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L. [NTRODUCTION

The study of non-arbitrage markets was begun for the first time in Bachelier’s work
[1]. Then, in the famous works of Black F. and Scholes M. [2] and Merton R. S. [3]
the formula was found for the fair price of the standard call option of European type.
The absence of arbitrage in the financial market has a very transparent economic
sense, since it can be considered reasonably arranged. The concept of non arbitrage
in financial market is associated with the fact that one cannot earn money without
risking, that is, to make money you need to invest in risky or risk-free assets. The
exact mathematical substantiation of the concept of non arbitrage was first made
in the papers [4], [5] for the finite probability space and in the general case in the
paper [6]. In the continuous time evolution of risky asset, the proof of absent of
arbitrage possibility see in [7]. The value of the established Theorems is that they
make it possible to value assets. They got a special name "The First and The
Second Fundamental Asset Pricing Theorems.” Generalizations of these Theorems
are contained in papers [8], [9], [10].

If the martingale measure is not the only one for a given evolution of a risky
asset, then a rather difficult problem of describing all martingale measures arises in
order to evaluate, for example, derivatives.

Assessment of risk in various systems was begun in papers [11], [12], [13], [14].

Statistical studies of the time series of the logarithm of the price ratio of risky
assets contain heavy tails in distributions with strong elongation in the central re-
gion. The temporal behavior of these quantities exhibits the property of clustering
and a strong dependence on the past. All this should be taken into account when
building models for the evolution of risky assets.

In this paper, we generalize the results of the papers [15], [16], [17] and construct
the evolution of risky assets for which we completely describe the set of equivalent
martingale measures.

The aim of this study is to describe the family of martingale measures for a
wide class of risky asset evolutions. The paper proposes the general concept for
constructing the family of martingale measures equivalent to a given measure for a
wide class of evolutions of risky assets. In particular, it also contains the description
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of the family of martingale measures for the evolution of risky assets given by the
ARCH [18] and GARCH [19], [20] models. In section 2, we formulate the conditions
relative to the evolution of risky assets and give the examples of risky asset evolution
satisfying these conditions. Section 3 contains the construction of measures by
recurrent relations. It is shown that under the conditions relative to the evolution
of risky assets such construction is meaningful. It is proved that the constructed set
of measures is equivalent to an initial measure. In theorem 1, we are proved that
under certain integrability conditions of risky asset evolution the set of constructed
measures is a set of martingale measures relative to this evolution of risky asset. In
Section 4 we prove the inequalities for the nonnegative random values very useful for
the proof of optional decomposition for the non negative super-martingales relative
to the set of all martingale measures.

First, we show an integral inequality for a nonnegative random variable under
the inequality for this nonnegative random variable with respect to the constructed
family of measures. Further, using this integral inequality for the non-negative
random variable, a pointwise system of inequalities is obtained for this non-negative
random variable for a particular case. After that, the pointwise system of inequalities
is obtained for the non-negative random variable in the general case. Then, using
the resulting pointwise system of inequalities, an inequality is established for this
non-negative random variable whose right-hand side is such that its conditional
mathematical expectation is equal to one.

On the basis of the results of Section 4, in Section 5, we prove the optional
decomposition for the non negative super-martingales. In Section 6, we introduce
the spot measures by the recurrent relations and find the representation for them.
Using these facts under certain conditions we prove integral representation for every
martingale measure over the set of spot measures.

First, the optional decomposition for diffusion processes super-martingale was
opened by by El Karoui N. and Quenez M. C. [21]. After that, Kramkov D. O.
and Follmer H. [22], [23] proved the optional decomposition for the nonnegative
bounded super-martingales. Folmer H. and Kabanov Yu. M. [24], [25] proved anal-
ogous result for an arbitrary super-martingale. Recently, Bouchard B. and Nutz
M. [26] considered a class of discrete models and proved the necessary and sufficient
conditions for the validity of the optional decomposition.

Section 7 contains applications of the results obtained. A class of random pro-
cesses is considered, which contains well-known processes of the type ARCH and
GARCH ones. Two types of random processes are considered, those for which the
price of an asset cannot go down to zero and those for which the price can go down
to zero during the period under consideration. The first class of processes describes
the evolution of well-managed assets. We will call these assets relatively stable. For
the evolution of relatively stable assets in the period under consideration, the family
of martingale measures is one and the same. The family of martingale measures
for the evolution of risky assets whose price can drop to zero is contained in the
family of martingale measures for the evolution of relatively stable assets. Each of
the martingale measures for the considered class of evolutions is an integral over the
set of spot martingale measures.

The interval of non-arbitrage prices is found for a wide class of payoff functions in
the case when evolution describes relatively unstable assets. This range is quite wide
for the payoff functions of standard put and call options. The fair price of the super
hedge is in this case the starting price of the underlying asset. The estimates are
found for the fair price of the super-hedge for the introduced class of evolutions with
respect to stable assets. The formulas are found for the fair price of contracts with
call and put options for the evolution of assets described by parametric processes.

The same formulas are found for Asian-type put and call options. A characteris-
tic feature of these estimates is that for the evolution of relatively stable assets the
fair price of the super hedge is less than the price of the underlying asset.

In Section 8, the estimates of the parameters of risky assets included in the
evolution are obtained. The formulas are found for the fair price of contracts with
call and put options for the obtained parameter estimates, and the interval of non-
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arbitrage prices for different statistics is found. The same results are obtained for
Asian-style call and put options.

[I.  EVOLUTIONS OF RIsKY ASSETS

Let {Qn, Fn, Py} be a direct product of the probability spaces {Q?, F?, P?}, i =

N N N
LN, Qv = [19Y, Py = [I P, Fn = [I F?, where the o-algebra Fy is a min-
i=1 i=1 i=1

N
imal o-algebra, generated by the sets [[ G;, G; € F?. On the measurable space

i=1
{Qy, Fn}, under the filtration F,,, n =1, N, we understand the minimal o-algebra

N
generated by the sets [[ G;, G; € F?, where G; = QY for i > n. We also intro-
i=1

duce the probability spaces {Q,,, Fp, Pu},n =1, N, where Q, = [[ 0, F,, = [[ F?,
i=1

i=1

P, =[] P?. There is a one-to-one correspondence between the sets of the o-algebra
i=1
Fn, belonging to the introduced filtration, and the sets of the o-algebra F,, = [ F?
i=1
of the measurable space {Q,, F,},n = 1, N. Therefore, we don’t introduce new
denotation for the o-algebra F,, of the measurable space {Q,, F,}, since it always
will be clear the difference between the above introduced o-algebra F,, of filtration
on the measurable space {Qy, Fx} and the o-algebra F, of the measurable space

{Q,, Fn},n=1N.
N

We assume that the evolution of risky asset {S,},_,, given on the probabil-
ity space {Qx, Fn, Py}, is consistent with the filtration F,, that is, S, is a JF,-
measurable. Due to the above one-to-one correspondence between the sets of the
o-algebra F,,, belonging to the introduced filtration, and the sets of the o-algebra

F, of the measurable space {Q,, F,},n = 1, N, we give the evolution of risky assets
in the form {S, (w1, ...,w,)}N_,, where S, (wi,...,w,) is an F,-measurable random
variable, given on the measurable space {Q,, F,}. It is evident that such evolution
is consistent with the filtration F,, on the measurable space {Qy, Fy, Py}

Further, we assume that
P,((w1,... wn) € D, AS,, >0) >0,

Po((wiy. .. wy) €Qy, AS, <0)>0, n=1,N, (1)

where AS,, = S, (w1, ... ,wn) — Sp_1(wiy. .. wn1), n=1,N.
Let us introduce the denotations

Q) ={(wi,...,wp) € A, AS, <0}, QF ={(wy,...,w,) € A, AS, >0}, (2)

n

AS, = —ASnxq- (W1, -+ wa), AST = ASpxa+ (Wi, Wn), (3)

Vi(wi, . ooy W, Wi, w?) = AST (Wi, .oy Woe1, wl) + AST (wi, .oy wae1, wW3),
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(wh' e 7wn717w711) € wa (wl)- <y W1, W ) € Q+ (4)

We use the following denotation Q¢ n=1, N, where a takes two values — and +.

Our assumption, in this paper, is that for Q%, a = —,+, the representations
Ny, Np,
Q; - U[A%k_ X Vnk—l]v Q: - U[A%k—‘r X Vrf—l]a Nn S o, (5)
k=1 k=1

are true, where

Np,
0, | = U V'rf—l? A%k—, A%k+ e ]:7(3’ A%k— AO B+ QO
k=1
A?L’k_ N A%’H— = ®7 Vf—l N V’r{—l = @a k 7é ja Vyf—l S Fn—l- (6)

The number N,, may be finite or infinite. Since 2, U Q" = Q,, Q- NQF = (), and
P,(Q2,) >0, P,(2}) > 0, we have

Ny,
D) =) BAAY )PV,
k=1

Nnp
OF) = > PUANH) P (V) PUAY )+ PUAM) =1 (7)

Further, in this paper, we assume that P2(A%~) > 0, PY(A%*) > 0, n =
1,N, k = 1,N,. We also assume some technical suppositions: there exist subsets
Bg’f_ e F), i=11, I, >1 and BM* € Y, s=1,5,, S, > 1, satisfying the
conditions

BY T ABYT =0, i, BMABMY=0,s#£1, k=1N,

P;Q(BSL;?*) >0, i=11, PABY")>0,s=1,8, k=1N,,

In
- =UBaT, A= U%?,:AW@ (8)
Below, we give the examples of evolutions {S,(wy,...,w,)}_; for which the

representations (5) are true.

Suppose that the random values a;(wy,...,w;), n;(w;) satisfy the inequalities
0 < aj(wg,...,w;) < 1, 14+ n(w;) >0, PP(mi(w;) < 0) > 0, P2(ni(w;) > 0) > 0,
i=1,N.If S,(wi,...,w,) is given by the formula

n

Sp(wi, .. wn) = So H(l +a;(wy, .. wi)ni(wg)), n=1,N, (9)

=1
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then
{wi €97, mi(w;) <0} =AD", {w; €90, mi(w;) >0} = AP,
Vi i =Q, Q = A?’l_ X Qi Qf = A?’H xQ_q, i=1,N. (10)

In general case, let us consider the evolution of risky asset {S, (w1, . ..,w,)}2_,, given
by the formula

Sp(wiy .. wy) =
n N;
So H(l + an(wi)xvik_l(wl, cwi)a(wr, . w), n=1,N, (11)
i=1 k=1
where the random values a¥(wy, ..., w;), n¥(w;) satisfy the inequalities

0 < af(wy,...,w) <1, 1+7Fw) >0, PP(nF(w;) < 0) >0, PO(nF(w;) > 0) > 0,

N;
i=1,N, k=1,N,,and U VF, =Q, 1, VF NVE, =0, k+#s. Then, if to put
k=1

{w; € Q0 nf(w) <0} =AY, {w; € Q) nf(wi) > 0} = AP,

we obtain
N-L' Ni
Q = A" xVvE] of =AM xVE)L i =T N (12)
k=1 k=1
ASn(wla"'awn—lawn)SOa (wla"wwn—lawn)EQ;M TL:1,N,
AS (Wi, wn1,wn) >0, (Wi, W, wn) €Y n=1N. (13)

[1I.  CONSTRUCTION OF THE SET OF MARTINGALE MEASURES

In this section, we present the construction of the set of measures on the ba-
sis of evolution of risky assets given by the formulas (9), (11) on the measur-
able space {Qy,Fy}. For this purpose, we use the set of nonnegative random
values a,({wi,...,w! | wih{w? ... w? [,w?}), given on the probability space
{Q, xQF F-x Ff P, x Pt} n=1,N, where F, = F,NQ., FIf=F,NQ".
The measure P, is a contraction of the measure P, on the o-algebra F, and the
measure P, is a contraction of the measure P, on the o-algebra F,’. After that, we
prove that this set of measures, defined the above set of random values, is equiv-
alent to the measure Py. At last, Theorem 1 gives the sufficient conditions under
that the constructed set of measures is a set of martingale measures for the con-
sidered evolution of risky assets. Sometimes, we use the abbreviated denotations

{w%v S 70")711/} = {w}}w {w%’ e ?wg} = {w}i

We assume that the set of random values a,({wi,...,wl};{w? ... ,w2}) =
an({w}hli{w}?), {wil;{w}?) € Q, x QF, n = 1, N, satisfies the following con-
ditions:
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Py x PH(({whni{whn) € @ x O an({w}i {why) > 0) =
Po(Q,) x Po(y), n=LN; (14)

/ XQ;(wi""7w7lz—17w711)XQi(w%v---7w72L—17w72z)x

Q0 xQ0
O‘n<{w%7 e Jwrlth wam}; {W%J tee 7wv2zflu wi}) X

ASH(wr, .y wne1, w2 AS (Wi, vy Wy, W
Vn(wb s 7wn—17w7117w721)

1
w) 4P () AP (2) < oo,

({w%, o ,w;_l}; {w%, . 7W2—1}) € Q1 X Q1

(wl, e ,wn_l) e, 1, n=1,N; (15)

1 1 1 2 2 2
/ Xon (wlv s 7wn717wn)XQ:{ (wh SR 7wn717wn)x
Q9 xQY

a”(‘{wi? cee 7w}L*17w’r1L}; {w%7 ce wn 1» n})d‘PO( )dpr?(wi) = 1)

<{w%7'"70'}711—1};{00%"--7(“)2—1}) €91 xXQyq, n=1N. (16)

n

In the next Lemma 1, we give the sufficient conditions under which the conditions
(14) - (16) are valid.

Lemma 1. Suppose that for Q% a = —,+, n = 1,N, the representations (5) are
true. If the conditions

inf PYAM\B)i")>0, i=11, I,>1, n=1LN,

1<k<N,

inf  PY(AY*\ BYT) >0, s=1,5, S.,>1, n=1N,

1<k<N,

inf PY(B)i7)>0, i=11, I,>1, n=1LN,

1<k<N,

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020

inf P)BY¥) >0, s=1,58, S,>1, n=1N,

1<k<Np

[ /AS;(wl,...,wn_l,wn)dPN <oo, n=1,N, (17)

QN

are true, then the set of bounded random values o, ({w}}; {w}?), satisfying the con-
ditions (14) - (16), is a nonempty set.
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Proof. Let us put

Ny,

Oé:’L_ (WL . ’wwll) = Za;,k,i(w}l)XA%k’ (wn)Xfol(wla 7(")711—1)7
k=1
Ny

aZJr(wl? ,UJZ) = Z Z,k,s(wi)XA%k'* (wn)Xfo_l (wi 7w721—1)7
k=1

where

Xpor-(@n) X0k ok (wp)

—_|_ i — —,
PY(BYY) PY(AY\ BYY)

an,k,i(w}l) = (1 - 5?)

0<o'<1, i=11, k=1,N,,

X Bok+ (wy)  XALKEH gkt (wy)
: " ;
PO(Bra®) T PAAYT\ Buit)

a:,k,s(w'rzz) = (1 - H’g)

O<pur <1, s=15, k=1N,.

If to introduce the nonnegative set of real numbers

In,Sn
/Yi,s 2 07 1= ]-7-[717 s = 1757‘&7 E ’71',5 - 17 n = ]-7N7
1,8=1
then
1 1.1, 2 27\ _
a,({wy, . wp b {wy, .o wp}) =
1,,,Sn
i—r 1 1\ s+ 2 2 T
E VisCly (Wi .. wp)an (Wi, .. .,wy), n=1,N,
i,5=1

satisfies the condition (14) - (16).

(18)

(19)

(20)

(21)

Really, due to the Lemma 1 conditions, the random values a,({w}l; {w}?}),

n = 1, N, are strictly positive by construction. Therefore, the conditions (14) are

true.

Due to the boundedness of a,({w}l;{w}2}) < C, n=1,N, 0 < C < oo, the

inequalities

/ Xﬂg(w%a'--,wi—lvwiL)XQi(w%?"-vwi—bwi)x

Q0 xQ0

AST(wiy ey W1, W) AST (Wi, W1, W)

Vn(UJ1, cee 7wn—17wrlu w%)

APy (wy)dPy (wy) <
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C/ASg(wl, W1, wh)dP(w)) < 0o, m=1,N, (22)
Q)

are true for almost everywhere (wy,...,w,_1) € Q,_1, n = 1, N, relative to the
measure P,_;, owing to the inequalities (17) and Foubini Theorem. This proves

the inequality (15). The equality (16) is also satisfied due to the construction of
an({w}l; {w}?). Lemma 1 is proved.

The values, which the random variables a, ({w}L; {w}2}), n = 1, N, constructed
in Lemma 1, take, are determined by the values at points w! € Q%= and w? € QO
for all (wy,...,wn1) € Q1.

