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Dirac Generalized Relativistic Quantum Wave 
Function Which Gives Right Electrons Number 
in Each Energy Level by Controlling Quantized 

Atomic Radius

Abstract- Using generalized special relativistic energy-
momentum relation the linear energy-momentum Dirac relation 
was obtained. This equation was used to find Dirac 
generalized relativistic quantum equation. This equation was 
used to find the probability and the number of particles for 
each atomic energy level. The wave function found using this 
equation can give an expression for the number of electrons in 
each energy levels if the atomic radius is quantized and satisfy 
a certain relation.

I. introduction

nature

                 

According to quantum mechanics, particles do 
not have definite values of position and momentum at 
the same moment. The square of the absolute value of 
the wave function correspond to regions where the 
particle is more likely to be found if a location 
measurement is done [3,4].

The Schrödinger equation is the key equation of 
Quantum mechanics. The first step in the development 
of a logically consistent theory of non relativistic 
Quantum mechanics is to drive a wave equation which 
can describe the particle, wave like behavior of a 
quantum particle. This equation can describe 
successfully the behavior of atoms including Hydrogen 
atom [5, 6].

Hydrogen atom consists of a positively charged 
proton and a negatively charged electron, moving in 
orbit under the action of centrifugal force and the
influence of their mutual attraction [6,7]. The fast 
electrons can be described by relativistic Klein- Gordon 
or Dirac equation [8]. Despite the successes of 

quantum laws, they suffer from some setbacks, for 
example the wave function cannot give the correct 
number of electrons in each energy level [9,10]. It 
cannot also explain quantum gravity [11, 12].

Fatma Osman, Mubarak Dirar and other studies 
Quantum Equation for Generalized Special Relativistic 
Linear Hamiltonian, to solve some of these problems. 
They use generalized special relativistic energy –
momentum relation a useful linear equation was 
obtained. They found that the coefficients and matrixes 
resembles that of Dirac relativistic quantum equation 
Anew quantum linear relativistic equation sensitive to the 
potential and the effects of fields was also obtained. 
This equation reduces to that of Dirac in the absence of 
fields [13].

The solution of this equation predicts the 
propagation of travelling wave inside fields without 
attenuation. Thus it can describe the electromagnetic 
wave propagation inside fields. It also predicts the 
existence of biophotons as stationary waves that 
spreads themselves, instantaneously through the 
surrounding media. It also shows that particles behave 
as harmonic oscillator inside atoms with rest mass 
energy equal to the zero point energy. These results 
agree with observations [14].

Ebtisam A. Mohamed and other studied 
Derivation of Statistical Physical Laws from Quantum 
Mechanics. Their work mainly aims to derive Maxwell – 
Boltzmann distribution, Fermi – Dirac and Bose – 
Einstein distribution laws by using the quantum wave 
function in the energy and momentum space beside the 
relation between the number of particles and chemical 
potential in addition to some thermodynamic relations 
concerning probability. The ordinary quantum 
mechanical wave function for free particle was 
differentiated with respect to energy and momentum. 
The derivation of statistical laws from quantum wave 
function shows the general nature of quantum laws [15]. 
These successes motivate to try to use GSR Dirac 
equation to solve the problem of the number of 
electrons in the energy states. This is done in section 
(2). Sections (3) and sections (4) are devoted for
discussion and conclusion. 
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uantum mechanics, as formulated by Bohr, 
Heisenberg, Schrödinger, Pauli, Dirac, and many 
others, is based on wave particle dual

of the atomic world. Schrödinger equation is based 
in addition on the Newtonian energy-momentum relation 
[1, 2].
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a) Time Independent Potential Dependent Special Relativistic Dirac Equation 

The full Dirac potential (GSR) equation takes the from 
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(1)

 

To find time independent Dirac equation, substitute 
 

𝜓𝜓(𝑟𝑟, 𝑡𝑡) = 𝑓𝑓(𝑡𝑡)𝑢𝑢(𝑟𝑟) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡 𝑢𝑢(𝑟𝑟)
                                       

