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Abstiract- The physiology or otherwise of blood circulation is predicated on the electrical conduction of the heart. As a
rule electrical impulse suffusing the cardiac cells, just like all time-dependent phenomena, transmits with a modicum of
time delay. Such delay may be physiological (benign) or pathological; the later is seen as a cardiac liability. This paper
treated impulse conduction delay in the cardiac system. A set of matrices resulting from the graph theoretic description
of the conduction system was generated and fitted into a continuous time invariant state-space delay equation, and a
state-transition matrix solution was sought. An input control-based minimization scheme by which ensuing
deleteriousness of pathological delay could be assuaged was proposed.
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L. [NTRODUCTION

Impulse transmission is a notable neuronal and cardiac occurrence. In fine, the
overall vivacity of animated cells is attributable to a balanced electrical impulse budget.
The cardiac conduction system (CCS) is a network of bio-electric process. In effect, the
impulse under consideration is electrical. The physiology of blood circulation is based on
the electrical conduction of the heart. As a rule, electrical phenomena bear on bio-
electric structures, and therefore the similitudes of electrical events bring to bear on the
cardiac cells. Beck[1] was right: The reason a heart beats is simple: electricity. It is no
secret that ionic concentration gradient constitutes a major source of bio-electric
impulse drive around cells. Basically, all time-based events such as electrical impulse
have some element of time delay. Delays are a crucial element of physiological
phenomena. This can only be said about benign or a physiological delay. In neurology
such delay may be normal in axonal conduction time when an action potential (AP)
travels from an active site near the neuronal soma to the axon terminals [2,3].Such
conduction delays may be created by several different factors, such as variation in
membrane time constants, number of synapses, and some associated length scales[4]. In
pharmacokinetics drug delivery experiences normal equilibration delay between
pharmacologic response and plasma drug concentrations [5]. In the cardiac conduction
system (CCS), the onset of each phase of AP is preceded by a benign impulse
transmission delay. This is the refractory period of the AP. However, while cell-to-cell
benign delays are recorded within transmission time (such as seen during impulse
transmission at atrioventricular (AV) junction so as to enhance full contraction of the a
trial chambers [6,7]), pathological delays are observable in the event of cardiac
anomalies. From the aforesaid, pathological delay 1is noticeable either during
refractoriness or (at any region) during transmission or at both times. It is of note that
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despite their so called bad reputation [8, 9], physiological delay may have a stabilizing
effect. Minimizing conduction delays is evidently beneficial since hurried conduction is,
more or less, a cardiac liability. Pathological delays are implicated in a group of
deleterious cardiac events.

Dynamics of electric networks with spatially distributed delays have been
recently studied in the past [10, 11]. In [9] the critical point at which time delay is
beneficial in a communication network was analysed in terms of a linear-quadratic
performance measure. In a rather non-specific treatment of any physical system, Chen
and Zhang [12] considered two types of delayed impulses: the destabilizing delayed
impulses and the stabilizing delayed impulses. In a more precise analysis Saleh et a/ [13]
studied failures in transmission systems of electric power networks. The study showed
the effect of a single line failure of electric flow on the other lines. This is similar to any
arc/nodal transmission failure in the cardiac conduction system. The graph theoretic
analysis employed in the work was no less desirable. The CCS is, to all intents and
purposes analogous to electrical networks discussed. Since the input and output of the

system obeys Ohm's law, (see [7]), their relationship may be represented by a linear
proportionality. Therefore the control of the system may be of a linear control type.

1. MOoDEL OF NETWORK TOPOLOGY

The CCS network system was treated in [7].This section draws largely from it for
some details on the present work. Consider the conduction schematic (Fig.1) below.
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Fig. 1: Schematic of the CCS nodes (2V,), arcs (e;) and resistors ()

The nodes N,, N,,...,N, are specified as follows: the SAN,/V;the AVN,N,; the
point of bifurcation of the bundle of His,/V;; the left bundle branch, /V;; the right bundle
branch, N,

The network constraints associated with the conduction system are the branch

(edge) constraints, arising from Kirchhoff's Current Law (KCL),and the non-element
based topological constraints, arising from Voltage Law (KVL). In the cardiac network
the arcs have the semblance of electric wires, and therefore they have specific resistance.
The linear relationship between current (/) and voltage (V) is expressed on the network

by Ohm's law.

