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Abstract-

 

The Dirichlet distribution is a generalization of the Beta distribution. This research deals with the estimation of 
scale parameter for Dirichlet distribution with known  shapes.

 

We examined three methods to estimate the parameters 
of

 

Dirichlet

 

distribution which are Maximum Likelihood

 

Estimator, Method of Moment Estimator and Quasi-Likelihood

 

Estimator. The performance of these methods were compared at different sample sizes using Bias, Mean Square Error, 
Mean Absolute

 

Error and Variance criteria, an extensive simulation study was carried out on the basis of the

 

selected 
criterion  using statistical software packages as well as the application of the criterion to real life data, all these were 
done to obtain the most efficient method. The simulation study

 

and analysis revealed that Quasi- Likelihood Estimator 
perform better in terms of bias while

 

Method of Moment Estimator is better than the other two methods in terms of 
variance; the Maximum Likelihood Estimation was the best estimation method in terms of

 

the Mean square Error and 
Mean Absolute Error;

 

while Quasi- Likelihood Estimation method was the best estimation method with real life data.

 

Keywords:

 

dirichlet distribution, parameter estimation, maximum likelihood estimator, method of moment 
estimator and quasi- likelihood estimator.

  

I.

 

Introduction

 

In Bayesian Statistics, the Dirichlet distribution is a popular conjugate prior for 
multinomial distribution. The Dirichlet distribution has a number of applications in 
various fields. Samuel S. Wilk (1962), gave an example, where he applied the Dirichlet 
distribution in deriving the distribution of order statistics. Again Kenneth Lange (1995), 
also used the Dirichlet distribution in biology to demonstrate

 

and to compute forensic 
match probabilities from several distinct populations. In addition, Brad N (2009), used 
the Dirichlet distribution to model a player`s abilities in Major League Baseball. It is 
shown that the Dirichlet distribution can be used to model consumer behavior Gerald et 
al (1984). Dirichlet Distribution can be extended to various fields of study

 

such as 
biology, astronomy, text mining and so on. The Dirichlet Distribution (DD) is usually 
employed as a conjugate prior for the multinomial modeling and Bayesian analysis of 
complete contingency tables (Agresti (2002)). Gupta and Richards (1987, 1991, and 
1992) extended the Dirichlet Distribution to the Liouville distribution. Fang, Kotz and 
Ng (1990) gave an extensive exposition of the Liouville family and its ramifications. 

 

The problem of estimating the parameters which determine a mixture has been 
the subject of diverse studies (Redner and Walker 1984). During the last two decades, 
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the method of maximum likelihood (ML) (Bishop. C.M .1995) and  (Rao. P. 1987) has 
become the most common approach to this problem. Of the variety of the iterative 
methods which has been subjected as an alternative to optimize the parameters of a 
mixture, the one most likely used is the expectation maximization (EM). EM was 
originally proposed by Dempster et al 1977 for estimating the maximum likelihood 
estimator (MLE) of stochastic models. This algorithm gives an iterative procedure and 
the practical form is usually simple and easy to implement .The EM algorithm can be 
viewed as an approximation of the Fisher scoring method (Ikeda. S. (2000). In this 
research we showed that the Dirichlet distribution can be a very good choice for 
modelling data, MLE was used to estimate the parameters of the Dirichlet Mixture 
Model alongside with EM algorithm. This mixture decomposition algorithm 
incorporates a penalty term in the objective function to find the number of components 
required to model the data. This algorithm suffers some set back: the need to specify 
the number of components each time, which will be determine by selected criterion 
functions such as AIC, BIC, MDL which has been in existence  to validate the model 
and justify the more efficient one.  

This research centered on studying how the different  estimators of the unknown 
parameters of a Dirichlet  distribution can behave for different sample sizes. Here, we 
are mainly comparingthe Maximum Likelihood  Estimator, Method of Moment 
Estimator and Quasi-Likelihood  Estimator  with respect to efficiency, bias, mean 
absolute error and  variance using extensive simulation techniques as well as application 
of the estimation methods to real life data set.  

II.  Literature  Review  

The Dirichlet model describes patterns of repeat purchases of brands within a 
product category. It models simultaneously the counts of the number of purchases of 
each brand over a period of time, so that it describes purchase frequency and brand 
choice at the same time. It assumes that consumers have an experience of the product 
category, so that they are not influenced by previous purchase and marketing strategies; 
for this reason, consumer characteristics and marketing-mix instruments are not 
included in the model. As the market is assumed to be stationary, these effects are 
already incorporated in each brand  market share which influences other brand 
performance indexes calculated by the model. The market is also assumed to be un  

segmented. The theory and development of the model is fully described in Ehrenberg 
(1972).Good hardt, Ehrenberg and Chatfield (1984), summarise the situation by stating 
that the Dirichlet model makes explicit that there are simple, general and rather precise 
regularities in a substantial area of human behaviour where this has not always been 
expected. In setting the context for this particular approach to the modeling of 
consumer behaviour viz. the largely explanatory models of consumer behaviour, 
Ehrenberg (1988) claims that it describes how consumers behave, rather than why, and 
takes into account only those factors necessary for an adequate description.  

