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Abstract-

 

Modelling safety procedures of complex risk systems 
of multifunctional production systems such as floating 
production storage and offloading (FPSO) vessels is typically 
rigorous. Deterministic modelling and Learning algorithms are 
normally used to generate whole sets of hazard data based on 
data of intrinsic risk events and safety measures incorporated. 
The model developed use failure data systems obtained from 
operator of multifunctional production systems of FPSO to 
generate fuzzy class surrogates based on learning algorithms 
to rank safety index. Thus classifications of risk events in a 
fuzzy set of system is predicted used  weighted like hood of 
failure of human, process, mechanical, electrical, operational, 
in composite risk system to set the safety thresholds. The 
model used a learning constraint function in probable risk 
outcomes to match retroactively weights index of actual 
scenarios in skewed hazard surrogates to specific risk and 
safety ratings criteria. The MTBR (Mean Time before Repair) to 
plan maintainability studies and safety programmes

 

were 
simulated to an optimal repair range from almost 0.5 yrs for 
worst case; fuzzy class 1 with safety rating of 0.0 to almost 5 
million years for best case when the fuzzy class 5 with safety 
index rating of 1.0 assume availability is 80%.

 

I.

 

Introduction

 

eliability studies and assessments of process 
plants and production platforms are carried out 
during preliminary concept design and 

engineering phases’ development to provide engineers 
and operator’s qualitative and quantitative data to plan 
risk and safety targets during the life of the process or 
production plant [1, 2]. Qualitative studies such as 
Hazard and Operability (HAZOP) studies and scenario 
analysis are most popular in safety design [3, 4]. 
HAZOP studies offers simple qualitative procedure to 
exclusively determine initial hazards that may occur in a 
process production facility and selected utility systems. 
The practise is to use quantitative studies to determine 
minimum thresholds for safety and qualitative risk 
assessments (QRA) to plan future risk scenarios [5, 6].  
Complexity in risk events occurring during operations 
and interrelations of multifunctional systems limits their 
qualification of hazards and safety categories that may 
exists. In the example studied, cases of accidents 

reported on an FPSO could be attributed to the complex 
interacting units and systems in petroleum production 
systems  

The modelling methods in leaks and reliability 
analysis have been presented elsewhere [Abhulimen, 
2007]. The risk associated with personnel on FPSO is 
represented in Table 1. Several techniques have been 
presented in literature for reliability and risk analysis (1).  
Among the most frequently used are quantitative risk 
analysis, the probabilistic safety analysis, worst-case 
methodology and optimal risk analysis (2). Significant 
advancement has been made in developing newer 
method for hazard and risk assessment, consequence 
modelling and user friendly tools. However, while 
foreseeing worst-case scenarios is common, little 
attention is paid in envisioning credible scenarios. In 
engineering safety analysis, intrinsically vague 
information may coexist with conditions of “lack of 
specificity” originating from evidence not strong enough 
to completely support a hypothesis but only with 
degrees of belief or credibility (Binaghi and Madella, 
1999) (3). Dempster-Shafer (D-S) theory of evidence 
(Dempster, 1968; Shafer, 1976) (4) based on the concept 
of belief function is well suited to modeling subjective 
credibility induced by partial evidence (Smets, 1988) (5). 
Reliability Centred Maintenance (RCM and RCM-II) and 
similar techniques have been introduced recently to 
improve the reliability of process plants.  However data 
analysis of typical risk and hazard components 
multifunctional FPSO system are complex accident 
paths and non-existent. Some equipment can be critical 
to safe operation.  In engineering safety analysis, 
intrinsically vague information may coexist with 
conditions of “lack of specificity” originating from 
evidence not strong enough to completely support a 
hypothesis but only with degrees of belief or credibility 
(Binaghi and Madella, 1999). Dempster-Shafer (D-S) 
theory of evidence (Dempster, 1968; Shafer, 1976) 
based on the concept of belief function is well suited to 
modeling subjective credibility induced by partial 
evidence (Smets, 1988).  The D-S theory enlarges the 
scope of traditional probability theory, describes and 
handles uncertainties using the concept of the degrees 
of belief, which can model incompleteness and 
ignorance explicitly. It also provides appropriate 
methods for computing belief functions for combination 
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of evidence (Pearl, 1988). Besides, the D-S theory also 
shows great potentials in multiple attribute decision 
analysis (MADA) under uncertainty, where an evidential 
reasoning (ER) approach for MADA under uncertainty 
was developed on the basis of a distributed assessment 
framework and the evidence combination rule of the D-S 
theory (Yang and Singh 1994; Yang and Sen 1994, 
1997; Yang,2001; Yang and Xu, 2002a, b).The weight 
concept introduced here allows the possibility of 
representing a measure of safety Risk ratings asocial 
with complex interacting risk systems that has safety 
barriers and controls to prevent loss of containment: The 
weighting function for each risk classification allows us 

to do the following1) Determine which equipment and 
instruments are truly critical to reliability, as well as 
process  

II. Learning Algorithms in Risk and 
Safety Modelling 

Learning algorithms are useful tools to quantify 
future risk uncertainty from past risk events and 
incorporate neural network modelling of Fuzzy Belief 
linguistic classifications: Figure 6 is a schematic of 
neural network architecture:   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Neural Network Architecture

Learning algorithms incorporates neural 
network design in MATLAB to produce outputs 
comparable to the desired output and hazard measured 
and registered numerically. The outputs are then 
compared to the desired output in a process known as 
Feed-Forward routine. This feedback-propagating cycle 
is iteratively executed until  the weighting Index factors 
converge on values or Function that minimize the 
Average Root Mean Square (ARMS) error within the 
initial training to establish hazard model trainer balck 
box. Once the initial training is set to the weighting 
factors establishing equilibrium baseline are held 
constant. Typical networks simulates 5000 neural 
network candidates to determine the optimal neural 
network. The actual training process involved 50 epochs 
cycles of back propagation training algorithm to locate 

the probable solution of the local minimum error. The 
minimized ARMS error for the training set is expressed in 
a nested scheme for the hazard function in eqn. 1 
below; 

