω1

n)
, ω2

n ∈ Ω0+
n , (ω1, . . . , ωn−1) ∈ Ωn−1,(173)

∆S−n (ω1, . . . , ωn−1, ωn1)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

1− eσn(ω1,...,ωn−1)εn(ω1
n)

eσn(ω1,...,ωn−1)εn(ω2
n) − eσn(ω1,...,ωn−1)εn(ω1

n)
, ω1

n ∈ Ω0−
n , (ω1, . . . , ωn−1) ∈ Ωn−1,(174)

where we denoted

Ω0−
n = {ωn ∈ Ω0

n, εn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, εn(ωn) > 0},

Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1. (175)

From the formulas (173), (174) and Theorem 1, it follows that the set of martin-
gale measures M do not depend on the random values ai(ω1, . . . , ωi−1), i = 1, N. If
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to put ai(ω1, . . . , ωi−1) = 1, i = 1, N, in the formula (170), then for the risky asset
evolution we obtain the formula

Sn(ω1, . . . , ωn−1, ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N. (176)

The evolution of risky assets, given by the formula (176), includes a wide class
of evolutions of risky assets, used in economics. For example, under an appro-
priate choice of probability spaces {Ω0

i ,F0
i , P

0
i } and a choice of sequence of in-

dependent random values εi(ωi) with the normal distribution N(0, 1), we obtain
ARCH model (Autoregressive Conditional Heteroskedastic Model) introduced by
Engle in [18] and GARCH model (Generalized Autoregressive Conditional Het-
eroskedastic Model) introduced later by Bollerslev in [19]. In these models, the
random variables σi(ω1, . . . , ωi−1), i = 1, N, are called the volatilities which satisfy
the nonlinear set of equations.

The very important case of evolution of risky assets (170) is when ai(ω1, . . . , ωi−1) =
ai, i = 1, N, are constants, that is,

Sn(ω1, . . . , ωn−1, ωn) = S0

n∏
i=1

(1 + ai(e
σi(ω1,...,ωi−1)εi(ωi) − 1)), n = 1, N, (177)

where 0 ≤ ai ≤ 1.
If 0 < ai < 1, i = 1, N, then the evolution of risky asset, given by the formula

(177), we call the evolution of relatively stable asset.
Further, we assume that the evolution of risky asset given by the formulas (170),

(176), (177) satisfy the conditions∫
ΩN

Sn(ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N. (178)

From the conditions (178), it follows the inequalities∫
ΩN

∆S−n (ω1, . . . , ωn)dPN <∞, n = 1, N. (179)

Taking into account that

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(1− eσn(ω1,...,ωn−1)εn(ω1
n)), ω1

n ∈ Ω0−
n , (180)

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(eσn(ω1,...,ωn−1)εn(ω2
n) − 1), ω2

n ∈ Ω0+
n , (181)

we have

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≤ 1

n−1∏
i=1

(1− a1
i )a

0
n(1− eσnεn(ω1

n))

<∞, εn(ω1
n) < 0, (182)
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1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
≤ 1

n−1∏
i=1

(1− a1
i )a

0
n(eσnεn(ω2

n) − 1)

<∞, εn(ω2
n) > 0, (183)

under the conditions that

0 < a0
n ≤ an(ω1, . . . , ωn−1) ≤ a1

n < 1, n = 1, N. (184)

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by one of the formula (170), (176), (177) that satisfies the conditions (178).

If the inequalities 0 < a0
n ≤ an(ω1, . . . , ωn−1) ≤ a1

n < 1, 0 < ai < 1, i = 1, N, are
true, then the set of martingale measures M is the same for every evolution of risky
assets, given by the formulas (170), (177). For every non-negative super-martingale
relative to the set of martingale measures M the optional decomposition is valid.
Every measure of M is an integral over the spot measures. The fair price f0 of
super-hedge for the nonnegative payoff function f(x) is given by the formula

f0 = sup
P∈M

EPf(SN) = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}. (185)

The set of martingale measures M1 for the evolution of risky asset, given by the
formula (176), is contained in the set M.