On the basis of the set of random values o, ({w}}; {w}?), n =1, N, constructed
in Lemma 1, let us introduce into consideration the family of measure po(A) on the
measurable space {Qy, Fy} by the recurrent relations

Mg:;l,.u,wN—l)(A) = / ngj,(wlv e WN-1, W}V)XQK (Wi, .., WN_1, W) X
09, xQY;
ay({wi, . wy 1, wy ki {wr ey, wi ) X

|: AS]—\‘;(WI; e 7wN—17w]2v) (wl,...,wal,w]lv)<A)+

Vi (w1, .y wn_1, wh, w%) N
AS]:[<W17"‘7WN—1’W]1V) (W1, WN —1,0%) 0/, .1 0/, 2
T TN(A) | dPy(wy ) dPy(wy), 23
VN(W1,--.,wN—1,w]1V,w12v)MN ( ) N( N) N( N) ( )

Mf:.z_li‘..,wn—l)(A) = / X (W1 -+ W, wi))qm (Wi, -y Wn1, W2 X

Q9 xQ9

an({wb sy Wi, w'rly,}a {wla s >wn—17wi})x

ASH(wi, .. wpo1,w?) 1
n s y Wn—1, Wy (W1yeeeswWn—1,wp) A
|:Vn<w17"'7wn17wrlww12l>un ( )+

AST (wiy -y W, W)

(W1 5oy Wr—1,w2) A dP(] 1 dP() 2 _ m 24
Vn(wlv ces Wn—1, w}w wrzz),un ( ):| n(wn) n(wn); n L ( )

o(A) = / Yo ()Xo (@2)on (wh w?) x
Q9= Qf

AST(wW])
Vi(wi,w})"™

AST(w1) (w2

)
V(A
D+ ren o™

<A>] APV (W) APY(u2), (25)
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where we put
PN () = (o wnerawn), A€ Fy. (26)

Lemma 2. Suppose that the conditions of Lemma 1 are true. For the measure jto(A),
A € Fy, constructed by the recurrent relations (23) - (25), the representation

po(A) = /Hwn(wl,...,wn)XA(wl,...,wN)HdPZ-O(wi) (27)

is true and po(Qy) = 1, that is, the measure po(A) is a probability measure being
equivalent to the measure Py, where we put

(Wi, wn) = Xq- (W1, -+ W1, Wh ) Wi (W1, -+ oy wp )+
Xt (Wi, -y Wne 1, W W2 (W1, -y W), (28)
1/J711(W1, e Wh1,Wyy) =
/ng(wl, o Wa, W an({wr, W, wh B W, - W, w2 ) X
Q9
véii <“1 w_‘j;}jg) APY(w?), (Wi, swno1) € Quon, (29)
YW1y W1, W) =
/Xﬂn (Wi -y W1, wham({wi, - o w1, Wil {wr, o W, w2 ) X
Q9
12531 <°J1 w_‘j;;‘ig) APY(wh), (@i wn 1) € Q1. (30)

Proof. Due to Lemma 1 conditions, the set of the strictly positive bounded random
values o, ({w}; {w}?), n = 1, N, satisfying the conditions (14) - (16), is a non empty
set. We prove Lemma 2 by induction down. Let us denote

(Wl,---,WN—lawN)<A)

s — XAl wn). (31)

Then,

/1/)N(W17 e ,walyWN)/L%I’W’WN%MN)(A)dpz%(WN) =
QO
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/ Xay, (wi,... 7WN—1,WN>1/)11\/(W17 e WN-T, WN)M%JI"""UN_WN)(A)dpg(\)/(wzv)—f—
/ Xoog, (@1, N1, W)W (@i, @, W)l N (A)d PR (wy) =

W1,y WN — ,wl
/ Xom (@1, N1, Wh) BR (@1, - w1, Wil NN (A)dPY () +

W1y WN —1,W2
/ Yot (@1, oy )W @, o, W) R (A) AP (R (32)

N

Substituting ¢y (w1, ..., wy_1,wx), Vi (wi,...,wy_1,w%) into (32), we obtain

/I,DN(Wla e ,wN—l,WN)/Lg\U/JIWWthwN)(A)dpj%(WN) =

oy
/ XQX/(WI’ . ,WN—l,w]lv)XQ;(Wb o ,wN,l,w]zV)x
Q9% <Y
an({wr, - Wy, Wik {wr, - wnn, wR ) X
AS]—C(WI, . e ,(J.)N_l,(A)]Qv) (wl,...,wal,w]l\,)
T 2\ MN (A)+
Vn(wi, .. wy—1,Wh, W)
ASy(wi, ... wN—1 wi) (@1 rewn—1,02)
AR ’ T ’ A)| dP%(wi)dPY(w?) =
VN(Wlw'-aWN—l»W]lV’W]z\[)pJN ( ) N( N) N( N)
P (A), (33)

Suppose that we are proved that

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020

,uglwl,...,wn,l,wn) (A) _

/ H Yi(wr, o wi)xalwr, ... wn) H dP(w;). (34)

. N i=n-+1 1=n-+1
[ o
i=n+1

Let us calculate
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/ Yalwr, -, W, w4 (A) AP (wn) =
0o

n

<y Wn—1, wn)lp;(wla <oy, Wn-1, wn>M£Lw1,...,wn,1,wn) (A)dpqg(wn)+

Qp,
/XQ; (Wi -y Wt W)W (W1 - s Wy, W )19 (A)d P (wy,) =
Q)
/XQn (wla -y Wn—1, w}z)lprlz(wla sy Wn1, wrlz)uﬁzW1r“7wn_l7w}L) (A)dPg(w}LH—
Qj
/XQi (wh <oy Wn—1; wi)#’?@(wl? ey Wn—1; wi)p&wh...,wnq,w%)(A)dpg(wi).
%o

- Wn_1,w?) into (35), we obtain

Substituting ¢! (wy, ..., we_1, W), V2 (wi, ..

/wn(wl, e Wh 1, wn)ug‘”’”"w”‘l’w")(A)dpg(wn) =
QO

/ XQg(wla'--7wn—17wrlz)XQj(wl7'"7wn—17w721)><
Q0 xQ0
an({wi, . wno,wi b {wr, o Wl w2 x
|: AS:(wla . 7wn—17wi) u(wl""’wnfl’w}”)(/l)—i—
Vn(UJ1, oo awn—lawrylmwrr%) "
AS (wiy ey wWno, W) (@11 02)
wren—190) (A) | dPY(wh)dP2(w?).
Ve lor ol wt) (A)| AP, (w,)d B, (wy,)

From the recurrent relations (23) - (25), we have

Mﬁﬂ""“’"—l)(A) = / Xz (W1 -+ W, w}z)xﬂz (Wi, vy Wno1, W)X
Q0 xQ0
an({wi, . wno, wi ki {wr, W, w2 ) X
[AS;LL(CUL <oy Wn—1,Wn-1, W%) (wl,...,wnfl,wrll)(A)_i_
Vn(wla"wwn—l?w'}zaw%) "

(35)
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AST (Wi W, W)

(remn1 ) (A) | dPY(wh)dPY(w?), n=T,N. (37
Vn(wl,...,wn_l’w}“w%)ﬂ ( ) ( ) n(wn); n , ( )

From the last equality, we have

Mﬁfl’ Hen=1) (A) = /¢n(w1, e Wt W )=o) (VAP (), m=1,N. (38)
o

Substituting into (38) the induction supposition (34), we obtain
i (A) =

/ l_Il/)Z Wiy e wi)XA(Wr, e, w HdPO w;)- (39)

HQO

To prove that po(2x) = 1, let us prove the equality

/lpn(wl, o wn)dPY (W) =1, (Wi, we1) € Qo n=1,N. (40)

We have
/lpn(wl, o wp)dPY(w,) =
0o
//Xﬂn(wl,...,wn_l,w}l)xﬂz(wl,...,wn_l,wi)x
Q0 00
an({wlw"7wn—17w711,};{w1a"'7wn—17wi})x
AST(wry .y wp1,w?)
Valwi, - wpo1, wk w?2)
AS‘(wl e, Wno1 ) 0 0/ 2
n \FL W dP, dP, =
Vn(wl,...,wn_l,wl w?) n(wn)AE, (w7)
//XQ;(wl,...,wn1,wi)xgx(w1,...,wn1,wi)x
Q0 Q0
an({wi, W, wh b {wr, w1, w2 AP (W) )dPY(w?) = 1. (41)

The last equality follows from the fact that the set of random values o, ({w1 }1; {w1 }2),
n = 1, N, satisfies the condition (16). The equalities (40) proves that every measure
(27), defined by the set of random values a,({wi, ..., wil;{w? ... w?}), n=1,N,
satisfying the conditions (14), (16), is a probability measure being equivalent to the
measure Py.
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This proves Lemma 2

Note 1. Due to the equality (40), the contraction of measure pg(A),A € Fn, on
the o-algebra F, of filtration we denote by pg. If A belongs to the o-algebra F,

N
of filtration, then A = B x [ Y, where B belongs to the o-algebra F,, of the
i=n+1
measurable space {Q,, F,}, therefore, for this contraction we obtain the formula

i (A) :/Hlpi(wl,...,wi)XB(wl,...,wn)HdPiO(wi), Be€F,. (42)
O =1 =1

Further, we also use the probability spaces {2, Fn, pi}, n =1, N, where under the
measure puy(B), B € F,,, we understand the measure, given by the formula

a, =1 =1

Note 2. Assume that for o,({wi,...,wl ;;wl}; {w? .. w2 | ,w?}), constructed in

Lemma 1, the inequalities
0<cp <ap({wi, ... ,w L wih{w] .. w2 Wi} <C, < oo,
are true. Suppose that the conditions
AS; (wiy . Wn1,wn) < By, <00, n=1N, (44)

are valid, where c,, C,, B, are constant, then the set of equivalent measures to the
measure Py, described in Lemma 2, is nonempty one.

Proof. Due to Lemma 2 conditions, the equality (14) is true. Further,

[ [ xartelie o o wx

Q0 QY
an({w%, s 70‘)711—17 w}z}; {wi ce 7(")721—1’ wi})x
AST(wyy ey W1, W) AS T (Wi, W1, W)
dPO 1 dPO 2 < B
Vn(wla---ywn—bw}pw%) n(wn) n(wn) — L3

Hwi,...,wr b w02 D) € ot X Dy, (Wi, oy W) € Qi

/ XQ;(wiv"')W}L—lawi)XQj(w%’"'7w121—1’wr2z)x
Q0 x Q9
O‘n({w}a s 7wrlz—1’ w}z}; {w%a s vwi—lv wi})dprg(w}JdPS(Wi) =1,
Hwi, .. wl  Fh{w? w2 ) €Dy X Q. (45)
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The last inequality and the equality (45) means that the conditions (14) - (16)
are satisfied. Note 2 is proved.

For the nonnegative random value o, ({wi,...,wl}; {w?, ..., w2}), given on the
measurable space {Q. x QF F- x Fr}, Fo=F,NQ,, Fr=F, N n=1N,
let us define the integral for the nonnegative random value fy(wi,...,wy) relative

to the measure po(A) using the recurrent relations

MJZJL(WM s 7wn71) =

/ XQ;(wla"'7wn—1aw111)XQ¢(wl7"'7wn—17w121>><

Q0 xQ9

an({wb sy Wno1, w};}a {wla cee >wn717w2})x

{ AST(wyy .y wWn1, w?)

IN (W, W, W)+
Vn(wla"'awn—l,(ﬂ}wwz>#n ( 1y »#n—1; n)

AS (Wi, Wne1, W) gy 5 —
URAELAR rn e Wi dP?(w})dPP(w? =1,N, (46
Vn(wl,---,wn—l,wé7wg>un (wh , W 17wn) n(wn> n(wn>7 n ) ( )
u{f_l(wl,...,w]v_l): / XQ;V(wl,...,wN_l,w]lV)XQx(wl,...,wN_l,w?V)x
Q% xQ
aN({wl,...,wN_l,w}V};{wl,...,wN_l,w?V})x
AS;{,(wl,...,wN_l,w]zv) 1
|:VN(w1’“.7wN_1’w]1V,w]2V)fN<w17"‘7wN—17wN)+
AS]TT(wla"wwN*l?w]lV) 2 0/ 1 0/ 2
b WN_1, dP dP . 47
VN(wla--->WN—17W]1v,w]2v)fN(W1 WN-1,Wy) (Wi )dPy (wy) (47)

From the formula (27) of Lemma 2, it follows that

=1

N N
EMOfN = / Hlpn(wl, Ce ,wn)fN(wl, Ce ,CUN_l,(UN) HdPZO(OJZ) (48)
Qn n=1

for every nonnegative Fy-measurable random value fy(wq,...,wy_1,wn).
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Theorem 1. Suppose that the conditions of Lemma 1 are true. Then, the set of
nonnegative random values o, ({w}l; {w}?),n = 1, N, satisfying the conditions

EFIAS, (w1, Wne1,wn)| =

N N
/Hybi(wl,...,wmASn(wl, ey Wno1, Wh)| HdPiO(wi) <oo, n=1,N, (49)
i=1

o =1
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is a nonempty one and the convex linear span of the set of measures (27), defined
by the random values o, ({wi, ... ,wl}; {w?, ... ,w2}), n = 1, N, satisfying the con-
ditions (49), is a set of martingale measures being equivalent to the measure Py.

Proof. Taking into account the equality (40), the conditions (49) can be written in
the form

N
/H%wl,... DIAS(wr, - wn 1, wa)| [ dPP(w:) =

i=1

/Ht[}z Wt )AL, w1 wa)| [ AP (ws) =

=1

n—1
1 2
2 / H wla //XQ Wi, - '7wn—17wn>XQ:§(w17”'awn—lawn)x

=1

Qn—l - QO QO
an({wla s 7wn—17w711,}; {wla s 7wn—17wi})x
AST(wiy ey w1, W) AS (W, W1, W) "
Va(wi, -y wpo1, wl w?2)
AP (w})d P (w HdPO (w;)), n=1,N. (50)

Since the conditions of Lemma 1 are true, then the the set of bounded random
values a,({wl, ... ,wi}:{w? ..., w?}), n = 1, N, constructed in Lemma 1, satisfy
the conditions (14) (16).

From the equality (50) for the set of bounded random values a,,({w}l;{w}?),
n = 1, N, satisfying the conditions (14) - (16), we obtain the inequality

N
/1_[1,0Z Wiy .. wi) |AS, (wl,...,wn_l,wn)|HdPiO(wi) <

=1

C’/AS;(wl,...,wn_l,w}L)dPN <o, n=1N, (51)
QN

for a certain constant 0 < C' < co. This proves that the set of nonnegative random
values a,({wi,...,wi};{w? ..., w2}), n = 1, N, satisfying the conditions (49), is a
non empty set.

Let us prove that

/¢n(w17 s awn)ASn<w17 s 7wn)dp7g(w") = 0’

(wl, R ,wn,l) S anl, n = 1,N (52)
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Really,

/¢n(w1, ) AS W ) AP (w) =

//Xgn(wb e ,wn,l,w}l)xgz(wl, e Wno1,W2) X

Qp 93

an({wla sy Wi, w'rll}a {wla s >wn—17w72L})><

AST(wi, . W, w?)
_ n ) ) , W AS o )
|: Vn<wl,...7wn717w w2) (Wla , W 1,(.Un)—|—

AS_ (CL)l e, Wn )
n ) y W A + . PO PO 2y _
Vn<w1’ ey Who1, CU 0.12) S (le y Wn—1,W ) d ( )d n(wn) O, (53)

due to the condition (15).
To complete the proof of Theorem 1, let A belongs to the filtration F,,_1, then

A= Bx H QY where B belongs to the o-algebra F,_; of the measurable space
{1, Fn,l}. Taking into account the equality (41), (53), we have, due to Foubini
theorem,

N
/Hz/)i(wl,...,wi)XA(wl,...,wN)AS Wiy ee W HdPO w;)
i=1
/Hll}i(wl,...,wi)xB(wl,.. s Wno1)AS, (w1, ..., w HdPO w;)
g i=1
n—1 n—1
/Hzpi(wl,...,wi)XB(wl,...,wn_l)HdPio(oJi)X
anl =1 =1

/lpn(wl, o W) AS, (Wi . wy)dPY(w,) = 0. (54)

The last means that E#0{S, (w1,...,ws)|Fn-1} = Sn-1(w1,...,ws_1). Since every
measure, belonging to the convex linear span of the measures considered above, is
a finite sum of such measures, then it is a martingale measure being equivalent to
the measure Py. Theorem 1 is proved.