Many aspects of buyer behaviour can be predicted simply from the penetration 
and the average purchase frequency of the item, and even these two variables are 
interrelated (Ehrenberg, 1988, pg. ii). The Dirichlet model integrates the reported 
regularities, and predicts many aggregate brand performance measures. These measures 
are the distribution of purchases for a brand, the proportion of a brand's buyers buying 
that brand only, and the proportion of people purchasing a brand, given that they have 
previously purchased that brand. When these predictions are compared with observed 
figures, Ehrenberg claims that it is not unreasonable to expect to obtain correlations in 

© 2020 Global Journals

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

20

34

  
 

( F
)

Extension of Comparative Analysis of Estimation Methods for Dirichlet Distribution Parameters

Notes



the order of 0.9 and sometimes much higher, (Ehrenberg 1975, Ehrenberg and Bound 
1993).  

Applications and theory can be used to provide norms for examining brand 
performance, or diagnostic information for the "health" of a brand. In addition, the 
Dirichlet model can provide interpretative norms for evaluating situations where some 
trend in sales has occurred, say after a promotion or advertising scheme. Ehrenberg also 
claims that the Dirichlet model provides valuable insights into the nature and 
implications of brand-loyalty (e.g., Ehrenberg and Uncles 1995; Ehrenberg and Uncles 
1999). The use of likelihood theory to estimate the parameters of the Dirichlet model, 
providing an alternative to the standard procedure based on the method of zeros and 
ones and on marginal moments (Rungie 2003b). In order to write the likelihood 
function, the data should be in the form of joint frequencies, like those contained in a 
contingency table with n-rows, representing the number of consumers, and g columns, 
for the number of brands. Alternatively, the iterative procedures based on the approach 
that computations are easy to use, and require only aggregated data as input, as access 
to original panel data is not necessary as proposed by Goodhardt, Ehrenberg and 
Chatfield (1984). Raw panel data cannot always be used since panel operators who 
measure sales and household consumption provide information only in some aggregate 
format such as market share, penetration, and average purchase rate with reference to 
the various brands (Wright et al. 2002). In these situations, the only way to estimate 
the Dirichlet model is to use the traditional method. Dirichlet modeling continues to be 
a successful and influential approach, and is increasingly being used to provide norms 
against which brand performance can be interpreted ( Uncles et al. 1995; Bhattacharya 
1997; Ehrenberg et al. 2000). Dirichlet model is useful for the provision of  norms for 
stationary markets, to supply baselines for interpreting change (i.e., non-stationary 
situations) without having to match the results against a control sample, to help 
strategic decision-making, and to understand the nature of markets. 

There are diverse ways of applying the distribution,  where the Dirichlet has 
proved to be particularly useful is in modeling the distribution of words in text 
documents [9]. If we have a dictionary containing k possible words, then a particular 
document can be represented by a probability mass function [pmf] of length k- 
produced by normalizing the empirical frequency of its words. A group of documents 
produces a collection of pmfs, and we can fit a Dirichlet distribution to capture the 
variability of these pmfs. 

III. Methodology 

a) Deriving the Dirichlet Distribution 

Let 𝑋𝑋𝑖𝑖  be a random variable from the Gamma distribution 𝐺𝐺(𝛼𝛼𝑖𝑖 , 1), 𝑖𝑖 = 1, … , 𝑘𝑘, 
and let 𝑋𝑋1, … ,𝑋𝑋𝑘𝑘  be independent. The joint pdf of 𝑋𝑋1, … ,𝑋𝑋𝑘𝑘 is  

∏ 1
Г(𝛼𝛼𝑖𝑖)

𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖

𝛼𝛼𝑖𝑖−1𝑒𝑒−𝑥𝑥𝑖𝑖 ,    if0 < 𝑥𝑥𝑖𝑖 < ∞ 

𝑓𝑓(𝑥𝑥1, … ,𝑥𝑥𝑘𝑘) =  

0,       otherwise  

Let
 

𝑌𝑌𝑖𝑖 =
𝑋𝑋𝑖𝑖

𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑘𝑘
 ,   𝑖𝑖 = 1,2, … ,𝑘𝑘 − 1 
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and 

𝑍𝑍𝑘𝑘 = 𝑋𝑋1 + 𝑋𝑋2 + ⋯+ 𝑋𝑋𝑘𝑘  .  

By using the change of variables technique, this transformation maps 𝑀𝑀 =
{(𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑘𝑘): 0 < 𝑥𝑥𝑖𝑖 < ∞, 𝑖𝑖 = 1, … ,𝑘𝑘} onto 𝑁𝑁 = {(𝑦𝑦𝑖𝑖 , … , 𝑦𝑦𝑘𝑘−1, 𝑧𝑧𝑘𝑘):𝑦𝑦𝑖𝑖 > 0, 𝑖𝑖 = 1, … ,𝑘𝑘 − 1, 0 <
𝑧𝑧𝑘𝑘 < ∞,𝑦𝑦1 + ⋯+ 𝑦𝑦𝑘𝑘−1 < 1}.The inverse functions are𝑥𝑥1 = 𝑦𝑦1𝑧𝑧𝑘𝑘 ,𝑥𝑥2 = 𝑦𝑦2𝑧𝑧𝑘𝑘 , … , 𝑥𝑥𝑘𝑘−1 =
𝑦𝑦𝑘𝑘−1𝑧𝑧𝑘𝑘 ,𝑥𝑥𝑘𝑘 = 𝑧𝑧𝑘𝑘(1− 𝑦𝑦1 −⋯− 𝑦𝑦𝑘𝑘−1). Hence, the Jacobian is  