Proof. From the equalities (173) - (174) and the inequalities (178), it follows that
the set M is a nonempty one and every martingale measure constructed by the set
of random values αn(ω1

1, . . . , ω
1
n;ω2

1, . . . , ω
2
n), n = 1, N, belongs to the set M, if the

inequalities (49) are true. To prove that the set of martingale measures, defined by
the evolutions (170), (177), coincide it is necessary to prove the inequalities

0 < A1
n ≤

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤ B1
n <∞, n = 1, N, (186)

where we denoted by S1
n(ω1, . . . , ωn) the evolution, given by the formula (170), and

by S2
n(ω1, . . . , ωn) the evolution, given by the formula (177). Under the conditions

of Theorem 9, we have

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

=

S0

n∏
i=1

(1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1))

S0

n∏
i=1

(1 + ai(eσi(ω1,...,ωi−1)εi(ωi) − 1))
, n = 1, N. (187)

Since

1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1)

1 + ai(eσi(ω1,...,ωi−1)εi(ωi) − 1)
=

1− ai(ω1, . . . , ωi−1) + ai(ω1, . . . , ωi−1)eσi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
= Di, i = 1, N, (188)
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we have

1− a1
i + a0

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
≤ Di ≤

1− a0
i + a1

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N. (189)

Let us denote

Ai = inf
(ω1,...,ωi)∈Ωi

1− a1
i + a0

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N,

Bi = sup
(ω1,...,ωi)∈Ωi

1− a0
i + a1

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N. (190)

It is evident that 0 < Ai, Bi <∞, i = 1, N, and

Ai ≤ Di ≤ Bi, i = 1, N, (191)

therefore

A1
n =

n∏
i=1

Ai ≤
S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤
n∏
i=1

Bi = B1
n, n = 1, N. (192)

So,

A2
N ≤

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤ B2
N , n = 1, N, (193)

where we put A2
N = min

1≤n≤N
A1
n, B

2
N = max

1≤n≤N
B1
n. Since

|∆S1
n(ω1, . . . , ωn−1, ωn)| =

S1
n−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)|(eσn(ω1,...,ωn−1)εn(ωn) − 1)|, (194)

|∆S2
n(ω1, . . . , ωn−1, ωn)| =

S2
n−1(ω1, . . . , ωn−1)an|(eσn(ω1,...,ωn−1)εn(ωn) − 1)|, (195)

we have

|∆S1
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

=

S1
n−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)

S2
n−1(ω1, . . . , ωn−1)an

. (196)
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Taking into account the obtained inequalities, we have the inequalities

A2
N

min
1≤n≤N

a0
n

max
1≤n≤N

an
≤ |∆S

1
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

≤ B2
N

max
1≤n≤N

a1
n

min
1≤n≤N

an
, n = 1, N. (197)

The inequalities (197) proves that the set of martingale measures for the evolutions
of risky assets given by the formulas (170), (177) are the same, since the inequalities
(49) for the evolutions of risky assets, given by formulas (170), (177), are fulfilled
simultaneously.

For the evolution of risky assets (177), satisfying the conditions (184), the in-
equalities (182), (183) are true. From this, it follows that the conditions of Theorem
5 are valid. This proves the optional decomposition for every nonnegative super-
martingale relative to the family of martingale measures M. From [17], it follows
the formula for the fair price f0 of super-hedge

f0 = sup
P∈M

EPf(SN). (198)

Further, the conditions of Theorem 8 is also true. Therefore, the formula

sup
P∈M

EPf(SN) = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (199)

is valid.
To complete the proof of Theorem 9, it needs to show that the set M1 ⊆M. Let

us denote S3
n(ω1, . . . , ωn) the evolution of risky asset, given by the formula (176).

Then, as above

S3
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤
n∏
i=1

1

ai
= Cn, n = 1, N. (200)

Therefore,

|∆S3
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

=

S3
n−1(ω1, . . . , ωn−1)

S2
n−1(ω1, . . . , ωn−1)an

≤
max

1≤n≤N
Cn

min
1≤n≤N

an
, n = 1, N. (201)

The inequality (201) proves the needed statement. Theorem 9 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 ≤ ai(ω1, . . . , ωi−1) ≤ 1,
σi(ω1, . . . , ωi−1) > σi > 0, i = 1, N, and an = 1 for a certain 1 ≤ n ≤ N. If
the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:

1) f(0) = 0, f(x) ≤ ax, lim
x→∞

f(x)
x

= a, a > 0, then

sup
P∈M

EPf(SN) = aS0. (202)
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If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (203)

where M is a set of equivalent martingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(SN) lies in the set [f(S0), aS0].