In a node where branch currents x;, . . . ,x, enter (i.e. the currents are a form of
input to the inactive nodes), Kirchhoff's current law (KCL) gives the total current as

B 1)
Similarly, by Kirchhoff's voltage law (KVL)

v+ + =0 (2)
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where v; denote the voltage drop in the circuit. The CCS is a structure with many
nodes and many circuits. It requires the application of KCL and the KVL, together

with Ohm’s law for the network equations.

a) Potential difference across edges
The edges (arcs)of cardiac network, analogous to an electric wire, has an Ohmic

resistance. Let r; be a voltage source, and let R, ...,R; be resistances (see fig.1). The
potential difference, v, across each of the resistances measured across each arc, ¢;is:

n=N-N, v;=MN-N, = NN,
vy = N=-Ny vy = Ny Ny vy = Ny- IV (3)
v, = NN,
where, in the above, V, (i=1,2,...,6) represents the nodes. (It shall be noted that there is

infinite number of in-degree nodes /V; in the CCS that satisfyd (N)=0. For any arc e

i J
dispensing from the Purkinje fibre and any infinitely large number of nodes /N,
d"(N,)=0.).
The vector form of (3) gives

vl [t -1 0 0 0 0] -
v, |1 -1 0 0 0 O Nl
A 1 -1 0 0 0 O N (4)
V=0 1 -1 0 0 of
%| |00 1 -1 0 0
v/ /00 1 0 -1 0] °
N6
v o o 0o 1 0 -1

Take /V, as the reference node. The incidence matrix the CCS, with /V,grounded, is [7]

& & & & & & &

111 0 0 0 0]N

000 -11 1 0]|Ng (5)
B=lo0oo0o o0 -1 0 1M

0000 0 -1 0|Ns

0000 0 o -1/Ns

where ¢, are the edges.With /V, as the reference node we have, from (5)

Vi (1 0 0 0 O

V,/11 0 0 0 OfN

V11 0 0 0 0fNJ, (6)
V,[=lo0 -1 0 0 O N,

v, 101 -1 0 0N

Vil |01 0 -1 0[N

V1 \0 0 1 0 -1

which is of the vector form
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v = DN. (7)

In (6), D is the matrix network’s connectivity matrix.
Ohm'’s Law “7 = V/R’ is now used in relating the current to voltage drop across
each resistor. At each of the resistors Ohm’s Law gives,

x= v/R, =1, ...,T. (8)
with the matrix-vector form

x] (/R 0 0 0 0 0 0 \v,
X, 0 1/R 0 0 0 0 0 |v,
X, 0 0 1/R O 0 0 0 v
x |=| 0 0 0 1/R 0 0 0 |v, 9)
X, 0 0 0 0 1/R 0 0 |wv
X, 0 0 0 0 0 1/R 0 |v,
x| Lo 0 0 0 0 0 1/R)\v,
The above has the matrix equation
x = Kv. (10)

The matrix K describes the physics of the network. By KCL we get

1110 0 0 0)(x)(0
000 -11 1 0f2 o (11)
000 0 -1 0 1|x|=0
0000 0 -1 0|0
0000 0 o -1, (0
l.e.
D"x = 0. (12)

[11.  CCS CoNDUCTION DELAY

A typical electrical conduction through the cardiac muscle takes ananticipated
pathway. It travels from the sinoatrial node to the AVN and gets to the bundle of His.
It then travels to the left and right bundle branches until it eventually terminates in
the Purkinje fibres. As usual with cardiac electrophysiology, conduction travels from
left to right, basically stimulating the left bundle, and left ventricle first. AV nodal
blocks may well have an inherent delayed firing or a restriction to firing down the
Purkinje system and consequently may cause bradycardias and hypo-perfusion to
essential organs. Pathological delay in the conduction pathway is always implicated in

bundle branch blocks. Clinical studies posit that patients’ underlying aetiology who
present with branch blocks may be determined to a high degree [14].

