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Abstract-

 

The physiology or otherwise of blood circulation is predicated on the electrical conduction of the heart. As a 
rule electrical impulse suffusing the cardiac cells, just like all time-dependent phenomena, transmits with a modicum

 

of 
time delay. Such delay may be physiological (benign) or pathological; the later

 

is seen as a cardiac liability. This paper 
treated impulse conduction delay in the cardiac system. A set of matrices resulting from the graph theoretic description 
of the conduction system was generated and fitted into a continuous time invariant state-space delay equation, and a 
state-transition matrix solution was sought.

 

An

 

input control-based

 

minimization scheme

 

by which ensuing 
deleteriousness of pathological delay could be assuaged was

 

proposed.
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 I.

 

Introduction

 Impulse transmission is a notable neuronal and cardiac occurrence. In fine, the 
overall vivacity of animated cells is attributable to a balanced electrical impulse budget.

 The cardiac conduction system (CCS) is a network of bio-electric process. In effect, the 
impulse under consideration is electrical. The physiology of blood circulation is based on 
the electrical conduction of the heart. As a rule, electrical phenomena bear on bio-
electric structures, and therefore

 

the similitudes of electrical events bring to bear on the 
cardiac cells.

 

Beck[1] was right:

 

The reason a heart beats is simple: electricity. It is no 
secret that ionic concentration gradient constitutes a major source of bio-electric 
impulse drive around cells. Basically, all time-based events such as electrical impulse 
have some element of time delay. Delays are a crucial element of physiological 
phenomena. This can only be said about benign or a physiological delay. In neurology 
such delay may be normal in axonal conduction

 

time when an action potential

 

(AP)

 travels from an active site near the

 

neuronal

 

soma to the axon terminals [2,3].Such 
conduction delays may be created by several different factors, such as variation in 
membrane time constants, number of synapses, and some associated length scales[4]. In

 pharmacokinetics drug delivery experiences normal equilibration delay between 
pharmacologic response and plasma drug concentrations [5].

 

In the cardiac conduction 
system (CCS), the onset of each phase of AP is preceded by a benign impulse 
transmission delay. This is the refractory period of the AP. However, while cell-to-cell 
benign delays are recorded within transmission time (such as seen

 

during impulse 
transmission at atrioventricular (AV) junction so as to enhance full contraction of the a

 trial chambers [6,7]), pathological delays are observable in the event of cardiac 
anomalies. From the aforesaid, pathological delay is noticeable either during 
refractoriness or (at any region) during transmission or at both times. It is of note that 
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despite their so called bad reputation [8, 9],  physiological delay may have a stabilizing 
effect.  Minimizing conduction delays is evidently beneficial since hurried conduction is, 
more or less,  a cardiac liability.  Pathological delays are implicated in a group of 
deleterious cardiac events.  

Dynamics of electric  networks with spatially distributed delays have been 
recently studied in the past [10, 11]. In [9]  the critical point at which time delay is 
beneficial in a communication network was analysed in terms of a linear-quadratic 
performance measure. In a rather non-specific treatment of any physical system, Chen 
and Zhang [12] considered two types of delayed impulses: the destabilizing delayed 
impulses and the stabilizing delayed impulses. In a more precise analysis Saleh et al [13] 
studied failures in transmission systems of electric power networks. The study showed 
the effect of a single line failure of electric flow on the other lines. This is similar  to any 
arc/nodal transmission failure in the cardiac conduction system. The graph theoretic 
analysis employed in the work was no less desirable. The CCS is, to all intents and 
purposes analogous to electrical networks discussed. Since the input and output  of the 

system obeys Ohm’s law, (see [7]),  their relationship  may be represented by a linear 
proportionality. Therefore the control of the system may be of a linear control type.  

II.  Model  of Network Topology  

The CCS network system was treated in [7].This section draws largely from it for 
some details on the present work.  Consider the conduction schematic (Fig.1) below.  

 

Fig. 1:

 

Schematic of the CCS

 

nodes (Ni), arcs (ei) and resistors (Ri)

 

The nodes N1, N2,…,Nn

 

are specified as follows:

 

the SAN,N1;the AVN,N2; the  

point of bifurcation of the bundle of His,N3; the left bundle branch, N5; the right bundle 
branch, N6.

 

The network constraints associated with the conduction system are the branch 

(edge) constraints,

 

arising from Kirchhoff’s Current Law (KCL),and the non-element

 

based topological constraints,

 

arising from Voltage Law (KVL). In the cardiac network 
the arcs have the semblance of electric wires, and therefore they have specific resistance. 
The linear relationship between current (I) and voltage (V) is expressed on the network

 

by Ohm’s law. 

 

In a node where branch currents x1, . . . ,xn

 

enter (i.e. the currents are a form of 

input to the inactive nodes), Kirchhoff’s current law (KCL) gives the total current as

 

                                                x1

 

+ ·

 

·

 

·

 

+ xn

 

= 0.                                       (1)

 

Similarly, by Kirchhoff’s voltage law (KVL)

 

                                               v1

 

+ ·

 

·

 

·

 

+ vn

 

= 0.                                        (2)
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where vi denote the voltage drop  in the circuit. The CCS is a structure with many 
nodes and many circuits. It requires the application of KCL and the KVL, together 

with Ohm’s law for the network equations. 

a) Potential difference across edges 
The edges (arcs)of cardiac network, analogous to an electric wire, has an Ohmic 

resistance. Let r0 be a voltage source, and let R1, …,R7 be resistances (see fig.1). The 
potential difference, vi, across each of the resistances measured across each arc, ei is: 

v1= N1-N2                 v3 = N1-N2               v5 = N3-N4  

                           v2 = N1-N2v4 = N2-N3v6 = N3-N5                                                                        (3) 

v7 = N4-N6, 

where, in the above, Ni (i=1,2,…,6) represents the nodes. (It shall be noted that there is 

infinite number of in-degree nodes Nj in the CCS that satisfy ( ) 0id N− = . For any arc ej 

dispensing from the Purkinje fibre and any infinitely large number of nodes N∞,

( ) 0d N−
∞ = .). 