Proof. Since the conditions of Theorem 9 are satisfied, then the formula

sup
Q∈M

∫
ΩN

f(SN)dQ = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (204)

is true, where for the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (205)

is valid, and

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (206)

where we denoted Ω0−
s = {ωs ∈ Ω0

s, εs(ωs) ≤ 0}, Ω0+
s = {ωs ∈ Ω0

s, εs(ωs) > 0}.
From the inequality, f(SN) ≤ aSN , we have

sup
Q∈M

∫
Ω

f(SN)dQ ≤ aS0. (207)

To prove the inverse inequality, we use the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (208)
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In the right hand side of the last inequality, let us put εs(ω
1
s) = 0, s 6= n. Such

elementary events ω1
s exist, due to the conditions relative to the random values

εs(ωs), s = 1, N. We obtain

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (209)

Therefore,

sup
Q∈M

∫
Ω

f(SN)dQ ≥

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (210)

Further,

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

in
n )×

f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)

=

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

[
∆S+

n (ω1
1, . . . , ω

1
n−1, ω

2
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

∆S−n (ω1
1, . . . , ω

1
n−1, ω

1
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]
≥

lim
εn(ω2

n)→∞
lim

εn(ω1
n)→−∞

[
eσn(ω1

1 ,...,ω
1
n−1)εn(ω2

n) − 1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
×

f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

1− eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]

=

lim
εn(ω2

n)→∞

1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)

= aS0. (211)
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Substituting the inequality (211) into the inequality (209), we obtain the needed
inequality.

Let us prove the equality (203). Using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(EPSN) = f(S0). (212)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (213)

Putting in this inequality εi(ω
1
i ) = 0, i = 1, N, we obtain the needed. The last state-

ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
10 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 ≤ ai(ω1, . . . , ωi−1) ≤ 1,
σi(ω1, . . . , ωi−1) > σi > 0, i = 1, N, and an = 1 for a certain 1 ≤ n ≤ N. If
the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:
1) f(0) = K, f(x) ≤ K, then

sup
P∈M

EPf(SN) = K. (214)

If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (215)

where M is a set of equivalent maqtingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(SN) coincides with the set [f(S0), K].

Proof. Due to Theorem 9, the equality

sup
Q∈M

∫
ΩN

f(SN)dQ = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (216)

is valid, where for the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (217)
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is true, and

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (218)

It is evident that

sup
P∈M

EPf(SN) ≤ K. (219)

Further,

sup
Q∈M

∫
Ω

f(SN)dQ ≥

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (220)

In the right hand side of the last inequality, let us put εs(ω
1
s) = 0, s 6= n. We obtain

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (221)

From the last equality, we obtain

sup
Q∈M

∫
Ω

f(SN)dQ ≥

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (222)
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Further,

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)

=

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

[
∆S+

n (ω1
1, . . . , ω

1
n−1, ω

2
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

∆S−n (ω1
1, . . . , ω

1
n−1, ω

1
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]
≥

lim
ε(ω2

n)→∞
lim

ε(ω1
n)→−∞

[
eσn(ω1

1 ,...,ω
1
n−1)εn(ω2

n) − 1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

1− eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]

=

f(0) = K. (223)

Substituting the inequality (223) into the inequality (221), we obtain the needed
inequality.

Let us prove the equality (215). Due to the convexity of the payoff function f(x),
using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(EPSN) = f(S0). (224)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (225)

Putting in this inequality εi(ω
1
i ) = 0, i = 1, N, we obtain the needed. The last state-

ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
11 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. If the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:

1) f(0) = 0, f(x) ≤ ax, lim
x→∞

f(x)
x

= a, a > 0, then the inequalities
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f S0

N∏
i=1

(1− ai)

)
+ aS0 1−

N∏
i=1

(1− ai)

)
≤ sup

P∈M
EPf(SN) ≤ aS0 (226)

are true. If, in addition, the nonnegative payoff function f(x) is a convex down one,
then

inf
P∈M

EPf(SN) = f(S0), (227)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. As before,

aS0 ≥ sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (228)

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

2∑
iN=1

N(ωi11 , . . . , ω
iN
N )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

[
∆S+

N(ωi11 , . . . , ω
iN−1

N−1 , ω
2
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

∆S−N(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

≥

lim
εN (ω2

N )→∞
lim

εN (ω1
N )→−∞

[
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×
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f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

1− eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

=

f(SN−1(1− aN)) + aaNSN−1, (229)

where we put

SN−1 = S0

N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
))