𝐽𝐽 = �
�

𝑧𝑧𝑘𝑘 0 …
0 𝑧𝑧𝑘𝑘 …
⋮ ⋮ ⋮

0
0
⋮

𝑦𝑦1
𝑦𝑦2
⋮

0 0 …
−𝑧𝑧𝑘𝑘 −𝑧𝑧𝑘𝑘 …

𝑍𝑍𝑘𝑘 𝑦𝑦𝑘𝑘−1
−𝑧𝑧𝑘𝑘 (1 − 𝑦𝑦1) −⋯− 𝑦𝑦𝑘𝑘−1

�
� = 𝑧𝑧𝑘𝑘𝑘𝑘−1  

Then, the joint pdf of 𝑌𝑌1, … ,𝑌𝑌𝑘𝑘−1,𝑍𝑍𝑘𝑘
 

is 
 

𝑓𝑓(𝑦𝑦1, … ,𝑦𝑦𝑘𝑘−1, 𝑧𝑧𝑘𝑘) =  
𝑦𝑦1
𝛼𝛼1−1 …𝑦𝑦𝑘𝑘−1

𝛼𝛼𝑘𝑘−1−1(1− 𝑦𝑦1 −⋯− 𝑦𝑦𝑘𝑘−1)𝛼𝛼𝑘𝑘−1

Г(𝛼𝛼1) … Г(𝛼𝛼𝑘𝑘) 𝑒𝑒−𝑧𝑧𝑘𝑘𝑧𝑧𝑘𝑘
𝛼𝛼1+⋯+𝛼𝛼𝑘𝑘−1

 

By integrating out 𝑧𝑧𝑘𝑘 ,  the joint pdf of 𝑌𝑌1, … ,𝑌𝑌𝑘𝑘−1

 

is  

 

𝑓𝑓(𝑦𝑦1, … , 𝑦𝑦𝑘𝑘−1) =   
𝛼𝛼1 + ⋯+ 𝛼𝛼𝑘𝑘
Г(𝛼𝛼1) … Г(𝛼𝛼𝑘𝑘)𝑦𝑦1

𝛼𝛼1−1 … 𝑦𝑦𝑘𝑘−1
𝛼𝛼𝑘𝑘−1−1(1 − 𝑦𝑦1 −⋯− 𝑦𝑦𝑘𝑘−1)𝛼𝛼𝑘𝑘−1 ,

 

where

 

𝑦𝑦𝑖𝑖 > 0,𝑦𝑦1 + ⋯+ 𝑦𝑦𝑘𝑘−1 < 1, 𝑖𝑖 = 1, … , 𝑘𝑘 − 1.

 

The joint pdf of the random variables 

𝑌𝑌1, … ,𝑌𝑌𝑘𝑘−1is known as the pdf of the Dirichlet distribution with parameters 

𝛼𝛼1, … ,𝛼𝛼𝑘𝑘 .  Furthermore, it is clear that 𝑍𝑍𝑘𝑘

 

has a Gamma distribution G(∑ 𝛼𝛼𝑖𝑖𝑘𝑘
𝑖𝑖=1 , 1)

 

and 

𝑍𝑍𝑘𝑘

 

is independent of 𝑌𝑌1, … ,𝑌𝑌𝑘𝑘−1.

 

Robert V Hogg and Allen T Craig.1970.

 

b)

 

Moment generating function 

 

The moment generating function of 𝑌𝑌𝑘𝑘 = [𝑌𝑌1, … ,𝑌𝑌𝑘𝑘]. Let 𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝑘𝑘)𝑇𝑇 ∈ ℜ𝑘𝑘 .

 

The moment generating function of 𝑌𝑌𝑘𝑘

 

at  𝑡𝑡

 

is  

 

      𝐸𝐸 �𝑒𝑒𝑡𝑡𝑇𝑇𝑌𝑌𝑘𝑘 � = ∫…∫ 𝑒𝑒𝑡𝑡𝑇𝑇𝑦𝑦𝑓𝑓(𝑦𝑦𝑘𝑘)𝑑𝑑𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑘𝑘

 

                                                 

= ∫…∫∑ �𝑡𝑡𝑇𝑇𝑦𝑦𝑘𝑘�
𝑚𝑚

𝑚𝑚 !
∞
𝑚𝑚=0 𝑓𝑓(𝑦𝑦𝑘𝑘)𝑑𝑑𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑘𝑘

 

               (1)

 

                                                 

= ∑ 1
𝑚𝑚 !

∞
𝑚𝑚=0 ∫…∫(𝑡𝑡𝑇𝑇𝑦𝑦𝑘𝑘)𝑚𝑚𝑓𝑓(𝑦𝑦𝑘𝑘)𝑑𝑑𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑘𝑘            

 

(2)

            
                                                   

Step  (a)

 

= �
1
𝑚𝑚!

∞

𝑚𝑚=0

��…� �
𝑚𝑚!