(2)
 

To get 
 

ħ2𝑖𝑖2
 
=
−𝑖𝑖𝑖𝑖ħ2𝚌𝚌𝚌𝚌

𝑢𝑢
𝛻𝛻𝑢𝑢 +
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From time dependent potential the above equation can be rewrite as 
 

𝑖𝑖𝑖𝑖ħ
 
v𝚌𝚌𝛻𝛻𝑢𝑢 − 𝑖𝑖ħ𝑖𝑖(h𝚌𝚌)𝚌𝚌𝛻𝛻𝑢𝑢 = (ħ2𝑖𝑖2 −

 
βmoħ𝑖𝑖𝚌𝚌2
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For simplify let 
 

𝐸𝐸 = ħ𝑖𝑖
                                                                                 

(3)
 

𝑖𝑖𝑖𝑖ħ
 
v𝚌𝚌𝛻𝛻𝑢𝑢 − 𝑖𝑖𝑖𝑖ħE𝚌𝚌𝛻𝛻𝑢𝑢 = (𝐸𝐸2 − 𝜔𝜔𝐸𝐸𝑚𝑚𝑜𝑜𝚌𝚌2

 

− 𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2

 

v)𝑢𝑢 = 𝑏𝑏𝑜𝑜𝑢𝑢 − 𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2

 

v
 
u

 
(4)

 

𝑏𝑏𝑜𝑜 = 𝐸𝐸2 − 𝜔𝜔𝐸𝐸𝑚𝑚𝑜𝑜𝑖𝑖2

                                                                   

(5)

 

 

V =
−c0

𝑟𝑟

                                                                                      
(6)

 

Let
 

c0 =
qq0

4πε

                                                                                     
(7)

 

Where q
 
&

 
𝑞𝑞0 ≡ charge

 
of

 
particles

  
and

 
r ≡   distance between the centers of particles.

 

A direct substitution of equation (6) in (4) yields
 

𝑖𝑖𝑖𝑖ħ𝚌𝚌[v𝛻𝛻𝑢𝑢 − E𝛻𝛻𝑢𝑢] = 𝑏𝑏𝑜𝑜𝑢𝑢 +
𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2

 

c0

𝑟𝑟 𝑢𝑢

                            

(8)

 

Try now a solution 

 

c1e−c2r
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c0
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𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2

 

c0

𝑟𝑟 𝑢𝑢

             

(10)

 

Equating free terms and that having the power (𝑟𝑟−1), one gets 

 

𝑖𝑖𝚌𝚌ħ𝚌𝚌c0c2=𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2
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c0

 

c2 = −
𝑖𝑖β
α
𝑚𝑚𝑜𝑜𝚌𝚌
ħ

                 

(11)

    

𝑖𝑖𝚌𝚌𝚌𝚌

 

ħc2E = 𝑏𝑏𝑜𝑜 = (𝐸𝐸2 − 𝜔𝜔𝐸𝐸𝑚𝑚𝑜𝑜𝚌𝚌2

 

) = 𝑖𝑖2(𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2 − E)E

 

c2 = −𝑖𝑖
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𝚌𝚌ħ𝚌𝚌

                                      

(12)

 

Comparing (11) with (12) yields

 

𝐸𝐸 − 𝜔𝜔𝐸𝐸𝑚𝑚𝑜𝑜𝚌𝚌2

 

= 𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2

  

𝐸𝐸 = 2𝜔𝜔𝑚𝑚𝑜𝑜𝚌𝚌2

                                                                                   

(13)

  

Let 

 

c3 =

 

𝚌𝚌ħ𝚌𝚌c0

    

, c4 =

 

𝚌𝚌ħ𝚌𝚌c0E

 

, c5 =

 

𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2

 

c0

                                                      

(14)

 

Sub in (8) to get 
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For hydrogen atoms and hydrogen like atoms the potential is spherical up systemic, in the form 