        ( ) ( )niiiii xxxfyF ............, 211=λ=  
      (1)

 

yi

 
represents the overall Hazard containment failure 

resulting from a combination of several hazard 
components inputs xi  of  the FPSO systems. The 
mathematical model describing a neural network 
structure reflecting hazard analysis in FPSO Systems 
resulting in loss of containment is: 
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In the neural network model presented in 
equation3, wkj

 is the synaptic weights from the neurons 
in the hidden layer j to the output neuron k and wij

 are 
the synaptic weights from the neurons in the input layer i 
to neurons in the hidden layer j and xi

 is the i-the 
element of the input variable of the input vector x~ . The 
weight vectors w denote the entire set of synaptic 
weights ordered by layer, the neurons in the layer and 
the synapses in a neuron. The thresholds corresponding 
to the hidden and the output neurons are given by κ . 
The activation function 

                                
∗+

=ϕ
ie1

1
 
        

 
    (4) 

Where: ξ•= xx~  and ξ  is the pre-process scaling 
vector and x is the raw input data and ξ•= yy~  is the 
post scaling factor 

The error associated with output is defined  as 

                  ( )imeasuredipredictedie λ−λ=   
         

 
        ni ..........................2,1=

  
                 (5)

 

Hazard Outcomes are predicted using Neural 
Networks used to train the data given by:

 

Equation 6  can be redefined by the following 
equation for hazard systems 
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Hazard System IN Series is given by:
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Where the Hazards inputs ji
iH ω   and the Hazard 

Outputs ( )ko sH   are represented by fuzzy-belief sets 
described earlier. jkκ represents the threshold or the 
error associated with each training: Equation 8 is given 
by the following: 

       ( ) ( ) jk

N

1j

N

1i
ijijkko SiInfsInH κ−ωω= ∑ ∑

= =
       

     (8) 

i-input index (1-N input Hazard Synoptic Function) 
j-weight index (1-N interacting Hazard Synoptic Neuron 
functions) 
k-output index in times (1-N Hazard Output Synoptic 
Function). 
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Where: 
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The Weights are given by the following Function: 
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Equation 24 can be expressed in an Eigenvalue
 Equation: 
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Once Specific Data Sets connecting input 
hazards with the resulting Hazard outcomes can be 
predetermined, the synaptic weights constants can be 
determined or trained, so that any other hazard input 
can now be determined. Weights associated in each 
neural network in equation 37 are determined using 
Linear Network for Regression Analysis.

 
 
 
 
 
 
  

  

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
20

20

41

  
 

( A
)

© 2020 Global Journals

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems



Using Regression Method, Equation 37 can be 
rearranged and solved for W: 
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The Average Mean Squared Error is computed 
as Standard Deviation measure to determine whether 
the weights trained give specific outputs that minimizes 
error associated with each predicted measurement
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Where the error being the difference between 
predicted and measured outputs: for example the 
difference between failure rates predicted by the neural 
network and failure rates measured for a particular 
Systems (e.g FPSO) resulting from combination of 
hazards

 

                    omeasuredOpredictedi HHe −=
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Risk and Safety Modelling. The risk and safety potential 
is computed using eqn. 33 and eqn.34 

SystemsSafetyofliabilityRe
RiskPotentialRisk =

 
(33)

 

The Risk Potential gives a measure of the True 
Risk inherent in a System or Sub System 

SystemSafetytoRisk
SystemsSafetyofliability

PotentaialRisk
PotentialSafety Re1

==

  
  

(34)
 

The Safety Potential gives a measure of the 
Safety of a given System

 

Maximum Risk of a System based on New 
Technique.

 
The maximum risk can be evaluated from 

the linear programming model. The maximum risk for a 
system that follows series configuration is given by
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Subject to the constraint equation
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Equation 3 subject to eqn. 4 is our model for 
predicting a series system, which is

 
solved by finding 

the linear programming model that multiplies the 
respective weights to the Natural Logarithm of the 
respective risk events.

 

However the maximum risk model for a system 
operating in parallel is given by eqn.38 and constraint 
functions is given by eqn.39 and eqn.40 
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The maximum reliability of the safety systems is 
evaluated using eqn.8 and the constraint eqn.41 is given

 

by eqn.42 and eqn.43
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For a parallel and series system, the maximum 
risk objective function is translated using the objective 
function eqn.44
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Thus the above couple system by analysing the 
series and parallel systems separately. The linearized 
risk system for parallel couple. 

                             i

k

li
ip rInInr ∑ω=
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  (43) 

Total linearized risk objective function for the 
series- parallel couple system 
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This is subject to the constraint equation
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Limits of Safety

 In order to find the Limits of Safety in a process 
system, we now apply the Lyapunov Stability Criteria 
that results in a matrix equation as follows given by 
eqn.46
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ζ
 

i+1j  

 

is Risk Matrix Vector at particular time i and 
position j and Ωi j ,

 

is the  Risk Matrix  Vector  at an 
advanced time i+1,  H=J is the Jacobean or Matrix of 
Safety and J is the Jacobean of Safety from a stable 
point as follows:
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F1 is the Function associated with risk of the Process 
System, F2 is the Function associated with Reliability of 
the Safety System, F3 is the Function associated with 
weights that each Process System carried in a given 
environment at a given time, F4 is the Function 
associated with hazard rate of the process system, F5 is 
the Function associated with Safety of the Process 
System. 