𝑛𝑛1! 𝑛𝑛2! …𝑛𝑛𝑘𝑘 !
𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑘𝑘=𝑚𝑚

× �(𝑡𝑡𝑖𝑖𝑦𝑦𝑖𝑖)𝑛𝑛𝑖𝑖
𝑘𝑘

𝑖𝑖=1

𝑓𝑓(𝑦𝑦𝑘𝑘)𝑑𝑑𝑦𝑦1 …𝑑𝑑𝑦𝑦𝑘𝑘�
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= ∑ 1

𝑚𝑚 !
∞
𝑚𝑚=0 �∑ 𝑚𝑚 !

𝑛𝑛1!𝑛𝑛2!…𝑛𝑛𝑘𝑘 !𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑘𝑘=𝑚𝑚 ∏ (𝑡𝑡𝑖𝑖)𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1 × � Г(𝛼𝛼1+⋯+𝛼𝛼𝑘𝑘 )

Г(𝛼𝛼1+𝑛𝑛1+⋯𝛼𝛼𝑘𝑘+𝑛𝑛𝑘𝑘 )
∏ Г(𝛼𝛼𝑖𝑖+𝑛𝑛𝑖𝑖)

Г(𝛼𝛼𝑖𝑖)
𝑘𝑘
𝑖𝑖=1 ��.      (3)

 

In step (a), we apply the multinomial theorem 

 

                            
(𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑘𝑘)𝑚𝑚 = ∑ 𝑚𝑚 !

𝑛𝑛1!𝑛𝑛2!…𝑛𝑛𝑘𝑘 !𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑘𝑘=𝑚𝑚 ∏ 𝑥𝑥𝑖𝑖
𝑛𝑛𝑖𝑖𝑘𝑘

𝑖𝑖=1           

 

(4)

 

for any positive integer 𝑘𝑘

 

and any non-negative integer 𝑚𝑚. 

c)

 

Maximum Likelihood Estimation

 

The ML estimation method concerns choosing parameters to maximize the joint 
density function of the sample (likelihood function). Therefore, we consider 

 

                                                  
max𝛩𝛩 𝑝𝑝(𝑥𝑥𝑘𝑘|𝛩𝛩)

 

                                         (5)

 

with constraints ∑ 𝑝𝑝(𝑗𝑗) = 1𝑚𝑚
𝑗𝑗=1

 

and 𝑝𝑝(𝑗𝑗) > 0

 

for

 

𝑗𝑗 = 1,2, … ,𝑚𝑚.

 

We can consider 𝑝𝑝(𝑗𝑗) as 

prior probabilities under these constraints.

 

Now suppose we have a sample that contains 

𝑛𝑛

 

random vectors 𝑋𝑋𝑖𝑖𝑘𝑘 ,  which are i.i.d., 𝑖𝑖 = 1, … , 𝑛𝑛.

 

We maximize the following function 

with respect to 𝛩𝛩

 

and Λ

 

ϕ�xk,Θ,Λ� = �𝑙𝑙𝑙𝑙
𝑛𝑛

𝑖𝑖=1

��𝑝𝑝�𝑥𝑥𝑘𝑘�Θ𝑗𝑗 �𝑝𝑝(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

� + Λ�1 −�𝑝𝑝(𝑗𝑗)
𝑚𝑚

𝑗𝑗=1

� + 𝜇𝜇 ��𝑝𝑝(𝑗𝑗) ln�𝑝𝑝(𝑗𝑗)�
𝑚𝑚

𝑗𝑗=1

�

 

The first term of equation 8 is the log-likelihood function. Λis the Lagrange 
multiplier in the second term. In the last term of eq. 8, we use an entropy-based 

criterion. Also, μ

 

is the ratio of the first term to the last term in of each iteration 

t byNizar Bouguila, Djemel

 

Ziou, and Jean Vaillancourt (2004)

 

                                       μ(t) =
∑ ln�∑ 𝑝𝑝𝑡𝑡−1�𝑥𝑥𝑖𝑖

𝑘𝑘 �Θ𝑗𝑗 �𝑝𝑝𝑡𝑡−1(𝑗𝑗 )𝑚𝑚
𝑗𝑗=1 �𝑚𝑚

𝑗𝑗=1

�∑ 𝑝𝑝𝑡𝑡−1(𝑗𝑗 )ln⁡(𝑝𝑝𝑡𝑡−1(𝑗𝑗 )𝑚𝑚
𝑗𝑗=1 �

,                             (7)

 

In order to optimize (8), we need to solve the following equations:   

 

𝜕𝜕
𝜕𝜕Θ𝜙𝜙

(𝑥𝑥𝑘𝑘 ,Θ,Λ) = 0

 

𝜕𝜕
𝜕𝜕Λ𝜙𝜙

(𝑥𝑥𝑘𝑘 ,Θ,Λ) = 0

 

It is shown that the estimator of the prior probability p(j)

 

is

 

                p(j)new =
∑ 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1 �𝑗𝑗 �𝑥𝑥𝑘𝑘 ,Θ𝑗𝑗 �+𝜇𝜇 �𝑝𝑝(𝑗𝑗 )𝑜𝑜𝑜𝑜𝑜𝑜 �1+𝑙𝑙𝑙𝑙

 

𝑝𝑝(𝑗𝑗 )𝑜𝑜𝑜𝑜𝑜𝑜 ��
𝑛𝑛+𝜇𝜇 ∑ 𝑝𝑝(𝑗𝑗 )𝑜𝑜𝑜𝑜𝑜𝑜 �1+ln 𝑝𝑝(𝑗𝑗 )𝑜𝑜𝑜𝑜𝑜𝑜 �𝑚𝑚

𝑗𝑗=1
,     𝑗𝑗 = 1,2, … ,𝑚𝑚.