The diseases of the CCS (such as MI, pulmonary HTN, digoxin toxicity, etc.) are
often precipitated by conduction delays. In the event of blockage of either bundle
branch the electrical impulse travels directly from one cardiac myocyte to the other.
The journey takes a much slower process than traveling via the ordinary low-resistance
pathways. This pathophysiology prolongs the conduction time through the ventricles,
resulting in widening of the QRS complex (; 120 m/sec).This QRS complex is the
electrical impulse spreading through the ventricles, indicative of ventricular
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depolarization. A study of CCS impulse delay is essential to clinical intervention. It is
not unusual, however that a system could be unstable without delay, and could be
stable with some delay. A careful distinction should therefore be made between essential
(benign) delay and a pathological delay.

Many conducting bioelectric mediums have distributed resistances, capacitances,
batteries, and extends continuously [15], the CCS may well be modelled as a system
with distributed impulse delays. As treated in [16], the nodes are current sources and
sinks. The main actors of the conduction system are the SAN, AVN, His bundle

branches (HBB), Purkinje's fibres together with their conduction paths (edges). Any
pathological conduction delay into an Zth node results in delay to subsequent nodes.
The question of stabilising such delay by employing clinical intervention as a control
input is one that requires attention.

a) Conduction impulse function

We assume a linear the spatial-temporal system under consideration. The CCS
transmission is marked by an extremely short duration, and thus, the pulse may be seen
to approximate an impulse. True impulse functions may be a wishful thinking in nature.
However, its bio-physiological approximation may be found in very high velocity
vascular pulse waves, blood vessel spasm, and spasmy muscular tetanisation, not to
exclude the CCS in the main. The CCS conduction pathways may, in the limit, be
approximated to rectangles. Thus, we conceive of a rectangular pulse function - a unit

pulse function J,(¢), of duration 7, which has a constant amplitude 1 /7 over its range:

0 for t<0
o (t) =0T 0<t<T (13)
0 for t>0

Take the limit of the unit pulse d,(¢) as the duration 7" approaches zero:
st) =lims. ) - (14)

T-0
The limiting form of many functions may be used to approximate the impulse.
Any impulse occurring at some ¢ = aisS(t —a) .

b) Impulse-response causality

Now, consider the continuous-time bio-electrical system (here, the CCS) with
input x(¢), and the associated response y{¢), at a nodal point of interest. We suppose
that the system is momentarily at rest, that is all initial conditions are zero at time
¢t = 0. This condition corresponds to the resting phase after ionic depolarization.

Let the continuous input function x(¢) be approximated by a staircase function
[23] %(t) = x(t) , consisting of a series of piecewise constant sections each of an arbitrary

fixed duration, 7, where

%; (1) = x(nT) for nT<t<(n+1)T Vvn, (15)
and thus,
x(t) = limx; (t) (16)
T—0

The totality of non-overlapping delayed pulses, p,(¢), each of which is with
duration 7, as represented by the staircase approximation X (t) is
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% 1= p,0) a7

where

(18)

(t) = x(nT) nT <t<(n+1)T
P =10 elsewhere '

Notes

If each component pulse p,(¢) is written in terms of a delayed unit pulse Jd,{(¢) we get

p(t) = x(aT)o,(t — nT)T, (19)

andtherefore (17) reads:

% (t) = Y x(nT)o; (t—nT)T . (20)

N=—o0

Suppose q;(?) is the system response to the impulse d,(¢). For a linear and time-
invariant system, the response to a delayed unit pulse, happening at time n7, is
tantamount to a delayed form of the pulse response:

Vilt) = gt — nT). (21)

The superposition of the sum of the responses to all of the component weighted
pulses in (20) is given by

o0

Yr(®) =D x(nT)ar (t—nT)T (22)

nN=—o0

For the system being considered the pulse response ¢7(¢) is zero for time ¢<0,
and forthcoming input components do not add to the sum. Therefore the upper limit of
the summation may read:

N
e (t) = Z X(NT)gr (t—nT)T for NT < t<(N+ 1)T. (23)

n=—o

The above encodes the system response to the said staircase approximation of
the input in terms of the system pulse response q7(¢). Let 7" become very small, and let

nT= 1 ,T = dr, and take imo(t) = 6(¢ )as T—0, then we have :

N
¥r (®) = lim D Xx(nT)a (t-nT)T (24)

N=—00

Equation (24) above yields the convolution or super position integral,

t
j x(r)q(t - 7)d7 = x(t) @ q(t) (25)
where ¢(¢) is encodes the system impulse response,

© 2020 Global Journals
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q(t) = lim a (t) (26)

T-0

Equation (19) shows that the system is totally characterized by its response to

the impulse function d(¢), since the forced response to any arbitrary input x(¢) may
becomputed from knowledge of the impulse response alone.

