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Absiract-The Dirichlet distribution is a generalization of the Beta distribution. This research deals with the estimation of
scale parameter for Dirichlet distribution with known shapes. We examined three methods to estimate the parameters
of Dirichlet distribution which are Maximum Likelihood Estimator, Method of Moment Estimator and Quasi-Likelihood
Estimator. The performance of these methods were compared at different sample sizes using Bias, Mean Square Error,
Mean Absolute Error and Variance criteria, an extensive simulation study was carried out on the basis of the selected
criterion using statistical software packages as well as the application of the criterion to real life data, all these were
done to obtain the most efficient method. The simulation study and analysis revealed that Quasi- Likelihood Estimator
perform better in terms of bias while Method of Moment Estimator is better than the other two methods in terms of
variance; the Maximum Likelihood Estimation was the best estimation method in terms of the Mean square Error and
Mean Absolute Error; while Quasi- Likelihood Estimation method was the best estimation method with real life data.
Keywords: dirichlet distribution, parameter estimation, maximum likelihood estimator, method of moment
estimator and quasi- likelihood estimator.

. [NTRODUCTION

In Bayesian Statistics, the Dirichlet distribution is a popular conjugate prior for
multinomial distribution. The Dirichlet distribution has a number of applications in
various fields. Samuel S. Wilk (1962), gave an example, where he applied the Dirichlet
distribution in deriving the distribution of order statistics. Again Kenneth Lange (1995),
also used the Dirichlet distribution in biology to demonstrate and to compute forensic
match probabilities from several distinct populations. In addition, Brad N (2009), used
the Dirichlet distribution to model a player‘s abilities in Major League Baseball. It is
shown that the Dirichlet distribution can be used to model consumer behavior Gerald et
al (1984). Dirichlet Distribution can be extended to various fields of study such as
biology, astronomy, text mining and so on. The Dirichlet Distribution (DD) is usually
employed as a conjugate prior for the multinomial modeling and Bayesian analysis of
complete contingency tables (Agresti (2002)). Gupta and Richards (1987, 1991, and
1992) extended the Dirichlet Distribution to the Liouville distribution. Fang, Kotz and
Ng (1990) gave an extensive exposition of the Liouville family and its ramifications.

The problem of estimating the parameters which determine a mixture has been
the subject of diverse studies (Redner and Walker 1984). During the last two decades,
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the method of maximum likelihood (ML) (Bishop. C.M .1995) and (Rao. P. 1987) has
become the most common approach to this problem. Of the variety of the iterative
methods which has been subjected as an alternative to optimize the parameters of a
mixture, the one most likely used is the expectation maximization (EM). EM was
originally proposed by Dempster et al 1977 for estimating the maximum likelihood
estimator (MLE) of stochastic models. This algorithm gives an iterative procedure and
the practical form is usually simple and easy to implement .The EM algorithm can be
viewed as an approximation of the Fisher scoring method (Ikeda. S. (2000). In this
research we showed that the Dirichlet distribution can be a very good choice for
modelling data, MLE was used to estimate the parameters of the Dirichlet Mixture
Model alongside with EM algorithm. This mixture decomposition algorithm
incorporates a penalty term in the objective function to find the number of components
required to model the data. This algorithm suffers some set back: the need to specify
the number of components each time, which will be determine by selected criterion
functions such as AIC, BIC, MDL which has been in existence to validate the model
and justify the more efficient one.

This research centered on studying how the different estimators of the unknown
parameters of a Dirichlet distribution can behave for different sample sizes. Here, we
are mainly comparingthe Maximum Likelihood Estimator, Method of Moment
Estimator and Quasi-Likelihood Estimator with respect to efficiency, bias, mean
absolute error and variance using extensive simulation techniques as well as application
of the estimation methods to real life data set.

[I. LITERATURE REVIEW

The Dirichlet model describes patterns of repeat purchases of brands within a
product category. It models simultaneously the counts of the number of purchases of
each brand over a period of time, so that it describes purchase frequency and brand
choice at the same time. It assumes that consumers have an experience of the product
category, so that they are not influenced by previous purchase and marketing strategies;
for this reason, consumer characteristics and marketing-mix instruments are not
included in the model. As the market is assumed to be stationary, these effects are
already incorporated in each brand market share which influences other brand
performance indexes calculated by the model. The market is also assumed to be un
segmented. The theory and development of the model is fully described in Ehrenberg
(1972).Good hardt, Ehrenberg and Chatfield (1984), summarise the situation by stating
that the Dirichlet model makes explicit that there are simple, general and rather precise
regularities in a substantial area of human behaviour where this has not always been
expected. In setting the context for this particular approach to the modeling of
consumer behaviour viz. the largely explanatory models of consumer behaviour,
Ehrenberg (1988) claims that it describes how consumers behave, rather than why, and
takes into account only those factors necessary for an adequate description.

