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Reliability Modelling and Safety Learning
Algorithms in Complex Risk Multifunctional
Systems

Kingsley E. Abhulimen

Absiract- Modelling safety procedures of complex risk systems
of multifunctional production systems such as floating
production storage and offloading (FPSO) vessels is typically
rigorous. Deterministic modelling and Learning algorithms are
normally used to generate whole sets of hazard data based on
data of intrinsic risk events and safety measures incorporated.
The model developed use failure data systems obtained from
operator of multifunctional production systems of FPSO to
generate fuzzy class surrogates based on learning algorithms
to rank safety index. Thus classifications of risk events in a
fuzzy set of system is predicted used weighted like hood of
failure of human, process, mechanical, electrical, operational,
in composite risk system to set the safety thresholds. The
model used a learning constraint function in probable risk
outcomes to match retroactively weights index of actual
scenarios in skewed hazard surrogates to specific risk and
safety ratings criteria. The MTBR (Mean Time before Repair) to
plan maintainability studies and safety programmes were
simulated to an optimal repair range from almost 0.5 yrs for
worst case; fuzzy class 1 with safety rating of 0.0 to almost 5
million years for best case when the fuzzy class 5 with safety
index rating of 1.0 assume availability is 80%.

[. [NTRODUCTION

plants and production platforms are carried out
during  preliminary  concept design and
engineering phases’ development to provide engineers
and operator’'s qualitative and quantitative data to plan
risk and safety targets during the life of the process or
production plant [1, 2]. Qualitative studies such as
Hazard and Operability (HAZOP) studies and scenario
analysis are most popular in safety design [3, 4].
HAZOP studies offers simple qualitative procedure to
exclusively determine initial hazards that may occur in a
process production facility and selected utility systems.
The practise is to use quantitative studies to determine
minimum thresholds for safety and qualitative risk
assessments (QRA) to plan future risk scenarios [5, 6].
Complexity in risk events occurring during operations
and interrelations of multifunctional systems limits their
qualification of hazards and safety categories that may
exists. In the example studied, cases of accidents

qaiability studies and assessments of process
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reported on an FPSO could be attributed to the complex
interacting units and systems in petroleum production
systems

The modelling methods in leaks and reliability
analysis have been presented elsewhere [Abhulimen,
2007]. The risk associated with personnel on FPSO is
represented in Table 1. Several techniques have been
presented in literature for reliability and risk analysis (1).
Among the most frequently used are quantitative risk
analysis, the probabilistic safety analysis, worst-case
methodology and optimal risk analysis (2). Significant
advancement has been made in developing newer
method for hazard and risk assessment, consequence
modelling and user friendly tools. However, while
foreseeing worst-case scenarios is common, little
attention is paid in envisioning credible scenarios. In
engineering  safety analysis, intrinsically vague
information may coexist with conditions of “lack of
specificity” originating from evidence not strong enough
to completely support a hypothesis but only with
degrees of belief or credibility (Binaghi and Madella,
1999) @, Dempster-Shafer (D-S) theory of evidence
(Dempster, 1968; Shafer, 1976) @ based on the concept
of belief function is well suited to modeling subjective
credibility induced by partial evidence (Smets, 1988) ©.
Reliability Centred Maintenance (RCM and RCM-Il) and
similar techniques have been introduced recently to
improve the reliability of process plants. However data
analysis of typical risk and hazard components
multifunctional FPSO system are complex accident
paths and non-existent. Some equipment can be critical
to safe operation. In engineering safety analysis,
intrinsically vague information may coexist with
conditions of “lack of specificity” originating from
evidence not strong enough to completely support a
hypothesis but only with degrees of belief or credibility
(Binaghi and Madella, 1999). Dempster-Shafer (D-S)
theory of evidence (Dempster, 1968; Shafer, 1976)
based on the concept of belief function is well suited to
modeling subjective credibility induced by partial
evidence (Smets, 1988). The D-S theory enlarges the
scope of traditional probability theory, describes and
handles uncertainties using the concept of the degrees
of belief, which can model incompleteness and
ignorance explicitly. It also provides appropriate
methods for computing belief functions for combination

© 2020 Global Journals

Global ]()urnal of Science Frontier Research (A) Volume XX Issue III Version I E Year 2020



Global Journal of Science Frontier Research (A) Volume XX Issue III Version I E Year 2020

of evidence (Pearl, 1988). Besides, the D-S theory also
shows great potentials in multiple attribute decision
analysis (MADA) under uncertainty, where an evidential
reasoning (ER) approach for MADA under uncertainty
was developed on the basis of a distributed assessment
framework and the evidence combination rule of the D-S
theory (Yang and Singh 1994; Yang and Sen 1994,
1997; Yang,2001; Yang and Xu, 2002a, b).The weight
concept introduced here allows the possibility of
representing a measure of safety Risk ratings asocial
with complex interacting risk systems that has safety
barriers and controls to prevent loss of containment: The
weighting function for each risk classification allows us

Fy

F,

Fs

Fa

to do the following1) Determine which equipment and
instruments are truly critical to reliability, as well as
process

I1. LEARNING ALGORITHMS IN RISK AND
SAFETY MODELLING

Learning algorithms are useful tools to quantify
future risk uncertainty from past risk events and
incorporate neural network modelling of Fuzzy Belief
linguistic classifications: Figure 6 is a schematic of
neural network architecture:

Hazard K

Input weights superstructure j (O j

Input hazard i fi (Sl)

Figure 1: Neural Network Architecture

Learning algorithms  incorporates  neural
network design in MATLAB to produce outputs
comparable to the desired output and hazard measured
and registered numerically. The outputs are then
compared to the desired output in a process known as
Feed-Forward routine. This feedback-propagating cycle
is iteratively executed until the weighting Index factors
converge on values or Function that minimize the
Average Root Mean Square (ARMS) error within the
initial training to establish hazard model trainer balck
box. Once the initial training is set to the weighting
factors establishing equilibrium baseline are held
constant. Typical networks simulates 5000 neural
network candidates to determine the optimal neural
network. The actual training process involved 50 epochs
cycles of back propagation training algorithm to locate

2020 Global Journals

the probable solution of the local minimum error. The
minimized ARMS error for the training set is expressed in
a nested scheme for the hazard function in egn. 1
below;

Fy, = &)= F,(Xy Xggoverrrs X)) (1)

y, represents the overall Hazard containment failure
resulting from a combination of several hazard
components inputs x, of the FPSO systems. The
mathematical model describing a neural network
structure reflecting hazard analysis in FPSO Systems
resulting in loss of containment is:

(y :ki):al(xlf’“ © Xy " @, oxmﬁ’”i) @)