The vector form of (3) gives 

                                

1
1

2
2

3
3

4
4

5
5

6
6

7

1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

v
N

v
N

v
N

v
N

v
N

v
N

v

−   
    −     
    −
    = −     
    −     

−     
    −  

                        

(4) 

Take N2

 
as the reference

 
node. The incidence matrix

 
the CCS, with N2 grounded,

 
is [7] 

 

                                   

1

1

 
5 72 3 4 6

3

4

5

6

                     

0 0 0 01 1 1
0 0 0 01 1 1

           B 0 0 0 0 01 1
0 0 0 0 0 01
0 0 0 0 0 0 1

   

N

e e e e e e e

N
N

N
N

−
= −

−
−

 
 
 
 
 
     

                         

(5) 

 
where ei  are the edges.With N2 as the reference node we have, from (5) 

                                         

1

2 1

3 3

4 4

5 5

6 6

7

0 0 0 01
0 0 0 01
0 0 0 01

0 0 0 01
0 0 01 1
0 0 01 1
0 0 01 1

v
v N
v N
v N
v N
v N
v

   
                = −       −      

−    
    − 

,                                 
(6)

 

which is of the vector form  

          

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
er

sio
n 

I
V

III
Y
ea

r
20

20

31

  
 

( F
)

© 2020 Global Journals

Impulse Delay in the Cardiac Conduction System

Ref

7.
N

ze
re

m
 
F
. 

E
. 

an
d
 
U

go
rj

i 
H

.C
.,
C

ar
d
ia

c 
co

n
d
u
ct

io
n
 
sy

st
em

: 
th

e 
gr

ap
h
 
th

eo
re

ti
c 

ap
p
ro

ac
h
,

J
. 

M
at

h
. 

C
om

p
u
t.
 

S
ci

. 
9 

(2
01

9)
, 

N
o.

 
3,

 
30

3-
32

6 
h
tt

p
s:

//
d
oi

.o
rg

/
10

.2
89

19
/j

m
cs

/4
02

7



                                                       v = DN.                                              (7)  

In (6),  D is the matrix network’s connectivity matrix.  

Ohm’s Law “I = V/R” is now used in relating the current to voltage drop across 

each resistor.  At  each of the resistors Ohm’s Law gives,  

                                        xj= vj/Rj,      j= 1, . . . , 7.                                    (8)  

with the matrix-vector form  

                                  

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

1 / 0 0 0 0 0 0
0 1/ 0 0 0 0 0
0 0 1/ 0 0 0 0
0 0 0 1/ 0 0 0
0 0 0 0 1/ 0 0
0 0 0 0 0 1/ 0
0 0 0 0 0 0 1/

x R v
x R v
x R v
x R v
x R v
x R v
x R v

    
   
   
   
    =    
   
   
   
       

.                  
 

   

 

(9)

 

The above has the matrix equation 
 

                                                        x = Kv.                                             (10) 

The matrix K describes the physics of the network.

 

By KCL we get

 

                                       

1

2

3

4

5

6

7
0

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0

x

x

x

x

x

x

x

    
    
    
    =    
    
    

         

−
−

−
−

.               

 

           (11) 

i.e.

 

                                                        
DTx = 0.                                          (12)  

III.  CCS  Conduction  Delay  

A typical electrical conduction through the cardiac muscle takes ananticipated 
pathway.  It travels from the sinoatrial node to the AVN  and gets to the bundle of  His. 
It then travels to the left and right bundle branches until it  eventually  terminates in 
the Purkinje fibres.  As usual with cardiac electrophysiology, conduction travels from 
left to right, basically stimulating the left bundle, and left ventricle first. AV nodal 
blocks may well have an inherent delayed firing or a restriction to firing down the 
Purkinje system and consequently  may cause bradycardias and hypo-perfusion to 
essential organs. Pathological  delay in the conduction pathway is always implicated in 

bundle branch blocks.  Clinical studies posit that patients’  underlying aetiology who 
present with branch blocks may be determined to a high degree [14].  

The diseases of the CCS (such as  MI, pulmonary HTN, digoxin toxicity, etc.) are 
often precipitated by conduction delays. In the event of blockage of either bundle  

branch the electrical impulse travels directly from one cardiac myocyte to the other. 
The journey takes a much slower process than traveling via the ordinary low-resistance 
pathways.  This pathophysiology prolongs the conduction time through the ventricles, 
resulting in widening of the QRS complex (> 120 m/sec).This QRS complex is  the 
electrical impulse spreading through the ventricles, indicative of ventricular 

© 2020 Global Journals
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depolarization. A study of CCS impulse delay is essential to clinical intervention. It is 
not unusual, however that a system could be unstable without delay, and could be 
stable with some delay. A careful distinction should therefore be made between essential 
(benign) delay and a pathological delay.  