. (230)

Substituting the inequality (229) into (228), we obtain the inequality

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N−1

2∑
i1=1,...,iN−1=1

N−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0(1− aN)
N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

+ aaNS0. (231)

Applying (N − 1) times the inequality (231), we obtain the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥ f(S0

N∏
i=1

(1− ai)) + aS0

N∑
i=1

ai

N∏
s=i+1

(1− as) =

f S0

N∏
i=1

(1− ai)

)
+ aS0 1−

N∏
i=1

(1− ai)

)
. (232)

Let us prove the equality (227). Using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(S0). (233)

Derivatives Pricing in Non-Arbitrage Market
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Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (234)

Putting in the inequality (234) εn(ωn) = 0, n = 1, N, we obtain the inverse inequal-
ity.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. If the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:
1) f(0) = K, f(x) ≤ K, then

f S0

N∏
i=1

(1− ai)

)
≤ sup

P∈M
EPf(SN) ≤ K. (235)

If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (236)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. Let us obtain the estimate from below. Really,

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (237)

Further,

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

2∑
iN=1

N(ωi11 , . . . , ω
iN
N )f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

[
∆S+

N(ωi11 , . . . , ω
iN−1

N−1 , ω
2
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
×
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)
K ≥ sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =



 
 

 
 

 
 
 
 
 
 
 
 
 
 

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

∆S−N(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

≥

lim
εN (ω2

N )→∞
lim

εN (ω1
N )→−∞

[
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

1− eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

=

f(SN−1(1− aN)), (238)

where we put

SN−1 = S0

N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
))

. (239)

Substituting the inequality (238) into (237), we obtain the inequality

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N−1

2∑
i1=1,...,iN−1=1

N−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0(1− aN)
N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (240)

Applying (N − 1) times the inequality (240), we obtain the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥ f(S0

N∏
i=1

(1− ai)). (241)

Derivatives Pricing in Non-Arbitrage Market
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Let us prove the equality (236). Using the Jensen inequality we obtain

inf
P∈M

EPf(SN) ≥ f(S0). (242)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (243)

Putting in the inequality (243) εn(ωn) = 0, n = 1, N, we obtain the inverse inequal-
ity.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. For the payoff function f(x) = (x − K)+, x ∈ (0,∞), K > 0, the fair
price of super-hedge is given by the formula

sup
Q∈M

EQf(SN) =


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(244)

If S0

N∏
i=1

(1 − ai)) ≥ K, then the set of non arbitrage prices coincides with the point

(S0 − K)+, in case if S0

N∏
i=1

(1 − ai) < K the set of non arbitrage prices coincides

with the set

[
(S0 −K)+, S0

(
1−

N∏
i=1

(1− ai)
)]

.

Proof. Let us introduce the denotations

IN =
2∑

i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (245)
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I1
N =

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (246)

I0
N = sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (247)

where we put f1(x) = (K − x)+. Let us estimate from above the value IN . For this
we use the equality

IN = I1
N + S0 −K, (248)

which follows from the identity: f(x) = f1(x) + x−K, x ≥ 0. Since

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≤ f1 S0

N∏
s=1

(1− as)

)
, (249)

we obtain the inequality

IN ≤ S0 −K + f1 S0

N∏
s=1

(1− as)

)
. (250)

From the inequality (250), we have

I0
N ≤ S0 −K + f1 S0

N∏
s=1

(1− as))

)
=


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(251)

Due to the inequality (226) of Theorem 12,

I0
N ≥ f S0

N∏
i=1

(1− ai)

)
+ S0 1−

N∏
i=1

(1− ai)

)
(252)
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and the inequality

I0
N ≥ (S0 −K)+, (253)

which follows from the Jensen inequality, we have

I0
N ≥ max

{
S0 −K)+, f S0

N∏
i=1

(1− ai)

)
+ S0 1−

N∏
i=1

(1− ai)

)}
=


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(254)

This proves Theorem 14.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. For the payoff function f1(x) = (K − x)+, x ∈ (0,∞), K > 0, the fair
price of super-hedge is given by the formula

sup
Q∈M

EQf1(SN) = f1 S0

N∏
i=1

(1− ai)

)
. (255)

The set of non arbitrage prices coincides with the interval[
(K − S0)+, f1

(
S0

N∏
i=1

(1− ai)
)]

.