Our aim is to describe this convex span of martingale measures in particular
cases.
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[V. INEQUALITIES FOR THE NONNEGATIVE RANDOM VALUES

In this section, we prove some inequalities, which will be very useful for to prove
optional decomposition for super-martingale relative to all martingale measures.
First, we prove an integral inequality for a nonnegative random variable under the
fulfillment of the inequality for this nonnegative random variable with respect to
the constructed family of measures p(A). Further, using this integral inequality for
the non-negative random variable, a pointwise system of inequalities is obtained for
this non-negative random variable for a particular case. After that, the pointwise
system of inequalities is obtained for the non-negative random variable in the general
case. Then, using the resulting pointwise system of inequalities, the inequality is
established for this non-negative random variable whose right-hand side is such that
its conditional mathematical expectation is equal to one.

Definition 1. Let {Q,F1} be a measurable space. The decomposition A, g, n,k =
1,00, of the space §21 we call exhaustive one, if the following conditions are valid:
-Z) An,keJl—-l) An,kmAn,s:®7 k’#S, U An,k:Qla nzl,oo,

k=1
2) the (n + 1)-th decomposition is a sub-decomposition of the n-th one, that is, for
every j, Ap+1,; C Any for a certain k = k(j);
3) the minimal o-algebra containing all A, ., n,k = 1,00, coincides with F.

Lemma 3. Let {Q,F1} be a measurable space with a complete separable metric
space 0y and Borel o-algebra Fy on it. Then, {Q4, F1} has an exhaustive decompo-
sition.

The proof of Lemma 3 see, for example, in [15], [16].

For the proof of integral inequalities, we cannot require the fulfillment for the
random values a,({wi,...,wi};{w? ... w?}), n = 1, N, the condition (15) in the
Lemma 4.

Lemma 4. Suppose that Q° is a complete separable metric space, F° is a correspond-

ing Borel o-algebra on Q°, n =1, N, and the conditions of Lemma 1 are valid. If,
on the probability space {Q_1, Fp_1, g '}, for each B € F,_1, ug " (B) > 0, the

nonnegative random value fp(wq,...,w,_1,wy) satisfies the inequality
1 n n
?//Hlﬁl(wl,,wl)fn(wl,,wn)HdPZO(wz) S 1, B G.Fn_l, (55)
o (B) B o =1 i=1

then the inequality

/wn(wl, oy wn) fa(wr, - wn)dP(w,) <1,
Q0

{wla s 7wn—1} € Qn—la n = 17N7 (56)

18 true almost everywhere relative to the measure P, ;.

Proof. The metric space €2, 1 is a complete separable metric space with the met-
n—1

ric p(xay) = Z pZ('xla yl)a where z = (1'1, s 7xn71)7 Yy = (?/1, s 7yn71) € anb
i=1

1=
(zi,y:) € Q0 pi(wy,y:) is a metric in QY. This means that the metric space
Q,,—; has an exhaustive decomposition{Bmk};’,kazl. Suppose that (wi,...,w, 1) €
B, for a certain k, depending on m, and there exists an infinite number
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of m for which ug_l(Bm,k) > 0. On the probability space {Q,_1, Fn_1, 10 '},
for every integrable finite valued random value ¢, 1(ws,...,w, 1) the sequence
E“g_l{gon,l(wl, oy Wno1)|Fm} converges to @, 1(wi,...,w, 1) with probability
one, as m — oo, since it is a regular martingale. Here, we denoted F,, the o-
algebra, generated by the sets By, x, k = 1, 0c.

It is evident that for those B,,, for which uf ' (B,,1) # 0,

Eﬂg_l{@n—l(wlu ce 7wn>’]}m} -

f Qon—l(wlu s 7wn—1)d,ug_1
Bm k
’ n—1 ) (wl, C ,wn) S Bm,k- (57)
2%} (Bm,k)
Denote A, = Ay (w1, . .., wp—1) those sets By, for which (w1, ...,wy,) € By, for
a certain k, depending on m, and p{ '(4,,) > 0. Then, for every integrable finite
valued ¢, 1 (w1, ..., w,_1)

[ on1(wis. o wpe1)dpg ™!
Am

lim = n_1(wi,. .., Wn_1) (58)

m—+00 po (Am)

almost everywhere relative to the measure p{~'. If to put

Pn—1(W1, -+ Wno1) =
/d;n(wl, oy wn) oW, - wn)dPAwy), (Wi, wee1) € Qi (59)
0o
then we obtain the proof of Lemma 4.
In Theorem 2, we assume that for AS, (w1, ...,w,_1,w,), n = 1, N, the repre-
sentation

ASn(wly sy Wn1, wn) =

Sn—l(wla cee 7wn—1)an(wla .oy, Wo—1, wn)nn(wn) -
dp (Wi, .oy Wne1, W) (w), n=1,N, Sy>0, (60)
is true, where the random values d,,(w1, . ..,Wp_1,Wn), an(W1, ..., W1, Wn), Nn(Wn),

n =1, N, given on the probability space {Q,, F,, P,}, satisfy the conditions

0<ap(wi,. .,wn-1,wn) <1, 14ay(w, ...,wn_1,wn)Nn(w,) >0,
dp(wi, .. wno1,wn) >0, Plnp(w,) >0)>0, P'nu(w,) <0)>0. (61)

From these conditions we obtain Q, = Q% x Q, ;, QF = Q% x Q, ;, where
Q0 = {w, € D ny(w,) <0}, Q0 ={w, € 2 n,(w,) > 0}.

From the suppositions above, it follows that P°(207) > 0, P%(Q°F) > 0. The
measure PY~ is a contraction of the measure PY on the g-algebra F2~ = Q0= N F2,
PY* is a contraction of the measure PY on the g-algebra FOT = Q0T N FO.
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Theorem 2. Let QY be a complete separable metric space and let F? be a Borell
o-algebra on QY, i = 1, N. Suppose that for AS,(wi,...,wp_1,wy), n = 1, N, the
representation (60) is valid and Lemma 4 conditions are true. Then, for the non-
negative random value f, (w1, ... ,w,_1,w,) the inequalities

ASH(wyy .y wno1, w?)

X9~ ( )XQO+( ) Vv (wl fn(wh <oy Wn—1, wrlL)+

1,2
C Wno1, WL w?2)

AS, (wy, ... wn1,w))
Vn(Wb ey Wn—1, wrlw w%)

fn(wla see 7wn717w721) S 17

(Wi, wWn1) € Doy, (Whw?) € Q0 x Q% n=1,N, (62)

are true almost everywhere relative to the measure P,y x P°~ x P on the mea-

surable space {Q,_1 x Q07 x QOF F, | x FO7 x Fot}.

Proof. Under Theorem 2 conditions, the set of martingale measures is a nonempty
one. Due to the equality (40), we obtain

N
/Hi,b,(wl, )fn W1ye oo, W HdPOwl =
QN =1

/Hi,bi(wl, .. )fn W1y oo s W HdPO wz (63)
o =1

Further,
/wn(wl,...,wn)fn(wl,...,wn)dPS(wn) =
0
//Xﬂn(wl,...,wn_l,w}l)xﬂz(wl,...,wn_l,wi)x
Qg Qf
an({wla"';wnflyw}z};{wla"'>wn717wg})x
ASH(wyy .y wn1, w?) 1
|:Vn(w17...;wn—17w1 w2)fn(w1,...,wn_1,wn)+
AS (wiy ey Wi, w))
no R R f (Why ey W dP)(wy)dPY(w?). 64
Vn(wl7.”,wn_17w%7w%)f (wh Wn—1, W ) ( ) n(wn) ( )
Xa; (wlv v 7wrlz) = XQpn1 (wlu R ,anl)st?; (w111>7
Xaot (wlv s 7"‘}121) = Xﬂnﬂ(wl’ S 7(")71—1))“291+ (wi) (65)
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Due to Lemma 4, the inequality

//XQO XQO+( )an({wla'"7wn717wi};{w17"'7wn717w3})x

Q0 QO
AST(wy,y .oy wn1, w?) .
[Vn(wl,---,wn1,W}l,w%)fn(wl"”’wn_l’wn)_*—
ASE(M,...,wnfl,wi) folw , W ) dPO( )dPO(WQ) <1 (66)
Vn(wlv"-ywnfl)w}ww%) w1, @ n\Wn) = 4

is true almost everywhere relative to the measure P,_; on the o-algebra F, ;. Let
us put

CYn<{QJ1, <, Wh—1, wrlz,}a {wla <oy Wn-1, UJZ}) - an(w}@; wi)a (67)

where a,(w};w?) satisfy the condition
/ / (Wl w2)dPY(wh)dP? (w?) = 1. (68)
-t

Since, on the probability space {Q0~ x Q0T FO= x FO+ PO~ x PO+l there exists an
exhaustive decomposition { A, x}50,—, let us put

1., .2 1., .2

1 2 XAy, k(w’m wn) XQ?fXQ%Jr\Am k(wru wn)

ap(w;w2)=(1—c¢ : +e , ’
( )= ) fon (A i) 1 (0= % QO+ \ A, 1)

n? n

(69)

where p,(A) =[PP~ x PYT](A), A € FO~ x F, and we assume that j, (A, x) > 0,
pn (07 x Q0T \ A, ) > 0. Suppose that (w};w?) € Ak and (A, k) > 0 for the
infinite number of m and k. Then,

1 2
Xy, (Whiw?)  Xao-xaoh\a,, , (Wniwn)
1— ’ :
[ [ e | 0= 9 M T |
Q0 Q0
ASH(wyy .oy wn1, w?) .
|:Vn(w1"”’wn_17w1 wQ)fn(Wh,wn_l,wn)—i—
ASg(wl""’W”’l’w’%‘)f (Wi, -y W1, w2) | dP(WHAPY(W?) < 1 (70)
Vn(wl,...,wn,l,w%,w%) n\Wi, -« Wn—1,W n\%n) = +-

Going to the limit as m, k — oo and then as ¢ — 0, we obtain the inequality

AST(wy, . W, w?
X (D (w3) | e )

1
CWhe1,wh w?) Fulen - @nmgyon) ¥

AS=(wy, ... wp1,wh)
Vn(wl, o, Wh—1, w%? w721>

fn<w1,...,wn_1,wi>}31, (@1r o at) € Qur, (T1)
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which is valid almost everywhere relative to the measure p,,. Theorem 2 is proved.

Lemma 5. Let Q° be a complete separable metric space and let F° be a Borel o-
algebra on Q°, n =1, N. If the conditions of Lemma 4 are true, then the inequality

XQ; (w17 . ’wn*l’w}l)XQj{ ((.Ul, C 7wn71’wi)x
ASJ((JJl, ce . 7wn_1’wr’21) )
_ +
Vn(wh‘"7wn—17w,}l,w%)fn(w1’ , Wn 17wn)
AS;(W:[, PN ’wn_17w}l)

folw, e ,w2)| <1, (Wiyee o Woi1) € Qu, (72)

Volwi, .oy wpo1,wh, w2)

is valid almost everywhere relative to the measure B,_1 X [P° x P°] on the measurable
space {Q,_1 x Q0 x Q0 F, 1 x F? x FO}.

Proof. Due to the conditions for !, a = —, +, the representation
Nn,
Q= Ay x Vi) (73)
k=1

is true. Owing to Lemma 5 conditions, there exists an exhaustive decomposition

— o —
Dr.. m,i=1,00, such that |J D, = Q% m =1,00. Let us denote A¥** N D", =

mae)
=1

Em™a Tt is evident that E™:® forms an exhaustive decomposition of sets A%*¢ n =
1,N, k=100, a = —,+, correspondingly. Due to Lemma 4, the inequality

/wn(wl, ooy W) fulwr, . ,wn)dpg(wn) <1, (Wi, - yWn-1) € Qp_1, (74)
QO

is true almost everywhere relative to the measure P, ;. The equality

/wn(wl,...,wn)fn(wl,...,wn)dP,?(wn) _
00

//XQn(Wh o ,wn_l,w,,ll)xﬂi(wl, e Who1, W)X

Q0 QO
an({wr, . wnon,wp b {wr, - Wt W) X
ASJ(WI, e, Wh—1, w?l) )
Wie oo e s Wp_ 1, W )+
[Vn(wl""7W7Z—17w,11,w%)fn( 1, , Wn—1, n)
ASE((JJl,...,WH_l’wé) ,
TAErr LIS EEA] CUACALACA N )
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is valid. From the equality (75) and Lemma 4, the inequality

//Xﬂn(wla"'awn—law'rll)XQfl(wla"'7wn—1aw721)><

Q) a3

an({wh sy Wno1, w'rll}a {wla s 7wn—17w721})><

ASI<W1a---,Wn71,Wi) 1

|:Vn(w1>"'7wn—1,w}l,w%)‘fn(w1"“’Wn_l’wn)—'—
AST:<W17"‘7W’IZ—IJW'}L) 0 0/ 2
vn(wh,,_’wnfl,wljwz)fn(wl,...,wn Lw?) | dPY(wh)dPo(w?) < 1, (76)

is true almost everywhere relative to the measure P,_; on the o-algebra F,_;. Let

us put
Np
o’ (w%’ 7w711) - Z nk?‘s(w )XAO’C (wn)XV,’f l(wlv ?wrlL—l)v
k=1
Ny,
™ (wi Z F ems (@WEX g0k (WD)Xvr (W7, wh ),
k=
a ™ (i, wn b el wnd) = et (Wi w e T (Wl wy),  (7T)
where

_ AN PO ij—(“i) XAQ’“—\E;IS’C—(WTIL)
an,k,r,s(wn) - ( - )Po(Enk,) Po(AOk, \ Enk,)

)

X i+ (W) X AQk+\ grk+ (wir)
mi — + g mi —
PUERT)  PRAY\ ELET)

, 0<d<l (78)

O gom,i(Wh) = [(1 —0)

In the formulas (78), we assume that the inequalities
PY(ET) >0, PYAYT\EST) >0, PUEL") >0, PY(AS\ELR) >0, (79)

are true. Let us consider

oz:f’m’i({wl, e, W1, w}l_l}; {wi, .., Wn1, wi}) =
™ (w Wno1, Wi )™ (w Wno1,w?) (80)
n 1y« yWn—-1,Wy, 1y« yWn—-1,Wy, ).

Suppose that (wy,...,w, 1) € V¥ | for a certain k. Then,
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a;,s,m,i({wh ey Who 1, (,UTIL,I}; {wl, ey Who1, wi}) =
(1—0) X grk— (wp) X A%k =\ grk— (wy)
PUEN™)  PYAY\ Ef)
[ X pnk+ (wi) X AOk+\ pnk+ (wi)
(1—0)me g2 (81)
PUERT)  PYAYN\ ELET)

We assume that the point (w)!,w?) € E™= x E"™* for the infinite number of r,s
and m,i , where PO(E"™~) >0, PY(E™*) > 0.

Substituting (81) into (76) and going to the limit as m,k — oo r,s — oo and
then as § — 0, we obtain the needed inequality. Lemma 5 is proved.

Theorem 3. Suppose that the conditions of Theorem 2 are true. If for a certain
wt € Q% and w? € Q8 the inequalities

1
(wl,--.,wsnlf)eﬂn_l AS (Wi - e Whe1, W) =
1 S
(wl,--.,wili?)enn_l ASH(wi, ..., wp-1,w) <oo =LA (82)
are true, then the nonnegative random values f,(wy,...,wn_1,w,), n = 1, N, satisfy
the inequalities
falwi, oy wno1,wy) <
(14 Ypo1 (Wi, s Wne1)ASp (Wi, . ., Woe1,wn)), n=1,N, (83)
where Yp_1(w1, ... ,wp_1) i a bounded F,_1-measurable random value.
Proof. From the inequality (71), it follows the inequality
folwi, .. wp1,w?) <
1+ 1A_S§?Eil,7......,:ini£%)AS’T(W“ W, w?), wh e Q0 W e Q0 (84)
Let us define
, 1— folwr, . wp_1,w!
e
then, taking into account the inequality (84), we obtain the inequality
folwiy w1, w2) <14+ Y (Wi, ey W 1)AST (Wi, wh1, W2). (86)

From the definition of 7,,_1 (w1, ...,wn_1), we obtain the inequality
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frlwi, .y wn1,wh) <1 — vy 1 (Wi, e Wa1)AS, (Wi, -+ Woe1, W2, (87)

The inequalities (86), (87) give the inequality

fn(wb s 7wn—1>wn) S I+ Vn—l(wla s >wn—1>ASn(wl7 sy Wno1, wn)- (88)
Let us prove the boundedness of 7,1 (w1, . . . ,w,—1). From the inequalities (86), (87)
we obtain
1
ASS(wyy ey w1, wh)

( ) > 1 (59)

1 (Wi Wp1) > — .

1181 ! ASH(wy,y .. Wy, w2)
Due to Theorem 3 conditions, we obtain the boundedness of ~,_1(w1,...,wh_1).
The F,_1 measurability of the random value 7, _1(ws,...,w,_1) follows from the

fact that Q¥ is separable metric space and infimum is reached on the countable set,
which is dense in QY. Theorem 3 is proved.