Many aspects of buyer behaviour can be predicted simply from the penetration
and the average purchase frequency of the item, and even these two variables are
interrelated (Ehrenberg, 1988, pg. ii). The Dirichlet model integrates the reported
regularities, and predicts many aggregate brand performance measures. These measures
are the distribution of purchases for a brand, the proportion of a brand’s buyers buying
that brand only, and the proportion of people purchasing a brand, given that they have
previously purchased that brand. When these predictions are compared with observed
figures, Ehrenberg claims that it is not unreasonable to expect to obtain correlations in
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the order of 0.9 and sometimes much higher, (Ehrenberg 1975, Ehrenberg and Bound
1993).

Applications and theory can be used to provide norms for examining brand
performance, or diagnostic information for the "health” of a brand. In addition, the
Dirichlet model can provide interpretative norms for evaluating situations where some
trend in sales has occurred, say after a promotion or advertising scheme. Ehrenberg also
claims that the Dirichlet model provides valuable insights into the nature and
implications of brand-loyalty (e.g., Ehrenberg and Uncles 1995; Ehrenberg and Uncles
1999). The use of likelihood theory to estimate the parameters of the Dirichlet model,
providing an alternative to the standard procedure based on the method of zeros and
ones and on marginal moments (Rungie 2003b). In order to write the likelihood
function, the data should be in the form of joint frequencies, like those contained in a
contingency table with n-rows, representing the number of consumers, and g columns,
for the number of brands. Alternatively, the iterative procedures based on the approach
that computations are easy to use, and require only aggregated data as input, as access
to original panel data is not necessary as proposed by Goodhardt, Ehrenberg and
Chatfield (1984). Raw panel data cannot always be used since panel operators who
measure sales and household consumption provide information only in some aggregate
format such as market share, penetration, and average purchase rate with reference to
the various brands (Wright et al. 2002). In these situations, the only way to estimate
the Dirichlet model is to use the traditional method. Dirichlet modeling continues to be
a successful and influential approach, and is increasingly being used to provide norms
against which brand performance can be interpreted ( Uncles et al. 1995; Bhattacharya
1997; Ehrenberg et al. 2000). Dirichlet model is useful for the provision of norms for
stationary markets, to supply baselines for interpreting change (i.e., non-stationary
situations) without having to match the results against a control sample, to help
strategic decision-making, and to understand the nature of markets.

There are diverse ways of applying the distribution, where the Dirichlet has
proved to be particularly useful is in modeling the distribution of words in text
documents [9]. If we have a dictionary containing k possible words, then a particular
document can be represented by a probability mass function [pmf] of length k-
produced by normalizing the empirical frequency of its words. A group of documents
produces a collection of pmfs, and we can fit a Dirichlet distribution to capture the
variability of these pmfs.

[II. METHODOLOGY

a) Deriving the Dirichlet Distribution
Let X; be a random variable from the Gamma distribution G(a;,1),i =1,...,k,
and let Xy, ..., X be independent. The joint pdf of X, ..., X}, is

1 a1 _y .
Fi——x e, if0 <x; <o

=)
flxq, e x,) =
0, otherwise
Let
Xi
Y; i=12,.., k-1

=X1 +X2++Xk ’
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and

Zk:X1 +X2++Xk

By using the change of variables technique, this transformation maps M =
{(x;) e, x):0<x; <0,i=1,...,k} onto N={(y;, ., Vi-1,2,):y; > 0,i=1,...,k—1,0<
zp <00,y + -+ y,_1 <1} The inverse functions arex; = y1Zy, X2 = VoZk, ) Xj—q =

Yi-1Zk, Xk = Zx (1 —y1 — =+ — ¥ _1). Hence, the Jacobian is
Zy 0 Oyl
0 Zy, 03’2
J=| : : P = z}1
0 0 Zk Yk -1
—zr =z . —zx (L=y)— =y