M N
Fi(x’,w) = I”(yk = ﬁ’k): ijkqu(zwjixi _ij_’(k )
= P}

In the neural network model presented in
equation3, w, is the synaptic weights from the neurons
in the hidden layer j to the output neuron k and w; are
the synaptic weights from the neurons in the input layer i
to neurons in the hidden layer | and x, is the i-the
element of the input variable of the input vector X . The
weight vectors w denote the entire set of synaptic
weights ordered by layer, the neurons in the layer and
the synapses in a neuron. The thresholds corresponding
to the hidden and the output neurons are given by k.
The activation function

1
= o)
P 1+e;,’

Where: X =XeE and & is the pre-process scaling
vector and x is the raw input data and y =y e & is the
post scaling factor

The error associated with output is defined as

e, = (n A

ipredicted imeasured)

=12, n (5)

Hazard Outcomes are predicted using Neural
Networks used to train the data given by:

Equation 6 can be redefined by the following
equation for hazard systems

N N
Ho(sk): zmjkzmji (Xi = Hi)_Kjk (©)
T

Hazard System IN Series is given by:
N N ©
yi(: Ho(sk)): Ha)ijwji(xi =H" )_ Ky (1)
j=t i=1

Where the Hazards inputs H,”" and the Hazard
Outputs  H,(s,) are represented by fuzzy-belief sets
described earlier. K represents the threshold or the
error associated with each training: Equation 8 is given
by the following:

N N
InH,(s) =Y o, > o, Inf,(Si)- K, 8)
j=1 i=1

i-input index (1-N input Hazard Synoptic Function)
j-weight index (1-N interacting Hazard Synoptic Neuron
functions)

k-output index in times (1-N Hazard Output Synoptic
Function).

_)71 1 (W W, Wiy _Xl ]
Y, Wy Wy e W X,
e T (10)
Y] _WMl Wiz reseresenenas WMN__XN_
Where:
Vo] ] (K]
Y. Y, K,

Yn Yn Ky

Equation 24 can be expressed in an Eigenvalue

Equation:
\v‘v - M\ =0 (15)
W, —A 0 0
0 W M. 0
22 — O (1 6)
0 0 oo W,y —A

(W, = L) Woy =R ). (W, —2)=0 (17)

Once Specific Data Sets connecting input
hazards with the resulting Hazard outcomes can be
predetermined, the synaptic weights constants can be
determined or trained, so that any other hazard input
can now be determined. Weights associated in each
neural network in equation 37 are determined using
Linear Network for Regression Analysis.
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Using Regression Method,
rearranged and solved for W:

Equation 37 can be

_yl 1 Wiy W, W, [ . 7
Vo | | Wa Wy, Wa 1o | g
_yN _WMl Wi WMN__XN |
N N N
z Xig- z Xigerrrernnnnnnnnnnnnnnnnnns Z Yim
=1 i=1 i1
N ) N N
zxu Z:XHXI2 ................... zxu)’.M
=t i=1 i-1
N N N
lelxm inzxm ............... inNylM
=t i=1 i-1
Wi = (29)

N N N
inlxm inzxm .............. inleN
= i=1 =)

The Average Mean Squared Error is computed
as Standard Deviation measure to determine whether
the weights trained give specific outputs that minimizes
error associated with each predicted measurement

1
1& )2
ARMS =| =>"e,
N3

Where the error being the difference between
predicted and measured outputs: for example the
difference between failure rates predicted by the neural
network and failure rates measured for a particular
Systems (e.g FPSO) resulting from combination of
hazards

(30)

€ = HOpredicted -H

i (31)

omeasured
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Risk and Safety Modelling. The risk and safety potential
is computed using egn. 33 and egn.34
Risk

Risk Potential = — (33)
Reliability of Safety Systems

The Risk Potential gives a measure of the True
Risk inherent in a System or Sub System

§ 1 Reliabilit : et stems

Safety Potential = — — = e zaA ility of Sajey Systems
Risk Potentaial Risk to Safety System

(34)

The Safety Potential gives a measure of the
Safety of a given System

Maximum Risk of a System based on New
Technique. The maximum risk can be evaluated from
the linear programming model. The maximum risk for a
system that follows series configuration is given by

In(l-r)= In[H - rl.)m} =wlinr +wynr, + ...+ w,Inr, (35)

Subject to the constraint equation

0<ri<1 fori=12,...n (36)

Equation 3 subject to egn. 4 is our model for
predicting a series system, which is solved by finding
the linear programming model that multiplies the
respective weights to the Natural Logarithm of the
respective risk events.

However the maximum risk model for a system
operating in parallel is given by eqn.38 and constraint
functions is given by egn.39 and egn.40

Max Inr=wqInn + @2 Inrp +......+ o inry,  (37)
0<ri<1 fori=12,...n (38)

n -
0<TIIri <1 fori=12,...n (39)

The maximum reliability of the safety systems is
evaluated using egn.8 and the constraint egn.41 is given
by egn.42 and egn.43

Max InR =wR1INR1+ ®R2INR2 +...... +oRnInRn  (40)
0<Rj<1 fori=1.2,....n 41

n
0<TIRj <1 fori=12,...n (42)

For a parallel and series system, the maximum
risk objective function is translated using the objective
function eqn.44

(42)



Thus the above couple system by analysing the
series and parallel systems separately. The linearized
risk system for parallel couple.

k
Inr, = ;wilnri
1=

(43)

Total linearized risk objective function for the
series- parallel couple system

k n
= %oailnri + _kairi (44)
1= 1=
This is subject to the constraint equation
0<r<1 i=L.kANDi=k, ....n
k
0<[lor<l i=1..k (45)
i=|
i=n
0<Yorn<l1 I =k..n
i=k
Limits of Safety

In order to find the Limits of Safety in a process
system, we now apply the Lyapunov Stability Criteria
that results in a matrix equation as follows given by
eqn.46

Ci+1j = H Qij (46)
Where in
Si Ei+1j
Q= | i Civij= |mi+lj (47)
¥ yi+1j
€ i1y Is Risk Matrix Vector at particular time i and

position j and & ; is the Risk Matrix Vector at an
advanced time i+1, H=J is the Jacobean or Matrix of
Safety and J is the Jacobean of Safety from a stable
point as follows:
J= a(|:1|:2|:3|:4|:5) (48)
a(r,R,®,1,9)

F, is the Function associated with risk of the Process
System, F, is the Function associated with Reliability of
the Safety System, F; is the Function associated with
weights that each Process System carried in a given
environment at a given time, F, is the Function
associated with hazard rate of the process system, Fis
the Function associated with Safety of the Process
System.