III. Functional Safety Integrity Level 
Performance 

Safety Integrity Level Performance describe 
reliability of Safety system instrumentation in medical 

equipment to provide accurate input and output data,  
limiting the threshold of risk to data inaccuracy which 
may lead to loss of life. Safety Life Cycle (SLC) is an 
approach that addresses all necessary activities to 
ensure medical equipment achieve functional safety 
performance in relation of deployment of Leak diagnosis 
in conformity to IEC 61508 International Standards. This 
standard covers the requirements use of dedicated 
medical instruments and automation package solutions 
in relation to hazards and risk assessment methods 
defining requirements to SIS design and engineering as 
well as to testing, installation, commissioning, operation, 
maintenance, modification, decommissioning and 
documentation of medical equipment. The performance 
criteria involved in obtaining safety integrity levels in DSS 
safety functional performance are: 

1. Reliability: Should have limited False Alarm 
thresholds with respect to repeated ability 

2. Sensitivity: Should detect pinhole deviation and 
discrepancies in Leak diagnosis 

3. Robustness: Should be able to adapt to changing 
Leak cases and environment conditions 

4. Response Time: Should have a feedback time 
window to detect leaks in SIS or diagnosis within 
accepted thresholds should be less than 3minutes.  

5. Cost: Should have limited damages to warrant 
repair or replacements is important. 

6. Some important terminology, ALAARP is best 
common practice judgment of the balance of risk 
and societal benefits. 
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The new modifications to the Bow Tie would include a Safe Matrix System that includes a window of safety 
using the weighting concept. This superstructure describes the flow path- from Hazard to Top Event outcome of the 
process systems under a safeguard control system under the accident pathway. The application model for a typical 
Risk System of a typical FPSO-Export Riser is presented as Figure 3.0
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 Poor Routine Maintenance Practice & 
Policy

 Lack of Proper Controls

TOP EVENT
Loss of Containment

rp

Safety Classification-

i. Bow-Tie Strategy

Outcome 

-Installed Proper Maintenance Programs
-Regular monitoring and benchmarking against industry 
standards

-Install proper audit and controls

Symptoms

Consequence 
and Effects

Array Data base

Figure 2: Safe Matrix- System

- Riser and Suspension design with riser situated between the suspension J tube and Hull - R21W21
- Gas Riser protection Structured designed to withstand impact of 14MJ
NOTE Barrier only designed to be effective if collision force is <14MJ           - R22 W22
- Vessel operating procedures with respect to FPSO approach direction, speed, and bridge manning -R23 W23

TOP EVENT
Loss of Containment

rp

Safety Classification-Mechanical and Operational

POWERED IMPACT-r2

SUPPLY VESSELS-H1

Risk Classification-Mechanical

Hazard Contribution- ?? Mechanical and Human Function

The Procedure of achieving functional safety   
integrity levels 1) Identification of Possible Hazards and 
specifications of corresponding safety function 2) The 
following Hazard  methods are normally used 1) Hazard 
ID, 2) Hazop 3) FMCEA (Failure Mode, Critical Effect 
Analysis) 4) Fault Tree 1) Safety Function incorporating 
the following concepts a) Weighting Index  b) Belief 
Theory c) reliability d) Fuzzy Logic. Assessment of risks 
corresponding to safety functions and identification of 
the required safety integrity level 1) Probability models 

incorporating weights2) Mean Time before Failure 
(MTBF) 3) Mean Time before Repair (MTBR) 4) Markov 
Chain Models 5) Weibull Function 6) Weights Safety 
Index derived from Weibull
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The exponential distribution used to describe failure
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i
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(18)

                                                                      

The DSS failure rate is expressed as a 
Homogeneous Poisson Process (HPP) with weight 
safety function incorporated.
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Cumulative Poisson distribution is given to DSS 
describe failure rate:
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Human reliability Models including weights 
define critical risk caused by human errors by different 
human or Leak operators
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Two models are considered in the risk and 
safety analysis1) Bow Tie Systems 2) Markov Chain 
Model 3) the model assumes the following A) Subjective 
assessments and linguistic assessments is one of the 
measures of safety B) Fuzzy set membership function 
used to define input variables C) Flexibility Safety or 
Jacobean Stability matrix in definition of membership D) 

Application of critical judgment. The probability models 
adopted for our case is the Bayesian Probability 
Framework Model. Application of Bayesian Probability 
Network to randomly predict Risk factors KL is 
presented, which is statistically computed by listing all 
data in a posterior description in the Bayesian context.
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For the safety problem, there are two critical 
Risk stress factor data, the krs

 

= d1, predicted safety 
integrity levels, necessary condition and kfs= d2, 
predicted effect safety stress condition Sufficient 
Condition.
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Rearranging incorporating with  thresholds 
associated with internal and external synaptic weights of 
Neural Network System:
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Similarly for 2
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A linear Network for Regression Analysis can be 
used to determine the weights. The Average Mean 
Square error is used to train the Network.
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Where:

 

                           
oobservedopredictedi HHe −=

 

   (38)

 

The error function can be deduced from the 
Gaussian Function: The Gaussian Function (also 
referred to as beel-shaped or bell curve) is

 

of the 
following form
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Initiate a RAN Monte Carlo Model with its 
associate belief weight 

variables ( )nxxxfy ......, 21= model and a 
fuzzy class weight model 

Create a Parametric Model with its associated 
weight belief variable

y = ( )nxxxf ......., 21 ( )nwwwg ..........., 21•

Generate a Set of Random Inputs
xi1, xi2, ...,xiq for specific weight index representing 

belief in certainty of each reservoir data model

Evaluate the model and store the results as yi for 
each class of belief fuzzy class weights

Repeat steps 2 and 3 
for i = 1 to n.