Then, the joint pdf of Y3, ..., Y, _1,Z; is

a;—1 ap-1-1 ap—1
ne eVl Aoy m e )W e

I'(ay) ...T(ay,) k

f(yll "'lyk—llzk) =

By integrating out z, the joint pdf of Y;, ..., Y, is

al + ot + ak a:l—l ak_l—l _
e Vi) = ———————— YK 1=y — =y, _)% 1
f s s Vie—1) @) ___F(ak)yl Vi1 1 V-1

wherey; > 0,y; + -+ y,_1 <1,i=1,..,k—1. The joint pdf of the random variables
Yi, ..., Y_1is known as the pdf of the Dirichlet distribution with parameters

ay, ..., a. Furthermore, it is clear that Z, has a Gamma distribution G(X¥,a;,1) and
Zy, is independent of Y;, ..., Y,_1. Robert V Hogg and Allen T Craig.1970.

b) Moment generating function
The moment generating function of Y* = [Y;, ..., Y, ]. Let t = (¢, ..., t;)T € R,
The moment generating function of Y* at t is

E(etTYk) = [ .. [et"f(y")dy, ...dy,
=/ ---fZ?i:o(tT,fl—T)mf(y")dyl . dYy (1)

= X0 [ [ETYI Oy, - dy 2)

Step (a)

= i % f f Z #'nk' X i{(ti)’i)nlf(yk)d)ﬁ e AV

m=0 nitnz+-+n=m
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[s) [s) k k
Savwl ¥l e ([]r)

m=0 m=0 nitny+--+n=m i=1

! F(ap+-+ay) k [(a;+n; )]
oo n; L
—_— t;)" X [
m= 0 [Zn1+n2+ +n=m 1'n2' ng! 1( ) T(a1+nq+ag+ny) L 1 T(a;)

In step (a), we apply the multinomial theorem

m! k n;
(1 + x5 4+ )™ = Xy tngdedng=m mrtngtomgt =15 (4)

for any positive integer k and any non-negative integer m.

¢) Maximum Likelihood Estimation
The ML estimation method concerns choosing parameters to maximize the joint
density function of the sample (likelihood function). Therefore, we consider

maxg p(x¥|0) (5)

with constraints Y7, p(j) = 1 and p(j) >0 for j =1,2,..,m. We can consider p(j) as
prior probabilities under these constraints. Now suppose we have a sample that contains
n random vectors Xl-k , which are i.i.d., i = 1,...,n. We maximize the following function
with respect to @ and A

d(x*,0,A) = Zln Zp(xkle))p(ﬂ +A(1- ZP(]) +u ZP(])IH(P(])) (6)

The first term of equation 8 is the log-likelihood function. Ais the Lagrange
multiplier in the second term. In the last term of eq. 8, we use an entropy-based

criterion. Also, p is the ratio of the first term to the last term in of each iteration
t byNizar Bouguila, Djemel Ziou, and Jean Vaillancourt (2004)

DHRRLY O Gl D D))
(Zm, pt1G)mipt =1 ()

) = : (7)

In order to optimize (8), we need to solve the following equations:

0
— k =
aG)<l>(x ,0,A) =0

0
—_— k =
6A¢(x ,0,A) =0

It is shown that the estimator of the prior probability p(j) is

T p (k0 ) +ulp ()M (1+in p (O]
n+u XL p (O (1+n p ()0 ) ’

p(rew = j=12,..,m. (8)
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Note that p is defined by (4.3) and p(j|xF, ;) is the posterior probability where

g, .
p(]|xl, ]) ((x z)p) ,i=1,..,n j=12,..,m (9)

Now we want to estimate the parameters ajk, j=1,2,..,m. The Fisher scoring
method is used to find these estimates. Denote @; as one element of the parameter

vector ajk for each component j = 1,2, ..., m.The derivative of ¢(xk, 0,A) with respect to
a;; 1S
jl

5=, 0,0) = Ty pGlct, @) (nxa) + [ (a0 ) = (@ )0| Zia p(ilt af), (10)

l=1,..,k, j=1,...m

where y(.) is the Digamma function. However, @; can become negative during
iterations. In order to keep a; strictly positive, set a; = efil. Bjlis any real number.
Then, the derivative of ¢(x¥,®,A) with respect to Sjl is