Proof. The inequality

I1
N =

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≤ f1 S0

N∏
i=1

(1− ai)

)
(256)

is true. Taking into account the inequality (235) of Theorem 13, we prove Theorem
15.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,

i = 1, N. For the payoff function f1(S0, S1, . . . , SN) =

K − N∑
i=0

Si

N+1

+

, K > 0, the

fair price of super-hedge is given by the formula
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sup
Q∈M

EQf1(S0, S1, . . . , SN) =

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (257)

The set of non arbitrage prices coincides with the interval

(K − S0)+,

K − S0

N∑
i=0

i∏
s=1

(1−as)

N+1

+ , if K >
S0

N∑
i=0

i∏
s=1

(1−as)

N+1
.

For K ≤
S0

N∑
i=0

i∏
s=1

(1−as)

N+1
the set of non arbitrage prices coincides with the point 0.

Proof. Let us denote

Sn(ω1
1, . . . , ω

1
n) = S0

n∏
s=1

(
1 + as

(
eσs(ω1

1 ,...,ω
1
s−1)εs(ω1

s) − 1
))

, n = 1, N,

tN(ω1
1, . . . , ω

1
N) =

N∏
s=1

eσs(ω1
1 ,...,ω

1
s−1)εs(ω2

s) − 1

eσs(ω1
1 ,...,ω

1
s−1)εs(ω2

s) − eσs(ω1
1 ,...,ω

1
s−1)εs(ω1

s)
. (258)

It is evident that

Let us prove the inverse inequality. We have
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I2
N = sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1

(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)
≥

lim
εs(ω1

s)=−∞, εs(ω2
s)→∞,s=1,N

f1

(
S0, S1(ω1

1), . . . , SN(ω1
1, . . . , ω

1
N)
)
×

tN(ω1
1, . . . , ω

1
N) = f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
, (259)

I2
N ≥ f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (260)

)

)

𝜓𝜓
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f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

K − S0

N∑
i=0

N∏
s=1

(1− as)

N + 1


+

. (261)

Therefore,

I2
N ≤

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (262)

The inequalities (260), (262) prove Theorem 16.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,

i = 1, N. For the payoff function f(S0, S1, . . . , SN) =

 N∑
i=0

Si

N+1
−K

+

, K > 0, the

fair price of super-hedge is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =


(S0 −K)+, if

S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K,

S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 , if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K.

(263)

If
S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K, then the set of non arbitrage prices coincides with the point

(S0 − K)+, in case if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K the set of non arbitrage prices coincides

with the interval

(S0 −K)+, S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 .
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Theorem 17. 

)

)

I2
N ≤ sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×𝜓𝜓

Proof. Let us introduce the denotation

VN = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×𝜓𝜓
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Suppose that {gi(XN)}Ni=1 is a mapping from the set [0, 1]N into itself, where XN =
{x1, . . . , xN}, 0 ≤ xi ≤ 1, i = 1, N. If S0, S1, . . . , SN is a sample of the process
(177), let us denote the order statistic S(0), S(1), . . . , S(N) of this sample. Introduce

also the denotation gi ([S]N) = gi

(
S(0)

S(N)
, . . . ,

S(N−1)

S(N)

)
, i = 1, N.

Suppose that S0, S1, . . . , SN is a sample of the random process (177).
Then, for the parameters a1, . . . , aN the estimation

a1 = 1− τ0

S(0)

S0

g1 ([S]N) , 0 < τ0 ≤ 1,

ai = 1− gi ([S]N)

gi−1 ([S]N)
, i = 2, N, (268)
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VIII. Estimation of Parameters

Theorem 18. 

f
(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)
. (264)

Then, we have

f1

(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)

+ S0 −K. (265)

Due to Theorem 16,

VN = (S0 −K) +

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

=


(S0 −K)+, if

S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K,

S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 , if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K.

(266)

In the formula (265) we used the denotation

f1(S0, S1, . . . , SN) =

K −
N∑
i=0

Si

N + 1


+

. (267)

Theorem 17 is proved.

VN = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×𝜓𝜓
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is valid, if for gN([S]N) > 0, [S]N ∈ [0, 1]N , the inequalities g1([S]N) ≥ g2([S]N) ≥
. . . ≥ gN([S]N) are true. If τ0 = 0, then ai = 1, i = 1, N.