Theorem 4. Let the conditions of Lemma 5 be valid. If there exist wl € A%~ w? €
A%+ and the real numbers ay, by, k=1, N,, such that

1
AST(wry .oy wWp—1,w}h)

sup = a; < 00,

(w17~-~7wn—1)€fo_1

1 _
sup =b<oo, k=1,N,, n=1,N,
(W1yeswn—1)EVE | Asg(wla ey Wn—1, w%) g
Jhax, sup max{ay, by} < oo, (90)
then there exists a bounded JF,_i-measurable random value vy, (w1, ..., w,_1) such

that the inequalities

fn(wh s 7wn—17wn>) S

(1+vn1(wi,y ey wn1)AS, (w1, -+ oy wp1,wy)), n=1,N, (91)
are true.

Proof. For wl € A%~ w2 € A%* and (wy,...,wn_1) € VF,, we have that

(Wi ey wWne1,wp) € Q) (wiye .y wno1,w2) € QF. Then, from the inequality (72),
we obtain the inequality

ASg(wl, ey Wn—1, w%) )
Vn(wl,...,wn_hw}ww%)fn(wly...,wn—1,wn)—|—
AS= (wrs o1t

n(wla , Wn—1 wn) fn(wl,---,wn_l’wi) S 1. (92)

Vn(wl, o, Wh—1, w}ww%)
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From the inequality (92), it follows the inequality

1— fu(wi,. . wpo1,w))
2 n 9 ) n 3 n 4 9
nwa-..ywnfawn §1+ ASRW,...,wni,wn. 93
f< ' ! ) ASE(wl,...,wn_thlJ ( 1 1 ) ( )
Let us define
(Wi W) =
) k
£ °s, e Wp_1) EVE 94
{“’Tllelg%ki} Asg(wlw"awn—bw}z) <W1 « 1) n—1 ( )

then, taking into account the inequality (93), we have the inequality

fulwi, .y wnog, w?2) ST HAF (Wi, wns ) AST (w1, .+ W, W), (95)
From the definition of v* (w1, ...,w,_1), we obtain the inequality
falwr, . wno,wh) ST —AF (Wi, wn ) AS, (Wi, .. Woe1, W), (96)

The inequalities (95), (96) give the inequality
fn(wh ce 7wn—17wn) <1+ ’77]—2—1(("}1’ s 7wn—1)ASn(w17 ey Wn—1, wn)- (97)

Let us prove the boundedness of v* | (wy, ..., w,_1). From the inequalities (95), (96),
we obtain the inequalities

1
AS~(wyy vy, wh)

ap = sup
(wl,...,wnfl)GV,iI

1

= —b.
ASH(wry .. w1, w32) k (98)

k
Vo1 (W1, wpg) > — sup
(wl,...,wn_l)EVf_l

From this, it follows the boundedness of v* | (wi,...,w,_1). The F,_; measurability
of the random value v* | (wy,...,w,_1) follows from the fact that Q¥ is separable

metric space and infimum is reached on the countable set, which is dense in Q2. To
complete the proof of Theorem 4, let us put

Nn
/yn—l(wla s awn—l) = Z va_l((wh s ywn—l)’ys—l(wb s 7wn—1)7 (99)
k=1

then for such ~v,_;(wi,...,w,—1) the inequality (91) are satisfied. Theorem 4 is
proved.
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V.  OPTIONAL DECOMPOSITION FOR SUPER-MARTINGALES

In this section, we give simple proof of optional decomposition for the nonnegative
super-martingale relative to the set of equivalent martingale measures. Such a proof
first appeared in the paper [16]. First, the optional decomposition for diffusion
processes super-martingale was opened by El Karoui N. and Quenez M. C. [21]. After
that, Kramkov D. O. and Follmer H. [22], [23] proved the optional decomposition for
the nonnegative bounded super-martingales. Folmer H. and Kabanov Yu. M. [24],
[25] proved analogous result for an arbitrary super-martingale. Recently, Bouchard
B. and Nutz M. [26] considered a class of discrete models and proved the necessary
and sufficient conditions for the validity of the optional decomposition.

Theorem 5. Let QY be a complete separable metric space and let F? be a Borell
o-algebra on 9, i = 1, N. Suppose that the evolution {S,(wy,. .. ,w,)}N_, of risky
assets satisfies the conditions of Theorems 1, 2, 3, 4, then for every mnonnegative
super-martingale {f1(wi, ... ,wn) 1y relative to the set of martingale measure M,
described in Theorem 1, the optional decomposition is true.

Proof. Without loss of generality, we assume that f}(w;,...,w,) > a, where a is
a real positive number. If it is not so, then we can come to the super-martingale
fHwi, ..., wn) + a. Let us consider the set of random values
fHw, .o wn) -
folwr, ... wy) = L , n=1,N. 100
( ) faci(i, o wo) (100)
Every random value f,(ws,...,w,) satisfies the conditions of Lemma 4. Due to
Theorems 3, 4, the inequalities
falwi, - wn) _
n < T4+ vYpq(wi, .o ywno1)AS(we, ..o ywy), n=1,N, (101
o o) ( JAS,( ) (101)
are true, where 7,_1(wy,...,w,_1) is a bounded F,_j-measurable random value.

Since EQ|AS, (wy,...,w,)| < oo, Q € M, we have
By 1(wi,. . wn 1) AS, (Wi, .. w)| Fuoi} =0, QeM, n=1,N. (102)

Let us denote

=

{2(w1, cooywn) =1+ v 1 (Wi, 1) AS, (W -y wy), n= (103)

Then, from the inequalities (101), we obtain the inequalities

fi(wl, cey W) <

1wy W) L (wr, w0 ) [E (W w) — 1], n=1,N.  (104)

Introduce the denotations

gn(wb cee 7wn) =

—fHwr, . wn) F (W W 1)E (W, wy), m=1,N. (105)

Then, g,(wi,...,w,) >0, n=1,N, and
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E9g(wi,. .. wn) < E9fNwr, .o wn) + B9 wy, . wns). (106)
The equalities (105) give the equalities

fHw, .. w,) =
fi+ En:fg_l(wl, wne) [ w) =1 =) gilwr, . wi), no=1,N.(107)
i=1 j
Let us put
My (wi, ... wn) = fo + zn:f}l(wl, o wie ) (W, w) — 1], n=1,N,(108)
then EQ{M, (w1, ... ,wn)|Fn1} = M, 1(wi,...,w,_1). Theorem 5 is proved.

VI. SPOT MEASURES AND INTEGRAL REPRESENTATION FOR
MARTINGALE MEASURES

In this section, we introduce the family of spot measures. After that, we obtain
the representations for the family of spot measures and define integral over these
set of measures. The sufficient conditions are found, under which the integral over
these set of measures is a set of martingale measures being equivalent to the initial
measure. The introduced family of spot measures is a family of extreme points for
these set of equivalent measures.

We give an evident construction of the set of martingale measures for risky
assets evolution, given by the formula (9). First of all, to do that We consider a
simple case as the measures P is concentrated at two points w!,w? € QO where
wl e A% w2 € A% for a certain k, depending on n, for the representatlon Q.
and 7, given by the formula (5). Let us put P2(wl) = pF, PY(w?) =1 —p%, where

0 < p¥ < 1. Then, to satisfy the conditions (14) - (16), we need to put

1 -
1 1 2
n e : e _ =1,N, 109
a ({wl wn} {wl n}) (1 pn) n ( )
and to require that
AS (Wi, W1, W) <00, (Wiyee . Wno1,wh) € Q0
ASH(wi, .. wno1,w?) <00, (Wi, .., We 1, w?) € Q. (110)

Let us denote gy, 23, {wh W 1(A) the measure, generated by the recurrent relations

(23) - (25), for the measures P?, n = 1, N, concentrated at two points. For the point

{wh w2}, o {wh, Wi} € Qn X Qy, the recurrent relations (23) - (25) is converted

relative to the set of measures ,ui v w;w}” 0o }(A) into the recurrent relations

{w]l\f W

P (A) = o (@1, w1, Wh) Xt (@1 o1, 03 X
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+ 2
ASN(wlu v ,CUNfl,WN) (w17-~~7WN—1:w]1\7)

A)+
VN(wb""WN—l,w}V,w]Q\,)MN (A)
ASR (W1, - WN-1,Wh) (@113
N1} A, AEe Fy, 111
VN(wlw'-;WN_hw}v,w?v)uN ( ) N ( )
F{(:)171:’W;QS:L7Tg"')ll\l"“’12\{}(14> - XQr_L <w17 R W:L)XQI (wla e, W1, WVQL) X
ASF 01 @) (e
n(wly , W lawn) ( 11,..., 712,17 }L) L (A)+
Vn(w1, ce ,wn_l,w}w w%) {wh w2 b {wh i}

— 1
ASn (wla sy Wn1, wn) (W15eeerwn—1,w32)
1 2 1 2
Vn<w1’ P 7wn71; (,U,rlw w%) {wn-‘rl?wn_'.l},uv,{WvaN}

(A)|, n=2N, AecFy, (112)

b a2}l ) (A) = Xor (1) Xor (W]) X

AST(W2)  (wh

Vi(w!, w2) Heb b (k)

AST (wi) ()

Vi(w!, w2) b b (k)

(A) + (A, (113)

where we put

M%-’lr""‘)N*l’WN)(A) = XA(UJla sy WN—1, WN)? A€ FN' (114)

The recurrent relations (111) - (113) we call the recurrent relations for the spot

MeASUIes g1 2y, (wh w2} (A):

Let us consider the random values

1l)n(W17 cee 7wn) - XQ;(wh s 7wn—17wn)¢711(w17 cee awn)+
Xm(wl,...,wn_l,wn)lﬁi(wl,...,wn), (115)
where
Y (Wi, .. Wne1, Wh) = Xoi (Wi, - - - , Wno1, W2) X
AST(wyy oy wn1, w?)
n Wby Wn 1 %) W) €, 116
Vn(wb e Wn—1, w}t,w%) (wl “ 1) ' ( )
Y2 (Wi, Wn1, Wp) = X (Wi, - - , Wno1, Wh) X
AS‘(wl e, Wh—1 wl)
n ey W1 %) e wn) € Q. 117
Valwi, ooy wno1,wl w?) (o “n-1) ! (117)
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Lemma 6. For the spot measure N{w},wf},...,{w}v,w]?v}<14) the representation

Pt w?

2 2 N
E E 1
o .. H l/J](wl PECEEEEIY
i1=1 in=17=1

15 true.

},...,{w}v,w?\,} (A) =

w;'j)XA<wila"'aw§\]fv)a AeFN?

(118)

Proof. The proof of Lemma 6 we lead by induction down. Let us prove the equality

(wW1yeeswN—1) .
{UJIlV7UJ]2\7} ! (A>_
2 .
Z Yn (Wi, wn-L W )xa(wr, - w-1, Wy ).
in=1
Really,
wN(Wlw'-7°JN—17°J]1V)XA(W1>---awN—laW]lv)+
YN (Wi, wno1, wh)Xa (W, - WN—1, W) =
ASH(wry . N1, wh)
1 2 N\W1, sWN—-1,WN
- 1, W W1y oo s WN_1, W
XQN(wla sy WN—1, N)XQ;( 1 sy WN—1, N)VN(CU]_,...,CUN_17CL)]1V’W]2V)
ASy(wi, .. wy_1,Wk)
1 1 N 9 ) y VN
— _ Wiy oo e s WN_1, W
XQN(wla s WN 17WN)XQ$( 1, s WN—-1, N>VN(W1,---,WN71,WA/1V,W]2V>
XA(wlv"'7wN—law]1V)+
ASH(wr, . Wy, wh)
2 2 N\W1, yWN—-1,WN
— _ W1y e oo s WN_1, W
XQN<(JJ17 s WN lawN)XQ;( 1, s WN—-1; N)VN(Wlp--,wal,W]l\[,W]z\[)
ASy(wi, .. wy_1,Wk)
1 2 N ) ) ) YN
- _ Wiy oo yWN_1, W
XQN(wla s WN 17WN)XQ$( 1, s WN—1, N)VN(Wl,---,WNfl,W}V,W?V>
XA<W1,...,WN_1,CU]2V):
XQ;V(wl,...,wN_l,w]lV)XQﬁ(wl,...,wN_l,w]QV)x
AS]J\?(wl,...,wN,l,w?v) 1
XalWi, ..., WN_1,W +
Vi (wi, ..y wn—1, wh, w%) (@, @)
ASy(wi,. . wN_1,wWk)

Vi (wr, ..

1
Sy WN-1, W, Wy

Z)XA(Wl,-o-,WN_l,W?V) ) AG‘FN

(119)

X

+

X

(120)
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The last prove the needed. Suppose that we proved that the equality

M(wl,...,wnq,wn) (A) —

{wni1wp b fwy @i}
2 2 N
int1 ij int1 iIN
E E H P (Wi, s Wy W W ) XA, W, W WY,

Ae Fy, (121)

is true. By the same way as above, we have

2 .
Z ‘(/Jn(wh ey Wpo1,W )/’LE(L:)L e 17wn ) (A) -

n+1’ n+1}’ ’{wN’wN}

in=1
XQ; (wh sy Wno1, w'rIL)XQ:g (wla ey Wn—1, WZ)X
AS,,J{(le e, Wh—1, UJ,,QZ) (wl,...,wnfl,w,,ll) (A)+
Vi(wi, ..., wn1, wk, w2) " npren b Ao ok}
ASE (wl, e, Wh—1, w;) (W1 yeeesWir—1,w2) (A) _
Vn(wh e, Wno 1, w}” w%) {erl+17w721+1}:-~~7{w11\7’w12\7}
e jgw}ww%v}(A), A€ Fy. (122)
The last proves Lemma 6.
Let us define the integral for the random value fy(ws,...,wy_1,wn) relative to

the measure fug,1 2y

1(A4) by the formula

1 2
,...,{UJN,WN

/ In(wiy o W1 WN) ARl 02y w2} =

2 2 N
Z...ZH (Wi wd) (Wit W), (123)
i1=1 in=1j=1

To describe the convex set of equivalent martingale measures, we introduce the
family of a-spot measures, depending on the point ({wj, {wl} S Awk, {wi}) be-
longing to 1y x Qy and the set of strictly positive random values

an({w%, o ,w,ll_l,w,ll}; {w%, . ,wi_l,wi}), n=1N, (124)

at points W, = ({wi,...,wi};{w? ..., w?}), being constructed by the point

o wit, o oy, wi ).
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Further, in this section, we assume that the evolution of risky asset is given by
the formula (9). Therefore, in this case

Q=00 x0,, QU =00"%x0,,, n=1N, (125)
and the condition (16) is formulated, as follows:
/ XQQL* (wflL)XQS+ (wi)an({wia ce 7wrlzfla wi}) {w%7 ce 7w121717 wi}) X

Q0 x Q9

dPY(w))dP?(w2) =1, n=1,N. (126)

Let us determine the random values

IPS(Wlu s 7(")71) = XQ;(wla s 7wn—1awn)¢7lz(w17 s 7wn)+
XQ; (wla ceeyWno1, Wn)‘/)i(Wla s 7wn)> (127)
lpyll(wlu"-vwnflawn> =
O‘n({w%""awrlz—l’wib};{w%w-->w721—1?w2})XQ:{(w17--'awnflawi)x
ASH(wry .y wno1, w?)
1) €Q,_ 128
Vn(wl,---;wn_hw%,w%), (wh y Wn 1) n—1, ( )
¢Z(w17"'7wn717wn> ==
an({w%,...,w,ll_l,w}l};{wf,...,wi_l,wi})xm(wl,...,wn_l,wi)x
AST (Wi, .y Wno1, wl)
1) € Q,_1. 129
Vn(wlw'-awnfl’wyluw%), <w1’ o 1) el ( )

Let us define the set of a-spot measures on the o-algebra Fy by the formula
2 2 N '
i (A) =Y > TTws i wf)xalwi .. W), A€ Fy,  (130)
=1 iy=1j=1
and the set of the measures

NO(A) =

2 2 N
D vt wi)xalwtt, . wi )dPy x dPy, A€ Fy. (131)

Qnxay 1=l in=1j=1
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Theorem 6. Suppose that the conditions of Lemma 1 are true. If the strictly positive
random values

an({wi, ... wili{wl, ... W2}, n=1,N, (132)
given on the probability space {Q, X Qpn, Fn X Fn, Py X By}, n =1, N, satisfy the

conditions (126), then for the measure po(A), given by the formula (131), the rep-
resentation

po(A) =
N
H ai({wiv s ?wil}; {w%v s 7w?})ﬂ{w%,w%},...,{w}v,wf\,}(A)dPN X dPx (133)
QNXQN =1
18 true.
Proof. Due to Lemma 1, the set of random values o, ({wi,...,wl};{w? ... w?}),

n = 1, N, satisfying the conditions (126), is a non empty set.