——p(x*,0,A) = a; [X1=; p(j|xF, af )(nxy) + [W(ao;) — Y(a)1 X0y p(ilxF, af)],  (11)

l=1,.k j=1,.m

6ﬁl

By using the iterative scheme of the Fisher scoring method, we obtain

new ~ o ~ 0 @ A
Bl AN vAR(B)1) COV(,B]l Bik)\ ™" / a5, P )\.
. — 3 + :

(1
Bik Bjk cov(pjk /311) VAR(BjK) \_¢(x o.0) /

j=1,.,m

(12)

Note that the variance-covariance matrix.is obtained by the inverse of the Fisher
information matrix I and

- _E [aﬁ]llaﬁ,lz b(x*, 0, A)] (13)

[V. ANALYSIS AND RESULTS

In this chapter, the results of the simulation study on the basis of the entire
criterion at different sample sizes are presented and Performance of parameter
estimation method in terms of Bias as the sample size and parameter dimension varies
was discussed.

Alpha N | QLE | MLE | MOM
a'l=0.15 10 0.2328 0.3125 0.0994
20 0.1013 0.1848 0.1
30 0.067 0.151 0.1
a'2=0.30 40 0.0524 0.1371 0.0999
50 0.0401 0.1247 0.1
75 0.0286 0.1136 0.1
a3 =045 100 0.0219 0.1074 0.1
250 0.01 0.0964 0.1001
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Table 1: Results of the Bias at different alpha level as sample size varies are presented

Notes

Based on the above table, it was observed that the level of alpha the Quasi-
likelihood estimator (QLE) has the least value of Biasas the sample size increases and
performs better compared with the Method of Moment and Maximum likelihood

estimator.

below
Alpha | N | QLE MLE | MOM
a'l=045 10 0.4683 0.4771 1.1
20 | 0.2223 0.2324 1.1
30 0.1521 0.1638 1.1
a2=075 | 40 | 0.1072 0.1195 1.1
50 0.0853 0.0977 1.1
75 0.0615 0.0743 1.1
a'3=1090 | 100 | 0.0442 0.0567 1.1
250 0.0235 0.0362 1.0999
Alpha N | QLE | MLE | MOM
a'l =0.90 10 0.6564 0.6576 1.889
20 0.3141 0.3152 1.889
30 0.185 0.1862 1.888
a2=10.99 40 0.1462 0.1476 1.8891
50 0.1264 0.1277 1.8891
75 0.0862 0.0876 1.8891
a’3 = 0.999 100 0.0638 0.0652 1.889
250 0.0324 0.0339 1.889

Table 2: Results of the Variance at different alpha level as sample size varies are

presented

Alpha N | QLE MLE | MOM
a'l=0.15 10 0.108 0.1167 0.0325
20 0.0355 0.0379 0.0158

30 0.0187 0.02 0.0103

a'2=0.30 40 0.0139 0.0148 0.0082
50 0.0108 0.0116 0.0065

75 0.0063 0.0067 0.0041

o3 =045 100 | 0.0048 0.0051 0.0033
250 | 0.0018 0.0019 0.0013

© 2020 Global Journals

(F) Volume

Research

Frontier

Global Journal of Science



(F) Volume

Research

Frontier

Global Journal of Science

Alpha n QLE MLE | MOM
a'l=045 10 0.4132 0.4128 0.0207
20 0.144 0.1444 0.0101
30 0.0863 0.0858 0.0071
a'2=0.75 40 0.0565 0.0563 0.0051
50 0.043 0.0426 0.004
75 0.0279 0.0277 0.0028
a3 =0.90 100 0.0201 0.0199 0.0021
250 0.0076 0.0075 0.0008

Alpha N QLE MLE MOM
o'l = 0.90 10 0.6887 |  0.6885 |  0.0173
20 0.2398 |  0.2396 |  0.0086
30 0.1286 |  0.1285 |  0.0056
o2 = 0.99 40 0.0926 |  0.0925 |  0.0043
50 0.0772 |  0.0772 |  0.0034
75 0.05| 0.0498 |  0.0023
w3=0999 | 100 0.0353 |  0.0353 |  0.0018
250 0.0134 |  0.0134 |  0.0006

Based on the above table and appendix 2, it was observed that the performance
of parameter estimation method in terms of Variance, as the sample size increases
Method of Moment performs better compared with the Quasi-likelihood estimator and
Maximum likelihood estimator.