Many conducting bioelectric mediums have distributed resistances, capacitances, 
batteries, and extends continuously [15], the CCS may well be modelled as a system 
with distributed impulse delays. As treated in [16], the nodes are current sources and 
sinks. The main actors of the conduction system are the SAN, AVN, His bundle 

branches (HBB), Purkinje’s fibres together with their conduction paths (edges). Any 
pathological conduction delay into an i-th node results in delay to subsequent nodes. 
The question of stabilising such delay by employing clinical intervention as a control 
input is one that requires attention.  

a) Conduction impulse function 
We assume a linear the spatial-temporal system under consideration. The CCS 

transmission is marked by an extremely short duration, and thus, the pulse may be seen 
to approximate an impulse. True impulse functions may be a wishful thinking in nature. 
However, its bio-physiological approximation may be found in very high velocity 
vascular pulse waves, blood vessel spasm, and spasmy muscular tetanisation, not to 
exclude the CCS in the main. The CCS conduction pathways may, in the limit, be 
approximated to rectangles. Thus, we conceive of a rectangular pulse function - a unit 

pulse function δT(t), of duration T, which has a constant amplitude 1/T over its range:  

                                          

0 for 0
( ) 1/ 0

0 for 0
T

t
t T t T

t
δ

≤
= < ≤
 >

                                        (13) 

Take the limit of the unit pulse δT(t) as the duration T approaches zero: 

                                                   0
)(lim)(

→
=

T
T tt δδ   .                                        (14) 

The limiting form of many functions may be used to approximate the impulse. 
Any  impulse occurring at some t = ais )( at −δ  . 

b) Impulse-response causality  
Now, consider the continuous-time bio-electrical system (here, the CCS) with 

input x(t), and the associated response y(t), at a nodal point of interest. We suppose 
that the system is momentarily at rest, that is all initial conditions are zero at time             
t = 0. This condition corresponds to the resting phase after ionic depolarization.  

Let the continuous input function x(t) be approximated by a staircase function 
[23] )()(ˆ txtx ≈ , consisting of a series of piecewise constant sections each of an arbitrary 

fixed duration, T, where 

                               nTntnTnTxtxT ∀+≤≤= )1(for)()(ˆ ,                     (15) 

and thus, 

                                                      0
ˆ( ) ( )T

T
x t limx t

→
=

                                       
(16) 

The totality of non-overlapping delayed pulses, pn(t), each of which is with 
duration T, as represented by the staircase approximation )(ˆ txT

 is 
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)()(ˆ tptx nT ∑

∞

∞−

=                                            (17) 

where  

                                    

 +<≤

=
elsewhere0

)1()(
)(

TntnTnTx
tpn .                            (18) 

If each component pulse pn(t) is written in terms of a delayed unit pulse δT(t) we get 
 

                                            pn(t) =
 

x(nT)δT(t −
 

nT)T,                               (19) 

andtherefore (17) reads:

 

                                         
∑
∞

−∞=

−=
n

TT TnTtnTxtx )()()(ˆ δ
 

.                                (20)

 

Suppose qT(t) is the system response to the impulse δT(t). For a linear and time-
invariant system, the response to a delayed unit pulse, happening at time nT, is

 

tantamount to a delayed form of the pulse response:

 

                                              yn(t) =

 

qT(t −

 

nT).                                      

 

(21)

 

The superposition of the sum of the responses to all of the component weighted 
pulses in

 

(20) is given by

 

                                            

ˆ ( ) ( ) ( )T T
n

y t x nT q t nT T
∞

=−∞

= −∑                                  (22) 

For the system being considered the pulse response qT(t) is zero for time t 0,

 

and forthcoming input components do not add to the sum. Therefore the upper limit of 
the summation may read:

 

                                 

ˆ ( ) ( ) ( )
N

T T
n

y t x nT q t nT T
=−∞

= −∑
 

for

 

NT ≤

 

t (N + 1)T.               (23) 

The above encodes the system response to the said staircase approximation of 
the input in terms of the system pulse response qT(t). Let T

 

become

 

very small, and let 

nT= τ

 

,T = dτ, and take limδT(t) =

 

δ(t )as T→0, then we have :

 

                                         
0

( ) lim ( ) ( )
N

T TT
n

y t x nT q t nT T
→

=−∞

= −∑

 

                         (24) 

Equation (24) above yields the convolution or super position integral, 

                                             
( ) ( ) ( ) ( )

t
x q t d x t q tτ τ τ

−∞
− = ⊗∫                           (25) 

where

 

q(t) is encodes the system impulse response,
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                                                  0
( ) lim ( )TT

q t q t
→

=                                             (26) 

Equation (19) shows that the system is totally characterized by its response to 

the impulse function δ(t), since the forced response to any arbitrary input x(t) may 
becomputed from knowledge of the impulse response alone. 

Now consider the CCS topology (Fig.1).The SAN-AVN impulse is a parallel 
arrangement shown in Fig.2 below. 

 

Fig. 2: Schematic of SAN-AVN current (I)and resistors (R) in parallel 

The non-delayed impulse response, q(t) of the arrangement within this section of 
the CCS, with state delay, is 

                                          1 2 3( ) ( ) ( ( ) ( ) ( ))q t x t q t q t q tτ= − ⊗ + +                                (27) 

The series connection has the response,  

                                         1 2( ) ( ) ( ( ) ( ) . . . ( ))nq t x t q t q t q tτ= − ⊗ ⊗ ⊗ ,                           (28) 

and as found along the His bundle branch (HBB) that contains R5 and R7,
 

                             [ ] [ ]1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )HBBq t x t q t q t x t q t q tτ τ= − ⊗ ⊗ = − ⊗ ⊗ .                     (29) 

c) Conduction delay equation 

To begin with, we take a look at the delay systems with multiple point wise 
incommensurate delay equation given by 

                                       
0 0

1

( ) ( ) ( ),
m

k k k
k

x t A x t A x t τ τ ≥
=

= + −∑ ,                                 (30) 

where the delays τk may possibly be independent of each other. A special case is the 
system with single delay (viewing all delays as multiples of a single one) is the 
continuous time-invariant state-space equation of the form 

                                           0 1( ) ( ) ( )x t A x t A x t τ= + − ,                                         (31) 

with the initial condition of the form  

                                                     tx ϕ= ,                                                  (32) 

where A0 is the system matrix and A1 is the system matrix for the state delay, both of 
which  are given ℝm×n constant matrices; x𝜖𝜖ℝn, is the state of the system. 