 

−𝑖𝑖
c3

r 𝛻𝛻𝑢𝑢 − 𝑖𝑖c4𝛻𝛻𝑢𝑢 = 𝑏𝑏𝑜𝑜𝑢𝑢 +
c5

r u                                                                                   (15) 

Multiply by (r) and use the fact that  

𝛻𝛻𝑢𝑢 =
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟

                                                                                                                             (16) 

One gets  

−𝑖𝑖c3
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟

− 𝑖𝑖c4r
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟 = (𝑏𝑏𝑜𝑜𝑟𝑟 + c5)𝑢𝑢 

−𝑖𝑖(c3 + c4r)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑟𝑟

= (𝑏𝑏𝑜𝑜𝑟𝑟 + c5)𝑢𝑢                                                                                    (17) 

Let 

y =  c3 + c4r      ,       dy = c4r          ,       𝑑𝑑𝑟𝑟 = �
1
c 4
�𝑑𝑑𝑑𝑑                                                (18) 

 
Thus  

−𝑖𝑖𝑑𝑑(c4)
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

= �
𝑏𝑏𝑜𝑜
c4

(𝑑𝑑 − c3) + c5� 𝑢𝑢 

 
=  �

𝑏𝑏𝑜𝑜
c4
𝑑𝑑 −

𝑏𝑏𝑜𝑜c3

c4
+ c5� 𝑢𝑢 

[𝑏𝑏1𝑑𝑑 − 𝑏𝑏2 + c5]𝑢𝑢 = [𝑏𝑏1𝑑𝑑 + 𝑏𝑏3]𝑢𝑢 

𝑏𝑏1 =
𝑏𝑏0

c4
            , 𝑏𝑏2 =

𝑏𝑏𝑜𝑜c3

c4
    ,        𝑏𝑏3 = 𝑖𝑖5 − 𝑏𝑏2   = 𝑖𝑖5 −

𝑏𝑏𝑜𝑜c3

c4
                     (19) 

−𝑖𝑖c4
𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑

= �𝑏𝑏1 +
𝑏𝑏3

y
�𝑢𝑢      ,      

𝑑𝑑𝑢𝑢
𝑢𝑢

=
−1
𝑖𝑖𝑖𝑖 4

�𝑏𝑏1 +
𝑏𝑏3

y
� 𝑑𝑑𝑑𝑑 = 𝑖𝑖 �𝑏𝑏4 +

𝑏𝑏5

y
� 𝑑𝑑𝑑𝑑                (20) 

𝑏𝑏4 =
𝑏𝑏1

c4
              ,   𝑏𝑏5 =

𝑏𝑏3

c4
                                                                                              (21) 

�
𝑑𝑑𝑢𝑢
𝑢𝑢

= 𝑖𝑖 � 𝑏𝑏4𝑑𝑑𝑑𝑑+ 𝑖𝑖𝑏𝑏5 �
𝑑𝑑𝑑𝑑
𝑑𝑑

+ 𝑏𝑏6 

ln 𝑢𝑢 = 𝑖𝑖𝑏𝑏4𝑑𝑑+ 𝑖𝑖𝑏𝑏5 ln 𝑑𝑑 + 𝑏𝑏6                                                                                           (22) 

ln 𝑢𝑢 − ln𝑑𝑑𝑖𝑖𝑏𝑏5 = 𝑖𝑖𝑏𝑏4𝑑𝑑+ 𝑏𝑏6 
                                                                                   

ln �
𝑢𝑢
𝑑𝑑𝑖𝑖𝑏𝑏5

� = 𝑖𝑖𝑏𝑏4𝑑𝑑+ 𝑏𝑏6  

𝑢𝑢
𝑑𝑑𝑖𝑖𝑏𝑏5

= 𝑒𝑒𝑖𝑖𝑏𝑏4𝑑𝑑𝑒𝑒𝑏𝑏6                                                                                                                (24) 