 

            (8)
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= �
1
𝑚𝑚!

∞

𝑚𝑚=0

�
1
𝑚𝑚!

∞

𝑚𝑚=0

� �
𝑚𝑚!

𝑛𝑛1! 𝑛𝑛2! …𝑛𝑛𝑘𝑘 !
𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑘𝑘=𝑚𝑚

�(𝑡𝑡𝑖𝑖)𝑛𝑛𝑖𝑖
𝑘𝑘

𝑖𝑖=1

𝐸𝐸 ��𝑌𝑌𝑖𝑖
𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1

��

(6)

Notes



vector

 

𝛼𝛼𝑗𝑗𝑘𝑘

 

for each component 𝑗𝑗 = 1,2, … ,𝑚𝑚.The derivative of 𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ)

 

with respect to 
𝛼𝛼𝑗𝑗𝑗𝑗

 

is  

 

∂
∂𝛼𝛼𝑗𝑗𝑗𝑗

𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ) = ∑ 𝑝𝑝(𝑗𝑗|𝑥𝑥𝑖𝑖𝑘𝑘 ,𝑛𝑛
𝑖𝑖=1 𝛼𝛼𝑗𝑗𝑘𝑘)(ln𝑥𝑥𝑖𝑖𝑖𝑖) + �𝜓𝜓 �𝛼𝛼0𝑗𝑗 � − 𝜓𝜓�𝛼𝛼𝑗𝑗𝑗𝑗 �0�∑ 𝑝𝑝�𝑗𝑗�𝑥𝑥𝑖𝑖𝑘𝑘 ,𝛼𝛼𝑗𝑗𝑘𝑘�,          𝑛𝑛

𝑖𝑖=1 (10) 

 

𝑙𝑙 = 1, … , 𝑘𝑘,    𝑗𝑗 = 1, … ,𝑚𝑚, 

 

where

 

ψ(. )

 

is the Digamma function. However, 𝛼𝛼𝑗𝑗𝑗𝑗

 

can become negative during 

iterations. In order to keep 𝛼𝛼𝑗𝑗𝑗𝑗

 

strictly positive, set 𝛼𝛼𝑗𝑗𝑗𝑗 = 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽. 𝛽𝛽𝛽𝛽𝛽𝛽

 

is any real number. 

Then, the derivative of 𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ)

 

with respect to 𝛽𝛽𝛽𝛽𝛽𝛽

 

is

 

𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ) = 𝛼𝛼𝑗𝑗𝑗𝑗 [∑ 𝑝𝑝�𝑗𝑗�𝑥𝑥𝑖𝑖𝑘𝑘 ,𝛼𝛼𝑗𝑗𝑘𝑘�(ln 𝑥𝑥𝑖𝑖𝑖𝑖)𝑛𝑛
𝑖𝑖=1 +  [𝜓𝜓�𝛼𝛼0𝑗𝑗 � − 𝜓𝜓�𝛼𝛼𝑗𝑗𝑗𝑗 �]∑ 𝑝𝑝(𝑗𝑗|𝑥𝑥𝑖𝑖𝑘𝑘 ,𝛼𝛼𝑗𝑗𝑘𝑘)],𝑛𝑛

𝑖𝑖=1   (11) 

𝑙𝑙 = 1, … , 𝑘𝑘,      𝑗𝑗 = 1, … ,𝑚𝑚.

 

By using the iterative scheme of the Fisher scoring method, we obtain 

 

                           

 

 

Note that the variance-covariance matrix is obtained by the inverse of the Fisher 
information matrix I and 

 

                                      I = −𝐸𝐸 � 𝜕𝜕2

𝜕𝜕𝛽𝛽𝑗𝑗 𝑙𝑙1𝜕𝜕𝛽𝛽𝑗𝑗 𝑙𝑙2
𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ)�.                                  (13)         

                                                                           

IV.

 

Analysis

 

and  Results

 

In this chapter, the results of the simulation study on the basis of the entire 
criterion at different sample sizes are presented and Performance of parameter 
estimation method in terms of Bias as the sample size and parameter dimension varies 
was discussed.

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Alpha

 

N QLE

 

MLE

 

MOM

 

α_1 = 0.15

 

10 0.2328 0.3125 0.0994 

 

20 0.1013

 

0.1848 0.1 

 

30 0.067

 

0.151 0.1 

α_2 = 0.30

 

40 0.0524 0.1371 0.0999 

 

50 0.0401

 

0.1247 0.1 

 

75 0.0286

 

0.1136 0.1 

α_3 = 0.45

 

100 0.0219 0.1074 0.1 

 

250 0.01

 

0.0964 0.1001 

© 2020 Global Journals
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Note that μ is defined by (4.3) and 𝑝𝑝(𝑗𝑗|𝑥𝑥𝑖𝑖𝑘𝑘 ,Θ𝑗𝑗 ) is the posterior probability where