[11. FUNCTIONAL SAFETY INTEGRITY LEVEL
PERFORMANCE

Safety Integrity Level Performance describe
reliability of Safety system instrumentation in medical

equipment to provide accurate input and output data,
limiting the threshold of risk to data inaccuracy which
may lead to loss of life. Safety Life Cycle (SLC) is an
approach that addresses all necessary activities to
ensure medical equipment achieve functional safety
performance in relation of deployment of Leak diagnosis
in conformity to IEC 61508 International Standards. This
standard covers the requirements use of dedicated
medical instruments and automation package solutions
in relation to hazards and risk assessment methods
defining requirements to SIS design and engineering as
well as to testing, installation, commissioning, operation,
maintenance, modification, decommissioning and
documentation of medical equipment. The performance
criteria involved in obtaining safety integrity levels in DSS
safety functional performance are:
1. Reliability: Should have limited False Alarm
thresholds with respect to repeated ability
2. Sensitivity: Should detect pinhole deviation and
discrepancies in Leak diagnosis
3. Robustness: Should be able to adapt to changing
Leak cases and environment conditions

4. Response Time: Should have a feedback time
window to detect leaks in SIS or diagnosis within
accepted thresholds should be less than 3minutes.

5. Cost: Should have limited damages to warrant
repair or replacements is important.

6. Some important terminology, ALAARP is best
common practice judgment of the balance of risk
and societal benefits.
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=  Poor Routine Maintenance Practice &
Policy
= Lack of Proper Controls

-Installed Proper Maintenance Programs

-Regular monitoring and benchmarking against industry
standards

-Install proper audit and controls

Safety Classification-

i. Bow-Tie Strategy

I Symptoms

Consequence
Outcome =P and Effects
l Array Data base

Figure 2: Safe Matrix- System

The new modifications to the Bow Tie would include a Safe Matrix System that includes a window of safety
using the weighting concept. This superstructure describes the flow path- from Hazard to Top Event outcome of the
process systems under a safeguard control system under the accident pathway. The application model for a typical
Risk System of a typical FPSO-Export Riser is presented as Figure 3.0

SUPPLY VESSELS-H; “----p

Hazard Contribution- ?? Mechanical and Human Function

l

POWERED IMPACT-rI, & - - )

Risk Classification-Mechanical

A 4

- Riser and Suspension design with riser situated between the suspension J tube and Hull
- Gas Riser protection Structured designed to withstand impact of 14MJ

NOTE Barrier only designed to be effective if collision force is <14MJ

- Vessel operating procedures with respect to FPSO approach direction, speed, and bridge manning -Rys W3

- R21\/\/21

- R22 W22

A
|
|
|
; A 4
- ) ) TOP EVENT
Safety Classification-Mechanical and Operational .
Loss of Containment
'p

The Procedure of achieving functional safety
integrity levels 1) Identification of Possible Hazards and
specifications of corresponding safety function 2) The
following Hazard methods are normally used 1) Hazard
ID, 2) Hazop 3) FMCEA (Failure Mode, Critical Effect
Analysis) 4) Fault Tree 1) Safety Function incorporating
the following concepts a) Weighting Index b) Belief
Theory c) reliability d) Fuzzy Logic. Assessment of risks
corresponding to safety functions and identification of
the required safety integrity level 1) Probability models

incorporating weights2) Mean Time before Failure
(MTBF) 3) Mean Time before Repair (MTBR) 4) Markov
Chain Models 5) Weibull Function 6) Weights Safety
Index derived from Weibull

w(0)= (- SFR )(HLT )

i

(13)
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(15)

N @
11~
i=1
1_ ﬁ(l_ Rsi)Wi
i=1

The exponential distribution used to describe failure

Risk Potential =

r(t)=1-e*" (17)

R, (t)=e" (18)

The DSS failure rate is expressed as a
Homogeneous Poisson Process (HPP) with weight
safety function incorporated.

n=01,2... (19

f(n)= (Wavg/lt)‘ exp(— Wavg/lt)

n!

Cumulative Poisson distribution is given to DSS
describe failure rate:

f(n)= Zn: (Wavglty exp(_ Wig /@)

; 20)
i=0 .

Human reliability Models including weights
define critical risk caused by human errors by different
human or Leak operators

-

R (t)= exp ° (21)

Where by:

(22)

W)= (- SFR, )[;T B

i

Two models are considered in the risk and
safety analysis1) Bow Tie Systems 2) Markov Chain
Model 3) the model assumes the following A) Subjective
assessments and linguistic assessments is one of the
measures of safety B) Fuzzy set membership function
used to define input variables C) Flexibility Safety or
Jacobean Stability matrix in definition of membership D)

© 2020 Global Journals

Application of critical judgment. The probability models
adopted for our case is the Bayesian Probability
Framework Model. Application of Bayesian Probability
Network to randomly predict Risk factors K, is
presented, which is statistically computed by listing all
data in a posterior description in the Bayesian context.

f(F)-]i[f(d,/F)
Sws(d)

Y @ s F )

F\d,,d,.d,....d, o =
f( ‘ ) f(dlvdz ------- dn) = Zw,f(d‘)

For the safety problem, there are two critical
Risk stress factor data, the k, = d,, predicted safety
integrity levels, necessary condition and kg= d,,
predicted effect safety stress condition Sufficient
Condition.



Initiate a RAN Monte Carlo Model with its
associate belief weight

variables Y = f(Xl, ) O Xn) model and a
fuzzy class weight model

A 4
Create a Parametric Model with its associated
weight belief variable
y=f (X, Xy X, ) © QW Wy w,)

A
Generate a Set of Random Inputs
Xi1, Xiz, ..., Xig fOr specific weight index representing
belief in certainty of each reservoir data model

A\ 4
Evaluate the model and store the results as y; for
each class of belief fuzzy class weights

4
Repeat steps 2 and 3
fori=1ton.

\ 4
Analyze the
results

Rearranging incorporating with  thresholds
associated with internal and external synaptic weights of
Neural Network System:

wl Wy Wy Wy TX,(x-k) | [K
Vo | [ Wy Wogrosivvsvnn Mo Xz(xz_kz) K, K =ky+k,+..+ky (34)
T I— | (24)
S T T VT N B Ky =ky +ky+..t kyy (39)
Wi Wiiewiarinrnnn, Wl Xolx, -k K
Vv ] v e WL N( N N)_ LB Ky =ky+hkyy+otky (36)
W= lg)lla)ll + Dy F e+ E’leNlJ (25) A linear Network for Regression Analysis can be
used to determine the weights. The Average Mean
Wy, = [5)110)12 + W@y + . + E)lNa)NZJ (26)  Square error is used to train the Network.
Wy, = @00 + B,y + oo+ B0y ] @7) 1 2
N T %1% 122N T e 1N NN ARMS =| — ) e.
N & (37)
Similarly for 2 =
Where:
Wy = I_a)Zla)ll T Wy + ... + a)zzva)zvlj (28) _H H
ei — topredicted — 14 oobserved (38)
=lw D D 2
Wy [a)21a)12 t Wy +vvene + wZNwNzJ (29) The error function can be deduced from the