Special note: Matrices arising from applicable systems are largely non-square                  

(ℝm×n, m≠ n). Those generated and considered here are non-square, except otherwise 
indicated. Therefore, each matrix here is presupposed Moore-Penrose invertible. Details 
on Moore-Penrose pseudoinverse of matrices may be found in [17, 18] and in profuse 
literatures. The beauty of non-square systems is their less amenability to modelling 
errors[19]. 
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We relate equation (31) with the conduction matrix already generate by letting 
DT  (in (12)) = A0, and A1  can be obtained from the description of the delay.  Let us, 
painstakingly, construct a prototype of A1this way: Consider Fig. 1, and assume here 
that impulse conduction delay is observed from N3  (corresponding to the His bundle 
branch);  the delay has a cascading effect on the spectrum of subsequent  nodes and 
edges. Let  

                        A1  = 
i j

i j

1    if N  is a terminal node of e ,  with conduction delay

1 if N  is an initial node of e ,without conduction delay 

0    otherwise
ija




= −



.              (33)  

We groundN3to get the state delay matrix  

                                            A1= 

0 0 0 01 1 1
0 0 0 0 0 01
0 0 0 0 0 01
0 0 0 0 0 01
0 0 0 0 0 0 1

 − − −
 

− 
 
 
 
 
 

.                             (34)  

With this, a particular case of, the delay equation (31) takes the form  

             

0 0 0 0 0 0 0 01 1 1 1 1 1
0 0 0 0 0 0 0 0 0 01 1 1 1

( ) ( ) ( )0 0 0 0 0 0 0 0 0 0 01 1 1
0 0 0 0 0 0 0 0 0 0 0 01 1
0 0 0 0 0 0 0 0 0 0 0 01 1

x t x t x t τ

   − − −
   

− −   
   = + −−   

−   
   −   



               

(35) 

Note that  A1 so obtained  defines a region where multiple delay is experienced, 
which includes the considered point of initial delay.  

i.  State-transition matrix solution  
Using (31) or (35) we set the following Cauchy problem:  

                                    

0 1( ) ( ) ( ) ( ), 0

( ) ( ), 0,

x t A x t A x t g t t

x t t t

τ

ϕ τ

= + − + ≥

= − ≤ ≤


                                   (36)  

where x(t)  =  (x1(t), x2(t), ..., xn)
Tis a vector of states of the system, g(t) = (g1(t), ..., 

gn(t))
Tis a function that denotes disturbance signal, A0, A1 are constant matrices τ  >  0 

is a constant delay. The state-transition matrix equation, with the ideal disturbance 

response g(t)  = 0 (since disturbance acts on controller output), is  

                                          

( ) ( ) ( ), 0X t AX t AX t tτ= + − ≥
                                   (37)  

with the initial condition  

                                               
( ) , 0,X t I tτ= − ≤ ≤                                         (38)  

where  I  is the identity matrix.  The solution of (37) with (38) is of the form [28]  

                                  
0 0( ) ( )

1 1( ) ( ) ( ) ,
tA t k A t s

k k
k

X t e X k e A s dsτ

τ
τ τ− −

+ = + −∫                           (39)  

with  Xk(t) is defined on the interval (k−  1)τ≤  t ≤  kτ  , k  = 0, 1,  …  

© 2020 Global Journals
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It was shown in [28] that the fundamental solution matrix of equation (37) with 
identity initial conditions (38) has the form 

                             

0

0 0

0

1
( )

0 1 2

1 ( )

0

,
, 0

( ), 0

( ) ( ), 2
...

( ) ( ), ( 1)
3,4,...

tA

A t t

k t mA
m k

m

t
I t

e g t t

X e eA g g t

e g m g t k t k
k

τ

τ

τ
τ

τ

τ τ τ τ

τ τ

−

− −

=

Φ −∞ ≤ < −
 − ≤ <
 + ≤ ≤
= + + ≤ ≤


 + − ≤ <

=
∑

                        (40) 

where Φ is the zero matrix and 

               

11 1 (1 ) ( )( )

0 1
1101

( ( 1) )( ) ,
( )! (1 )!

  {0, 1}.

s
j j

jj

p i K sK p
k i

p
sj p s pki

p j

t pg t A A
K p i

i  = 1, i

τ τ +∞ −

+= = −==

  − − =
  −
 

∈
∑
∑ ∑Π Π  

IV. Input Control 

In this section we will study the possibility of optimizing a control that would 
keep the transmission of impulse within reasonable physiological window, or mitigate 
the deleteriousness of pathological time delay. If the control is drug-based, then there is 
an associated equilibration delay which does not constitute a component of the impulse 
delay. 

Let Z be the state space of an impulsive system and U the set of control 

functions. Let u∈U be the control function. z∈Z: z = z(z0, u, t) is a vector depicting the 
state of the system at the instant t, with the initial state z0= z(t0). Let X denote a 
subspace of Z and x = x(z0, u, t) be the projection of the state vector z(z0, u, t) onto X. 

Definition 1. The state z0is said to be controllable in the class U if there exist such 

control u∈U and the number T, t0≤ T ≤ ∞ such that z(z0, u,T) = 0. 