                          𝑝𝑝�𝑗𝑗�𝑥𝑥𝑖𝑖𝑘𝑘 ,Θ𝑗𝑗� =
𝑝𝑝�𝑥𝑥𝑖𝑖

𝑘𝑘 ,Θ𝑗𝑗 �𝑝𝑝(𝑗𝑗 )

𝑝𝑝�𝑥𝑥𝑖𝑖
𝑘𝑘 ,Θ�

, 𝑖𝑖 = 1, … ,𝑛𝑛,   𝑗𝑗 = 1,2, … ,𝑚𝑚.                 (9)

Now we want to estimate the parameters 𝛼𝛼𝑗𝑗𝑘𝑘 , 𝑗𝑗 = 1,2, … ,𝑚𝑚. The Fisher scoring 

method is used to find these estimates. Denote 𝛼𝛼𝑗𝑗𝑙𝑙 as one element of the parameter 

(12) �
𝛽̂𝛽𝑗𝑗𝑙𝑙
⋮

𝛽̂𝛽𝑗𝑗𝑘𝑘
�

𝑛𝑛𝑒𝑒𝑛𝑛

= �
𝛽̂𝛽𝑗𝑗𝑙𝑙
⋮
𝛽̂𝛽𝑗𝑗𝑘𝑘

�

𝑜𝑜𝑙𝑙𝑑𝑑

+ �
𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝑗𝑗𝑙𝑙� … 𝐶𝐶𝐶𝐶𝑉𝑉�𝛽̂𝛽𝑗𝑗𝑙𝑙, 𝛽̂𝛽𝑗𝑗𝑘𝑘�

⋮ ⋱ ⋮
𝐶𝐶𝐶𝐶𝑉𝑉�𝛽̂𝛽𝑗𝑗𝑘𝑘, 𝛽̂𝛽𝑗𝑗𝑙𝑙� … 𝑉𝑉𝑉𝑉𝑉𝑉�𝛽̂𝛽𝑗𝑗𝑘𝑘�

�

𝑜𝑜𝑙𝑙𝑑𝑑

×

⎝

⎜⎜
⎛

𝜕𝜕
𝜕𝜕𝛽̂𝛽𝑗𝑗𝑘𝑘

𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ)

⋮
𝜕𝜕
𝜕𝜕𝛽̂𝛽𝑗𝑗𝑙𝑙

𝜙𝜙(𝑥𝑥𝑘𝑘 ,Θ,Λ)
⎠

⎟⎟
⎞

𝑜𝑜𝑙𝑙𝑑𝑑

… .
𝑗𝑗 = 1, … ,𝑚𝑚.

Notes



Table 1: Results of the Bias at different alpha level as sample size varies are presented 
below  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 Based on the above table, it was observed that the level of alpha the Quasi-
likelihood estimator (QLE) has the least value of Biasas the sample size increases and

 performs better compared with the Method of Moment and Maximum likelihood 
estimator.  

Table 2:
 
Results of the Variance at different alpha level as sample size varies are 

presented
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Alpha

 

N QLE

 

MLE

 

MOM

 α_1 = 0.45

 

10 0.4683 0.4771 1.1 

 

20 0.2223

 

0.2324 1.1 

 

30 0.1521

 

0.1638 1.1 

α_2 = 0.75

 

40 0.1072 0.1195 1.1 

 

50 0.0853

 

0.0977 1.1 

 

75 0.0615

 

0.0743 1.1 

α_3 = 0.90

 

100 0.0442 0.0567 1.1 

 

250 0.0235

 

0.0362 1.0999 

Alpha

 

N QLE

 

MLE

 

MOM

 α_1 = 0.90

 

10 0.6564 0.6576 1.889 

  20 0.3141

 

0.3152 1.889 

  30 0.185

 

0.1862 1.888 

α_2 = 0.99

 

40 0.1462 0.1476 1.8891 

  50 0.1264

 

0.1277 1.8891 

  75 0.0862

 

0.0876 1.8891 

α_3 =

 

0.999

 

100 0.0638 0.0652 1.889 

  250 0.0324

 

0.0339 1.889 

Alpha
 

N QLE
 

MLE
 

MOM
 

α_1 = 0.15
 

10 0.108 0.1167 0.0325 

  20 0.0355
 

0.0379 0.0158 

  30 0.0187
 

0.02 0.0103 

α_2 = 0.30
 

40 0.0139 0.0148 0.0082 

  50 0.0108
 

0.0116 0.0065 

  75 0.0063
 

0.0067 0.0041 

α_3 = 0.45
 

100 0.0048 0.0051 0.0033 

  250 0.0018
 

0.0019 0.0013 
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Notes



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Based on the above table and appendix 2,  it was observed that the performance 
of parameter estimation method in terms of

 

Variance, as the sample size increases 
Method of Moment performs better compared with the Quasi-likelihood estimator and 
Maximum likelihood estimator. 