We prove Theorem 6 by induction down. For the spot measure the relation

(wh---,wNA)(A) _

ot w2y

XQ;\,(M,«--7WN—1,W}V)XQ;(M1,...,wN_l,w]?V)x
ASJJ\r/(wla L WN_1,WY) 1
Wiy e WN_1, Wr )+
VN(wh"'Jwahw]lV’w?\/)XA( b yWN-1, N)
ASy(wi, ... ,WN—1,WN) )
wi, . WN-L W) | A€ Py 134
VN(Wl,---,qu,w}V,w?V)XA( 1 s WN-1, Wi N (134)
is true. Multiplying the relation (134) on ay({w;, .. .,wk_, Wi} {w?, ..., Wi, Wi}

aﬁd after that, integrating relative to the measure Py x Py on the set Q% x Q%;, we
obtain

[ [antteh bbbt ko wkhx

0 0
QN QN

=D Y GPY (WL )dPY (W) =

{wywi}

//O‘N({wiv cee 7w]1V—17w]1V}; {wfv e aWJQV—lvaZ\T})X

oy 9y

XQ;,(Wla o ,wN,l,w]lV)XQ}(wl, . ,wN,l,w]ZV)x
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ASH(wr, . wn_1, wh)

1
Tt VA k)
ASy(wi,- .., wn-1,wy) 2 0/ 1 0/ 2
W~ dPY (W) dPY (W) =
Vn(wr, - wn- 17WN>WN)XA<W1’ s wWn-1,Wy) | dPy(wy)dPy(wy)
pEEND(4) A € Fy (135)

Suppose that we proved the equality

/ H ai(fwl, o Wb W 6 W W W Y) X

i=n+1
[ [29x90)
i=n+1
(W15eee0n) 0(w 0 (W1yees0n)
M{wi+1’“’3+1}:-w{w}v"“1\r} H dP dP( ) 'unl i (A) (136)

i=n+1

Then, using the induction supposition (136), the relation for the spot measure

M(wl,...,wn_ﬂ (A) _

{wrlww%}vmv{wzl\]vw?\]}

Xo: (Wi, - - - ,wn_l,w,ll)xgz(wl, W1, W2) X
AS:(Wl, ey, Wp—1, WZL) (wll,...,wg_l,w,ll) L (A)+
Vn(UJl, e ,wn,l, U)}l, w%) {wn+17wn+1}7"'7{wN7wN}
AS; (wla coe, Wh—1, wk) (wl,...,wnfl,w%)
Vn(wly sy Wn1, wylw W%) {w;lzﬂ»wiﬂ}r"f{“zlvvw?v}<A> , AN, (137)
N
and multiplying it on [] a;({wi,...,w! |, w cwihi{w?, Wk w2 W)
i=n

N N
and then integrating relative to the measure [][P? x P?] on the set [][Q? x QY]

we obtain the equality = o
/ XQ;(wl,...,wn_l,w}z)xﬂi(wl,...,wn_l,wi)x
Q0 xQ0
o ({wl wl}- {w2 }) ((.U17 . e 7wn717w727,) M(WI7”'7wn_1’lel)<A)+
n 1o 2»%nt> 15+ Wnp (wl’.“?wnil’w}”wgﬂ n
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AS~ e Wi, WY
n (UJla , W 1,wn) M(wl,...,wnfl,wi)(A) dPy?(WTIL)dPS(WTQZ) —

Vn(w17 e 7wn—17w71u w,,%) "
Mglw_li...,wn—ﬁ(A)’ n = L_N (138)

Thus, we proved the following recurrent relations

Mf:.;_li,wnfl)(A) = / XQT_L ((.Ul, e, Wh—1, W}L)XQI (Cdl, e, Wh—1, w?‘L) X

Q0 <00

AS:(CUL ey W1, Wi) M(wl,...,wnfl,w}l)(A)_’_
Volwi, ooy wpog,wh w2)™"

anlfelbds ) |

AS (wiy .y Wh1, W)

M(wlw-,wn—w%)(A)] dPy(w,)dP)(w;), n=1,N. (139)

1 ,,2\"n
Vn(wla cey Wno1, Wh, wn)

To finish the proof of Theorem 6, let us calculate

2
Z Y (Wi, W1, W) xa (Wi, w1, W AP (Wi ) AP (W), (140)

a9, xqg, ‘N=!

Calculating the expression

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020

2
Z ED%(Wla o JWN—lawj\J/'V)XA<w17 L 7WN—17W§\][V) -
in=1
P (Wi, w1, W) XA (W, - W1, W)
w%(wb s ,WN_l,W]Qv)XA<w1, s JWN—17WJ2V) =
aN({wia'-->w]1\/};{w%7'-~7w]2v})x
XQ&(wla"'7wN—law]1V)XQﬁ(wla"'7wN—17w]2V)X
AS;(,(wl,...,wN,l,w]?v) 1
XAlW1, .. ., WN_1,WN)+
Vi (wi, ..y wy_1, wh, w¥) (w1, N1 @)
AS&(wl e, W w]lv) 2
o ON-L W AcF 141
VN(wl;---,WN—lyw]l\/yw?\r)XA(W1 , WN 17("-)N) ’ N ( )
O and substituting (141) into (140), we obtain the equality
2 . .
Z lp?\éf(wb s 7WN—1>W§\JTV)XA(W1> s awN—lﬁwﬁ\]fv)dP](\)f(w]lV)dPJ%(w?V) =

0 o tn=1
QR x QY

© 2020 Global Journals



plet NI (4)) (142)

Suppose that we already proved the equality

/ Z ZHIIJ Wiy ey WnyW :;irll, H dPO dPO( )

int1=1 in=1j=1 i=n+1
]_[ QIxQ?
i=n+1

e (4). (143)
Then, acting as above, we obtain the equalities

2

3 (W1, Wi ) (A) AP (wh)dPY(w2) =

Q0 ko n=l
/an({w%,...,w}v};{wf,...,wfv})x
Q0 xQ9
XQ;(wl,...,wn_l,wi)xgz(wl,...,wn_l,wi)x
{ ASH(wr,. .. ,wn—ll, W%) Mq(zwl,...,wn,l,w}b)<A)+
Valwi, .oy wpo1,wl, w?2)
AS (Wi, .y wno1, W) (@10
senWn—1,0n) (A dPO dP0w2 —
U lor ol w) W(A)| dPS(w})dPS(w?)

plen) Ay A€ Fy. (144)

We proved that the recurrent relations (144) are the same as the recurrent relations
(139). This proves Theorem 6.

Let us introduce the denotations

2 2 N
’LL{w17w1}7 ,{wN,wN} QN Z Z H lp] W1 g, W 'j)a

i1=1 in=17=1
Wy =A{w1, .. wyswi, o wiy = {{wiy, Wik (145)

Further, only those points ({wi,w?}, ..., {wy,wik}) € Qn x Qx play important role
for which ILL{W17 } }(QN) 7é

’” 7{wN7wN

Below, in the next two Theorems, we assume that the random value

an({wi,. . . Wik {wl, ... w2} (146)

given on the probability space {€2, x Q,, F, X F,, P, x P,}, n =1, N, satisfy the
conditions (126).
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Under the above conditions, for the measure jo(A), given by the formula (133),
the representation

N
- /Hzpn(wl,... n)XA(Wr, . W HdPO w;) (147)
Qn n=1

is true, where

Yn(wi, . wn) = Xq- (Wi, -  Wne 1, W )W (W1, - oy W)+
XaiF (wla sy Wno1, wn)lprQL(wla < 7wn)> (148)
lpi(wla-'-awn—hwn):\/XQﬁ(wlw'-:wn—hw?z)an({w%?'"7w}z};{w%"'->w72z )X
Q
AS+(U)1 e, Wi )
AL @)1 p0(w2), e Whne1) € Quiy, 149
Vo(wr, - W1, WL, w2) o (W ) (w1 Wn-1) 1 (149)
V2 (Wi, Wa1, Wh) :/Xﬂn(wl,...,wn_l,w}l)an({w%,...,wi};{w%,...,wi})x
Qf
AS‘(wl ey Wno1 ) 0
" d s dP , ey Whet1) € Q1. 150
Vn(wlv"'7wn—lawl OJZ) ( ) (wl < 1) ' ( )

Due to the conditions (126) relative to the random values a,,({w}l; {w}?), we have

/lpn(wl, oy wn)dP(w,) =1, n=1,N. (151)

for ¥, (wi, ..., wy), given by the formula (148). The proof of the equalities (151) is
the same as in Theorem 1.

Theorem 7.  Suppose that the conditions of Lemma 1 are true. Then, the set of
strictly positive random values o, ({w}h; {w}?),n = 1, N, satisfying the conditions

EF|AS, (w1, . Wno1,wn)| =

N
/Hlpz Wi, )| ASu(wr, - w1, wn)| [[dPYw) <00, n=T,N, (152)

i=1

is a non empty set for the measures po(A), given by the formula (133). The measure
po(A), constructed by the strictly positive random values a,({w}t; {w}?),n =1, N,
satisfying the conditions (126), (152) is a martingale measure for the evolution of
risky asset, given by the formula (9). Every measure, belonging to the convex linear
span of such measures, is also martingale measure for the evolution of risky asset,
given by the formula (9). They are equivalent to the measure Py. The set of spot
MEASUTES U} w2}.... {why 3 }(A) s a set of martingale measures for the evolution of
risky asset, given by the formula (9).
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Proof. The first fact, that the set of random values a,({w}l; {w}?),n =1, N, satis-
fying the conditions (126), (152) is a non empty one, follows from Lemma 1. From
the representation (147) for the set of measures pg(A), given by the formula (133), as
in the proof of Theorem 1, it is proved that this set of measures is a set of martingale
measures being equivalent to the measure Py .

Let us prove the last statement of Theorem 7. Since for the spot measure
[l w2}, fw, w2} (A) the representation

220 w2t dwk w3} (A) =

2 2 N
ZZH wl,...,w;j)XA(wil,...,wj{,V), A e Fy, (153)
=1 iy=1j=1

is true, let us calculate

2
lej(w?,,..7w;f)zlpj(wil’,., wj 1w )_|_1p (wil"..’w;j:ll’w?):

ij=1
j ti—1 ANl i Gi-1, 1
Xﬂg(w?,...,wjll,wj)llij(w?,...,wjlle)%—
i -1 1N 2/, i1
Xar (Wit -+ W/ w5 (Wl . wi T w; D+
' tj—1  2\.ple i tj-1, 2
XQ;(wila'-->wj]—1awj)l/)j(w?w"ijlle)—{—
‘ Gi—1  2\.p2( i hi—1 2
XQJr(lela 7w]£17wj) j(w??"' w]] 10.) )
A , , - AST (Wi Wi w?)
tj—1 1 ij—1 2 J 1o j—11"j
Xﬂf(wila"'awjll7wj)XQTL(wil7"'7wj]fl7wj) i1 1 2 +
g J Vj(wl,...w] 0w, wi)
. , . - AST (Wi Wit wh)
151 151 1 i 1oy r¥j—1-2"5
Xﬂf(wila"wwj]—l? )XQ (wl ) '-7wj]—1?wj) i 1 1 +
g Vj(wl,...w] 0w, W)
A , . : ASHW! . Wi w?)
151 2 151 2 J 1o r¥j—172"3
Xﬂf(wila"'awjjfl7wj)XQTL(wil7"'awjll7wj) i1 151 1 2 +
g J Vi(wl, ..., wiy, wi,wi)
. : . : AST (Wi Wi wh)
ij—1 ij-1 1 J 1o -1
Xor Wi .- w7, w )XQ (Wits o wi T, wy) - =
g Vi(wl, ..., wiy, wi,wj)
A , . : AST (Wi W w?)
11 1 i1 2 j 19 ]_1, j
Xar (wila s awjjfl 7(JJ]')XQTL (wil7 s 7wjjfl 7("-)]‘) i1 ij_1 1 9
g J Vi(wl, ..., wiy, wi,wi)
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AST(wi' .. LW W)

Yor (@ w0 e (Wit L W wh) 4 : L =
QJ 1 P10 QJ Lo B ‘/J(wil7 w] 17&)1 wl)
Xo- (wit, ... ,w;j_’ll,wjl-)xgj (Wi, ... ,w;j:f,w?) = Xao- (wjl-)XQ?Jr (wJQ) =

L,

wh e Q)™ w?e Qi L =
0, 0therw1se

, j=1N. (154)
Further,

2
D it w))AS (Wi wd) =

ij=1

Wi (Wi .., w] LwhHAS (W w‘j_ll,wl)+

] ii-1 2 i iji-1 2
Yi(wi's - wi W) AS (Wi w T wy) =
ij71

Xo: (wit, ... y Wiy :W;)an (Wi, ... ,w;;l ,w]?)x

B ASj(w’f, cwi T w?)

A AST (Wi ... Wi wh+
Vj(w}l,...w] l,w w) P

AS]-_(W?, WP w )

j—

i — ASHWY, ... Wit W) =0, j=T,N. (155)
V}(wllw" w_] 17w W)

Let us prove that the set of measures u{w%,w%}w{w}ww%}(A) is a set of martingale
measures. Really, for A, belonging to the o-algebra F,,_; of the filtration we have

N
A = B x [, where B belongs to o-algebra F,,_; of the measurable space
{Qu_1, Fur}. Then,

/Asn(wla s 7wn)du{w%,w%},...,{w}v,w%} -

2
Do st o xs(er e DAS (W e =

=1  iy=1j=1

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020

2
S vl W sl e A (Wit wir) =
. i1=1 in=1j=1

2 2
S 3 TIwstets oottt
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2
D nlwl, W) AS, (W wi) =0, A€ Foy. (156)

n

in=1
The last means the needed statement. Theorem 7 is proved.

Below, in Theorem 8, we present the consequence of Theorems 6, 7.
Theorem 8.  Let the evolution of risky asset be given by the formula (9) and let

Lemma 1 conditions be true. Suppose that the random value ay({w}y; {w}), given
on the probability space {Qy x Q%, Fx X Fr, Py x Py}, satisfy the conditions

Py x PE(({wh oo b b 1wl an (ol b b fo o ywd}) > 0) =
N
11 P2) x Poes’); (157)
n=1

[ el st bt e

Q0 x 0t
ASTT(WIJ'"7wn—17w72L)AS;(W1,...,wn_17w%) 0 1 0 9
dpP, dP(w?) < o0
Vn(wl, e, Wh—1, w%, w%) n(wn) n( n) )

(U.)l, e ,wn,l) € anl; (158)

[ axtlelewhdited kD [dPP@HARYet) =1, (159

N
[T~ xQ)*]

=1

where

aTL({w%: e 7w7{0717 w}l}; {wi s 7("")’3,717 wi}) = (160)

I an(fel . ehhied D) TT dPP(h)aP(w?)

N i=n+1
[T 1207 %"

i ~ ., n=1N.
I av({wl, ey el w0k ) [T dPY(w!)d P (w})
1]‘V[ [Q97 xQ07] o

i=n

If the set of strictly positive random values o, ({w}l; {w}?),n = 1, N, given by
the formula (160), satisfies the condition

EM|AS, (wiy ..y W1, wn)| =
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N N
/Hlpi(wl, e wi) |ASL (W - w1, wy)| HdPiO(wi) <oo, n=1,N, (161)
Gy =1 i=1

then, for the martingale measure py(A) the representation

fo(A) =

/ aN({wiv <. 7w]1V}; {wfv oo 7w?\f})ﬂ{w},w%},...,{w}v,w?\,}(A)dPN X dPN (162)

QNXQN
18 true.
Proof. The random values o, ({wyq, ..., wl wl}{w?, ... w? | w?}), n=1,N,sat-

isfy the conditions (14) - (16), due to the conditions of Theorem 8. It is evident
that

an({wl,. . wy ki {wd, .. W) = H an({wi, .., wih{wl, .. w2}, (163)

Due to Theorem 7, py(A), given by the formula (162), is a martingale measure being
equivalent to the measure Py.