Now consider the CCS topology (Fig.1).The SAN-AVN impulse is a parallel
arrangement shown in Fig.2 below.

Fig. 2: Schematic of SAN-AVN current (/)and resistors (&) in parallel

The non-delayed impulse response, ¢(¢) of the arrangement within this section of
the CCS, with state delay, is

A(t) = X(t—7) @ (G (1) + G (1) + G (1) (27)
The series connection has the response,
at) = X(t-7) ® (GO ® KM ®. .Gy (1)) , (28)

and as found along the His bundle branch (HBB) that contains R; and R,
A mss = X(t 1) ®[ G (1) ® G (V)] = [ X(t —7) ® ()] @y (1) - (29)

¢) Conduction delay equation
To begin with, we take a look at the delay systems with multiple point wise
incommensurate delay equation given by

m
X(O) = Ax()+ D AXE-7), Tiso s (30)
k=1
where the delays 7, may possibly be independent of each other. A special case is the
system with single delay (viewing all delays as multiples of a single one) is the
continuous time-invariant state-space equation of the form

X(t) = AgX(t) + AX(t—7) , (31)
with the initial condition of the form

X=¢, (32)
where A, is the system matrix and A, is the system matrix for the state delay, both of
which are given R™™ constant matrices; xeR", is the state of the system.

Special note: Matrices arising from applicable systems are largely non-square
(R, m# n). Those generated and considered here are non-square, except otherwise
indicated. Therefore, each matrix here is presupposed Moore-Penrose invertible. Details
on Moore-Penrose pseudoinverse of matrices may be found in [17, 18] and in profuse
literatures. The beauty of non-square systems is their less amenability to modelling
errors[19].
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We relate equation (31) with the conduction matrix already generate by letting
D" (in (12)) = A,, and A, can be obtained from the description of the delay. Let us,
painstakingly, construct a prototype of A,this way: Consider Fig. 1, and assume here
that impulse conduction delay is observed from N, (corresponding to the His bundle
branch); the delay has a cascading effect on the spectrum of subsequent nodes and
edges. Let

1 if N; isaterminal node of e;, with conduction delay
A, = a; ={-1if N; isaninitial node of e without conduction delay - (33)
0 otherwise

We groundV;to get the state delay matrix

1 -1-10 000
0 0 0 -1000

A=|0 0 0 0 10 0| (34)
000 0010
0 0 0 0001

With this, a particular case of, the delay equation (31) takes the form

1110 0 0 O -1 -1 -1 0 000
000-11 1 0 0 0 0 -1000

xX)=lo 0 0 0 -1 0 1(xX)+fo 0 0 0 1 0 o|X(t-7) (35)
0000 O -1 0 0 0 00010
0000 O 0 -1 0 00 0 0OT1

Note that A, so obtained defines a region where multiple delay is experienced,
which includes the considered point of initial delay.

i. State-transition matrix solution
Using (31) or (35) we set the following Cauchy problem:

X(t) = AgX(t) + Ax(t—7)+g(t), t=0

(36)
X(t) = (), —7<t<0,

where x(¢) = (x,(?), x%(¢), ..., x,)"is a vector of states of the system, g(?) = (g,(?), ...,

g,()"is a function that denotes disturbance signal, A,, A, are constant matrices T > 0
is a constant delay. The state-transition matrix equation, with the ideal disturbance

response g(¢) = 0 (since disturbance acts on controller output), is

X(t) = AX(t)+ AX(t—7), t>0 (37)

with the initial condition

X({t) =1, -r<t<0, (38)

where 7is the identity matrix. The solution of (37) with (38) is of the form [28]
Xiq () = VX, (k) + jkt eI (s—7)ds, (39)
with X(¢) is defined on the interval (i~ 1)< ¢< kr, k=0, 1, ...
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It was shown in [28] that the fundamental solution matrix of equation (37) with
identity initial conditions (38) has the form

D, —wo<t<—7
|, -7<t<0
el + g (t), 0<t<r
Xo =1 e +eng, (7) + g,(c), r<t<2r (40)
kZ*%‘er(“mf’gm(m) +0, (1), (k-Dr<t<k
~ k=34,.

where @ is the zero matrix and

P 1 =» . K(p) 1 (-g1)K(s)
0 = ki Al |(t—=(p—D71) T ,
%0 §1H{Z% A‘J <o Ll

ip e {0, 1}.
IvV. INPuT CONTROL

In this section we will study the possibility of optimizing a control that would
keep the transmission of impulse within reasonable physiological window, or mitigate
the deleteriousness of pathological time delay. If the control is drug-based, then there is
an associated equilibration delay which does not constitute a component of the impulse
delay.