Table 3:

 

Results of the Mean Absolute Error (MAE) at different alpha level as sample 
sizes varies are presented below

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alpha

 

n QLE

 

MLE

 

MOM

 

α_1 = 0.45

 

10 0.4132 0.4128 0.0207 

 

20 0.144

 

0.1444 0.0101 

 

30 0.0863

 

0.0858 0.0071 

α_2 = 0.75

 

40 0.0565 0.0563 0.0051 

 

50 0.043

 

0.0426 0.004 

 

75 0.0279

 

0.0277 0.0028 

α_3 = 0.90

 

100 0.0201 0.0199 0.0021 

 

250 0.0076

 

0.0075 0.0008 

Alpha

 

N QLE

 

MLE

 

MOM

 

α_1 = 0.90

 

10 0.6887 0.6885 0.0173 
  

20 0.2398

 

0.2396 0.0086 
  

30 0.1286

 

0.1285 0.0056 

α_2 = 0.99

 

40 0.0926 0.0925 0.0043 
  

50 0.0772

 

0.0772 0.0034 
  

75 0.05

 

0.0498 0.0023 

α_3 =

 

0.999

 

100 0.0353 0.0353 0.0018 
  

250 0.0134

 

0.0134 0.0006 

Alpha

 

N QLE

 

MLE

 

MOM

 

α_1 = 0.15

 

10 0.3652 0.3982 0.2668 

 

20

 

0.2171

 

0.2484 0.1915 

 

30

 

0.1671

 

0.2003 0.1633 

α_2 = 0.30

 

40 0.1438 0.1792 0.1512 

 

50

 

0.1262

 

0.1626 0.1396 

 

75

 

0.0995

 

0.1396 0.1233 

α_3 = 0.45

 

100 0.0873 0.1292 0.1181 

 

250

 

0.052

 

0.104 0.1043 

© 2020 Global Journals

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

V
I

Y
ea

r
20

20

40

  
 

( F
)

Extension of Comparative Analysis of Estimation Methods for Dirichlet Distribution Parameters

Notes



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Performance of parameter estimation method in terms of Mean Absolute Error 
(MAE) as the sample

 

size increases, Maximum likelihood estimator performs better 
than Quasi-likelihood estimator and Method of moment as shown in table 3.

 

Table 4:

 

Results of the Mean Square Error (MSE)

 

at different alpha level as sample 
sizes varies are presented below

 

Alpha N QLE

 

MLE

 

MOM

 

α_1 = 0.15

 

10 0.1335 0.1569 0.0375 

  20 0.0401

 

0.0503 0.0199 

  30 0.0207

 

0.0281 0.0144 

α_2 = 0.30

 

40 0.0152 0.0214 0.0122 

  50 0.0115

 

0.017 0.0105 

  75 0.0066

 

0.0112 0.0081 

α_3 = 0.45

 

100 0.0051 0.0091 0.0071 

  
250 0.0018

 

0.0051 0.0052 

Alpha

 

N QLE

 

MLE

 

MOM

 

α_1 = 0.45

 

10 0.4945 0.4969 0.4532 

 

20 0.1624

 

0.1633 0.4421 

 

30 0.095

 

0.0957 0.439 

α_2 = 0.75

 

40 0.0608 0.0615 0.4371 

    

 

 
 

 
 

 

 
 

 
 

 

 
 

Alpha

 

n QLE

 

MLE

 

MOM

 

α_1 = 0.45

 

10 0.7774 0.7778 1.1001 

 

20 0.486

 

0.4859 1.1 

 

30 0.3818

 

0.3815 1.1 

α_2 = 0.75

 

40 0.3138 0.3147 1.1 

 

50 0.2748

 

0.2748 1.1 

 

75 0.2216

 

0.2225 1.1 

α_3 = 0.90

 

100 0.186 0.1863 1.1 

 

250 0.1157

 

0.1168 1.0999 
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Alpha n QLE MLE MOM

α_1 = 0.90 10 1.0665 1.0665 1.8917

20 0.6602 0.6601 1.889

30 0.4866 0.4865 1.889

α_2 = 0.99 40 0.4212 0.4211 1.8891

50 0.3827 0.3825 1.8891

75 0.3059 0.3057 1.8891

α_3 = 0.999 100 0.2622 0.2622 1.889

250 0.1588 0.1588 1.889

50 0.0457 0.0461 0.4363

75 0.0293 0.0298 0.435

α_3 = 0.90 100 0.0207 0.021 0.445

250 0.0078 0.008 0.4328

Notes



 
 

 
 

 

 
 

 

 

 

 

 

 
 
 
 
 
 

Performance of parameter estimation method in terms of Mean Square Error 
(MSE) as the sample size increases the Quasi- likelihood estimator and Maximum 
likelihood estimator performs better as compare to Method of Moment.

 

as shown in

 

table 4.

 

Conclusively, the best method for each criterion was based on the modal class for 
the entire criterion as summarized in table 5 below

 

Table 5:

 

Shows the Count of Quasi- likelihood estimator, Maximum likelihood estimator 
and Method of Moment using Bias, Variance, Mean absolute error and Mean square 

error

 

   

Count

  

Best

 

Method

 
   

 

Criterion

 

QLE

 

MLE

 

MOM

  

 

Bias

 

77

 

0 2 QLE

 

 

MSE

 

57

 

35 11 QLE

 

 

MAE

 

34
 

48 6 MLE

 

 

VAR

 

4 11
 

66 MOM

 
 

Graphical Reresentation of the Criterion

 
 

Alpha

 

n QLE

 

MLE

 

MOM

 

α_1 = 0.90

 

10 0.8341 0.8342 1.2088 

 

20  0.273

 

0.273 1.2005 

 

30  0.1401

 