Let us indicate how to construct the random values ay ({w}y; {w}% ), since these
random values determine the set of all martingale measures. Suppose that the

random value of(w},w?), k = 1, K, is a bounded strictly positive random value,

given on the measurable space {Q0~ x Q¥ F9= x F*} i = 1, N, and satisfying
the conditions

af (wi, wi)dP)(w;)dP)(wf) =1, i=1,N, k=LK. (164)
Q97 xQft
Let us denote
N
ok ({wl, . wnhi{wl . wd ) = [[ bl w)), k=TK, (165)
i=1

where K runs natural numbers. If v, k = 1, K, are strictly positive real numbers

K
such that > v, = 1, then
k=1

K
an({wi - wndifwl Wi ) = ) mak (vl wy ki {wd, . wh)) (166)
k=1

satisfy the conditions of Theorem 8. The set of random values (166) is dense in the
set of random values ay({wi, ..., wy};{w?, ..., wi}), satisfying the condition (157)
- (159). Theorem 8 is proved.
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Another way to construct ay({wil, ..., wh};{w?, ..., w%}) is to use the equalities

(126). The set of a,,({wi, ..., wl ,wlil:{w? ... w2 |,w2}) can construct as follows:
suppose that ol ({wi,... wl | wit:{w? ... w2 |,w?}) satisfies the inequalities
0 < hn S ai<{w%7 ce 7w7{0717w111}; {wfa ce 7(“')721717("'}721}) S Hn <0 (167)

for a certain real positive numbers h,,, H,. If to put

O‘n({wiv s 7wrlz—1’w7lz}; {w%7 s vwz—lvwi}) =
Oé'}L({w%7“'7W}L—17W}L};{w%7"‘7w3L—17w'?L}) (168)
f OK’}L<{W%7 R 7(")711717 wrlz}a {w%a cee 7w121717w721})dp79(w7%)dp19(w721)’
Q9 x 0t
then the set of random values o, ({wi, ..., wl | wi}; {w?, ... ;w2 |, w?}), n=1N,

is bounded and satisfy the conditions (14) - (16) under the conditions of Theorem
7. We can put

anv({wl,...,on ki {e?, . wh)) =
N
H O‘n({w%? te 7w7lzfla wTIL}7 {w%7 te 7w121717 MZ}) (169)
n=1
It is evident that a,,({wi, ..., wl | wil;{w? ... w2 ,w2}), n =1, N, must satisfy
the conditions (161).
VII.  DERIVATIVES ASSESSMENT

In the papers [27], [28], the range of non arbitrage prices are established. In the
paper [27], for the Levy exponential model, the price of super-hedge for call option
coincides with the price of the underlying asset under the assumption that the
Levy process has unlimited variation, does not contain a Brownian component,
with negative jumps of arbitrary magnitude. The same result is true, obtained in
the paper [28], if the process describing the evolution of the underlying asset is a
diffusion process with the jumps described by Poisson jump process. In these papers
the evolution is described by continuous processes. Below, we consider the discrete
evolution of risky assets that is more realistic from the practical point of view. Two
types of risky asset evolutions are considered: 1) the price of an asset can take any
non negative value; 2) the price of the risky asset may not fall below a given positive
value for finite time of evolution. For each of these types of evolutions of risky assets,
the bounds of non-arbitrage prices for a wide class of contingent liabilities are found,
among which are the payoff functions of standard call and put options.

N N
Below, on the probability space {Qy, Fy, Py}, where Qn = [] Q9, Fy = [[ F?,
i=1 i=1
N
Py =[] P?, Y is a complete separable metric space, F? is a Borel g-algebra on
=1

QY P? is a probability measure on F?, i = 1, N, we consider the evolution of risky
asset given by the formula

Sp(wry .y wy) =
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So [ (1 + ailwi, .. wimy) (e s — 1)) - =T N, (170)

i=1
where a;(wy, ..., w;i—1),0;(w1,...,w;—1) are F;_j;-measurable random values, satis-
fying the conditions 0 < a;(wy,...,wi—1) < 1, oy(wy,...,wi—1) > o; > 0, where
0;, i = 1, N, are real positive numbers. Further, we assume that the random value
gi(w;) satisfy the conditions: there exists w} € Y such that ;(w}) =0, i = 1, N,
and for every real number t > 0, P?(g;(w;) < —t) >0, P?(gi(w;) >t) >0, i=1,N.

For the evolution of risky asset (170), we have

AS, (Wi, ey W1, wy) =

Sn,1<0~11, s 7wn71)an(w17 s 7wn71>(60.”(“]1’...#71_1)8”(0‘}”) - 1) = (171)
dy(wr, ... ,wn_l,wn)(e""e"(w“) - 1),
where
dp(Wi, .o Wp1,Wy) =

(eon(wl,...,wnfl)sn(wn) _ 1)
(eanan(wn) — 1)

(172)

Sn—1<wla K 7wn—1)an(w1a s 7wn—1)

It is evident that d, (w1, ..., w,_1,w,) > 0, therefore for AS, (wy,...,w,_1,w,) the
representation (60) is true with 7, (w,) = (e»*#(“») — 1). Therefore,

+ 2
ASHwy, .. Wy, W)
1 ,,2)
Vn(wh sy Wn1, anwn)
eon(wl,...,wn_l)an(w%) -1 ) os
w € Q) WiyevnyWhno1) € Qy_1,(173
ea'n(wlv---vwnfl)an(w%) — 60n(w17"'7wn*1)5’n(w}b)’ n n ( L » 1) n 1’( )
AST (Wi, W1, Wyt)
1,2y
Vn(wh cee s Wn—1, wrmwn)

1 — eo'n(wly---vwn—l)sn(wi)

w,ll € Qg_, (wl,...,wn_l) S Qn—17(174)

ea'n(wl,n-,wnfl)en(&/%) _ eUn(Wlw-ywnfl)?:n(w}L)’

where we denoted
QQL_ - {wn S qugn(wn) S 0}7 Q?z+ = {U.)n € Qg,en(u}n) > 0}7
Q. = Q?L_ X Qp_1, Q;: = QEL”L X Q1. (175)

From the formulas (173), (174) and Theorem 1, it follows that the set of martin-
gale measures M do not depend on the random values a;(wy, ..., w;_1), i =1, N. If
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to put a;(wy,...,w;—1) =1, i = 1, N, in the formula (170), then for the risky asset
evolution we obtain the formula

Sp(wiy ooy Wn—1,wy) = So H il wisaiw) oy — TN (176)
i=1

The evolution of risky assets, given by the formula (176), includes a wide class
of evolutions of risky assets, used in economics. For example, under an appro-

priate choice of probability spaces {QY, F?, P’} and a choice of sequence of in-

dependent random values ¢;(w;) with the normal distribution N (0,1), we obtain
ARCH model (Autoregressive Conditional Heteroskedastic Model) introduced by
Engle in [18] and GARCH model (Generalized Autoregressive Conditional Het-

eroskedastic Model) introduced later by Bollerslev in [19]. In these models, the

random variables o;(wq,...,w;—1), i = 1, N, are called the volatilities which satisfy
the nonlinear set of equations.
The very important case of evolution of risky assets (170) is when a;(wy, . .., w;—1) =

a;, © =1, N, are constants, that is,

n

Sn(wh L ;Wn—lawn) =Sy H(l + ai(eJi(UJ17...,Wi—1)€i(Wi) _ 1))’ n=1N, (177)

=1

where 0 < a; < 1. L

If 0 <a; < 1,72 =1,N, then the evolution of risky asset, given by the formula
(177), we call the evolution of relatively stable asset.

Further, we assume that the evolution of risky asset given by the formulas (170),
(176), (177) satisty the conditions

/Sn(wl, e Who1, W )dPy <00, n=1,N. (178)

Qn

From the conditions (178), it follows the inequalities

/AS;(wl, ooy Wn)dPy <00, m=1,N. (179)

QN

Taking into account that
AS (wr, ... ,wn_l,w}z) =

St (W1, Wt ) (Wi, Wy ) (1 — eTn@ren—Deml@n)y )l e 0= (180)

AST(wi, .. w1, wW?) =
S 1 (W1, e W) A (W -y Wy ) (€@ En @R 1) 2 e Q0T (181)
we have
o - ! <00, en(wl) <0, (182)
ASS(wry e W1, w)h) nﬁl(l —al)ad (1 — emnen(h))
i=1
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1 1

< — <00, en(w?) >0, (183)
AT (@@, W) TL(1 = al)ad (emmented) — 1)
i=1

under the conditions that
0<a<ap(wy,...,wp1)<a: <1, n=1N. (184)

Theorem 9. On the probability space {Qn, Fn, Py}, let the evolution of risky asset
be given by one of the formula (170), (176), (177) that satisfies the conditions (178).
If the inequalities 0 < a® < ay(wi,...,wp 1) <al <1, 0<a; <1, i=1,N, are
true, then the set of martingale measures M 1is the same for every evolution of risky
assets, given by the formulas (170), (177). For every non-negative super-martingale
relative to the set of martingale measures M the optional decomposition is valid.
Every measure of M is an integral over the spot measures. The fair price fo of
super-hedge for the nonnegative payoff function f(x) is given by the formula

fo = sup EVf(Sy) = sup /f(SN)d:u{w%,wf},...,{w}\,,w?\]}' (185)
pPeM w}EQ?f,w?GQ?"L,i:LiNQ
N

The set of martingale measures My for the evolution of risky asset, given by the
formula (176), is contained in the set M.

Proof. From the equalities (173) - (174) and the inequalities (178), it follows that
the set M is a nonempty one and every martingale measure constructed by the set

of random values o, (wi,...,wl;w? ... w?), n =1, N, belongs to the set M, if the

inequalities (49) are true. To prove that the set of martingale measures, defined by
the evolutions (170), (177), coincide it is necessary to prove the inequalities

1
0<A1 < Sn(wly..-ywn) SB}L<OO, n:1,N, (186)

T S2 (W, Wh)

where we denoted by S!(wy, ...,w,) the evolution, given by the formula (170), and
by S%(wy,...,w,) the evolution, given by the formula (177). Under the conditions
of Theorem 9, we have

SHwry .oy wy)

S2(wyy .y wy)

n

S() H (1 + CL7;<(,LJ17 P ,(A)Z'_l)(eai(wl""’wifl)ei(wi) — 1))

=l . n=1N. (187)
S() H(l + CLZ'(Gai(wl""’wi—l)ai(“’i) — 1))
i=1
Since
1 + a,»(wl, e ,wi_1>(Ggi(wl’""wifl)ai(wi) — 1) .
1 + ai(eai(wl,...,wi_l)si(wi) _ 1)
1-— ai(wl, Ce ,wi,l) + ai(wl, e ,wi,1)€gi(w1""’wi_1)€i(wi)

1 —a; + aieai(wl,...,wifl)si(wi)
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1 0 O'(LUI ..... (JJ_:[)E UJ)
az ale K3 K3 l( 3

< D, <
=0, + qesionmen ey = i S

1—q° 4 aledi(@i,wi—1)ei(wi)
(A 1

, i=1,N.

1— a; + aiegi(w1,~~-7wi—1)5i(wi)
Let us denote

1—al + aoegi(wlw-ywi—l)&‘(wi)
7 K3

Ai= o T o T aeeewy =LY
1 — a9 + gleoi(@iwi1)ei(wi)

B, = sup i —, i=1,N.
(W1yeeeswi ) EQ; I—a;+ aieai(wl’""wi*l)ai(wz)

It is evident that 0 < A;, B; < o0, i =1, N, and

Alngng, ’izl,N,

therefore
& SHwr, .. wn) —
Al =4 <222 < || B;,=B, n=1N
cHAasgo oy sB=5
So,
Sl(wl oY) )
A%, < D T o B2 =1,N
N = Sg(“-)la , Wn — N> n ) )
where we put A3 = min Al, B% = max B}. Since
1<n<N 1<n<N
|AS$(w1, ey Wne 1, Wn)| =
S;_l(wl, e Wi (w1, - ,wn_1)|(e""(wl"“’“"‘l)‘g"(w”) —1)]
|AST2Z(w1, e Wn 1, Wh)| =
SZ_I(wl’ o 7wn_l)an’(ean(w1,...7wn—l)5n(UJ7L) _ 1)‘7
we have

|A‘S'711(w17 co,Wh—1, wn)|

|AS2(wy,y ..oy wWp—1, Wy

SL (@1 s ) (@1, W)

S2 (Wi, Wnt)ay

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)
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Taking into account the obtained inequalities, we have the inequalities

. 0 1
2 120N " JAS (Wi, - W1, Wa)| o 120N —
A < 1o <N TN (197)
12%}3\/ an ~ |ASZ(wy, .. w1, wWh)| 122% ,

The inequalities (197) proves that the set of martingale measures for the evolutions
of risky assets given by the formulas (170), (177) are the same, since the inequalities
(49) for the evolutions of risky assets, given by formulas (170), (177), are fulfilled
simultaneously.

For the evolution of risky assets (177), satisfying the conditions (184), the in-
equalities (182), (183) are true. From this, it follows that the conditions of Theorem
5 are valid. This proves the optional decomposition for every nonnegative super-
martingale relative to the family of martingale measures M. From [17], it follows
the formula for the fair price fy of super-hedge

fo = sup E” f(Sy). (198)

PeM
Further, the conditions of Theorem 8 is also true. Therefore, the formula
sup E” f(Sy) = sup /f(SN)d/'L{w%,wf fwd w2} (199)

pPeM w}GQ?iw?EQ?ﬂi:l,N
Qn

is valid.

To complete the proof of Theorem 9, it needs to show that the set M; C M. Let
us denote S2(wy,...,w,) the evolution of risky asset, given by the formula (176).
Then, as above

S3 e Wh “ _
W) Tl o T (200)
S2(wiy ...y Wh) A
Therefore,
|AS3 (wy, .. w1, wWh)|
|AS2(wi, ... W1, wWn)|
S3 e Whe max Ci, _
2”‘1(“’1 ncl)  azesy Uy (201)
S2 (Wi Wn1)any, min a,
1<n<N

The inequality (201) proves the needed statement. Theorem 9 is proved.

Theorem 10. On the probability space {Qy,Fn, Py}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 < a;(wq,...,wi—1) < 1,
oi(wi,...,wi—1) > 0, >0, i =1,N, and a, = 1 for a certain 1 < n < N. If
the nonnegative payoff function f(x), = € [0,00), satisfies the conditions:
1) f(0) =0, f(z) <az, lim @ =a, a >0, then

Tr—r00

sup EX f(Sy) = aSo. (202)

pPeM
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If, in addition, the nonnegative payoff function f(z) is a convexr down one, then

inf EFf(Sx) = f(S0), (203)

PeM

where M is a set of equivalent martingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(Sn) lies in the set [f(Sp), aSo).

Proof. Since the conditions of Theorem 9 are satisfied, then the formula

e Sw)dQ = su SNt w2, (o 204
QGZI\}Q/ Fsde w}eﬂg_,w?eg?ul»]\fg/ J(Sn)dpy twihe{wy @i} (204)
N N

is true, where for the spot measure fir,1 2y {w}v,wfv}<‘4> the representation

[l w2}, (o, w2 } (A) =
2 2 N ' ' ‘ ‘
S Twiwit . wixalwlt, L wl), A€ Fy, (205)
i1=1  iy=1j=1

is valid, and

sup /f(SN)d:u{w%,w%},...,{w}v,w?\]} -
w}EQ?iw?EQ?ﬂi:l,N
Qn

2 N

sup Z Hv,bj(w’f,...,w;j)x

0— 0+ .
W»L'IEQZ‘ 7W?€Qi+72:17Ni1:1 ..... in=1j=1

N ) . .
f (SO H (1 + as(w?’ o >W25:11> (60'5((,.;71'1,,..,ws—ll)fs(wg) — 1))) , (206)

s=1

where we denoted Q97 = {w, € Q0 e,(w,) < 0}, QI = {w, € Q0 &,(ws) > 0}
From the inequality, f(Sy) < aSy, we have

QeM

sup /f(SN)dQ < aSy. (207)
Q
To prove the inverse inequality, we use the inequality

f(Sn)dQ =

sup

I
I > —

N i is—1 is
f (So 11 (1 +ag(wi, .. W) (6"3@?""’”8*1 Jeolws®) — 1))) ' (208)
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In the right hand side of the last inequality, let us put e,(w!) = 0, s # n. Such
elementary events w! exist, due to the conditions relative to the random values
gs(ws), s =1, N. We obtain

i1=1,....ix=1 j=1

N } i ;
ST (L4 aulwts o) (et st Z 1)) ) =
s=1

2
3 alwh s wh )f(SOe (@} wi_1>6n<w%">>. (209)

in=1
Therefore,
sup [ f(5x)Q >
QeM
Q
2 .
sup Z Yo(wi,. . wh ) f (Soe""(‘“%""’”’1171)5"(“’"71)) . (210)

wl EQ%_ w2 EQn in=1

Further,

1 i
sup E Yo (wy, ..., wm) X
wleNd™ w2eqlt in=1

f(Soe n (W Wi_l)sn(w%")> _

AST (Wi, . .. Wk w?
sup |: n( 1 n—1 n))f (Soean(w},...,w;_l)sn(w,ﬁ)) +

1 1 1,2
wheQ) ™ w2e)t Va(wi, .. wpq, whs w7

1 1
AS (wh sy Whos wn) f (5’0@””(“’117“"“’7111)5n(wi)>:| >
1 1 1 2 -
Valwi, ..o wy g, wh w?)
ean(w%,...,w}l_l)en(wﬁ) -1
lim lim
gn(w%)—)oo gn(w}]‘)—)—oo eo'"(w%V"’w}L—l)gn(w%) — egn(wif"’w'rll—l)an(w%,)

f ( Soean<w%,-~,w;,1>an(w,£>> I

1 — eon(@h el en(wh)

 (sperttest )]

T @ )en(WB) _ pon(@hroh_)en(@h)
lim ! F (Spetn@hnen_s)en(@i)) — g6 (211)
en(w2) 00 @O0 (@hewh_)en(w3) 0 — &0-
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Substituting the inequality (211) into the inequality (209), we obtain the needed
inequality.
Let us prove the equality (203). Using the Jensen inequality, we obtain

inf EXf(Sy) > f(EFSN) = f(So). (212)

PeM
Let us prove the inverse inequality. It is evident that

2 N
Z [Twir, .. w)x
15=1

11=1,...iN=

(SoH(l—i—as e N G 11>€s<ws>—1))> >

Jnf E"f(Sw). (213)

Putting in this inequality €;(w}) = 0, i = 1, N, we obtain the needed. The last state-
ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
10 is proved.