Analyze the 
results



Where σ is referred to as the spread of 
standard deviation and A is the constant. The function 
can be a normalized so that the integral from minus 
infinity to plus infinity equals one yeilding the normalized 
Guassian 
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By using the following definite integral 
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The Gaussian function goes to zero at plus and 
minus infinity while all the derivatives of any order 
evaluated at x=0 are zero 

The error function equals twice the integral of a 
normalized Gaussian function between 0 and x 
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The relation between the normalizd Gaussian 
distribution and error function equals: 
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A series approximation for small value of x of 
this function is given by: 
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While an approximation for large value of x ocan 
be obtained 
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The complementary error function equals one 
minus the error function yielding 

                  ∫
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u dueerfxerfcx
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(48) 

Defining the Limits of functional Safety:The  
vector field F(x) of the whole phase portrait for all 
individual safety functions f(x) at the designated nodes 

is described by the matrix. In difference form, the 
concept has evolved in the Safety Functional model as 
presented: 

             ( )niiii F ΦΦΦ=Φ + ....., 21111     (49) 

             ( )niiii F ΦΦΦ=Φ + ....., 21212                  
(50) 

              ( )niiiNi F ΦΦΦ=Φ + ....., 2111  
              

  (51) 

The Liapunov Stability Criterion is used as basis 
for evolving functional safety incorproating risks involved 
in uniform and systematic configuration of all technology 
process, methods and dedicated medical safety 
instrument systems (SIS) equipment to core sector 
specific standards IEC61508, deployed in accessing 
Leak diagnosis and treatment performance as provided 
in equation below. 
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Where: 
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IV.
 

DSS
 
Performance using Liapunov 

Stability Function Criteria
 

The concept of stability and instability of 
Decision Support systems (Lyapunov equilibrium 
stability criteria) was applied to a transient flow Leak 
Detection system; to evolve a model for DSS functional 
safety defect in SIS. The two dimensional invertible 
maps in time and space domain for the DSS Leak 
system is τ→z, t, and are presented for DSS Leak 
Systems Data, DSS Electronic Systems Data, DSS 
Blood Flow System Data, in equations (54), (55) and 
(56), respectively.

 

)],(),,(),,([1)1,( KJBFSDKJESDKJCSDFKJCSDDSS =+−

 

(54)

 

)],(),,(),,([2)1,( KJBFSDKJESDKJCSDFKJESDDSS =+− (55)

 

)],(),,(),,([3)1,( KJBFSDKJESDKJCSDFKJBFSDDSS =+− (56)
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Where, ),(),,(),,( KJBFSDKJESDKJCSD  are the 
DSS Leak System Output Data, DSS Electronic Systems 
Output Data and DSS Blow Flow System Output Data in 
j patient node and k time domain, respectively? For DSS 
Functional Safety (DSS-FS) to be accurate, DSS-FS is 
defined as the domain of stability where, CSD, ESD and 
BSFD are consistently steady, that is not change in 
output for each patient measurement not related to 
fluctuation, that is for the same input, the output must be 
repeatable therefore  

( )KJCSDKJCSD E ,)1,( =+  (71)  ( )KJESDKJESD E ,)1,( =+  

              ( )KJBSFDKJBFSD E ,)1,( =+            (58) 

54 to 58 in matrix form is given by 74 

                              jkjk HΩ=+1ζ                 (59) 

Where: 

                    
















=Ω

jk

jk

jk

jk

γ

η

ξ

















=

+

+

+

+

1

1

1

1

jk

jk

jk

jk

γ

η

ξ

ζ      (60) 
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































∂
∂








∂
∂








∂
∂








∂
∂








∂
∂








∂
∂








∂
∂








∂
∂








∂
∂

=















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jKjKjK
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BFSD
F

ESD
F
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F

BFSD
F

ESD
F

CSD
F

BFSD
F

ESD
F

CSD
F

IHG
FED
CBA

H

333

212

211

 (61)  

J is the Jacobean differential given by the formula: For a 
DSS functional safety to be repeatable 1=J  

                J = 
],,[

][ 321

BSFDESDCFD
FFF

∂
∂

    (62) 

H-λIΩi= 0 is the characteristic equation of the matrix 
of equation (62) from where the eigenvalues or the roots 
can easily be evaluated. In this way, the problem is 
decoupled into three dimensional maps and the stability 
question is answered once the eigenvalues (λ1k,,λ2k,λ3k) 
for each iteration are known. If the Jacobeans are real 
and symmetric such that one would expect real 
eigenvalues, the system is asymptotically stable if -
1<λ1k, λ2k, λ3k<1, but unstable if λ1k, λ2k ,λ3k > 1 in 
absolute terms. If one of the eigenvalues λ1kor λ2k or λ3k 
has modules equal to1 in absolute value, then the 
critical point is established for stability. A leak in a 
pipeline causing instability is observed when the 
simulation results in at least one of the roots λ1k, λ2k , 
λ3k<-1.  Similarly a surge causing instability is observed 
when at least one of the roots λ1k, λ2k, λ3k>1. The 

absolute value of 1 is the critical bifurcating state. If λ1k, 
λ2k, λ3k is such that, the Jacobean are complex 
conjugates, (i.e. λ1k, λ2k, λ3k = α + iβ), the stability 
criterion for three dimensional maps can be solved.  The 
system is stable (for complex conjugates) if all 
eigenvalues are inside the unit circle, whereas the 
system is asymptotically unstable, if at least one of the 
eigenvalues is outside the circle.  

The stability boundary is the unit circle itself.  If 
the eigenvalues are real, there are only two points where 
they can cross the stability boundary at 1 and –1. This 
concept is similar to saying that the stability condition 
exists once the Jacobean is equal to 1 in absolute 
terms. In order to describe the unstable phase portrait, a 
bifurcation model to assign a relative magnitude to the 
disturbed phase is proposed, as the standard deviation 
from the critical point, which gives a robust measure of 
the width of distribution. These are indicated below in 
equations (41) to (43) for the eigenvalues. 