If every state z0∈Z of an impulsive system is controllable, then the system is said 
to be controllable.  
Consider the Cauchy problem 

                             

0 1

0

( ) ( ) ( ) ( ), [0, ], ,
(0 ) , ( ) ( ), 0,

x t A x t A x t Bu t t T T
x x x t t t

τ
ϕ τ

= + − + ∈ < ∞

= = − ≤ <



                           
(41) 

where x = (x1(t), ..., xn(t))
T is a vector, x ∈X, u(t) = (u1(t), ..., ur(t))

T is the control 

function, u ∈U.U is the set of piecewise-continuous functions and A0, A1, B are constant 

matrices of appropriate dimensions, τ > 0 is as defined. 
The state space Z of this system is the set of n-dimensional functions 

                                       
{ ( ), }x t tξ τ ξ− ≤ ≤  ,                                     (42) 

And the initial state z0of the system (41) is determined by conditions 

                                0 { ( ) ( ), 0, (0z x xξ ϕ ξ τ ξ= = − ≤ <                            (43) 
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In accordance with (38) the system (41) is controllable if there exists a control 

u∈U  such  that x(t) ≡ 0,T-τ  ≤  t  ≤  T;T ∞.  

Lemma1 [see 30]  If the linear system with delay (41) is controllable in the interval            

∈[(k−  1),  kτ], then rank (Rk) = n, where  Rk
 is the augmented matrix given by  

                             
0 0 02 ( 1)2 1

1 1 1{ ... }A A k A k
kR B e A B e A B e A Bτ τ τ− − − − −= .                         (44) 

A control may be constructed for the control problem with delay (41). Let Q  be 
an augmented matrix satisfying  

                  
p2 2 3 2 2 n-1

0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1Q = {B A B  A B  A B  (A A + A A )B  A B  A B(A A + A A A + A A )B ... A A B}  (45)  

For controllability of the delay system (41) it is sufficient that for (p−1)τ≤  t≤  pτ, 
with rank(Q) = n [31]. 

With the sufficient conditions for controllability employed for:det(Q) = n, for t1≥  

(k−  1)τw here the matrix Q  was defined in (45) the control function can takes the           
form [30]  

                 

[ ]
1

1

0 1 0 1 1 1
0

0

1 0 1 0 1

( ) ( ) ( ) 0( ) , 0

here

= - ( ) ( ) ( ) ( ) ,

t
T TTu X t B X t BB X d t

w

x X t X t d
τ

η τ η τ ζ τ ζ ζ λ η

λ ϕ τ τ ζ ϕ ζ ζ

−

−

 
 = − − − − − − ≤ ≤    
 

′− − − −

∫

∫
          

(46) 

And X0
 is the fundamental matrix of solutions (40) on time interval t ≥ (k − 1)τ  . 

Consider, for a state feedback control, the linear time-delay system with both 
state and input delays given by  

                                     0 1 0 1 0( ) ( ) ( ) ( ), ,x t A x t A x t B u t t tτ τ= + − + − ≥                     (47)  

where  u (t) is the control input and B0
 is the input matrix and τ1 is the input delay.  

The pairA0, B0
 are assumed controllable.  The case with no control input delay is  

                                   0 1 0 0( ) ( ) ( ) ( ), ,x t A x t A x t B u t t tτ= + − + ≥                            (48) 

Suppose there exists a bounded Lipschitz continuous function,  

                                                  n n: U× →  ,                                        (49)                                                                                          
 

with
 

U
 

as
 

compact subset of m , say.
 

The delay
 

equation (48) maybe put in the form
 

                                          

( ) ( ( ), ( )) ( )
( )

fs s s t s t
t

τ

τ

= − < < 


− = 



x
,                     (50) 

where
 

t-τ
 

≥
 

0 is a given initial time,
 

tf

 
0 is a fixed terminal time, 
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x∈ℛn is a prescribed initial point, 
u(.)∈U is the control.  
x(s) is the state of the system at time s

 <
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Each solution i(.), (i =1, 2, 3,…,n)   of (50) evolves at some succeeding time 

ti>t-σ in the prescribed time interval. For any set of controls i(.) (i =1, 2, 3,…,n), the 
set of permissible controls reads 

                                 
{ :[ , ] | (.) is measurable}fU t - t Uσ → .                         (51)                                                              

Each permissible control has its degree of optimality. Since 

                   ( ) , ( ) ( , ),c C ,c c C≤ − ≤ −  (x, y n∈ , c ∈U ) ,            (52) 

for some constant C, then for each control (.) ∈U equation (50) has a unique Lipschitz 
continuous solution (.) = (.)(.) on the time interval [t-σ, tf].  The equation (50) may 

be solved a.e. on t –𝜎𝜎 tf .We seek a control u*(.), for n∈  and ( , )ft t tτ σ− ∈ − , 

among all other permissible controls which minimizes the impulse delay (as in our 
present case) functional 

                                
, [ (.)] ( ( ), ( )) ( ( )),ft

x t ft
G s s ds tτ τ

χ ω− −
= +∫                           (53) 

where (.) = (.)(.) is the solution of (50) and 

n: Uχ × →  ,           n:ω →   

are given functions. From expenditure-based control systems, χ could be considered as 

the running cost per unit time and 𝜔𝜔the terminal cost. From the physiological 

perspective, χ could be seen as the cost of minimizing or mitigating impulse delay per 

unit time, and𝜔𝜔is the terminal effect of mitigating the delay. Any least cost V(x, t-𝜏𝜏) is 
such that 

                           ( , )V t -τx ,
(.)