_ _ _ Gaussian Function: The Gaussian Function (also
W,y =[a)21a)lN+a)22a)2N+ ...... +a)2Na)NN] (B0)  referred to as beel-shaped or bell curve) is of the

following form
Similarly for N

X2

Wiy = |@y10 + @y + ot B0, | 3Y) G(x)= de 2

(39)
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Where o0 is referred to as the spread of
standard deviation and A is the constant. The function
can be a normalized so that the integral from minus
infinity to plus infinity equals one yeilding the normalized
Guassian

e 202 (40)

G(x)= J%G

By using the following definite integral

41
2\ g (41)

The Gaussian function goes to zero at plus and
minus infinity while all the derivatives of any order
evaluated at x=0 are zero

The error function equals twice the integral of a
normalized Gaussian function between 0 and x

(42)

2 T .
erfx=——\|e " du
7

The relation between the normalizd Gaussian
distribution and error function equals:

_]iG(x)dx = Erf( 01‘5] (43)

A series approximation for small value of x of
this function is given by:

erﬁc—i x_x_3+x_5_|_x_7_|_
Jrlo 31 52 7.3

While an approximation for large value of x ocan

be obtained
et X X .
S\ T3 s 7 (49)
1 13 135

e

The complementary error function equals one
minus the error function yielding

2 7
—J.e “ du
N
Defining the Limits of functional Safety:The

vector field F(x) of the whole phase portrait for all
individual safety functions f(x) at the designated nodes

erfcx=1—erfx = (48)
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is described by the matrix. In difference form, the
concept has evolved in the Safety Functional model as
presented:

CDlH—l = Fl((Dli’CDZi """ q)ni) (49)

q)2i+1 = FZ(q)li’CDZi ----- (Dm) (50)

(DNi+l = Fi(CDL.,CDZi """ (Dni) (51)

The Liapunov Stability Criterion is used as basis
for evolving functional safety incorproating risks involved
in uniform and systematic configuration of all technology
process, methods and dedicated medical safety
instrument systems (SIS) equipment to core sector
specific standards IEC61508, deployed in accessing
Leak diagnosis and treatment performance as provided
in equation below.

§1k+1 §lk
§2k+1 — ] é:Zk (52)
gnk +1 gnk —
Where:

OF, OF, OF,

20, o, | oD,

OF, | ( OF, OF,

7 =|| 2o, o, | o, (53)

IV. DSS PERFORMANCE USING LIAPUNOV
STABILITY FUNCTION CRITERIA

The concept of stability and instability of
Decision Support systems (Lyapunov equilibrium
stability criteria) was applied to a transient flow Leak
Detection system; to evolve a model for DSS functional
safety defect in SIS. The two dimensional invertible
maps in time and space domain for the DSS Leak
system is 1>z, t, and are presented for DSS Leak
Systems Data, DSS Electronic Systems Data, DSS
Blood Flow System Data, in equations (54), (55) and
(56), respectively.

DSS—CSD(J,K +1) = FCSD(J,K), ESD(J,K), BESD(J,K)] (54)
DSS - ESD(J,K +1) = F2[CSD(J, K), ESD(J,K), BFSD(J, K] (55)

DSS - BFSD(J,K +1) = F3CSD(J,K), ESD(J,K), BFSD(J, K)] (56)



Where, CSD(J,K), ESD(J,K),BFSD(J,K) are the
DSS Leak System Output Data, DSS Electronic Systems
Output Data and DSS Blow Flow System Output Data in
j patient node and k time domain, respectively? For DSS
Functional Safety (DSS-FS) to be accurate, DSS-FS is
defined as the domain of stability where, CSD, ESD and
BSFD are consistently steady, that is not change in
output for each patient measurement not related to
fluctuation, that is for the same input, the output must be
repeatable therefore

CSD(J,K +1) = CSD,(J,K) (71) ESD(J,K +1) = ESD,. (/,K) (57)

BFSD(J,K +1) = BSFD,(J,K) (58)
54 to 58 in matrix form is given by 74
é/ijrl = Hij (59)
Where:
é:./‘k é:./‘kJrl
ij: 7k gjk+1: Nika (60)
Yk Y ik
(e ), ).
1B C 0CSD ) 4\ OESD ) x\ OBFSD ) ;x
H= DEF:[aFZ (6]:1) oF, j (61)
GHI 0CSD ) 4\ OESD ) \ OBFSD ) ;¢
e )
| 0CSD ) 4\ OESD ) x\ OBFSD i |

J is the Jacobean differential given by the formula: For a
DSS functional safety to be repeatable J =1

_ oA F ]
0[CFD, ESD, BSFD]

(62)

| H-l |Qi: 0 is the characteristic equation of the matrix
of equation (62) from where the eigenvalues or the roots
can easily be evaluated. In this way, the problem is
decoupled into three dimensional maps and the stability
question is answered once the eigenvalues (A, Ao Asy)
for each iteration are known. If the Jacobeans are real
and symmetric such that one would expect real
eigenvalues, the system is asymptotically stable if -
1<M Ao Ag<1, but unstable if Ay, Ay Az > 10N
absolute terms. If one of the eigenvalues A, 0r Ay OF Agy
has modules equal to1 in absolute value, then the
critical point is established for stability. A leak in a
pipeline causing instability is observed when the
simulation results in at least one of the roots Ay, Ay,
Ag<-1. Similarly a surge causing instability is observed
when at least one of the roots Ay, Aux, Ag>1. The

absolute value of 1 is the critical bifurcating state. If A4,
Ao Mg IS such that, the Jacobean are complex
conjugates, (i.e. Ay, Age Ay = a + i), the stability
criterion for three dimensional maps can be solved. The
system is stable (for complex conjugates) if all
eigenvalues are inside the unit circle, whereas the
system is asymptotically unstable, if at least one of the
eigenvalues is outside the circle.

The stability boundary is the unit circle itself. |If
the eigenvalues are real, there are only two points where
they can cross the stability boundary at 1 and —1. This
concept is similar to saying that the stability condition
exists once the Jacobean is equal to 1 in absolute
terms. In order to describe the unstable phase portrait, a
bifurcation model to assign a relative magnitude to the
disturbed phase is proposed, as the standard deviation
from the critical point, which gives a robust measure of
the width of distribution. These are indicated below in
equations (41) to (43) for the eigenvalues.