               ( )∑
= −

−λ
=λ

n

0i

2
ij1

ij1 1n
)1(

)(SD                  (63) 

          ( )∑
= −

−λ
=λ

n

0i

2
ij2

ij2 1n
)1(

)(SD  
              

 (64) 

             
( )∑

= −

−λ
=λ

n

0i

2
ij3

ij3 1n
)1(

)(SD
  

(65)
 

The standard deviation model evaluates the 
width of deviation of a typical flow vector point at time i 
= 0…n. Once a leak is suspected at a time envelope, a 
relative magnitude of the disturbance can be 
ascertained. A standard deviation close to zero 

indicates a small leak, and vice versa. ij1λ , ij2λ , ij3λ
 

are the absolute eigenvalues of velocity, mass and 
pressure, at a particular time and pipeline node point. 
Hence, using the standard deviation model, it is 
possible to classify the leak being considered. This 
model is useful for assigning a value to a disturbance 
after the eigenvalue criterion for a leak or surge has 
been ascertained. 
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(57)



Very Likely 
     

   

Fuzzy Class 1
 

  WeibullSigmond 
Function 

Safety  
Index=0 

Safety 
Index=0.1 

Safety 
Index=0.5 

Safety  
Index=0.8 

Safety  
Index=0.9 

0 Safety Integrity Levels (Weighted) on the Risk Function 
0.1

 
1.02745

 
0.9247

 
0.5137

 
0.2055

 
0.1027

 
0.2

 
0.791344

 
0.7122

 
0.3957

 
0.1583

 
0.0791

 0.4
 

0.938869
 

0.8450
 

0.4694
 

0.1878
 

0.0939
 0.6

 
1.485194

 
1.3367

 
0.7426

 
0.2970

 
0.1485

 0.8

 

2.643102588

 

2.3788

 

1.3216

 

0.5286

 

0.2643

 1

 

5.01734

 

4.5156

 

2.5087

 

1.0035

 

0.5017

 1.2

 

9.921146

 

8.9290

 

4.9606

 

1.9842

 

0.9921

 
1.4

 

20.1783

 

18.1605

 

10.0892

 

4.0357

 

2.0178

 
1.6

 

41.895

 

37.7055

 

20.9475

 

8.3790

 

4.1895

 
1.8

 

88.36478

 

79.5283

 

44.1824

 

17.6730

 

8.8365

 
2

 

188.7084

 

169.8376

 

94.3542

 

37.7417

 

18.8708

 
 
 
 

  
 

  

Weibull

 

Sigmoid 
Constant

 

Safety Index=0

 

Safety Index=0.1

 

Safety Index=0.5

 

Safety Index =0.8

 

Safety Index=0.9

 

0

 

Safety Integrity  Levels (Weighted) on the Risk Function

 

0.1

 

0.82422

 

0.741798

 

0.41211

 

0.164844

 

0.082422

 

0.2

 

0.50925

 

0.458325

 

0.254625

 

0.10185

 

0.050925

 

0.4

 

0.388808

 

0.349928

 

0.194404

 

0.077762

 

0.038881

 

0.6

 

0.395803

 

0.356223

 

0.197902

 

0.079161

 

0.03958

 

0.8

 

0.453289425

 

0.407960482

 

0.226644712

 

0.090657885

 

0.045328942

 

1

 

0.553733

 

0.49836

 

0.276867

 

0.110747

 

0.055373

 

1.2

 

0.704619

 

0.634157

 

0.352309

 

0.140924

 

0.070462

 

1.4

 

0.922237

 

0.830013

 

0.461118

 

0.184447

 

0.092224

 

1.6

 

1.232212

 

1.108991

 

0.616106

 

0.246442

 

0.123221

 

1.8

 

1.672506

 

1.505256

 

0.836253

 

0.334501

 

0.167251

 

2

 

2.298504

 

2.068653

 

1.149252

 

0.459701

 

0.22985

 

      
       

           

Unlikely

 
     

   

Fuzzy Class 3

 
  

Weibull

 

Sigmond 
Function

 

Safety 
Index=0

 

Safety Index=0.1

 

Safety 
Index=0.5

 

Safety Index =0.8

 

Safety 
Index=0.9

 

 

Safety Integrity Levels(Weighted) on the Risk Function

 

0.1

 

0.514808

 

0.463327

 

0.257404

 

0.102962

 

0.051481

 

0.2

 

0.198671

 

0.178804

 

0.099336

 

0.039734

 

0.019867

 

0.4

 

0.059176

 

0.053258

 

0.029588

 

0.011835

 

0.005918

 

0.6

 

0.023501

 

0.021151

 

0.011751

 

0.0047

 

0.00235

 

0.8

 

0.0105007

 

0.009450063

 

0.005250035

 

0.002100014

 

0.001050007

 

1

 

0.005004

 

0.004504

 

0.002502

 

0.001001

 

0.0005

 

1.2

 

0.002484

 

0.002236

 

0.001242

 

0.000497

 

0.000248

 

1.4

 

0.001268

 

0.001142

 

0.000634

 

0.0000254

 

0.000127

 

1.6

 

0.000661

 

0.000595

 

0.000331

 

0.000132

 

6.61E-05

 

1.8

 

0.00035

 

0.000315

 

0.000175

 

7.00E-05

 

3.50E-05

 

2

 

0.000188

 

0.000169

 

9.39E-05

 

3.75E-05

 

1.88E-05
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a) Leak Finder Development Platforms  
The Leak Finder development platforms is presented in eq.1 

Table 1.0:  Leak finder Development Platforms 

# Requirement Description How To Test Test Result Ok? 

1
 Development 

Platform 
 

Lab VIEW Graphical 
Development Platform 

Verify that the system runs 
on LabVIEW platform 

 

2 
Operating System 

Platform
 

Window 2000/NT/XP
 

Verify that the VI runs 
properly on the OS.