[ (.)]inf x t
u U

G
∈

= ( ∈ n ,  t-𝜏𝜏ϵ [t-σ,tf]).                      (54) 

V. Optimality Criterion 

First we state, without proof, the following: 

Theorem 1 (Optimal controller (see [32]). Suppose that u*(t-𝜏𝜏), t-𝜏𝜏 ϵ [t-σ, tf] minimizes 

                              [ (.), , ] ( ( ), ( )) ( ( )),ft

ft
G x t - s s ds t

σ
σ χ ω

−
= +∫                        (55) 

subject to *(t-𝜎𝜎) = and *(t-𝜎𝜎) is the related state trajectory. Let the minimum 

delay attained by *(t-𝜏𝜏) be: 

                             ( ), [ , ]
*( , ) arg min ( (.), , , )

f
fu t- t

G t G t t
β β σ

σ σ
∈

− = ∗ −x .                     (56) 

Then, for any t-τ∈[t-𝜎𝜎, tf], the restriction of *( )β  optimal over the sub-interval 

[t-τ,tf] minimizes 

[ (.), ( ), ] ( ( ), ( )) ( ( )),ft

ft
G t - s s ds t

τ
τ χ ω

−
= +∫  
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subject to the initial condition (t-𝜏𝜏) = *( t-𝜏𝜏); * is optimal over [t-𝜏𝜏, tf].
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 For the purpose of optimality the
 

value function V( , t-τ) shall be considered.
 

In 

what follows, we fix ∈ℝn

 
t-𝜎𝜎≤

 
t-τ<tf

 (Optimality (see Lawrence [33]). For each 𝜎𝜎
 

>
 

0 sufficiently small that 

( ) ft tτ σ− − ≤ ,
 

          

( )

(.)
( ) inf [ ( ) ( )] ( ( ( )), ( ))],

t

tU
V ,t - s s ds V t t

τ σ

τ
τ χ τ σ τ σ

− −

−∈
= + + − − − −∫u

x
                

(57)
 

where
 

x(.) = xu(.)(.) is the solution of  (50) for the control (.). 
 

Proof.  Let (.) be any chosen control. We set an ODE analogous to (50)
 

in the form
 

                          

( ) ( ( ), ( )) ( ( ))
( ) .

s s s ds t s t
   t x

τ τ σ
τ
= − < < − − 

− = 



 
                     (58)

 

For a fixed ε
 

>
 

0 choose  (.) U∈ so that
 

            
2 2( )

( ( ( )), ( )) ( ( ), ( )) ( ( )),ft

fV t t g s s ds t
τ τ σ

τ σ τ σ ε ω
− −

− − − − + ≥ +∫ x
            

(59) 

where
 

                             

2 2

1

( ) ( ( ), ( ) ( ( ) )
( ( )) ( ( )).

fs s s t s t
t t

τ σ

τ σ τ σ

= − − < < 
− − = − − 



                            

(60)
 

Describe the control
 

                                   

(s) if ( )
( ) :

( ) if ( ) ,f

t s t
s

s t s t
τ τ σ
τ σ

− ≤ < − −=  − − ≤ ≤                     

(61) 

and let
 

                                      3

3 2( ) ( ( ), ( ) ( )
( ) .

fs s s t s t
t x

τ

τ

= − < < 
− = 


                          (62) 

The uniqueness of solutions of the equation (50) enables us
 

to write
 

                                

{ 1
3

2

( ) if ( )
( )

( ) if  t ( ) f

s t s t
s

s s t
τ τ σ

τ σ

 − ≤ ≤ − −= 
− − ≤ ≤

.                             (63) 

By definition (54) we have
 

                  

,

3 3

( )

1 ( )

( )

1

( , ) [ (.)]

( ( ), ( )) ( ( ))

( ( ), ( )) ( ( ), ( )) ( ( ))

( ( ), ( )) ( ( ( )), ( )) ,

f

f

x t

t

ft

t t

ft t

t

t

V t G

g s s ds t

g s s ds g s s ds t

g s s ds V t t

τ

τ

τ σ

τ τ σ

τ σ

τ

τ

ω

ω

τ σ τ σ ε

−

−

− −

− − −

− −

−

− ≤

= +

= + +

≤ + − − − − +

∫

∫ ∫

∫

x

1 1
        

(64)  
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where the last inequality above resultsfrom (59).  Since (.)ϵU was arbitrarily chosen 
we infer that  

           { ( )

(.)
( , ) inf ( ( ), ( )) ( ( ( )), ( ))}

t

tu U
V t g s s ds V t t

τ σ

τ
τ τ σ τ σ ε

− −

−∈
− ≤ + − − − − +∫x .         (65) 

Continuing, choose (.), for a fixed ε > 0, such that 

                            
4 4( , ) ( ( ), ( )) ( ( )),ft

ft
V x t g s s ds t

τ
τ ε ω

−
− + ≥ +∫                        

(66) 

where 

                                      

4 4

4

( ) ( ( ), ( ) ( )
( ) .

fs s s t s t
t x

τ

τ

= − < < 


− = 


                        (67) 

From (54) we have 

               
4 4 4( )

( ( ( )), ( )) ( ( ), ( )) ( ( )),ft

ft
V t t g s s ds t

τ σ
τ σ τ σ ε ω

− −
− − − − + ≤ +∫

         
(68) 

and thus 

         
{ }

( )

(.)
( , ) inf ( ( ), ( )) ( ( ( )), ( ) ) ,

t

tU
V t - g s s ds V t t

τ σ

τ
τ ε τ σ τ σ

− −

−∈
+ ≥ + − − − −∫ x x

u
x u

          
(69) 

noting that (.) = (.)(.) solves (50). Thus, (69) and (65) complete the proof of (57) 
 

a)
 
Multiple Time Delays

 

Let us return to the case with multiple time delays is described by equation (30)
 

0 0
1

( ) ( ) ( ),
m

k k k
k

x t A x t A x t τ τ ≥
=

= + −∑
 

                                             x(t) =𝜑𝜑(t) ,
 
t∈[-τ, 0],                                      (70) 

where
 
τ
 
= max{τk: I = 1,2,…,m},

 
Ak∈Mm×n

 
are constant matrices.