- 1)2

(h-1)
0, ([hgy |~ 1)°

SD(7\’3ij) = ; W

The standard deviation model evaluates the
width of deviation of a typical flow vector point at time i
= 0...n. Once a leak is suspected at a time envelope, a
relative magnitude of the disturbance can be
ascertained. A standard deviation close to zero

(65)

indicates a small leak, and vice versa. ‘klij‘ "kZij‘ ,‘7\.3”‘

are the absolute eigenvalues of velocity, mass and
pressure, at a particular time and pipeline node point.
Hence, using the standard deviation model, it is
possible to classify the leak being considered. This
model is useful for assigning a value to a disturbance
after the eigenvalue criterion for a leak or surge has
been ascertained.

© 2020 Global Journals

Global ]()urnal of Science Frontier Research (A) Volume XX Issue III Version I E Year 2020



Global Journal of Science Frontier Research (A) Volume XX Issue III Version I E Year

Very Likely

Fuzzy Class 1

WeibullSigmond Safety Safety Safety Safety Safety
Function Index=0 Index=0.1 Index=0.5 Index=0.8 Index=0.9
0 Safety Integrity Levels (Weighted) on the Risk Function
0.1 1.02745 0.9247 0.5137 0.2055 0.1027
0.2 0.791344 0.7122 0.3957 0.1583 0.0791
0.4 0.938869 0.8450 0.4694 0.1878 0.0939
0.6 1.485194 1.3367 0.7426 0.2970 0.1485
0.8 2.643102588 2.3788 1.3216 0.5286 0.2643
1 5.01734 4.5156 2.5087 1.0035 0.5017
1.2 9.921146 8.9290 4.9606 1.9842 0.9921
1.4 20.1783 18.1605 10.0892 4.0357 2.0178
1.6 41.895 37.7055 20.9475 8.3790 4.1895
1.8 88.36478 79.5283 441824 17.6730 8.8365
2 188.7084 169.8376 94.3542 37.7417 18.8708
Fuzzy Class 2
Weibull
Sigmoid | Safety Index=0 | Safety Index=0.1 | Safety Index=0.5 | Safety Index =0.8 | Safety Index=0.9
Constant
0 Safety Integrity Levels (Weighted) on the Risk Function
0.1 0.82422 0.741798 0.41211 0.164844 0.082422
0.2 0.50925 0.458325 0.254625 0.10185 0.050925
0.4 0.388808 0.349928 0.194404 0.077762 0.038881
0.6 0.395803 0.356223 0.197902 0.079161 0.03958
0.8 0.453289425 0.407960482 0.226644712 0.090657885 0.045328942
1 0.553733 0.49836 0.276867 0.110747 0.055373
1.2 0.704619 0.634157 0.352309 0.140924 0.070462
1.4 0.922237 0.830013 0.461118 0.184447 0.092224
1.6 1.232212 1.108991 0.616106 0.246442 0.123221
1.8 1.672506 1.505256 0.836253 0.334501 0.167251
2 2.298504 2.068653 1.149252 0.459701 0.22985
Unlikely Fuzzy Class 3
Weibull
IS:igmc?nd Insda;fzo Safety Index=0.1 Inc?:ii%. 5 Safety Index=0.8 |n§:>t%.g
unction
Safety Integrity Levels(Weighted) on the Risk Function
0.1 0.514808 0.463327 0.257404 0.102962 0.051481
0.2 0.198671 0.178804 0.099336 0.039734 0.019867
0.4 0.059176 0.053258 0.029588 0.011835 0.005918
0.6 0.023501 0.021151 0.011751 0.0047 0.00235
0.8 0.0105007 0.009450063 0.005250035 0.002100014 0.001050007
1 0.005004 0.004504 0.002502 0.001001 0.0005
1.2 0.002484 0.002236 0.001242 0.000497 0.000248
1.4 0.001268 0.001142 0.000634 0.0000254 0.000127
1.6 0.000661 0.000595 0.000331 0.000132 6.61E-05
1.8 0.00035 0.000315 0.000175 7.00E-05 3.50E-05
2 0.000188 0.000169 9.39E-05 3.75E-05 1.88E-05
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a) Leak Finder Development Platforms

The Leak Finder development platforms is presented in eq.1

Table 1.0: Leak finder Development Platforms

# Requirement Description How To Test Test Result Ok?
1 Development Lab VIEW Graphical Verify that the system runs
Platform Development Platform on LabVIEW platform
5 Operating System Window 2000/NT/XP Verify that the VI runs
Platform properly on the OS.
== _ _ _ ] is computed based on extreme scenarios in the hazard
oRj OoRy Ok Ok OR; register. The Hazard register contains all possible
or;  ORj Owy Oy O hazards that is possible in FPSO system. The weights
on occupational accidents is 0.36, offloading events
al:21' 8F2J- al:2J' 8F2j a|:2j 0.24, Huﬁ failure due to extreme wave Ioadgis 0.24,
or.. OR. Om: O\: OS: Passing vessel collision with FPSO or shuttle tanker
' ! ! ! ! 0.959682, Strong collision by supply vessel with FPSO
= 5F3j 5F3,- 5F3j ang 5F3j (49) or shuttle tanker 0.206752, Hydrocarbon associated risk
- , turret and riser systems) is 0.454357,
or.  oR; oOw; Ok 0S; (process . . |
) 1 1 g Hydrocarbon and Topsides systems accidents is
aF4J. 8F4j 8F4j aF4J. aF4J. 0.268701, , Leak that may lead to fire or explosion in
process plant is 0.272354, Helicopter crash Leak from
ar  oR ij acoiJ' a7“ij aSij turret systems that may cause fire or explosion in turret
OF.. OF. OF. OF. OF.. is 0.204447, Leak or rupture of riser is 0.123299,
S S 5 751 275 Auxiliary systems accidents, 0.698367, Engine room fire
or;  ORy Odoy Ohjj OSy or explosion is 0.566394, Fire or explosion in pump

i= time element j= component under consideration
working as a network to other components

J is the safety matrix function which is tells
operators the Limits of Safety, such that If J =1 in
absolute terms the Safety status is stable or good, if J
< -1, the safety status is unstable and a Fault may exist
in the System and an Unsafe position results, if J > 1,
the safety function becomes over stable, which indicates
the systems functioning above normal or over design for
safety. These criteria can be an important tool for Safety
operators to mark the limit of design or operation. Any
factor that tends to push safety function above or below
absolute 1 should be minimized. This technique for
determining safety is not available in previous method
for safety analysis