 
 

 

      

     

 









































∂

∂

λ∂

∂

ω∂

∂

∂

∂

∂

∂

∂

∂

λ∂

∂

ω∂

∂

∂

∂

∂

∂

∂

∂

λ∂

∂

ω∂

∂

∂

∂

∂

∂

∂

∂

λ∂

∂

ω∂

∂

∂

∂

∂

∂

∂

∂

λ∂

∂

ω∂

∂

∂

∂

∂

∂

=

ij

j5

ij

j5

ij

j5

ij

j5

ij

j5

ij

j4

ij

j4

ij

j4

ij

j4

ij

j4

ij

j3

ij

j3

ij

j3

ij

j3

ij

j3

ij

j2

ij

j2

ij

j2

ij

j2

ij

j2

ij

j1

ij

j1

ij

j1

ij

j1

ij

j1

S
FFF

R
F

r
F

S
FFF

R
F

r
F

S
FFF

R
F

r
F

S
FFF

R
F

r
F

S
FFF

R
F

r
F

J     

 

 

                     

(49)

 
i= time element   j= component under consideration 
working as a network to other components

 

J is the safety matrix function which is tells 
operators the Limits of Safety, such that If J =1 in 
absolute terms the Safety status is stable or good,   if J 
< -1, the safety status is unstable and a Fault may exist 
in the System and an Unsafe position results, if J > 1, 
the safety function becomes over stable, which indicates 
the systems functioning above normal or over design for 
safety. These criteria can be an important tool for Safety 
operators to mark the limit of design or operation. Any 
factor that tends to push safety function above or below 
absolute 1 should be minimized. This technique for 
determining safety is not available in previous method 
for safety analysis

 

V.

 

Results

 

and

 

Discussions

 

Table 3 shows the hazard register and the 
weights for safety. Based on models disclosed in 
previous section a weights were simulated in a risk 
management software system developed for purpose. 
The software simulator is design in visual basic macro 
scripts of an Excel sheet programme modules and the 
weights simulated in Excel sheet produce the weights 
values for different risk/hazard scenarios and events 
likely to occur. The weights values represents the safety 
function of the FPSO system subject the maximum

 

hazards risk test analysis of 95% and minimum reliability 
test of 5% for both process and occupational hazards. 
These values expressed extreme scenarios and design 

is computed based on extreme scenarios in the hazard 
register. The Hazard register contains

 

all possible 
hazards that is possible in FPSO system. The weights 
on occupational accidents is 0.36, offloading events 
0.24, Hull failure due to extreme wave load is 0.24,

 

Passing vessel collision with FPSO or shuttle tanker 
0.959682, Strong collision by supply vessel with FPSO 
or shuttle tanker 0.206752, Hydrocarbon associated risk 
(process, turret and riser systems) is 0.454357, 
Hydrocarbon and Topsides systems accidents is 
0.268701, , Leak that may lead to fire or explosion in 
process plant is 0.272354, Helicopter crash Leak from 
turret systems that may cause fire or explosion in turret 
is 0.204447, Leak or rupture of riser is 0.123299, 
Auxiliary systems accidents, 0.698367,

 

Engine room fire 
or explosion is 0.566394,  Fire or explosion in pump 
room is 0.718306, Helicopter crash

 

0.891995, Human 
and Organisational Factors (HOF) is

 

0.160624, People is 
0.688105, Management systems is 0.71663, Collision 
risk represents a significant contribution for two of the 
FPSOs (all potential collision)  is 0.005607,

 

Uncontrolled 
Release of Hazardous  Materials is

 

0.769407, Blowouts is 
0.142786, Turret and Cargo Tank Release is 0.949124. 
This cases show the weight values that assumes a value 
of 1 represent the best case for safety under the 
scenarios of the risk and reliability of design and weight 
values that assume close to zero represent the work 
case for safety. In the few examples selected collision 
risks represents the worst case of safety with a value of 
0.005607 followed by human and organisational factors 
(HOF) which is 0.160624. The best case for safety are 
the Turret and Cargo Tank release with a value of 
0.949124, followed by Helicopter crash of 0.891995, 
followed uncontrolled release of hazardous materials 
0.769407, followed by Fire or explosion in the pump 
room of value 0.718306, management system which are 
typical for most Exploration and production companies 
that have very strong integrated vertical management 
systems with a value

 

of 0.71663. The results enable us 
not only to qualify the hazard register for the worst cases 
and best cases of safety for all components the FPSO 
system but allows a risk expert to quantify the amount 
allotted in each case for design, remedial or repair 
actions.
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Table 3: Hazard Register And Weights of Safety

 
        

SN

  

Hazard Register

   
   

FPSO

 
    

Fuzzy Class: General

 
    

Fuzzy Class: Weighted

 
    

Two Class of Safety 

 
    

Occupational Related Hazards Risk (95%)

 
    

Process Related Hazards Reliability (5%)

 
    

Occupational Related Hazards Risk (95%)

 
    

Process Related Hazards Reliability (5%)

 
 

1

  

Occupational   Related  Hazards 

 

Weights of Safety

 
2

  

Process fires and explosions

 

0.58

 
3

  

Riser and pipeline releases

 

0.30

 
4

  

Ship collisions

 

0.26

 
5

  

Fires and explosions in accommodation spaces

 

0.14

 
6

  

Fires and explosions in machinery spaces

 

0.81

 
7

  

Fires and explosions in cargo and ballast tanks

 

0.06

 
8

  

Structural failure

 

0.54

 
9

  

Helicopter accidents

 

0.37

 
10

   

Occupational accidents

 

0.36

 
11

  

Offloading Events

 

0.24

 
12

  

Dropped objects

 

0.51

 
13

   

Position loss

 

0.48

 
14

  

Ballasting failures

 

0.92

 
   

Fuzzy Class: General

 
    

Fuzzy Class: Weighted

 
    

Two Class of Safety 

 
    

Occupational Related Hazards Risk (95%)

 
    

Occupational Related Hazards Reliability (5%)

 
    

Process Related Hazards risk  (95%)

 
    

Process Related Hazards Reliability (5%)

 
 