Proof. The estimation of the parameters a1, . . . , aN we do using the representation
of random process Sn, n = 1, N. The smallest value of the random variable Sn is

equal S0

n∏
i=1

(1−ai), n = 1, N. Let us determine the parameters ai from the relations

S0

N∏
i=1

(1− ai) = τgN ([S]N) , . . . , S0

N−k∏
i=1

(1− ai) = τgN−k ([S]N) , . . . ,

S0

N−k−1∏
i=1

(1− ai) = τgN−k−1 ([S]N) , . . . , S0(1− a1) = τg1 ([S]N) , (269)

where τ > 0. Taking into account the relations (269), we obtain

S0(1− a1) = τg1 ([S]N) ,

τgN−k−1 ([S]N) (1− aN−k) = τgN−k ([S]N) , k = 2, N. (270)

Solving the relations (270), we have

a1 = 1− τ

S0

g1 ([S]N) , aN−k = 1− gN−k ([S]N)

gN−k−1 ([S]N)
, k = 2, N. (271)

It is evident that aN−k ≥ 0, k = 2, N. To provide the positiveness of a1 and the
inequalities τgN−n ([S]N) ≤ SN−n, n = 0, N − 1, S0 ≥ S(0), meaning that the

random process (177) takes all the values from the sample Sn, n = 0, N, we must
to put τ = τ0S(0), 0 < τ0 ≤ 1. It is evident that, if τ0 = 0, then ai = 1, i = 1, N
Theorem 18 is proved.

It is evident that

ai = 1, i = N − k,N, 1 < k ≤ N − 1, ai = 1− gi([S]N)

gi−1([S]N)
, i = 2, N − k − 1,

a1 = 1−
τ0S(0)

S0

g1([S]N), 0 < τ0 ≤ 1, (272)

is also estimation of the parameters a1, . . . , aN if

0 < gN−k−1([S]N) ≤ gN−k−2([S]N) . . . ≤ g1([S]N), [S]N ∈ [0, 1]N .

Such estimation is not interesting since
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Derivatives Pricing in Non-Arbitrage Market

N−i∏
i=1

(1− ai) = 0, i = 0, k.

If

g(x) =

{
S0

S(0)
x, if 0 ≤ x ≤ S(0)

S0
,

1, if
S(0)

S0
< x ≤ 1,

(273)

gi([S]N) = g

(
S(N−i)

S(N)

)
, i = 1, N, τ0 = 1,

then for the parameters a1, . . . , aN the estimation

ai =


1− S(N−i)

S(N−i+1)
, if

S(N−i+1)

S(N)
≤ S(0)

S0
,

1− S(N−i)

S(N)

S0

S(0)
, if

S(N−i+1)

S(N)
>

S(0)

S0
,
S(N−i)

S(N)
≤ S(0)

S0
,

0, if
S(N−i)

S(N)
>

S(0)

S0
.

i = 2, N, (274)

a1 =

{
1− S(N−1)

S(N)
, if

S(N−1)

S(N)
≤ S(0)

S0
,

1− S(0)

S0
, if

S(N−1)

S(N)
>

S(0)

S0

(275)

is true. The following equalities

N∏
i=1

(1− ai) =
S(0)

S0

g

(
S(0)

S(N)

)
=

S(0)

S(N)

,

N−k∏
i=1

(1− ai) =

{ S(k)

S(N)
, if

S(k)

S(N)
≤ S(0)

S0
,

S(0)

S0
, if

S(k)

S(N)
>

S(0)

S0
,

k = 1, N − 1, (276)

are valid.

Suppose that g(x) = x, x ∈ [0, 1]. Let us put gN−i([S]N) = g(
S(i)

S(N)
) =

S(i)

S(N)
, i = 0, k, gN−i([S]N) = 1, i = k + 1, N − 1. Then,

a1 = 1− τ0

S(0)

S0

, 0 < τ0 ≤ 1, ai = 0, i = 2, N − k − 1,

ai = 1− gi([S]N)

gi−1([S]N)
, i = N − k,N, (277)

is an estimation for the parameters a1, . . . , aN .

In the next Theorems we put τ0 = 1. This corresponds to the fact that fair price
of super-hedge is minimal for the considered statistic.
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On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177), with parameters ai, i = 1, N, given by the formula
(268). For the payoff function f(x) = (x−K)+, x ∈ (0,∞), K > 0, the fair price
of super-hedge is given by the formula

sup
Q∈M

EQf(SN) =

{
(S0 −K)+, if S(0)gN ([S]N) ≥ K,

S0

(
1− S(0)gN ([S]N )

S0

)
, if S(0)gN ([S]N) < K.