𝑢𝑢 = 𝑏𝑏7𝑒𝑒𝑑𝑑
𝑖𝑖𝑏𝑏5𝑒𝑒𝑖𝑖𝑏𝑏4𝑑𝑑                                                                                                (25) 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑏𝑏7 = 𝑒𝑒𝑏𝑏6                                                                                                           (26) 

Thus where in view 𝑏𝑏7 of (18) yields  

𝑢𝑢 = 𝑏𝑏7(𝑖𝑖3 + 𝑖𝑖4𝑟𝑟)𝑖𝑖𝑏𝑏5𝑒𝑒𝑖𝑖𝑏𝑏4(𝑖𝑖3+𝑖𝑖4𝑟𝑟)                                                                                  (27) 

In view of equations (21),(19) and (4)  
Let   𝑏𝑏5 = 0 
Thus     

𝑏𝑏3 = 0       ,         𝑏𝑏2 = 𝑖𝑖5     , 𝑖𝑖5 =   
𝑏𝑏𝑜𝑜c3

c4
    ,   𝑏𝑏0 =  

𝑖𝑖4 𝑖𝑖5

𝑖𝑖3
   =

𝐸𝐸
c0
𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2 c0 

From (5) 
𝐸𝐸2 − 𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2 𝐸𝐸 =  𝜔𝜔𝐸𝐸𝑚𝑚𝑜𝑜𝑖𝑖2  
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(23)



 

 𝐸𝐸2 = 2𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2
 𝐸𝐸

 
𝐸𝐸 = 2𝜔𝜔𝑚𝑚𝑜𝑜𝑖𝑖2                                                                                                                      (28) 

Thus  

𝑢𝑢 = 𝑏𝑏7(𝑖𝑖3 + 𝑖𝑖4𝑟𝑟)𝑒𝑒𝑖𝑖𝑏𝑏4 (𝑖𝑖3+𝑖𝑖4𝑟𝑟)                                                                                      (29) 

The probability of finding the particle at position   

|𝑢𝑢|2 =  𝑏𝑏7
2(𝑖𝑖3 + 𝑖𝑖4𝑟𝑟)2                                                                                                  (30)  

But experimentally it was found that the number of electrons in the energy level n is a nature number n0 

Thus 

|𝑢𝑢|2 =  𝑏𝑏7
2(𝑖𝑖3 + 𝑖𝑖4𝑟𝑟)2 = n0                                                                                       (31) 

n0 = 2,8,18,32,50,72,98 
Thus  

r =
n0

1
2

𝑏𝑏7𝑖𝑖4
−
𝑖𝑖3

𝑖𝑖4
                                                                                                 (32)  

            
II. Discussion  

The GSR Dirac obtained by Fatma (Quantum 
Equation for Generalized Special Relativistic Linear 
Hamiltonian) has been exhibited in equation (1). The 
time independent part has been found in equation (4), 
by assuming the time dependent part to be time 
oscillating. 

For hydrogen like atoms the potential is given 
by equation (6). The GSR Dirac equation for hydrogen 
atom is given by (8). Rearranging for simplification is 
found by defining new variably in equation (19). The 
solution of this equation is a complex wave function 
given by equation (25) and (27). In its general form this 
solution is purely complex. To make the wave function 
(r) dependent the energy should be proportional to the 
rest mass energy as shown by equation (28). This is 
quite natural as well as the stable atom corresponds to 
minimum non existed atomic state [see equation (29)]. 
The probability or the square of the wave function can 
be made to be equal to the number of atoms in each 
level [see equation (31)] by adjusting the atomic 
radius(r) to be dependent on the number of electrons in 
a certain energy level. This expression [see equation 
(32)] shows that (r) increases and quantized. This 
conforms to observation.    

III. Conclusion 

The GSR Dirac equation can successfully 
explain the mystery of the electrons quantum number if 
the atomic radius is quantized and satisfies a certain 
relation. It shows also that the stable atom corresponds 
to the minimum relativistic Einstein energy.               
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