Let Z be the state space of an impulsive system and U the set of control

functions. Let u€ U be the control function. 2£Z: z = #(z, u, t) is a vector depicting the
state of the system at the instant ¢ with the initial state zy= z({,). Let X denote a
subspace of Zand x = x(z,, u, t) be the projection of the state vector z(z, u, t) onto X.

Definition 1. The state zjs said to be controllable in the class U if there exist such
control u€U and the number 7) ¢,< T'< o such that z(z, u,T) = 0.

If every state z,€Z of an impulsive system is controllable, then the system is said
to be controllable.
Consider the Cauchy problem

X(t) = AgX(t) + AX(t—7)+Bu(t), te[0,T], T <oo, (41)
X(0 =%y, X()=e(t), —7<t<0,

where x = (x,(£), ..., x,(¢))" is a vector, x €X, u(t) = (u,(¢), ..., u(¢))" is the control
function, u €U.U is the set of piecewise-continuous functions and A4,, 4,, B are constant

matrices of appropriate dimensions, T > 0 is as defined.
The state space Z of this system is the set of n-dimensional functions

{x(§), t-r<&<t} (42)

And the initial state z,of the system (41) is determined by conditions
2={X(€)=p(&), —r<£<0, X(0)=Xp}- (43)
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In accordance with (38) the system (41) is controllable if there exists a control
u€U such that x(¢) = 0,77 < ¢t < T} T'< 0.
Lemmal [see 30] If the linear system with delay (41) is controllable in the interval
€[(k 1), k1], then rank (R,) = n, where R, is the augmented matrix given by
R ={B e™AB e?A2B .. e DA plgy, (44)
A control may be constructed for the control problem with delay (41). Let @ be
an augmented matrix satisfying
Q={B AB AB A'B (AA+AA)B ATB ABIA + AAAT AR )B.. AT A (45)
For controllability of the delay system (41) it is sufficient that for (p—1)=< &< pr,
with rank(@) = n [31].
With the sufficient conditions for controllability employed for:det() = n, for t,>

(b4~ 1)rw here the matrix () was defined in (45) the control function can takes the
form [30]

-1

u@) =[Xol—z=mB | [ Xolti—r-&)BBT[X04—r-0)] ds | 4, 0<y<t
0
where (46)

0
27 % - Xo@e(=0)— [ Xolt,—7 =W/ ()C,

And Xj is the fundamental matrix of solutions (40) on time interval t > (£ — 1)t .
Consider, for a state feedback control, the linear time-delay system with both
state and input delays given by

X(t) = AgX(t) + AX(t—7) + Byu(t—7,), t>ty, (47)

where u (¢) is the control input and B, is the input matrix and t, is the input delay.
The pairA,, B, are assumed controllable. The case with no control input delay is

X(t) = Agx(t) + AX(t—7) + Bou(t), t=>t,, (48)

Suppose there exists a bounded Lipschitz continuous function,
f:0"xu 0", (49)

with U as compact subset of (] ™, say.
The delay equation (48) maybe put in the form

x(s) =f x(s),u(s)) (t—r<s<tf)}

50
X(t-7)=X ’ (50)

where

t-t > 0 is a given initial time,

t,>0 is a fixed terminal time,

XER" is a prescribed initial point,

u(.)e Uis the control.

x(s) is the state of the system at time s
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Each solution x,(.), (i =1, 2, 3,...,n) of (50) evolves at some succeeding time

¢t>t-0 in the prescribed time interval. For any set of controls u;(.) (i =1, 2, 3,...,n), the
set of permissible controls reads