Table 3: Results of the Mean Absolute Error (MAE) at different alpha level as sample
sizes varies are presented below

Alpha N QLE MLE | MOM
a'l=0.15 10 0.3652 0.3982 0.2668
20 0.2171 0.2484 0.1915
30 0.1671 0.2003 0.1633
a'2=0.30 40 0.1438 0.1792 0.1512
50 0.1262 0.1626 0.1396

(0] 0.0995 0.1396 0.1233
a3 = 0.45 100 0.0873 0.1292 0.1181
250 0.052 0.104 0.1043
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Alpha n QLE MLE MOM
a'l=0.90 10 1.0665 1.0665 1.8917
20 0.6602 0.6601 1.889
30 0.4866 0.4865 1.889
a'2=0.99 40 0.4212 0.4211 1.8891
50 0.3827 0.3825 1.8891
Notes 75 0.3059 0.3057 1.8891
o 3 =0.999 100 0.2622 0.2622 1.889
250 0.1588 0.1588 1.889
Alpha n | QLE MLE | MOM
a'l=045 10 0.7774 0.7778 1.1001
20 0.486 0.4859 1.1
30 0.3818 0.3815 1.1
a'2=0.75 40 0.3138 0.3147 1.1
50 0.2748 0.2748 1.1
75 0.2216 0.2225 1.1
a3 =0.90 100 0.186 0.1863 1.1
250 0.1157 0.1168 1.0999

Performance of parameter estimation method in terms of Mean Absolute Error
(MAE) as the sample size increases, Maximum likelihood estimator performs better
than Quasi-likelihood estimator and Method of moment as shown in table 3.

Table 4: Results of the Mean Square Error (MSE) at different alpha level as sample
sizes varies are presented below

Alpha N QLE MLE MOM
a'l=0.15 10 0.1335 0.1569 0.0375
20 0.0401 0.0503 0.0199
30 0.0207 0.0281 0.0144
a2 =0.30 40 0.0152 0.0214 0.0122
50 0.0115 0.017 0.0105
75 0.0066 0.0112 0.0081
a_3 =045 100 0.0051 0.0091 0.0071
250 0.0018 0.0051 0.0052

Alpha N | QLE MLE | MOM
o 1=0.45 10 0.4945 0.4969 0.4532
20 0.1624 0.1633 0.4421
30 0.095 0.0957 0.439
a'2=0.75 40 0.0608 0.0615 0.4371
50 0.0457 0.0461 0.4363
75 0.0293 0.0298 0.435
a3 =0.90 100 0.0207 0.021 0.445
250 0.0078 0.008 0.4328
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Alpha, n QLE MLE MOM
o'l =0.90 10 0.8341 0.8342 1.2088
20 0.273 0.273 1.2005
30 0.1401 0.1401 1.1976
a'2=0.99 40 0.0999 0.0999 1.1961
50 0.0827 0.0827 1.1953
75 0.0525 0.0525 1.1944 N
a3 =0.999 100 0.0367 0.0367 1.1938 DB
250 0.0137 0.0137 1.1927

Performance of parameter estimation method in terms of Mean Square Error
(MSE) as the sample size increases the Quasi- likelihood estimator and Maximum
likelihood estimator performs better as compare to Method of Moment. as shown in
table 4.

Conclusively, the best method for each criterion was based on the modal class for
the entire criterion as summarized in table 5 below

Table 5: Shows the Count of Quasi- likelihood estimator, Maximum likelihood estimator
and Method of Moment using Bias, Variance, Mean absolute error and Mean square

error
Best
Count Method
Criterion QLE | MLE MOM

Bias 77 0 2 QLE
MSE 57 35 11 QLE
MAE 34 48 6 MLE
VAR 4 11 66 MOM

Graphical Reresentation of the Criterion

Bias of the Estimators

2.5
2
1.5
1

o O O O o O n o oo oo o O wn o oo oo o O wn o oo oo

= ® O NF~NDODoA®mbhO NI ~NDODA®bDO NI ~NDOHA®DO

=1 ~N =1 ~ =1 ~ =

0.15 0.3 0.45 0.6 0.75 0.9 0.99

e QLE == VILE MOM

Fig. 1: The graph above shows the Bias of the estimator of QLE, MLE, MOM at
different sample sizes
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The graph shows the Bias of the estimator of QLE, MLE, MOM at different
sample sizes. Judging by the bias criterion, the Quasi Likelihood method (QLE) was the
best for the lower and medium level of alpha, but for the higher level of alpha, Method
of moment performs better.