V. RESULTS AND DISCUSSIONS

Table 3 shows the hazard register and the
weights for safety. Based on models disclosed in
previous section a weights were simulated in a risk
management software system developed for purpose.
The software simulator is design in visual basic macro
scripts of an Excel sheet programme modules and the
weights simulated in Excel sheet produce the weights
values for different risk/hazard scenarios and events
likely to occur. The weights values represents the safety
function of the FPSO system subject the maximum
hazards risk test analysis of 95% and minimum reliability
test of 5% for both process and occupational hazards.
These values expressed extreme scenarios and design

room is 0.718306, Helicopter crash 0.891995, Human
and Organisational Factors (HOF) is 0.160624, People is
0.688105, Management systems is 0.71663, Collision
risk represents a significant contribution for two of the
FPSOs (all potential collision) is 0.005607, Uncontrolled
Release of Hazardous Materials is 0.769407, Blowouts is
0.142786, Turret and Cargo Tank Release is 0.949124.
This cases show the weight values that assumes a value
of 1 represent the best case for safety under the
scenarios of the risk and reliability of design and weight
values that assume close to zero represent the work
case for safety. In the few examples selected collision
risks represents the worst case of safety with a value of
0.005607 followed by human and organisational factors
(HOF) which is 0.160624. The best case for safety are
the Turret and Cargo Tank release with a value of
0.949124, followed by Helicopter crash of 0.891995,
followed uncontrolled release of hazardous materials
0.769407, followed by Fire or explosion in the pump
room of value 0.718306, management system which are
typical for most Exploration and production companies
that have very strong integrated vertical management
systems with a value of 0.71663. The results enable us
not only to qualify the hazard register for the worst cases
and best cases of safety for all components the FPSO
system but allows a risk expert to quantify the amount
allotted in each case for design, remedial or repair
actions.
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Table 3: Hazard Register And Weights of Safety

SN Hazard Register
| FPSO

Fuzzy Class: General

Fuzzy Class: Weighted

Two Class of Safety

Occupational Related Hazards Risk (95%)

Process Related Hazards Reliability (5%)

Occupational Related Hazards Risk (95%)

Process Related Hazards Reliability (5%)
1 Occupational Related Hazards Weights of Safety
2 Process fires and explosions 0.58
3 Riser and pipeline releases 0.30
4 Ship collisions 0.26
5 Fires and explosions in accommodation spaces 0.14
6 Fires and explosions in machinery spaces 0.81
7 Fires and explosions in cargo and ballast tanks 0.06
8 Structural failure 0.54
9 Helicopter accidents 0.37
10 Occupational accidents 0.36
11 Offloading Events 0.24
12 Dropped objects 0.51
13 Position loss 0.48
14 Ballasting failures 0.92

Fuzzy Class: General

Fuzzy Class: Weighted

Two Class of Safety

Occupational Related Hazards Risk (95%)

Occupational Related Hazards Reliability (5%)

Process Related Hazards risk (95%)

Process Related Hazards Reliability (5%)
15 Marine and hull related accidents, structural impacts Weights
16 Hull failure due to extreme wave load 0.245383
17 Hull failure or marine accident due to ballast failure 0.296617

or failure during loading/offloading Operations 0.160162
18 Leak from cargo tank caused by fatigue 0.137528
19 Accident during tank intervention 0.785583
20 Passing vessel collision with FPSO or shuttle tanker 0.959682
21 Strong collision by supply vessel with FPSO or shuttle tanker 0.206752
22 Other vessels or floating structures operating on the field 0.704976

colliding with FPSO or shuttle tanker 0.081861
23 Collision during offloading 0.130822
24 Rapid change of wind direction 0.583432
25 Multiple anchor failure 0.09615

Fuzzy Class: General

Fuzzy Class: Weighted

Two Class of Safety

Occupational Related Hazards Risk (95%)

Occupational Related Hazards Reliability(5%)

Occupational Related Hazards Risk (95%)

Occupational Related Hazards Reliability (5%)
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26 Hydrocarbon and Topsides systems accidents 0.268701
27 Leak that may lead to fire or explosion in process plant 0.272354
28 Leak from turret systems that may cause fire or explosion in turret 0.204447
29 Leak or rupture of riser 0.123299
30 Impacting loads due to crane operations (swinging loads) on a moving vessel 0.456445
31 Dropped object from retrieval of cargo pumps 0.96504
32 Severe rolling during critical operations, such as crane operations 0.160463

(considered as included) 0.401012
33 other scenarios, therefore not addressed separately) 0.92856
34 “Topside” fire threatening cargo tank resulting from gas leaks 0.191856
35 Emergency flaring with approaching shuttle tanker or during off-loading 0.494471
36 Unintended release of gas or oil from riser 0.862935
37 Gas and oil release from other sources 0.585676
38 Auxiliary systems accidents 0.698367
39 Failure of cargo tank explosion prevention function during normal operation 0.460309
40 Fire or explosion in pump room 0.718306
41 Spill from off-loading system. 0.366799
42 Engine room fire or explosion 0.566394
43 Helicopter crash 0.891995
44 Human and Organisational Factors (HOF) 0.160624
45 People 0.688105
46 Equipment (e.g. hardware) 0.344732
47 Management systems 0.775929
48 Culture and environment 0.58924
49 Management systems Failure 0.694851
50 Procedures 0.973734
51 Communication 0.408983
52 Training 0.505835
53 Management of change 0.71663
54 Risk assessment Policy and Procedures 0.991488
55 Hydrocarbon associated risk (process, turret and riser systems) 0.454357

is the highest contribution for all FPSOs considered. 0.694676
57 Collision risk represents a significant contribution for two of the FPSOs (all potential collision)
58 Scenarios are included, but shuttle tanker impact is the dominating contribution. 855’8?2%
59 Occupational accidents and accidents during helicopter transport were only included for