UU{u:t-o,t;]>U Ju()ismessurable} . (51)
Each permissible control has its degree of optimality. Since
f(x,0)|<C, [f&x,0-f(y,0|<Clx-y| (x,yel",ccl), (52)

for some constant C, then for each control u(.) € U equation (50) has a unique Lipschitz
continuous solution x (.) = x"Y(.) on the time interval [£o, ¢]J. The equation (50) may
be solved a.e. on t —o <s<t,.We seek a control u*.), for xell" andt-7€(t-o,t;),

among all other permissible controls which minimizes the impulse delay (as in our
present case) functional

G U0 =" rte(9u(e)ds+ o)), (59)

where x(.) = x"(.) is the solution of (50) and
7:0"xU >0 | w:0" >0

are given functions. From expenditure-based control systems, y could be considered as
the running cost per unit time and wthe terminal cost. From the physiological
perspective, x could be seen as the cost of minimizing or mitigating impulse delay per

unit time, andwis the terminal effect of mitigating the delay. Any least cost V(x, ¢-7) is
such that

VGt-7) = inf G [u()] (xell *, tm [to,t)). (54)

V.  OPTIMALITY CRITERION

First we state, without proof, the following;:
Theorem 1 (Optimal controller (see [32]). Suppose that u*(t-z), t-r € [t-o, t] minimizes

Gin().xt-01=[" #(x()u(s))ds+alx(t,)) (55)

subject to x*(t-0) = x and x*(t-0) is the related state trajectory. Let the minimum
delay attained by u*(t-t) be:

G*(xt-o)=arg min G(u()xxt-ot)- (56)

Then, for any t-te[t-o, t], the restriction of u*(g) optimal over the sub-interval
[t-T,t;] minimizes

Gu()x(t-2).] =" 76e(9)u(s)ds+ w(x(t,))

subject to the initial condition X (t-7) = x*( t-7); u* is optimal over [t-T, t{.
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For the purpose of optimality the value function V(x, tt) shall be considered. In
what follows, we fix x€R", t-0< t-1<¢;,
Theorem 2 (Optimality (see Lawrence [33]). For each ¢ > 0 sufficiently small that

t—(r-o)<t,,

t—(z—
t-7

V(x,t-7)= ui(.r;EU 7 yIx(s)+u(s)]ds+V x(t - (r — o)), t—(r —0))], (57)

where x(.) = x""(.) is the solution of (50) for the control u(.).

Proof. Let u,(.) be any chosen control. We set an ODE analogous to (50) in the form

() =f(x,(u,(9)ds (17 < s<t—(r—a))} (58)
Xi(t—7) =X
For a fixed ¢ > 0 chooseu,(.)eU so that
Vi - (-ot-(-a+a= [ g (9 (e)ds+a(x(t), (59)
where
X,(s) =f(x,(9)u,(s) (t-(r-0)<s<t,)
%,(t- (r-0) =%, (t- (s~ ). } (60)
Describe the control
w9 ift-r<s<t-(r—o)
Us(8) = {uz(s) if t—(r—0) <s<t,, (61
and let
x5(9) =£(x,(8),0,(s) (t—-7<s<t,)
x, (t-7)=x } (62)
The uniqueness of solutions of the equation (50) enables us to write
x,(s) ift-r<s<t—(r-o
X3(S):{i2((s)) if t—(r—a)és(stf . (63)
By definition (54) we have
V(x,t-7) <G, [, ()]
=[" 96ts(9) uy(9)ds+ (s (t, )
(64)

=7 gt me)ds [ ge(9) s (9ds+ax(t,)

< J.:::T_G) g(x,(8),u,(9)ds+V (X, (t—(r —o),t—(r — 7)) +¢,
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where the last inequality above resultsfrom (59). Since u,(.)eU was arbitrarily chosen
we infer that

V(x,t—7) < inf { [ 7 gee(9 () ds+V et~ (o)) t—(c 0N} +¢ - (65)

u(.)eu -7

Continuing, choose u,(.), for a fixed £ > 0, such that

Vixt-r)+e2 [ gl (S, (S)ds+ ofx,(t,) (66)
where

X,(8) = (x,(8),u,(s) (t-7<s<t;)
x,(t-7)=x

From (54) we have

V(- (o) t-(-o)+e<[’  glx,(9u, ()ds+al,t)  (68)

and thus

V(xt-)+z2 inf {j:_:’")g(x(s),u(s))ds+V(x(t—(r—o)),t—(r-a))}, (69)