(278)

If S(0)gN ([S]N) ≥ K, then the set of non arbitrage prices coincides with the point
(S0 − K)+, in case if S(0)gN ([S]N) < K the set of non arbitrage prices coincides

with the closed set
[
(S0 −K)+, S0

(
1− S(0)gN ([S]N )

S0

)]
.

The fair price of super-hedge for the statistic (274), (275) is given by the formula

sup
Q∈M

EQf(SN) =

 (S0 −K)+, if S0
S(0)

S(N)
≥ K,

S0

(
1− S(0)

S(N)

)
, if S0

S(0)

S(N)
< K.

(279)

If S0
S(0)

S(N)
≥ K, then the set of non arbitrage prices coincides with the point (S0−K)+,

in case if S0
S(0)

S(N)
< K the set of non arbitrage prices coincides with the closed set[

(S0 −K)+, S0

(
1− S(0)

S(N)

)]
.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf(SN) =

{
(S0 −K)+, if S(0) ≥ K,
S0 − S(0), if S(0) < K. (280)

If S(0) ≥ K, then the set of non arbitrage prices coincides with the point (S0−K)+,
in case if S(0) < K the set of non arbitrage prices coincides with the closed set
[(S0 −K)+, S0 − S(0)].

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula
(268). For the payoff function f1(x) = (K − x)+, x ∈ (0,∞), K > 0, the fair price
of super-hedge is given by the formula

sup
Q∈M

EQf1(SN) = f1

(
S(0)gN ([S]N)

)
. (281)

The set of non arbitrage prices coincides with the closed interval[
(K − S0)+, f1

(
S(0)gN ([S]N)

)]
.

The fair price of super-hedge for the statistic (274), (275) is given by the formula
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sup
Q∈M

EQf1(SN) = f1

(
S0

S(0)

S(N)

)
. (282)

The set of non arbitrage prices coincides with the closed interval
[
(K − S0)+, f1

(
S0

S(0)

S(N)

)]
.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf1(SN) = f1

(
S(0)

)
. (283)

The set of non arbitrage prices coincides with the closed interval
[
(K − S0)+, f1

(
S(0)

)]
.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula

(268). For the payoff function f1(S0, S1, . . . , SN) =

K − N∑
i=0

Si

N+1

+

, K > 0, the fair

price of super-hedge is given by the formula

sup
Q∈M

EQf1(S0, S1, . . . , SN) =

K − S0 + S(0)

N∑
i=1

gi ([S]N)

(N + 1)


+

. (284)

The set of non arbitrage prices coincides with the closed interval(K − S0)+,

K − S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

+ , if K >
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
.

For K ≤
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
the set of non arbitrage prices coincides with the point 0.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf1(S0, S1, . . . , SN) =

(
K −

S0 + S(0)N

(N + 1)

)+

. (285)

The set of non arbitrage prices coincides with the closed interval[
(K − S0)+,

(
K − S0+S(0)N

(N+1)

)+
]
, if K >

S0+S(0)N

(N+1)
. For K ≤ S0+S(0)N

(N+1)
the set of non

arbitrage prices coincides with the point 0.
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On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula

(268). For the payoff function f(S0, S1, . . . , SN) =

 N∑
i=0

Si

N+1
−K

+

, K > 0, the fair

price of super-hedge is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =


(S0 −K)+, if

S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
≥ K,S0 −

S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

 , if
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
< K.

(286)

If
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
≥ K, then the set of non arbitrage prices coincides with the point

(S0 −K)+, in case if
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
< K the set of non arbitrage prices coincides

with the closed interval

(S0 −K)+,

S0 −
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

 .
The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =

gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =

 (S0 −K)+, if
S0+S(0)N

(N+1)
≥ K,(

S0 −
S0+S(0)N

(N+1)

)
, if

S0+S(0)N

(N+1)
< K.

(287)

If
S0+S(0)N

(N+1)
≥ K, then the set of non arbitrage prices coincides with the point (S0 −

K)+, in case if
S0+S(0)N

(N+1)
< K the set of non arbitrage prices coincides with the closed

interval
[
(S0 −K)+,

(
S0 −

S0+S(0)N

(N+1)

)]
.