VAR of the Estimators

Notes Oé

L w

10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100

0.15 0.3 0.45 0.6 0.75 0.9 0.99

= QLE == MLE MOM

Fig. 2: The graph above shows the Variance of the estimator of QLE, MLE, MOM at
different sample sizes

The graph shows the Variance of the estimator of QLE, MLE, MOM at different
sample sizes. From the graph, Method of moment consistently performed better across
the alpha(parameter) level which implies that the method of Moment is the best
method.

MAE of the Estimators

2.5
2
1.5

0.%_\\~\\\\\

10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100 10 40 100
0.15 0.3 0.45 0.6 0.75 0.9 0.99

=———=QLE =——MLE MOM

Fig. 3: The graph above shows the Mean Absolute Error (MAE) of the estimator of
QLE, MLE, MOM at different sample sizes

The graph shows the Mean Absolute Error (MAE) of the estimator of QLE,
MLE, MOM at different sample sizes. The Quasi Likelihood method (QLE)
outperformed the other methods for lower level of alpha but as the alpha level increases
(medium level and above) the Maximum Likelihood method (MLE) and the QLE has
just a slight difference in their estimates. Out of the three methods considered, the
method of Moment consistently gives the higher estimate of Mean Absolute Error.
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MSE of the Estimators

1.4
1.2
1
0.8
0.6
0.4
0.2 \
0 —— g
SRR38 KSIRBESRBE KRIRBSKIRS RRSLBRBE
i (o] — (9V] i o -
0.15 0.3 0.45 0.6 0.75 0.9 0.99
= QLE = MLE MOM

Fig. 4: The graph above shows the Mean Square Error (MSE) of the estimator of QLE,
MLE, MOM at different sample sizes

The graph shows the Mean Square Error (MSE) of the estimator of QLE, MLE,
MOM at different sample sizes. QLE method was the best for lower level of alpha, but
as for the medium and higher level of alpha the QLE and the MLE does not give a
significant different estimate. While on the other hand, the MOM gives a consistently
higher estimate of Mean square error.

Real Life Data Results
Fitting Dirichlet Model to Data Containing Selected Agricultural Products in
Nigeria (2008-2017).

Table 0: Parameter Estimation (QLE)

Coefficients Estimate Std. Error
o, 0.2260442 0.1438496
Oy 0.1729296 0.1390305
o 0.2410169 0.1453349

From the table above, we obtained the estimates of the mean and standard error
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient
due to its lowest standard error as compared to others.

Table 7: Parameter Estimation (MLE)

Coefficients Estimate Std. Error
o, 0.03325620 0.455928
Oy 0.02179287 0.401919
o 0.03987597 0.471691

From the table above, we obtained the estimates of the mean and standard error
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient
due to its lowest standard error as compared to others.
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Table 8: Parameter Estimation (MOM)

Coefficients Estimate Std. Error
o, 0.04000534 0.4591688
Oy 0.01302276 0.309861
o 0.05461017 0.4750334

From the table above, we obtained the estimates of the mean and standard error
of Millet, millet rice, Sorghum. The parameter estimate of millet rice is more efficient
due to its lowest standard error as compared to others.

Conclusively, the quasi-likelihood estimator performs the best as compared to others.

V. CONCLUSION

The Dirichlet distribution is a multivariate generalization of the Beta
distribution. In this research, we introduced three methods of estimation for Dirichlet
distribution which are maximum likelihood estimator (MLE), Method of Moment
(MOM) and Quasi-likelihood estimator. This was done in other to obtain the most
efficient method. An extensive simulation study was carried out on the basis of selected
criterion (Bias, Variance, Mean absolute error and Mean square error) considering
various sample sizes, also the methods were subjected to real life data. The performance
of these methods were compared at different sample sizes it shows that the Quasi-
likelihood estimator performs better in terms of Bias, than the other methods, while
Method of Moment performs better in terms of Variance, than the other methods.
Maximum likelihood estimator performs better in terms of Mean Absolute Error (MAE)
and (MSE) than the other methods. The real life result shows that Quasi-likelihood
estimator performs better as compared to Method of moment and Maximum likelihood
estimator, also the Bayes factor of Dirichlet distribution gives 57.95215, which implies a
very strong evidence of the Goodness of fits. Hence, The Dirichlet distribution is
efficient based on what we have done with higher precision and more adequacies in the
estimate of the model, also the estimate of the model should be used in taking any
prospective decision and can be reliable if large samples is involved.
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