U
noting that x(.) =x"(.) solves (50). Thus, (69) and (65) complete the proof of (57)

a) Multiple Time Delays
Let us return to the case with multiple time delays is described by equation (30)

X(O) = X+ D AXE-7),  Tieo
k=1

X(LL) :W(Z’L) ) LLE['T’ 0]’ (70)

where t = max-—1, | _,..,, ", A,EM"" are constant matrices. @(¢)€C([-t, 0], R”). Here

C([-t, 0], R") represents the Banach space of all piecewise continuous vector-valued

functions mapping [-7, 0] into R”. The goal here is to convert the system with multiple
time delays to a stable system with single time-delay. When this is done, the multiple
time delay case may be handled as a single delay system, as was done in Ordokhani
et al[37].

Consider the system (70).Convert the matrices, 4,, k=1,2,..., mto diagonal form

and subtract y>0 from each diagonal entry. Pick the matrix with maximum norm and
designate it by My and denote the remaining matrix is by Ay. Using (70) we have

X(t) = Apx(®) + (M, + mA )X(t - 7), te0 ™ (71)

x(t) =), te[-7.0],

where the matrix functions A, (My+mAy) are constant matrices. The system (71) is
the conversion of the system with multiple time delays (70) to a system with single
time-delay.
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b) Stability criterion

Lemma 238] The system (70) is said to be exponentially stable with decay rate a, if there
is a functiond: R" — R'such that for each ¢(t) €C( [-1, 0], R”) the solution x(t,p) of the
system satisties |xt,@)|€ AJADE™, Vt ER".

Lemmad3 [37] System (70) is uniformly asymptotically stable independent of delay if

ZEEDY AR (72)
k=1

The stability of the system (71) can be seen from the time delay system
described by (70). Change the matrices 4,, k=1,2,..., , m, are to diagonal form and
subtract y > 0 from each diagonal entry. Assume the stability of the system with
multiple time delay (70) satisfies (72). Now, transform the system with multiple time
delays to a stable system with single time-delay (71). Since

[M, N, [ < [ <[ [ Mz [t Mo |+ i (73)
By Theorem 1?7 we get
#(Ag)+[M,, +mN, | < ,u(AO)+Zm:||A||: y(AO)+Zm:||Mr}, +mN [ <o0. (74)
r=1 r=1

Therefore system (71) is uniformly asymptotically stable independent of delay.

Theorem 3: The system (71) is exponentially stable with decay rate o, if there exists
symmetric and positive-definite matrices P> 0 and @) > 0 such

[ | re‘”AT]<0 (75)

e A -1

AT N ar AT
[A P+PA+7Q re“A PA]<O (76)

re”” ATPA —Q

where A= A,+A e
The inequalities (75) and (76) are linear matrix inequalities (LMIs). This is in
line with the standard Riccati equation

PA + AP+ PAQIATP+Q+R=0 (77)

consisting of triple matrices P, ), R assumed to be positive definite, and where in the
present case A, and A, are Moore-Penrose invertible [18, 19, 20]). Therefore:

Theorem 4: The time-delay system (70, 71) is asymptotically stable for anyo >0 if
there exist matrices P> 0, () >0 and R such that

AP+PA +aQ AP

oAT <0 (78)
A -aQ

Let p be a positive scalar such that
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1

T
Q - A PA. (79)

Then the Riccati equation (77) reduces to the Sylvester equation
A§P+PAUiA{PA1+pA1+R=o . (80)
0

The sufficient conditions for Riccati Stability is given by the following Lemma:

Lemma 4[26] Iffor some p;0, the matrix M =(A +§I)®I +1 Q(Ay +§I)+£AL®AL is
Hurwitz, then the pair (A, A,) is Riccati stable. P

¢) Stabilization of delayed system
Now suppose (as in Theorem 4) that there exists a scalara >0, and asymmetric
matrix P such that

AP+PA +aP AP -0 (81)
PA —aP

for which (70,71) is asymptotically stable [27]. Consider, for stabilization, the linear
time-delay system (48)

X(t) = Agx(t) + AX(t —7) + Byu(t), t=>t,, (82)
We seek a state feedback controller of the form
u(t) = Kox(t) + Kyx(t-7) (83)

such that the closed loop system
X(t) = (Ay + BKo)X(t) + (A + BK)X(t - 7) (84)

is stable independent of delay. Using (81) we have to satisfy

.
[(A)+BK0)P+ P(A,+BK,)" +aP (A1+BK1)PJ<O. (85)
P((A +BK,)" —aP
Using the variable transformation
Vy = K,P
V, = K,P
Equation (85) becomes
T TRT
{AOP+ BV, + PA, +V, BT +aP A1P+BV1J<O. (85)
(AP+BV,)" —aP

The knowledge of V,, V, and the other determiners in (85) will supply the
computational scheme for the inequality (85).