Section 1 provides an overview of the achievements and formulates the main problem
that has been solved. Section 2 contains the formulation of conditions which must
satisfy the evolution of risky assets. In Section 3, conditions (14) - (16) are formu-
lated for the set of nonnegative random variables with the help of which a family
of measures is constructed in a recurrent way. In Lemma 1, conditions were found
for the existence of bounded nonnegative random variables satisfying the conditions
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(14) - (16). In Lemma 2, it was proved that the family of measures introduced in
the recurrent way is equivalent to the original measure.

Theorem 1 gives sufficient conditions under which the introduced family of mea-
sures is the set of martingale measures equivalent to the original measure for the
evolution of risky assets considered in Section 1.

In Section 4, relying on the concept of an exhaustive decomposition of a measur-
able space, in Lemma 4, we prove an integral inequality for a nonnegative random
variable for the constructed family of martingale measures.

In Theorem 2, for a special class of evolutions of risky assets for the nonnegative
random variable satisfying the integral inequality, obtained in Lemma 4, a pointwise
system of inequalities is obtained.

In Lemma 5, on the basis of Lemma 4, we obtained a pointwise system of in-
equalities for a nonnegative random variable for the general case of the evolution of
risky assets.

Theorem 3 contains sufficient conditions under the fulfillment of which the re-
sulting system of inequalities with respect to the nonnegative random variable has
a solution whose right-hand side satisfies the condition: the conditional expectation
of the right-hand side of the inequality with respect to the filtration is equal to 1.

Theorem 4 solves the same problem as in Theorem 5 for the general case of the
evolution of risky assets.

In Section 5, based on the inequalities obtained in Theorems 3 and 4, we prove
a theorem on the optional decomposition of nonnegative super-martingales with
respect to the family of equivalent martingale measures.

The description of the family of equivalent martingale measures given in Theorem
1 is rather general, therefore, in Section 6, a spot set of measures is introduced. In
Lemma 6, the representation is obtained for the family of spot measures.

Based on the concept of the spot family of measures, the family of α-spot mea-
sures based on a set of positive random variables is introduced. Theorem 6 provides
sufficient conditions for the integral over the set of α-spot measures to be an integral
over the set of spot measures.

In Theorem 7, sufficient conditions are given when the family of spot measures
is a family of martingale measures and the constructed family of measures, that is
an integral over the set of α-spot measures, is a family of martingale measures being
equivalent to the original measure.

Theorem 8 describes the class of evolutions of risky assets for which the family of
equivalent martingale measures is such that each martingale measure is an integral
over the set of spot measures.

Section 7 is devoted to the application of the results obtained in the previous
sections. A class of random processes is considered, which contains well-known
processes of the type ARCH and GARCH ones. Two types of random processes are
considered, those for which the price of an asset cannot go down to zero and those
for which the price can go down to zero during the period under consideration. The
first class of processes describes the evolution of well-managed assets. We will call
these assets relatively stable.

Theorem 9 asserts that for the evolution of relatively stable assets in the period
under consideration, the family of martingale measures is one and the same. The
family of martingale measures for the evolution of risky assets whose price can
drop to zero is contained in the family of martingale measures for the evolution of
relatively stable assets. Each of the martingale measures for the considered class of
evolutions is an integral over the set of spot martingale measures. On this basis, the
fair price of the super hedge is given by the formula (185). In Theorems 10 and 11,
an interval of non-arbitrage prices is found for a wide class of payoff functions in the
case when evolution describes relatively unstable assets. This range is quite wide
for the payment functions of standard put and call options. The fair price of the
super hedge is in this case the starting price of the underlying asset. In Theorems
12, 13 estimates are found for the fair price of the super-hedge for the introduced
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class of evolutions with respect to stable assets. In Theorems 14 and 15, formulas
are found for the fair price of contracts with call and put options for the evolution
of assets described by parametric processes.

In Theorems 16 and 17, the same formulas are found for Asian-type put and
call options. A characteristic feature of these estimates is that for the evolution of
relatively stable assets, the fair price of the super hedge is less than the price of the
initial price of the asset.

In Section 8, the estimates of the parameters of risky assets included in the
evolution are obtained. This result is contained in Theorem 18. In Theorems 19
and 20, formulas are found for the fair price of contracts with call and put options
for the obtained parameter estimates, and the interval of non-arbitrage prices for
different statistics is found. The same results are contained in Theorems 21, 22 for
Asian-style call and put options.
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