0.1401 1.1976 

α_2 = 0.99

 

40 0.0999 0.0999 1.1961 

 

50  0.0827

 

0.0827 1.1953 

 

75  0.0525

 

0.0525 1.1944 

α_3 =

 

0.999

 

100 0.0367 0.0367 1.1938 

 

250  0.0137

 

0.0137 1.1927 

© 2020 Global Journals
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Fig. 1: The graph above shows the Bias of the estimator of QLE, MLE, MOM at 
different sample sizes

0
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2
2.5
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0 20 40 75 25
0 10 30 50 10
0 20 40 75 25
0 10 30 50 10
0 20 40 75 25
0 10 30 50 10
0

0.15 0.3 0.45 0.6 0.75 0.9 0.99

Bias of the Estimators

QLE MLE MOM

Notes



 

 
 

The graph shows the Bias

 

of the estimator of QLE, MLE, MOM at different 
sample sizes. Judging by the bias criterion, the Quasi Likelihood method (QLE) was the 
best for the lower and medium level of alpha, but for the higher level of alpha, Method 
of moment performs better.

 

 

The graph above shows the Variance of the estimator of QLE, MLE, MOM at 
different sample sizes

 

The graph shows the Variance

 

of the estimator of QLE, MLE, MOM at different 
sample sizes. From the graph,

 

Method of moment consistently performed better across 
the alpha(parameter) level which implies that the method of Moment is the best 
method. 

 

0
0.2
0.4
0.6
0.8

1

10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100

0.15 0.3 0.45 0.6 0.75 0.9 0.99

VAR of the Estimators

QLE MLE MOM
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Fig. 3:  The graph above shows the Mean Absolute Error (MAE) of the estimator of 
QLE, MLE, MOM at different sample sizes

The graph shows the Mean Absolute Error (MAE) of the estimator of QLE, 
MLE, MOM at different sample sizes. The Quasi Likelihood method (QLE) 
outperformed the other methods for lower level of alpha but as the alpha level increases 
(medium level and above) the Maximum Likelihood method (MLE) and the QLE has 
just a slight difference in their estimates. Out of the three methods considered, the 
method of Moment consistently gives the higher estimate of Mean Absolute Error.
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Fig. 4:

 

The graph above shows the Mean Square Error (MSE) of the estimator of QLE, 
MLE, MOM at different sample sizes

 

The graph shows the Mean Square Error (MSE) of the estimator of QLE, MLE, 
MOM at different sample sizes. QLE method was the best for lower level of alpha, but 
as for the medium and higher level of alpha the QLE and the MLE does not give a 
significant different estimate. While on the other hand, the MOM gives a consistently 
higher estimate of Mean square error.

 

Real Life Data Results

 

Fitting Dirichlet Model to Data Containing Selected Agricultural Products in 
Nigeria (2008-2017). 
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Table 6: Parameter Estimation (QLE)

Coefficients Estimate Std. Error

α1
0.2260442 0.1438496 

α2 0.1729296 0.1390305 

α3 0.2410169 0.1453349 

From the table above, we obtained the estimates of the mean and standard error 
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient 
due to its lowest standard error as compared to others.

Table 7: Parameter Estimation (MLE)

Coefficients Estimate Std. Error

α1 0.03325620 0.455928 

α2
0.02179287 0.401919 

α3
0.03987597 0.471691 

From the table above, we obtained the estimates of the mean and standard error 
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient 
due to its lowest standard error as compared to others.

Notes



  

   

 

 

 

  
   

  

   

 

 

  

 

Table 8:

 

Parameter Estimation (MOM)

 

Coefficients

 

Estimate

 

Std. Error

 

α1

 

0.04000534 0.4591688 

α2

 

0.01302276 0.309861 

 

α3

 

0.05461017 0.4750334 

From the table above, we obtained the estimates of the mean and standard error 
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient 
due to its lowest standard error as compared to others.

 

Conclusively, the quasi-likelihood estimator performs the best as compared to others.

 

V.

 

Conclusion

 

The Dirichlet distribution is a multivariate generalization of the Beta 
distribution. In this research, we introduced three methods of estimation for Dirichlet

 

distribution which are maximum likelihood estimator (MLE), Method of Moment 
(MOM) and Quasi-likelihood estimator. This was done in other to obtain the most 
efficient method. An extensive simulation study was carried out on the basis of selected 
criterion (Bias, Variance, Mean absolute error and Mean square error)

 

considering 
various sample sizes, also the methods were subjected to real life data. The performance 
of these methods were compared at different sample sizes it shows that the Quasi- 
likelihood estimator performs better

 

in terms of Bias, than the other methods, while 
Method of Moment performs better in terms of Variance, than the other methods. 
Maximum likelihood estimator performs better in terms of Mean Absolute Error (MAE) 
and (MSE) than the other methods. The real life result shows that Quasi-likelihood 
estimator performs better as compared to Method of moment and Maximum likelihood 
estimator, also the Bayes factor of Dirichlet distribution gives 57.95215, which implies a 
very strong evidence of the Goodness of fits. Hence, The Dirichlet distribution is 
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efficient based on what we have done with higher precision and more adequacies in the 
estimate of the model, also the estimate of the model should be used in taking any 
prospective decision and can be reliable if large samples is involved.
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