VI. DISCUSSION AND SUMMARY

Delay is obviously triggered in a system by the presence of a time lag between
the control action and its stimulus on the system. In the same way, delay occurs in an
observable way if substantial measurement processing time is taken into account. The
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CCS is a sequence of electrical impulse-based cardiac activation. Physiological delays in
the CCS are observable during the following events [34]:

(i) The SAN produces action potentials which diffuse through the atria via cell-to-cell
conduction at a rate of about 0.5 m/sec.

(ii) The AVN slows the impulse conduction considerably to about 0.05 m/sec in order to
allow satisfactory time for complete a trial depolarization and contraction.

(iii) The left and right bundle branches transmit impulses at a speedy velocity of about
2 m/sec.

(iv) A trial activation ends within about 0.09 sec after SAN firing. After a delay at the
AV node, the septum becomes activated (about 0.16 sec). The entire ventricular
mass is activated by about 0.23 sec.

Any further delay arising in any of the conduction times above may be
considered a pathological event. Notably, the system may be fraught with multiple
delay, depending on the source or aetiology of the delay. Any delay arising from the
SAN or AVN is most likely to induce a cascading multiple delay. This work considered
delays arising from His bundle branch delay. Electrical input delay to the His bundle
nodal point has the effect of delayed depolarization of all other surrogates in the
conduction grid. This is a case of multiple system delay. A typical example of system
delay is the Q7 prolongation in which ventricular repolarisation is delayed. This
pathophysiology is observed when the heart muscle takes abnormally long time to
recharge between beats. Undue @7 prolongation is implicated in tachycardias such as
Torsades de Pointes (TdP) [35, 36], (meaning t¢wisting of the peaks, as seen in
undulated complexes or twist around an EKG baseline). TdP patients may have a heart
rate of 200 to 250 beats/minute as against the physiologic 60 to 100bpm range. Such
patients may present with palpitations or syncope [35]. There is the need to assuage
pathological delay in the CCS if the culprit cannot be censored. To do this, a critical
input control stabilizing measure is put into effect. Here the input control measure by
means of therapeutics, preferably by drug regimented delivery is suggested. In the
clinical sense, if an initial therapy s, at time ¢, say, could be successfully regulated to
meet therapeutic gains up to approximately a final time t, at which the adverse effect, if
any, of the final therapy s,(¢,) will be ineffectual, then a condition is controllable. Put
succinctly, a clinical condition is controllable if it responds favourably to a target
treatment. Such therapies are, in mathematical esoteric, the input sequence u,, which
transfers s,(t,) to s,(t) for some initial and finite time, t, and t, respectively. If the
response holds, then the next goal is to seek a control for which it is at optimal. If the
state equation (41) (or the pair [A, BJ) is non-controllable then it is pathologically
unstable, and therefore defies clinical remedy.

A notable point of this discussion is the understanding that non-square matrices
are rife in application, albeit sparse in relation to the preponderance of square matrices
in literature. A judicious use of the singular value decomposition (SVD) ensures that

each matrix AER™™ can be decomposed into A=U V7, where UER™ and VeER™" are

orthogonal matrices and ¥ ER™"is a diagonal matrix with nonnegative entries, which

are singular values of A.
We saw that there is a general system response g(¢)to any impulse given in(25)

[ xat-e)z=x@q0).
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This response, when considered in the context of the optimal control, in line with

the limit of integration, takes the form

.[:_(T_a) X(t-7)q(t—7)dr = x(t) ®q(t)

-7

But since a positive outcome is desired, the system response may possibly have

no time delay; so we have

J.tt,_(T_U)Q(t)x(t —7)dz = x(1) ®q(t).

T

At the His bundle branch (HBB) that contains R;and R, the quantity g(¢), is given by

A()pes = XA —7) @[ () @A ()] = [X(t —7) @ (1) | ® O, (1)
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