 
φ(t)∈C([-τ, 0], ℝn). Here 

C([-τ, 0], ℝn) represents the Banach space of all piecewise continuous vector-valued 

functions mapping [-𝜏𝜏, 0] into ℝn.
 
The goal here is to convert the system with multiple 

time delays to a stable system with single time-delay. When this is done, the multiple 
time delay case may be handled as a single delay system, as was done in Ordokhani 

           

et al.[37]. 
 

Consider the system (70).Convert the matrices,
 
Ak, k=1,2,..., mto diagonal form 

and subtract γ>0 from each diagonal entry. Pick the
 
matrix with maximum norm and 

designate it by
 
Mγ

 
and denote the remaining matrix is by

 
Aγ. Using (70) we have

 

                                 

0( ) ( ) ( ) ( ),

( ) ( ), [ ,0],

x t A x t M mA x t t

x t t t

γ γ τ

ϕ τ

+= + + − ∈

= ∈ −

 
                               (71)

 

where the matrix functions  A0, (Mγ+mAγ) are constant matrices. The system (71) is 
the conversion of the system with multiple time delays (70) to a system with single 
time-delay.
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b)  Stability criterion  

Lemma 2[38]The system (70) is said to be exponentially stable with decay rate α, if there 
is a function𝜁𝜁: ℝn  →  ℝnsuch that for each  𝜑𝜑(t) ∈C( [-τ, 0], ℝn) the solution x(t,𝜑𝜑) of the  

system satisfies  ||x(t,𝜑𝜑)||≤ 𝜁𝜁(||A||)e-αt  , ∀t ∈ℝ+.  

Lemma3  [37] System (70) is uniformly asymptotically stable independent of delay if  

                                               
0

1

( ) 0.
m

k
k

A Aµ
=

+ <∑                                          (72) 

The stability of the system (71) can be seen  from the time delay system 
described by (70). Change the  matrices Ak, k=1,2,..., , m, are to diagonal form and  

subtract γ  >  0 from each diagonal entry.  Assume the stability of the system with 
multiple time delay (70) satisfies (72). Now, transform the system with multiple time 
delays to a stable system with single time-delay (71). Since  

                    1 2 ... ,mM mN M m N M M M m Nγ γ γ γ γ γ γ γ+ ≤ + < + + + +
              

 
     

(73) 

By Theorem 1?
 

we get
 

              
0 0 0

1 1

( ) ( ) ( ) 0
m m

r r
r r

A M mN A A A M mNγ γ γ γµ µ µ
= =

+ + < + = + + <∑ ∑ .                        (74) 

Therefore system (71) is uniformly asymptotically stable independent of delay. 
 

Theorem 3:
 

The system (71) is exponentially stable with decay rate
 

α,
 

if there exists 

symmetric and positive-definite matrices P
 

>
 

0 and Q >
 

0 such 
 

                                                 
0

TI e A

e A I

ατ

ατ

τ

τ

 −
<  − 

                                      (75) 

                                          
ˆ ˆ ˆ

0
ˆ

T T

T

A P PA Q e A PA

e A PA Q

ατ

ατ

τ τ

τ τ

 + +
  <
 − 

                                  (76) 

where Â = A0+A1e∝
τ
.

 

The inequalities (75) and (76) are linear matrix inequalities
 

(LMIs). This is in 
line with the standard Riccati equation

 

                                        1
0 0 1 1 0T TPA A P PA Q A P Q R−+ + + + =                                  (77) 

consisting of triple matrices P, Q, R

 

assumed to be positive definite, and where in the 
present case A0

 

and A1 are Moore-Penrose invertible [18, 19, 20]). Therefore:

 

Theorem 4:

 

The time-delay system (70, 71)

 

is asymptotically stable for any 0α ≥
 

if 
there exist matrices P   0, Q   0 and R such that

 

                                              

0 0 1

1

0
T

T

A P PA Q A P

PA Q

α

α

 + +
< 

 − 
                              (78)

 

Let ρ

 

be a positive scalar such that
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1
1 1
TQ A PA

ρ
= .                                              (79) 

Then the Riccati equation (77) reduces to the Sylvester equation 

                                     
0 0 1 1 1

1 0T TA P PA A PA A Rρ
ρ

+ + + =   .                                   (80) 

The sufficient conditions for Riccati Stability is given by the following Lemma: 

Lemma 4[26] Iffor some ρ>0, the matrix 0 0 1 1
1( ) ( )

2 2
M A I I I A I A Aρ ρ

ρ
= + ⊗ + ⊗ + + ⊗  is 

Hurwitz, then the pair (A0, A1) is Riccati stable.
 

c) Stabilization of delayed system 
Now suppose (as in Theorem 4) that there exists a scalar 0α > , and asymmetric 

matrix P
 
such that

 

                                           

0 0 1

1

0
T

T

A P PA P A P

PA P

α

α

 + +
< 

 −                                   

(81) 

for which (70,71) is asymptotically stable [27]. Consider, for stabilization, the linear 
time-delay system (48) 

 