one 0.25107
60 All the cases. 0.261401
61 Uncontrolled Release of Hazardous Materials 0.769407
62 Blowouts 0.142786
63 Turret and Cargo Tank Release 0.949124
64 Release of Non-Process Materials 0.901016
65 Topside Process Release 0.769164
66 Bunkering Operations 0.800986
67 Natural Adverse Occurrences Hazards 0.430831
68 Earthquakes 0.519753
69 Subsidence 0.846755
70 Severe Storm 0.033608
71 Tornadoes 0.900927
72 Physical Impacts Hazards 0.419685
73 Vessel Collisions 0.562891
74 Drilling Jackup Collision 0.356217
75 Fixed Wing Aircraft 0.806782
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76 Missile 0.66652
77 Submarine Collisions 0.198745
78 Helicopter Collisions 0.402451
79 Dropped Objects 0.531651
80 Structural Failures 0.054705
81 FPSO Structural Failure 0.064833
82 Crane Structural Failure 0.300675
83 Process Vent Stack Failure 0.342143
84 Fires Hazards within Enclosed Areas 0.489227
85 Indirect Events 0.314163
86 Communications Failure 0.055235
87 Process Control Failure 0.206388
88 Operations or Maintenance Error 0.607366
89 Power Supply Failure 0.183286
90 Construction Error 0.465601
91 Other Hazards 0.893934
92 Diving Hazards: 0.843267
93 Process Analysis 0.757956
94 Occupational Hazards 0.555226
95 Environmental Hazards 0.03813
96 Offloading Operations 0.113766
97 FPSO Mooring System Failure 0.147519
98 Marine Operations 0.532911
99 Stability and Water Tightness 0.511993
100 Sea Keeping 0.418401
101 Structural Failure 0.921399
102 Personnel Transfer 0.600707
103 TR Impairment 0.770934
104 process/deck piping pool fire 0.391826
105 non-field vessel collision 0.629452
106 mooring line failure 0.905579
107 offloading vessel collision 0.992711
108 cargo tank fire/explosion 0.342772
109 others 0.237412
110 Electrical Failure /Blackout 0.102311
111 Power Management Systems 0.918463
112 Blackout 0.828628
113 1.Load Demands 0.865375
114 2.Generator Trips 0.605228
115 Subsea Flowlines and Risers Failure 0.803487
116 Gas Lift/Export Flowline and Riser Systems 0.864006
117 Process Risks Causes 0.49596
118 Gas Leaks 0.888224
119 a. Over Pressure 0.249184
120 b. Corrosion 0.648887
121 c. Blowout 0.402292
122 2. Over Pressure 0.651338
123 a. Rapid Valve Closure 0.342516
124 b. Pump Over Pressure 0.476087
125 3. H2SCracking 0.955437
126 a. Presence of H2S conditions 0.811973
127 4. Rapid Decompression 0.800665
128 Mechanical Risks 0.563077
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129 1. Fatigue 0.846947
130 a. Age 0.832021
131 b. Pipeline Wear 0.252996
132 2. Riser Movement 0.916733
133 a. Water Current 0.750846
134 b. Movement of FPSOs 0.381637
135 Operational Risks 0.767096
136 1. Safety Valves Failure 0.92734
137 2. Operational Maintenance Negligence 0.617795
138 Human Risks 0.461933
139 In experience Operators 0.675503
140 Operational Negligence 0.790135
141 Design Oversight 0.402744
142 Lack of Training 0.493624
143 Poor Work Ethics 0.039122
144 Management Oversight 0.138692
145 Process Risks 0.757267
146 1. Wax Formation 0.421924
147 a. Operating Conditions at or below pour Temperature 0.069952
148 2. Hydrate Formation 0.445984
149 a. Operating Below Cloud Temperature 0.577469
150 3. Surges 0.074496
151 a. Over pressure 0.328886
152 4. Scaling 0.432894
153 a Presence of Barium Sulphate 0.320005
154 b. Corrosion materials 0.508234
155 5. H2S Corrosion 0.219939
156 a. H2S present 0.114418
157 b. Corrosion Environment 0.653914
158 6. CO2 Corrosion 0.989972
159 a. CO2 Present 0.605648
160 b. Corrosion Environment 0.561565
161 Mechanical Risks 0.522539
162 1. Dynamic Loading of FPSOs 0.948076
163 a. Movement of FPSOs 0.047636
164 b. Water or Ocean Currents 0.698753
166 2. Stress Corrosion Cracking , SCC 0.557259
167 a. H2S present 0.031665
169 3. Bending Load at Interfaces 0.474349
170 a. Operating Conditions 0.180089
171 b. Movement of FPSOs 0.099551
173 4. Leaks 0.572271
174 a. Over Pressure 0.6867

175 b. BlowOut 0.383203
176 c. Corrosion 0.916813
178 5. Operational Risks 0.819863
179 a. Pigging Operations 0.159734
180 b. Depressurization and Blow Out 0.585767
181 0.616658
182 Human Risks 0.377874
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183 In experience Operators 0.783507
184 Operational Negligence 0.033003
185 Design Oversight 0.45068
186 Lack of Training 0.475881
187 Poor Work Ethics 0.283339
188 Management Oversight 0.252755
189 Turret Design Failure 0.943661
190 The passive nature of the turret design minimizes 0.46419
191 the station-keeping risk but increases the fire and explosion 0.302457
192 risks as the wind direction tends to align with the dec 0.290569
193 1.Damage to equipment caused by dropped objects 0.117465
194 2.Fishing gear impacts 0.86409
195 3.Leaks in the flexible piping because of aging riser 0.799673
196 4 Latent defects in design or manufacturing. 0.67855
197 Process Fires and Explosions. 0.051717
198 Note that because of the 0.252564
199 passive turret design, the wind tends to align with the deck, and a 0.201168
200 gas leak would reach the turbine intakes 77% of the time. 0.778077
0.542618

Fuzzy Class: General

Fuzzy Class: Weighted

Two Class of Safety

Occupational Related Hazards Reliability (95%)

Occupational Related Hazards Reliability(5%)

Occupational Related Hazards Reliability (95%)

Occupational Related Hazards Reliability (5%)
203 Human Personnel Resourse Hazards 0.785607
204 OIM 0.511124
205 Production Supervisor 0.865187
206 Maintenance Coordinator 0.180422
207 Shift Supervisor 0.8816
208 Production Operators Staff (oil, gas, utilities) 0.148113
209 Instrument Engineer 0.498624
210 Instrument Technician 0.060353
211 Electrical Staff 0.850599
212 Mechanical Engineer 0.803781
213 Mechanical Technician 0.119317
214 Subsea Staff 0.181005
215 Berthing Master (Also Tanker Safety Supervisor) 0.995288
216 Marine Supply 0.796298
217 Offloading Support Staff 0.583852
218 Telecoms Engineer 0.111915
219 Medics/Admin 0.093324
220 Core Offshore Crew 0.668866
221 Crane Operator 0.612093
222 Facility Management (including Catering) 0.356764
223 Core Offshore Services Crew 0.838698
224 Specialist Operations Staff (including Loading) 0.034068
225 Intergated Service Contractor Staff 0.091184
226 Revenue Engineering 0.287148
227 Commisioning Allowance 0.000236
228 Total Services and Suport 0.562159
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230 Campaign Offshore Crew 0.073438
231 Government Reps 0.785982
232 Human Hazards 0.138105
233 Human errors are of Seven Types 0.144795
234 1.  Design Errors 0.229739
235 2. Operators Error 0.294726
236 3.  Fabrication Error 0.171199
237 4. Maintenance Error 0.818781
238 5.  Inspection Error 0.32683
240 6.  Contributory Error 0.893129
241 7. Handling Error 0.615725
242 1. Poor Training or Skill 0.171947
243 2. Poorly documented or Lack of Documented and Updated Operational Procedures 0.213275
244 3. Environmental Factors and Occupational Safety 0.733409
244 4. Poor Incentives by Management 0.661781
244 5. Negligence and Organizational Attitudes 0.543797