Theorem 11. On the probability space {Qn,Fn,Pn}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 < a;(wy,...,wi—1) < 1,
oi(wi,...,wi_1) > 0; >0, i=1,N, and a, = 1 for a certain 1 < n < N. If
the nonnegative payoff function f(z), = € [0,00), satisfies the conditions:

1) f(0) = K, f(z) <K, then

sup BT f(Sy) = K. (214)

PeM

If, in addition, the nonnegative payoff function f(z) is a convexr down one, then

inf B f(Sx) = f(So), (215)

PeM
where M is a set of equivalent magqtingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(Sn) coincides with the set [f(Sy), K].

Proof. Due to Theorem 9, the equality

sup / F(Sx)dQ = sup / FS8) ity wty  (216)

QeM wleQd™ w2e?t i= TN
is valid, where for the spot measure fig,1 .2y | (ol w2 1(A) the representation

22 wit o {wk w3} (A) =

2 2 N
Z Z Hl,[)] wit, . wixa(wit, .. wyY), A€ Fu, (217)

=1  iy=1j=1
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is true, and

2 N
sup Z Hlpj(wil,...,w;j)x

w}EQ?iw?EQ?ﬂi:l,Ni —1.d

(SOH (1 +ag(wi, . W) (e"s(“?’ T en) 1))) . (218)

It is evident that

sup B f(Sy) < K. (219)

PeM

Further,

sup / F(Sx)dQ >

QeM
Q

2 N . )
S vt )

i1=1,....in=1 j=1

(5’0 H < + as wila o ,wis_—ll) <€0's(wil, : 11)85(0-15 ) _ 1>>> . (220)

In the right hand side of the last inequality, let us put g,(w!) = 0, s # n. We obtain

Z Hv,b]wl,... )><

11=1,...,iy=1j=1

N _ _ i
f (So 11 (1 +ag(wi, .. Wi (605(“’;1"“’“’5711)53(‘”3 = 1)>) B

s=1

2
S gl wh g win)f <soe (@b )en @ >), (221)

in=1

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020

From the last equality, we obtain

sup [ f(5x)dQ >
M
| oM
2 .
sup Z Yo(wi,. .. wr wi)f (Soe"”(“’i""’”’11—1)5"(‘”"n)) : (222)

wl EQ%_ w2 EQn in=1
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Further,

2
in on(w] "'7w1 n wn
sup Z Vn(wi, .. wh Wi f <Soe (wl, Den )>

wleNd™ w2endt in=1

f (Soegn(w%’"-’wrlp—ﬂen(w}z)) +

sup
wled w2eqft

|: AS:(("J%? ce 70‘}111—17("-)7%)

1 1 1 2
Valwi, .o wp g, wh w?)

— 1 1 1
ASn (O)l, c ’wn—hwn) f (S eUn(UJ%, wk en(w n))‘| >

Vn(“&; 7w111 17(")7117("')721)
on(@]wh_en(@?) _ 1
e 1 1 1
an(wl,...,wn_l)sn(wn))
(h?—l)ooa(wl;gl 0o ean(wh HW, T}L Den(W2) _ e’n (w%, 7"-’ _1)en(w} n)f (Soe T

]_ — e (wlv W 71)871("‘}711) 2
wl: 7wn 1)5n(w )) —
ean(w% ----- nfl)sn( n) — 60-"((*)%7"'7“)1%71)6”(“}%) f (Soe

£(0) = K. (223)

Substituting the inequality (223) into the inequality (221), we obtain the needed
inequality.

Let us prove the equality (215). Due to the convexity of the payoff function f(z),
using the Jensen inequality, we obtain

inf EYf(Sn) > f(ETSN) = f(S). (224)

PeM

Let us prove the inverse inequality. It is evident that

2 N

S v, W%

i1=1,....ix=1 j=1

N L
f (So H <1 +a (Wi, . W) (eas(wil""7‘*}5711)65(“)55) — 1>>> >
s=1

inf E7 f(Sy). (225)

PeM

Putting in this inequality €;(w;) = 0, i = 1, N, we obtain the needed. The last state-
ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
11 is proved.

Theorem 12. On the probability space {Qn, Fn, Pn}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, oy(w1,...,wi—1) > 0; > 0,
i = 1, N. If the nonnegative payoff function f(x), x € [0, 00), satisfies the conditions:
1) f(0) =0, f(z) < az, g}l_)rgo @ =a, a > 0, then the inequalities

© 2020 Global Journals

Global Journal of Science Frontier Research (A) Volume XX Issue XIV Version I E Year 2020



ey PeM

f (so [Ja- ai)) + aS, (1 ~-JJa- ai)> < sup EXf(Sy) <aS,  (226)

are true. If, in addition, the nonnegative payoff function f(x) is a convexr down one,
then

inf B f(Sx) = f(So), (227)

PeM

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. As before,

CLSO > sSup /f(SN)d:u{w%,wf},...,{w]lv,wjzv} =
wleQd™ w2et i=1,N
QN

2 N
sup Z ij(w?,...,w;j)x

0— O+ ,__ . . .
wj €Q; T W€, A=LN g =1 in=1j=1

N i is—1 i
f (So H (1 + a, (e‘“(‘”il"“’%*l Jes(ws®) _ 1))) ) (228)
s=1

2

sup Z P (Wi W) x

1 0— 2 0+
wy EQN W ENN =1

N
) i )
f (SOH (1 + a, (eas(wil,-..7w35_11)85(w;3) _ 1))) —
s=1
=+ i1 IN_1 2
“up ASH(wity .o wn ], wi)
i1 iN-1 1 2
w}VGQ(J)\f,w]QVGQ?\?L VN(wl y o 7wN_17wN7wN)

f (SN_1 (1 + ay (ew(w?wwwﬁéi‘f)eN(w}V) _ 1))) n
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—/ 4 IN_1 1 ) i
A‘S'N(Wllv s va—lﬂwN) f (SNfl (1 +ay (eoN(wil,...,wNNfll)z-:N(w?\,) _ 1)))] >

i1 iN-1 12
Vn(wit, .o w1 wy, W)
N (@i mwon G Den(@l) _ g
lim lim - Fe - e X
en(w¥)—oo e (wh)——o0 eUN(wll,...,wN_l Jen (w3) _ eo'N(wll,...,wN_l Jen (W)
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f (SN—l (1 +an <€UN("J§1""7“?\17\]:11)8N(W11v) _ 1))) +

1 _ eUN(wl N 7WNN 11)81\](0.)11\,)

- X
74N —_
eUN(wl w1 Den (W3) e N(w117~~7wN,11)€N(w11\r)

f (SN—I (1 + an (60N(wil""’w’JLVN,_ll)EN(w?V) o 1>>>:| —

f(SN—l(]- - CLN)) + (ICLNSN_l, (229)

where we put

N-1

Sn_1 = S H (14 a (el e” B 1) (230)

Substituting the inequality (229) into (228), we obtain the inequality

2

sup Z Htlewl,..., )%

0— 0+ . .
wj €Q; T wiEQ; A=LN =1, in=1j=1

N i Tg_ i
f (SO H (1 _'_ as <eo—5(wil7"'7ws—11)Es(wss) _ 1))) Z

s=1

N-1

2
sup Z wj(w?,...,w;j)x

GQ?_,wQEQO+z LN=14= 1,..in_1=1 j=1

N—-1 ) . .
f <So(1 —a) T (1+ a (emtettmesmihenten) - 1))) +aanS,.  (231)
s=1

Applying (N — 1) times the inequality (231), we obtain the inequality

N N N
sup /f(SN)dQ > f(So [ —a)) +aSed a [ (1—a)=
QEMQ i=1 i=1 s=i+1

f (SO [Ja- aﬁ) + aS, (1 -TJa- ai)> . (232)

i=1
Let us prove the equality (227). Using the Jensen inequality, we obtain

jnf E"f(Sx) > f(So). (233)
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Let us prove the inverse inequality. It is evident that

Z Hl/)J Wi w )><

i1=1,...iny=1j5=1
N . - '
¥ (50 I1 (1 ta, (easw,..-,wsil Jes(wd®) _ 1))) >
s=1
P
jnf E”f(Sy). (234)

Putting in the inequality (234) e,(w,) = 0,n = 1, N, we obtain the inverse inequal-
ity.

Theorem 13. On the probability space {Qn,Fn, Pn}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, oy(w1, ..., wi_1) > 0; > 0,
i = 1, N. If the nonnegative payoff function f(x), x € [0, 00), satisfies the conditions:
1) f(0) = K, f(z) < K, then

pPeM

N
/ (So H(l - ai)) < sup E”f(Sy) < K. (235)
i=1
If, in addition, the nonnegative payoff function f(z) is a convexr down one, then
. P .
Anf EVf(Sy) = f(So0), (236)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. Let us obtain the estimate from below. Really,

K> sup / FSN)dpt w2y, g oty =

wiIGQO W EQO+ i=1 N

sup Z Htpj(w’f,...,w;")x

0— 0 -
ngQi ,w?GQi+,z:1,N i1=1,...iy=1j=1

f <SO ﬁ (1 +a, (eas(wil,.‘.,wiﬁl)es(wis) _ 1))) . (237)

s=1

Further,

2 N ; ig_ i
sup Z Wit Wi f (SO H <1 + as (eas(wil,...,ws_ll)ss(wss) — 1))) =

O_
whEQN w ?VEQN in=1 s=1

+ 21 IN_1
ASH (Wi, . oy W)

i1 IN—1
Vi (i, - wyT wy, why)

sup
w]lv GQ?\f ,wjzv GQ?\?L
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f (SN—l (1 + an (601\’(“1?""7wij—711)€N(wzlv) _ 1))) +

—(, 0 IN-1 1 ) i
A’S'J\7<('ul P wN 17wN) f (SN_l (1 _'_ ay <€O'N(w;1,...,w]\],\lill)&‘]v(w?v) _ 1>>> Z
Vi (wi, ... wj\l,v wh,w?)

(3 N—1 2
eo'N(u.;ll7 ’WN—l Jen(w3) _ 1

X

lim lim - rrv— - Ce—
en(w%)—o0 en(wpy)——00 GUN(%l,---,wN,l Jen (W) _ eaN(Wl1 ----- wayq Jen(wk)

f (SN—l <1 + an <eoN(‘“ilf“'ijvNil)EN(Wzlv) _ 1))) +

1 _ eUN(wl 5. 7UJNN 11)€N(WN)

- r— - N
eaN(wil,...,wN71 )aN(wN) . eaN(wil ..... W ll)eN(wN)

7 (Snr (1 ay (e esilEheaniy —1)))] =

f(Sna (1l = an)), (238)

where we put

N-1

v = So [ <1 La, (eas@gl,..,,w;z;1>es<wgs> _ 1)) _ (239)
s=1

Substituting the inequality (238) into (237), we obtain the inequality

sup Z Hlpjwl,..., -)><

O— 0
wZ-lGQ 2€Q +,z lNzl 1,.,in=1j=1

(SOH(1+a ( O (@ 1)58(%)—1))) >

N-1 ] i .
f <so<1 ) TT (1 (eriteostereesn g)) | (240)
s=1

Applying (N — 1) times the inequality (240), we obtain the inequality

sup /f(SN)dQ > f(SOH(l —a)). (241)

QeM
Q
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Let us prove the equality (236). Using the Jensen inequality we obtain

inf E”f(Sw) > f(S0)- (242)

pPeM

Let us prove the inverse inequality. It is evident that

N —_— i
f (SO H (1 + ag (6‘78(“’;1""’“’5—11)58(“’35) - 1))) >

s=1

inf E¥f(Sy). (243)

PeM

Putting in the inequality (243) e, (w,) = 0, n = 1, N, we obtain the inverse inequal-
ity.

Theorem 14. On the probability space {Qy, Fn, Py}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, oy(w1,...,wi—1) > 0; > 0,
i = 1,N. For the payoff function f(z) = (x — K)*, = € (0,00), K > 0, the fair
price of super-hedge is given by the formula

sup E9f(Sy) =

QeM
(SO—K)Jr, Zf Soﬁ(l—a,l)) ZK,
N v (244)

N
If So [[(1 — a;)) > K, then the set of non arbitrage prices coincides with the point
i=1

N
(So — K)*, in case if So [[(1 — a;) < K the set of non arbitrage prices coincides
i=1

with the set [(so — K)*, S, (1 - f[l(l . al-))} .

Proof. Let us introduce the denotations

2 N
Iy = Z Hlpj(w’il,...,w;j)x

i1=1,...,in=1j=1

N ) . .
(S fesini)). e

s=1
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N o
f1< So H (1 + as <e"5(wil """ @S Jes(lh) _ 1))) ; (246)
I?vz sup Z Hl/);wl,---, wy')x

N o
f <So H (1 + as (e"s(‘“;1 """ @l Jes(l?) _ 1))) ; (247)

where we put fi(z) = (K — x)*. Let us estimate from above the value Iy. For this
we use the equality

In=1Iy+S — K, (248)

which follows from the identity: f(z) = fi(z) +x — K, = > 0. Since

s=1

N , o N B
f (SOH(HCLS (easwl ..... hes (i) 1))) < fi (Sog(l as)>, (249)

we obtain the inequality
N
IN<So— K+ fi (SO [Ja- a8)> . (250)
s=1

From the inequality (250), we have

N
IRI <So—K+fi (SOH(l - %))) =
s=1

(SO—K)Jr, if SO II_V[(l—aZ)) ZK,
N v (251)

Due to the inequality (226) of Theorem 12,

Iy > f (SOHO - ai)> + So <1 -] - ai>> (252)
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and the inequality
Iy > (S — K)*, (253)

which follows from the Jensen inequality, we have

IR, > maX{SO—K)+,f<SoH(1 _ai)> +So<1 —H(l _ai>>} =

(SO—K)+, if SO ﬁ(l—al)) EK,
N N (254)

This proves Theorem 14.

Theorem 15.  On the probability space {Qn, Fn, Pn}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, o;(wy,...,wi—1) > g; > 0,
i = 1,N. For the payoff function fi(x) = (K — )%, 2 € (0,00), K > 0, the fair
price of super-hedge is given by the formula

sup E9f1(Sy) = f1 (so H<1 - ai)> . (255)

QeM

The set of non arbitrage prices coincides with the interval
N
= s (50Tl -a).

i=1

Proof. The inequality

. 0o (@il T es (Wi _ ) ( T )
f (SOH(H%(@ 1)) < Sog(l a;) | (256)

is true. Taking into account the inequality (235) of Theorem 13, we prove Theorem
15.

Theorem 16.  On the probability space {Qn, Fn, Pn}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, oy(w1,...,wi—1) > 0; > 0,
+
_ % S
i = 1,N. For the payoff function fi(So,S1,...,Sn) = | K — F5 , K >0, the

fair price of super-hedge is given by the formula
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505 1101 - a)

E®f1(So,51,...,5y) = | K — —=2=1 . 257
Slelz% f1(S0, S1 N) N+l (257)

The set of non arbitrage prices coincides with the interval

N i + N 1
So >° T1 (1-as) So >° 1 (1-as)
(K —So)*", | K — :le ,if K> :;,j .
N 4
5o go 91;[1(1_(18) ; ; nci ) )
For K < —=377— the sel of non arbitrage prices coincides with the point 0.
Proof. Let us denote
Sulwh o wh) = ST (1+a (emlet =t — 1)) 0 =TW,
s=1
N 1 1 2
J (w17"'7w571)55(ws) — 1
1
tvlwr,... W 111 s (@iywi1)es(@d) _ gos(@hiwiq)es(wh)” (258)

It is evident that

I3 = sup Z Hlp]wl,..., .)><

wleQ)™ Ww2eTi=T,N ;1 _iy=1j=1

v

f1 (So, Sp(wi), ..., Sy(wi, ... ,wf{,v))

lim fi (50751((")%)7--~vSN(W%7'-‘7w]1V)) X

es(wl)=—00, £5(w2)—00,s=1,N

tN(wi, . ,w]lv) = f1 (So, S()(]. - CL1>, ceey S() H(l - CLS>> s (259)

N +
) N So Z:O 1;[1(1 — ay)
INZf1<50,50<1—al),...,Sgg<1—as)> = K N—|—]_ . (260)

Let us prove the inverse inequality. We have
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s=1
+
N So Z H (1—as)
1=0 s=
f (So, 50(1 — CLl), So g(l — Cls)) = K — N 1 . (261)
Therefore,
N i +
So 2o [T(1 —ay)
2 _ i=0s=1 ‘ 269
Ivs | & N+1 (262)

The inequalities (260), (262) prove Theorem 16.