                                  0 1 0 0( ) ( ) ( ) ( ), ,x t A x t A x t B u t t tτ= + − + ≥                             (82) 

We seek a state feedback controller of the form
 

                                           0 1( ) ( ) ( )u t K x t K x t τ= + −                                          (83)
 

such that the closed loop system
 

                                   0 0 1 1( ) ( ) ( ) ( ) ( )x t A BK x t A BK x t τ= + + + −                                  (84) 

is stable independent of delay. Using (81) we have to satisfy 

                           

0 0 0 0 1 1

1 1

( ) ( ) ( )
0

(( )

T

T

A BK P P A BK P A BK P

P A BK P

α

α

 + + + + +
  <
 + − 

.                        (85) 

Using the variable transformation 

V0
 = K0P  

V1
 = K1P  

Equation (85) becomes 

                              

0 0 0 0 1 1

1 1

0
(( )

T T T

T

A P BV PA V B P A P BV

A P BV P

α

α

 + + + + +
  <
 + − 

.                           (85) 

The knowledge of V0, V1 and the other determiners in (85) will supply the 
computational scheme for the inequality (85). 

VI. Discussion and Summary 

Delay is obviously triggered in a system by the presence of a time lag between 
the control action and its stimulus on the system. In the same way, delay occurs in an 
observable way if substantial measurement processing time is taken into account. The 
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CCS is a sequence of electrical impulse-based cardiac activation. Physiological delays in 
the CCS are observable during the following events [34]:  

(i)
 

The SAN
 

produces action potentials
 

which
 

diffuse through the atria via cell-to-cell 
conduction at a rate of about 0.5 m/sec.

 

(ii)
 

The AVN slows the impulse conduction considerably to about 0.05 m/sec
 

in order to 
allow satisfactory time for complete a

 
trial depolarization and contraction.

 

(iii)
 

The  left  and right bundle branches
 

transmit impulses at a speedy velocity of about 
2 m/sec.  

(iv)

 
A trial activation ends within about 0.09 sec after SAN firing. After a delay at the 
AV node, the septum becomes  activated (about 0.16  sec). The entire ventricular 
mass is activated by about 0.23 sec.

 

Any further delay arising in any of the conduction times above may be 
considered a pathological event. Notably, the system may be fraught with multiple 
delay, depending on the source or aetiology of the delay. Any delay arising from the 
SAN or AVN is most likely to induce a cascading multiple delay. This work considered 
delays arising from His bundle branch delay.

 

Electrical input delay to the His bundle 
nodal point has the effect of delayed depolarization of all other surrogates in the 
conduction grid. This is a case of multiple system delay. A typical example of system 
delay is the QT prolongation

 

in which

 

ventricular repolarisation is delayed. This 
pathophysiology is observed when the heart muscle takes abnormally long time to 
recharge between beats. Undue QT

 

prolongation is implicated in tachycardias such as 
Torsades de Pointes

 

(TdP) [35, 36], (meaning

 

twisting of the peaks,

 

as seen in 
undulated complexes or twist around an EKG baseline). TdP patients may have a heart 
rate of 200 to 250 beats/minute as against the physiologic 60 to 100bpm range. Such 
patients may present with palpitations or syncope [35]. 

 

There is the need to assuage 
pathological delay in the CCS if the culprit cannot be censored. To do this, a critical 
input control stabilizing measure is

 

put into effect. Here the input control measure by 
means of therapeutics, preferably by drug regimented delivery is suggested.

 

In the 
clinical sense, if an initial therapy sb

 

at time

 

t0 say,

 

could be successfully regulated to 
meet therapeutic gains

 

up to approximately a final time tf

 

at which the adverse effect, if 
any, of the final therapy sb(tf) will be ineffectual, then a condition is controllable.

 

Put 
succinctly, a clinical condition is controllable

 

if it responds favourably to a target 
treatment. Such therapies are, in mathematical esoteric, the input sequence un, which  

transfers sb(t0)

 

to sb(tf)

 

for some initial and finite time, t0

 

and tf

 

respectively.

 

If the 
response holds, then the next goal is to seek a control for which it is at optimal. If the  

state equation (41) (or the pair [A, B]) is non-controllable then it is pathologically 
unstable, and therefore defies clinical remedy. 

 

A notable point of this discussion is the understanding that non-square matrices 
are rife in application, albeit sparse in relation to

 

the preponderance of square matrices 
in literature. A judicious use of the singular value decomposition (SVD) ensures that 

each matrix ∈ℝm×n can be decomposed into 

 

Σ ,

 

where ∈ℝ ×

 

and ∈ℝ ×

 

are 
orthogonal matrices and Σ

 

∈ℝ ×

 

is a diagonal matrix with nonnegative entries,

 

which 
are singular values of .

 

We saw that there is a general system response q(t)to any impulse given in(25)       

 

( ) ( ) ( ) ( )
t

x q t d x t q tτ τ τ
−∞

− = ⊗∫ .
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This response, when considered in the context of the optimal control, in line with 
the limit of integration, takes the form 

( )
( ) ( ) ( ) ( )

t

t
x t q t d x t q t

τ σ

τ
τ τ τ

− −

−
− − = ⊗∫  

But since a positive outcome is desired, the system response may possibly have 
no time delay; so we have 

( )
( ) ( ) ( ) ( )

t

t
q t x t d x t q t

τ σ

τ
τ τ

− −

−
− = ⊗∫ . 

At the His bundle branch (HBB) that contains R5 and R7 the quantity q(t), is given by 

[ ] [ ]1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )HBBq t x t q t q t x t q t q tτ τ= − ⊗ ⊗ = − ⊗ ⊗  
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