a) Safety Factors Design

The plot of failure rate and reliability rate as
revealed in Figure 7 and Figure 8 respectively show a
parabolic curve with a peak maximum at five years. The
measure of failure rate determined as number of failures
per year of personnel for the FPSO predicted a peak of
2 fatalities within 5 years which is good performance
and tapers down due to improve performance. Whereas
the predicted reliability FPSO degrades over a period of
time reaching all time high of 2.7% poor performance.
The poor performance of reliability may be due to over
design of some facilities. Figure 9 and Figure 10 are the
predicted safety and risk potential which is the net risk
and safety factors put in place based on all possible
scenario of Table 3.0, we have a net average risk
potential to FPSO increasing slowly in a parabolic
fashion reaching a threshold after 15 years and peaking
at a maximum. The risk potential is the measure of risk

over the reliability of the safety systems. Since the
studied FPSO risers, hull and production facilities have
been overdesign against risk by putting in place the
safety measures, the relative risk profile is low and
therefore risk potential is a good measure to determine
the measure of risk. A cursory look at the safety potential
shows a continual degrade of safety measures of time.
The complicated interrelated threats all work to
undermine facility and therefore recommended repair
operations is recommended. The plots presented in
Figure 7, Figure 8, Figure 9 and Figure 10 are based on
the simulated table based on Monte Carlos simulation of
the hazard data supplied by operators assuming
occupational related hazard risks of 95%, process
related hazards reliability of 5%, and their measures of
safety simulated by the deterministic model and learning
algorithm disclosed in our work.
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Figure 3: Plot of Reliability rate with time of Riser System
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Figure 6: Plot of Risk Potential with time of FPSO Riser System

b) Weighted Hazard Rate and the Belief Function

This section discusses plots of weighted hazard
rated and belief function. Thus Figure 11 shows the
weighted hazard rate with the hazard shape function.
The hazard shape function describes the nature of risk.
A hazard shape function of 1 is a constant hazard rate,
below 1, is a decreasing hazard rate and above is the
increasing hazard rate. The weighted hazard rate shows
increasing hazard rate is significant. By the term
weighted hazard rate implies a safety measures have

© 2020 Global Journals

been incorporated and takes into consideration change
in hazard behaviour. A safety fraction of 0 shows a
hazard rate at its minimum and decreases as safety
fraction increases. The belief function describes the level
of confidence an operator views the reliability of such
systems. A reliability of 90% at fuzzy class 1, very likely
to occur, a linguistic term shows a belief function that is
parabolic with time.
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Figure 10: Plot of Belief Variable e; with Time for 90% Safety Protection for Fuzzy Class 2 for Fuzzy Failures 1-10
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Figure 13: Risk Profile with Time for B (1.8) , Fuzzy Class 2 and Weight Function (B1, SRFi) : SFRi (0,0.1, 0.2......0.9)
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Figure 14: PDE tool box displaying a plot of the initial boundary conditions

The MAT file derived from the PDE tool is feed  predictive control networks to be trained. In this work, it
into the neural networks tool box as a source of raw data  was saved as data.mat
in other for the fitting networks, Perceptions and  For the curve fitting networks

4. Network/Data Manager — — =l
l' Input Data: B Networks :l Output Data:
b networkl tout
cont_u network?
G Target Data: x Error Data:

g
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) Input Delay States:

() Layer Delay States:
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t end

Global Journal of Science Frontier Research (A) Volume XX Issue III Version I
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Here is the neural
showing the functions and
model in the PDE tool. All
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Figure 15: MATLAB neural networks data manager

networks data manager letters in the network/data manager signify various
data imported from the vectors and matrices derived from the risk that have
variables represented by  been further simplified with learmning algorithms.
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Figure 16: MATLAB neural network viewer
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‘] Training multiple times will generate different results due
to different initial conditions and sampling.
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between outputs and targets. Lower values are better. Zero
Means No error.

Regression R Values measure the correlation between

cutputs and targets. An R value of 1 means a close
relationship, 0 a random relationship.
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Figure 17: MATLAB neural network fitting tool

The network is to be trained using levenberg-
Marquardt back propagation. Levenberg-Marquardt is
the best training algorithm adopted for .complex
problems and the application of multiple networks in
solving problems like Risk system in oil and gas riser
systems
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Figure 18: MATLAB neural network training tool

The general graphic user interface (GUI) for the  like the performance, training state, fit, regression Here
neural network in training showing the training s the performance plot for the performance.
procedures and a link for the outcomes of the training
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Best Validation Performance is 0.0016711 at epoch 11

Train
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H Test

Mean Squared Error (mse)
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Figure 19: performance plot

This is for 11 iterations known as epochs example, the result is reasonable because of the

This training stopped when the validation error  following considerations: The final mean-square error is
increased for six iterations, which occurred at iteration  small. The test set error and the validations set error
23. If you click Performance in the training window, a  have similar characteristics. No significant over fitting
plot of the training errors, validation errors, and test has occurred by iteration 17 (where the best validation
errors appears, as shown in the following figure. In this  performance occurs).
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Figure 20: Training state

This is the training state. These plots are
characteristic to a group of distributions of vectors fed
from the model to be used in predictive control and

decision support. Any deviation from this plot will be
recorded and seen as anomaly during Risk system.
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Figure 27: Neural Network Fit

This is a plot fit between the input functions (the
pressure distribution data of the field during Risk system
production) and the output data which is the Risk
systeming factor C; and the targets which is the true
value the dimensionless pressure used in the IMPES

PDE model. The training targets are shown by the blue
circles while training inputs are the blue +, validation
targets and Output d is green respectively while test
details are red, Errors appear orange the fit is black.
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Figure 22: Regression plot

Here is the regression analysis for the network
trained. An interpretation of these reports can be used
for the decision support system. Further production
process management can be conducted to a point
where each Risk systeming rate and Risk systeming
factor will be identified separately by a Regression
pattern of two characteristic to it. This can help in
predicting future rate of Risk system. And in the decision
making process of a production team. All the output
from the neural networks can be used to design a
hardware system that has been programmed to
generate these output when fed with data from the
production system, this system generates output, stores
them in its memory and compares them with the
previous output generated as production continues. A
transition from a point of minimal Risk systeming to a
critical Risk systeming can be noticed by this system.
The system would trigger an alarm or other forms of
communications (probably red light) to inform the
Production Personnel.
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VI. CONCLUSION AND RECOMMENDATION

The Learning algorithms provides a method of
resolving risk modelling of complex production systems.
The production platforms, storage and riser/flowline
systems was considered for distribution of risk factor at
different times and along the. Data is obtained from the
production system and fed into the neural networks the
difference in patterns signifies a difference in the
condition of the production system. This project involves
a series of projects starting from Risk system production
modelling, to Risk system management technologies,
Risk system transportation modelling and simulations
etc. it is recommended that the background of Risk
systeming problems be taught in Petroleum Production
Engineering courses. The knowledge of various tools for
this kind of simulation should be introduced to the
engineering curricular.
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