Theorem 17.  On the probability space {Qn,Fn, Pn}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 < a; < 1, o;(wy,...,wi—1) > g; > 0,
+

N
_ Z 5
i = 1,N. For the payoff function f(So,S1,...,5v) = | T , K > 0, the
fair price of super-hedge is given by the formula
sup E9f(Sy, Sy,...,Sx) =
QeM
N So EOSH1(1 a;i)
(So — K)™, j ;VN—H > K,
N [ [
> 11 (-a) > 11 (-a) (263)
S() 1—H+H , Zf S()Z SN+1 < K
N 1
So 22 1 (1—as) . . .

If % > K, then the set of non arbitrage prices coincides with the point

> M0 | o
(So — K)F, in case if So="F55— < K the set of non arbitrage prices coincides

. - + 'iv:()sljl(l_aS)
with the interval | (So — K)*, Sy | 1 — =5 5—
Proof. Let us introduce the denotation
2 N

VN = sup Z Hlpj(w’f,...,w;j)x

1200— 2200+ i ) ‘ ;
wi € wr e i=LN =1 iny=1j=1
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£ (So, S1(wi), ..., Sn(wi, ..., wiy)) . (264)

Then, we have

2 N
VN = sup Z Hzpj(w’f,...,w;-j)x

0— 0+ .37 a7 . . .
w; €Q T wieQ; T i=1,N i1=1,....iy=1 j=1

f1 (S(),Sl(W?), ey SN((,U?, . ,wﬁ{,")) + S() - K. (265)

Due to Theorem 16,

(So — K)™, it el >

N i N 4

S 110-a) ' S I10-a) (266)
Sol1-2=— |, it S — <K

In the formula (265) we used the denotation

N +
> Si
S0, Sty Sn) = | K — 2 . 267
f1(So, 81, -+, SN) N1 (267)
Theorem 17 is proved.
VIII.  ESTIMATION OF PARAMETERS

Suppose that {g;(Xy)}Y, is a mapping from the set [0, 1]V into itself, where Xy =
{z1,...,2n}, 0 < a; <1, 9= 1,N.If Sy, 51,...,Sy is a sample of the process
(177), let us denote the order statistic S0y, Sy, - -, Sy of this sample. Introduce

also the denotation g; ([S]y) = g (SS(% e, Sg:];)” ,1=1,N.

Theorem 18. Suppose that Sy, S1,...,Sn is a sample of the random process (177).

Then, for the parameters aq,...,ay the estimation
S
ap =1— 7'0%91 ([S]n), 0<m <1,
0
w—1-2W oy (268)
gi-1 ([SIv)
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is valid, if for gn([S]y) >0, [S]y € [0, 1], the inequalities gi([S]n) > go([S]n) >
. > gn([S]N) are true. If 9 =0, then a; =1, i =1, N.

Proof. The estimation of the parameters aq,...,ay we do using the representation
of random process S,,, n = 1, N. The smallest value of the random variable S,, is

equal Sy [[(1—a;), n =1, N. Let us determine the parameters a; from the relations

N N-k
SOH(l —a;) =795 ([S]n) -+ So H(1 —a;) =1gn-k ([SIN) s - - -,
So H (1—a) =71gv-s-1 ([SIn) .-, So(1 —a1) = 791 ([S]w) , (269)

where 7 > 0. Taking into account the relations (269), we obtain
So(1 = ar) = 791 ([S]w) ,

Tgn—k-1 ([SIn) (1 —an—k) = Tgn—& ([S]n), k=2,N. (270)

Solving the relations (270), we have
ar=1——a (Sly), an-xr=1———————~, k=2N. (271)

It is evident that ay_r > 0, kK = 2, N. To o provide the positiveness of a; and the
inequalities 7gn_n ([S]n) < Sy_n, n = O,N —1, Sy > S(), meaning that the
random process (177) takes all the values from the sample S,, n = 0, 0, N, we must
to put 7 = 7S, 0 < 79 < 1. It is evident that, if 79 = 0, then a; = 1, i = 1IN
Theorem 18 is proved.

Remark 1. It is evident that

a;=1, i=N—-kN, 1<k<N-1, aZ—l—M, 1=2,N—-k—1,
i-1([S]w)
7'05(0)
a;=1-— S—gl([S]N)7 0< 70 < ]_, (272)
0
1s also estimation of the parameters aq,...,ay if

0 < gn—k—1([S]n) < gn-r—2([SIn) --- < 1 ([S]w), [S]w € [0, 1]

Such estimation is not interesting since
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=1
Remark 2. If
So ~ S(0)
2 af 0<x< 2
S 9 - — So’
gla) = o ST (273)
1, if 5 <z<1,
Sv-i) —
allsl) =9 (5=2) . =T n -1,
(N)
then for the parameters aq,...,ayn the estimation
_ Sw-i o S(N—it1) S0y
1 §<N—i+1>’ i S S = SSO ’ S S
J— _ 2=y So o gp 2(Nzifl) 20  PWN—i) 200 — 9 N
=9 1 Sy S’ i S ~ S0 Sy S %o i=2,N, (274)
0 if 2een s So
’ S(N) So

_ 8wy e Sy o S
D R EL A T (275)
! 1 - S0 i Sw-n S So
So S(N) So
is true. The following equalities
N
T a0 = 5<o>g (Sm) ) _ So
paley So 7\ S S
N—k Sy s Sw o S0
o U o5 <=5 S
(1 - ai) = g(é\,) . g(]z) SSS k= 17N - 15 (276)
1 R et
i= 0 (N) 0
are valid.
Remark 3. Suppose that g(x) = x, © € [0,1]. Let us put gn—;([S]n) = g(%) =
% i=0,k gyv_i([Sly) =1, i=k+1,N — 1. Then,
S(0) I
CL1:1—’TQS—, 0<m<1 a=0, 1=2,N—Fk—1,
0
(1S .
o=1- 9N i=N_F N, (277)
gi1([S]n)
15 an estimation for the parameters ay, ..., ay.

In the next Theorems we put 7y = 1. This corresponds to the fact that fair price
of super-hedge is minimal for the considered statistic.
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Theorem 19.  On the probability space {0y, Fn, Pn}, let the evolution of risky asset

be given by the formula (177), with parameters a;, i = 1, N, given by the formula
(268). For the payoff function f(z) = (v — K)*, x € (0,00), K >0, the fair price
of super-hedge is given by the formula

sup EQf(SN) =
QeM

{ (SO - K)+7 Zf S(O)gN ([S]N) > K7 (278)

So <1 — %WZ—E[S]N)> . if Soygn ([S]v) < K.

If Soygn ([Sln) > K, then the set of non arbitrage prices coincides with the point
(So — K)*, in case if Soygn ([S]y) < K the set of non arbitrage prices coincides

with the closed set [(SO - K)™, S, (1 — S(O)gg—s[smﬂ .

The fair price of super-hedge for the statistic (274), (275) is given by the formula

(So—K)" if SOSS(—O; > K,

sup EQf(Sy) = g <1 St
0

‘ (279)
QeM — %> s f S()S(O) < K.

If SOS(O) > K, then the set of non arbitrage prices coincides with the point (So—K)™,

’L’ﬂ case Z 0 < e Set o] non aroitrage p’f’ZC@S COZTLCZ €S Wi € Cclosea se
S;‘;’) K the set bitrag des with the closed set

[(SO —K)*, S, (1 _ %)] .

The fair price of super-hedge is minimal one for the statistic (268) with g;(Xy) =
gv(Xn) =1, i=1,N — 1, and is given by the formula

Q _J (So=K)*, if S =K,
SEJI\ZE f(5n) { So—Swy), if S < K. (280)

If Sy > K, then the set of non arbitrage prices coincides with the point (So — K)*,
m case if S(O < K the set of non arbitrage prices coincides with the closed set

[(So = K)™, S0 = So))-

Theorem 20. On the probability space {Qn, Fn, Px}, let the evolution of risky asset

be given by the formula (177) with the parameters a;, i = 1, N, given by the formula
(268). For the payoff function fi(x) = (K —x)*, x € (0,00), K > 0, the fair price
of super-hedge is given by the formula

sup E?f1(Sn) = f1 (Swygn ([SIn)) - (281)

QeM

The set of non arbitrage prices coincides with the closed interval

[(K —S0)*, fi (S(O)QN ([S]N))} .
The fair price of super-hedge for the statistic (274), (275) is given by the formula
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S
sup EQf1(Sy) = fi <SOS<—°)) . (282)
QeM (N)

The set of non arbitrage prices coincides with the closed interval [(K - S0t f (So 5(?))] .

The fair price of super-hedge is minimal one for the statistic (268) with g;(Xy) =

gn(Xn) =1, i=1,N — 1, and is given by the formula

sup EQfl(SN) =h (5(0)) : (283)
QeM

The set of non arbitrage prices coincides with the closed interval [(K —So)*, f (S(o))] .

Theorem 21. On the probability space {Qxn, Fn, Pn}, let the evolution of risky asset
be given by the formula (177) with the parameters a;, i = 1, N, given by the formula
N +
2 Si
(268). For the payoff function fi(So, S1,...,5n) = | K — 5 , K >0, the fair

price of super-hedge is given by the formula

N +
So + S0 ;%‘ ([S]~)

E°f1(So,S1,...,5n) = | K — 284
Sup, f1(So0, 81, -+, Sw) N+ 1) (284)
The set of non arbitrage prices coincides with the closed interval
N + N
N So+S(0) 21 9:([S]~) ' So+S(0) 21 9:([S]w)
(K —=So)* | K — N+D) i K> GEEY)
N
So+S0y 2= 9:([S]n)
For K < (]\’,:J:l) the set of non arbitrage prices coincides with the point 0.

The fair price of super-hedge is minimal one for the statistic (268) with g;(Xy) =

gy(Xn) =1, i=1,N —1, and is given by the formula

80+S(0)N>+
E9f(Sy,S1,...,8v) = | K — ——2—) . 285
sup f1(So, S1 N) ( Nt (285)

The set of non arbitrage prices coincides with the closed interval

So-‘rS(O)N
(N+1)

the set of non

+
{(K — So)T, (K - SOJV*S;L(%N> } Jif K > So(;rvi%N For K <

arbitrage prices coincides with the point 0.
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Theorem 22. On the probability space {Qn, Fn, Pn}, let the evolution of risky asset

be given by the formula (177) with the parameters a;, i = 1, N, given by the formula
N -

(268). For the payoff function f(So, S1,...,S5n) = | 5= — K | , K >0, the fair

price of super-hedge is given by the formula

sup E("?f(SO,,S’l7 o, SN) =

QeM
N
So+S0y 2= 9:([S]N)
(SO - K)Jr’ of (]\ij_ll) > K,
So+5(0) ,JZ:\El 9:([SIn) ~ Sot5S() _JX:II 9:([SI~) (286)
0~ (J\lf+1) ,if (J<7+1) < K.

N
So+5(0) _;1 g:([SI~)
(N+1)

> K, then the set of non arbitrage prices coincides with the point

So+5(0) _IZ:V:l gi([S]N)
(N+1)

(So — K)*, in case if < K the set of non arbitrage prices coincides
N
So+5(0) ;1 9i([S]n)

(N+1)

with the closed interval | (So — K)*, [ So —

The fair price of super-hedge is minimal one for the statistic (268) with g;(Xn) =

gy(Xn) =1, i=1,N —1, and is given by the formula

sup EQf(SO,Sl, ., 8N) =

QeM

. So+S)N
(So— K)*, if SN s g s

50+S( )N . So+S( )N

(50— *Ped), o 298 <k
S()-i-S(O)N . . . . . .

If ) > K, then the set of non arbitrage prices coincides with the point (So —
K)*, in case if SOJVi(%N < K the set of non arbitrage prices coincides with the closed

interval [(SO - K)*, <SO — SOJVT;))N)} :

IX. CONCLUSIONS

Section 1 provides an overview of the achievements and formulates the main problem
that has been solved. Section 2 contains the formulation of conditions which must
satisfy the evolution of risky assets. In Section 3, conditions (14) - (16) are formu-
lated for the set of nonnegative random variables with the help of which a family
of measures is constructed in a recurrent way. In Lemma 1, conditions were found
for the existence of bounded nonnegative random variables satisfying the conditions
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(14) - (16). In Lemma 2, it was proved that the family of measures introduced in
the recurrent way is equivalent to the original measure.

Theorem 1 gives sufficient conditions under which the introduced family of mea-
sures is the set of martingale measures equivalent to the original measure for the
evolution of risky assets considered in Section 1.

In Section 4, relying on the concept of an exhaustive decomposition of a measur-
able space, in Lemma 4, we prove an integral inequality for a nonnegative random
variable for the constructed family of martingale measures.

In Theorem 2, for a special class of evolutions of risky assets for the nonnegative
random variable satisfying the integral inequality, obtained in Lemma 4, a pointwise
system of inequalities is obtained.

In Lemma 5, on the basis of Lemma 4, we obtained a pointwise system of in-
equalities for a nonnegative random variable for the general case of the evolution of
risky assets.

Theorem 3 contains sufficient conditions under the fulfillment of which the re-
sulting system of inequalities with respect to the nonnegative random variable has
a solution whose right-hand side satisfies the condition: the conditional expectation
of the right-hand side of the inequality with respect to the filtration is equal to 1.

Theorem 4 solves the same problem as in Theorem 5 for the general case of the
evolution of risky assets.

In Section 5, based on the inequalities obtained in Theorems 3 and 4, we prove
a theorem on the optional decomposition of nonnegative super-martingales with
respect to the family of equivalent martingale measures.

The description of the family of equivalent martingale measures given in Theorem
1 is rather general, therefore, in Section 6, a spot set of measures is introduced. In
Lemma 6, the representation is obtained for the family of spot measures.

Based on the concept of the spot family of measures, the family of a-spot mea-
sures based on a set of positive random variables is introduced. Theorem 6 provides
sufficient conditions for the integral over the set of a-spot measures to be an integral
over the set of spot measures.

In Theorem 7, sufficient conditions are given when the family of spot measures
is a family of martingale measures and the constructed family of measures, that is
an integral over the set of a-spot measures, is a family of martingale measures being
equivalent to the original measure.

Theorem 8 describes the class of evolutions of risky assets for which the family of
equivalent martingale measures is such that each martingale measure is an integral
over the set of spot measures.

Section 7 is devoted to the application of the results obtained in the previous
sections. A class of random processes is considered, which contains well-known
processes of the type ARCH and GARCH ones. Two types of random processes are
considered, those for which the price of an asset cannot go down to zero and those
for which the price can go down to zero during the period under consideration. The
first class of processes describes the evolution of well-managed assets. We will call
these assets relatively stable.

Theorem 9 asserts that for the evolution of relatively stable assets in the period
under consideration, the family of martingale measures is one and the same. The
family of martingale measures for the evolution of risky assets whose price can
drop to zero is contained in the family of martingale measures for the evolution of
relatively stable assets. Each of the martingale measures for the considered class of
evolutions is an integral over the set of spot martingale measures. On this basis, the
fair price of the super hedge is given by the formula (185). In Theorems 10 and 11,
an interval of non-arbitrage prices is found for a wide class of payoff functions in the
case when evolution describes relatively unstable assets. This range is quite wide
for the payment functions of standard put and call options. The fair price of the
super hedge is in this case the starting price of the underlying asset. In Theorems
12, 13 estimates are found for the fair price of the super-hedge for the introduced
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class of evolutions with respect to stable assets. In Theorems 14 and 15, formulas
are found for the fair price of contracts with call and put options for the evolution
of assets described by parametric processes.

In Theorems 16 and 17, the same formulas are found for Asian-type put and
call options. A characteristic feature of these estimates is that for the evolution of
relatively stable assets, the fair price of the super hedge is less than the price of the
initial price of the asset.

In Section 8, the estimates of the parameters of risky assets included in the

evolution are obtained. This result is contained in Theorem 18. In Theorems 19
and 20, formulas are found for the fair price of contracts with call and put options

for the obtained parameter estimates, and the interval of non-arbitrage prices for
different statistics is found. The same results are contained in Theorems 21, 22 for
Asian-style call and put options.
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