15

  

Marine and hull related accidents, structural impacts

 

Weights

 
16

   

Hull failure due to extreme wave load

 

0.245383

 
17

   

Hull failure or marine accident due to ballast failure 

 

0.296617

 
   

or failure during loading/offloading Operations 

 

0.160162

 
18

   

Leak from cargo tank caused by fatigue

 

0.137528

 
19

   

Accident during tank intervention

 

0.785583

 
20

   

Passing vessel collision with FPSO or shuttle tanker

 

0.959682

 
21

   

Strong collision by supply vessel with FPSO or shuttle tanker

 

0.206752

 
22

   

Other vessels or floating structures operating on the field 

 

0.704976

 
   

colliding with FPSO or shuttle tanker

 

0.081861

 
23

  

Collision during offloading

 

0.130822

 
24

   

Rapid change of wind direction

 

0.583432

 
25

   

Multiple anchor failure

 

0.09615

 
   

Fuzzy Class: General

 
    

Fuzzy Class: Weighted

 
    

Two Class of Safety 

 
    

Occupational Related Hazards Risk (95%)
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Occupational Related Hazards Reliability(5%)
Occupational Related Hazards Risk  (95%)
Occupational  Related Hazards Reliability (5%)
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26

  

Hydrocarbon and Topsides systems accidents

 

0.268701

 

27

  

Leak that may lead to fire or explosion in process plant

 

0.272354

 

28

   

Leak from turret systems that may cause fire or explosion in turret

 

0.204447

 

29

  

Leak or rupture of riser

 

0.123299

 

30

   

Impacting loads due to crane operations (swinging loads) on a moving vessel

 

0.456445

 

31

   

Dropped object from retrieval of cargo pumps

 

0.96504

 

32

   

Severe rolling during critical operations, such as crane operations 

 

0.160463

 

   

(considered as included)

 

0.401012

 

33

  

other scenarios, therefore not addressed separately)

 

0.92856

 

34

  

“Topside” fire threatening cargo tank resulting from gas leaks

 

0.191856

 

35

   

Emergency flaring  with approaching shuttle tanker or during off-loading

 

0.494471

 

36

   

Unintended release of gas or oil from  riser

 

0.862935

 

37

   

Gas and oil release from other sources

 

0.585676

 

38

  

Auxiliary systems accidents

 

0.698367

 

39

  

Failure of cargo tank explosion prevention function during normal operation

 

0.460309

 

40

   

Fire or explosion in pump room

 

0.718306

 

41

   

Spill from off-loading system.

 

0.366799

 

42

   

Engine room fire or explosion

 

0.566394

 

43

   

Helicopter crash

 

0.891995

 

44

  

Human and Organisational Factors (HOF)

 

0.160624

 

45

  

People

 

0.688105

 

46

  

Equipment (e.g. hardware)

 

0.344732

 

47

  

Management systems

 

0.775929

 

48

  

Culture and environment

 

0.58924

 

49

  

Management systems Failure 

 

0.694851

 

50

  

Procedures 0.973734

 

51

   

Communication

 

0.408983

 

52

   

Training

 

0.505835

 

53

  

Management of change

 

0.71663

 

54

  

Risk assessment Policy and Procedures

 

0.991488

 

55

  

Hydrocarbon associated risk (process, turret and riser systems) 

 

0.454357

 
   

is the highest contribution for all FPSOs considered.

 

0.694676

 

57

 
 

Collision risk represents a significant contribution for two of the FPSOs (all potential collision)

 
 

0.005607

 

58

  

Scenarios are included, but shuttle tanker impact is the dominating contribution.

 

0.527423

 

59

 
 

Occupational accidents and accidents during helicopter transport were only included for 
one

 

0.25107

 

60

  

All the cases.

 

0.261401

 

61

  

Uncontrolled Release of Hazardous  Materials

 

0.769407

 

62

  

Blowouts

 

0.142786

 

63

  

Turret and Cargo Tank Release

 

0.949124

 

64

  

Release of Non-Process Materials

 

0.901016

 

65

  

Topside  Process Release

 

0.769164

 

66

  

Bunkering Operations

 

0.800986

 

67

  

Natural  Adverse Occurrences Hazards

 

0.430831

 

68

  

Earthquakes

 

0.519753

 

69

  

Subsidence

 

0.846755

 

70

  

Severe Storm

 

0.033608

 

71

  

Tornadoes

 

0.900927

 

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

72 Physical   Impacts Hazards 0.419685

73 Vessel Collisions 0.562891
74 Drilling Jackup Collision 0.356217
75 Fixed Wing Aircraft 0.806782
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76

  

Missile

 

0.66652

 

77

  

Submarine Collisions

 

0.198745

 

78

  

Helicopter Collisions

 

0.402451

 

79

  

Dropped Objects

 

0.531651

 

80

  

Structural  Failures

 

0.054705

 

81

  

FPSO  Structural Failure

 

0.064833

 

82

  

Crane Structural Failure

 

0.300675

 

83

  

Process Vent Stack Failure

 

0.342143

 

84

  

Fires Hazards within Enclosed Areas

 

0.489227

 

85

  

Indirect Events

 

0.314163

 

86

  

Communications Failure

 

0.055235

 

87

  

Process Control Failure

 

0.206388

 

88

  

Operations or Maintenance Error

 

0.607366

 

89

  

Power Supply Failure

 

0.183286

 

90

  

Construction Error

 

0.465601

 

91

  

Other Hazards

 

0.893934

 

92

  

Diving Hazards:

 

0.843267

 

93

  

Process Analysis

 

0.757956

 

94

  

Occupational Hazards

 

0.555226

 

95

  

Environmental Hazards

 

0.03813

 

96

  

Offloading Operations

 

0.113766

 

97

  

FPSO Mooring System Failure

 

0.147519

 

98

  

Marine Operations

 

0.532911

 

99

  

Stability and Water Tightness

 

0.511993

 

100

  

Sea  Keeping

 

0.418401

 

101

  

Structural Failure

 

0.921399

 

102

  

Personnel  Transfer

 

0.600707

 

103

  

TR Impairment 

 

0.770934

 

104

  

process/deck piping pool fire 

 

0.391826

 

105

  

non-field vessel collision 

 

0.629452

 

106

  

mooring line failure 

 

0.905579

 

107

  

offloading vessel collision 

 

0.992711

 

108

  

cargo tank fire/explosion 

 

0.342772

 

109

  

others 

 

0.237412

 

110

  

Electrical  Failure /Blackout

 

0.102311

 

111

  

Power Management Systems

 

0.918463

 

112

  

Blackout

 

0.828628

 

113

  

1.Load Demands

 

0.865375

 

114

  

2.Generator Trips

 

0.605228

 

115

  

Subsea Flowlines and Risers Failure 

 

0.803487

 

116

  

Gas Lift/Export Flowline and Riser Systems

 

0.864006

 

117

  

Process Risks  Causes

 

0.49596

 

118

   

Gas Leaks

 

0.888224

 

119

  

a. Over Pressure

 

0.249184

 

120

  

b. Corrosion

 

0.648887

 

121

  

c. Blowout

 

0.402292

 

122

  

2. Over Pressure

 

0.651338

 

123

  

a. Rapid Valve Closure

 

0.342516

 

124

  

b. Pump Over Pressure

 

0.476087

 

  

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

125 3. H2SCracking 0.955437
126 a. Presence of H2S conditions 0.811973
127 4. Rapid Decompression 0.800665
128 Mechanical Risks 0.563077
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129

  

1. Fatigue

 

0.846947

 

130

  

a. Age

 

0.832021

 

131

  

b. Pipeline Wear

 

0.252996

 

132

  

2. Riser Movement

 

0.916733

 

133

  

a. Water Current

 

0.750846

 

134

  

b. Movement of FPSOs

 

0.381637

 

135

  

Operational Risks

 

0.767096

 

136

  

1. Safety Valves Failure

 

0.92734

 

137

  

2. Operational Maintenance Negligence

 

0.617795

 

138

  

Human Risks

 

0.461933

 

139

  

In experience Operators

 

0.675503

 

140

  

Operational Negligence

 

0.790135

 

141

  

Design Oversight

 

0.402744

 

142

  

Lack of Training

 

0.493624

 

143

  

Poor Work Ethics

 

0.039122

 

144

  

Management Oversight

 

0.138692

 

145

  

Process Risks

 

0.757267

 

146

  

1. Wax Formation

 

0.421924

 

147

  

a. Operating Conditions at or below pour Temperature

 

0.069952

 

148

  

2. Hydrate Formation

 

0.445984

 

149

  

a. Operating Below Cloud Temperature

 

0.577469

 

150

  

3. Surges

 

0.074496

 

151

  

a. Over pressure

 

0.328886

 

152

  

4. Scaling

 

0.432894

 

153

  

a Presence of Barium Sulphate

 

0.320005

 

154

  

b. Corrosion materials

 

0.508234

 

155

  

5. H2S Corrosion 

 

0.219939

 

156

  

a. H2S present

 

0.114418

 

157

  

b. Corrosion Environment

 

0.653914

 

158

  

6. CO2  Corrosion

 

0.989972

 

159

  

a. CO2  Present

 

0.605648

 

160

  

b. Corrosion Environment

 

0.561565

 

161

  

Mechanical Risks

 

0.522539

 

162

  

1. Dynamic Loading of FPSOs 

 

0.948076

 

163

  

a. Movement of FPSOs

 

0.047636

 

164

  

b. Water or Ocean Currents

 

0.698753

 

166

  

2. Stress Corrosion Cracking , SCC

 

0.557259

 

167

  

a. H2S present

 

0.031665

 

169

  

3. Bending Load at Interfaces

 

0.474349

 

170

  

a. Operating Conditions

 

0.180089

 

171

  

b. Movement of FPSOs

 

0.099551

 

173

  

4. Leaks

 

0.572271

 

174

  

a. Over Pressure

 

0.6867

 

175

  

b. BlowOut

 

0.383203

 

176

  

c. Corrosion

 

0.916813

 
    

178

  

5. Operational Risks

 

0.819863

 

179

  

a. Pigging Operations

 

0.159734

 

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

180 b. Depressurization and Blow Out 0.585767
181 0.616658
182 Human Risks 0.377874
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183

  

In experience Operators

 

0.783507

 

184

  

Operational Negligence

 

0.033003

 

185

  

Design Oversight

 

0.45068

 

186

  

Lack of Training

 

0.475881

 

187

  

Poor Work Ethics

 

0.283339

 

188

  

Management Oversight

 

0.252755

 

189

  

Turret Design Failure

 

0.943661

 

190

  

The passive nature of the turret design minimizes

 

0.46419

 

191

  

the station-keeping risk but increases the fire and explosion

 

0.302457

 

192

  

risks as the wind direction tends to align with the dec

 

0.290569

 

193

  

1.Damage to equipment caused by dropped objects

 

0.117465

 

194

  

2.Fishing gear impacts

 

0.86409

 

195

  

3.Leaks in the flexible piping because of aging riser

 

0.799673

 

196

  

4.Latent defects in design or manufacturing.

 

0.67855

 

197

  

Process Fires and Explosions.

 

0.051717

 

198

  

Note that because of the

 

0.252564

 

199

  

passive turret design, the wind tends to align with the deck, and a

 

0.201168

 

200

  

gas leak would reach the turbine intakes 77% of the time.

 

0.778077

 
   

  0.542618

 

   

Fuzzy Class: General

 
    

Fuzzy Class: Weighted

 
    

Two Class of Safety 

 
    

Occupational Related Hazards Reliability (95%)

 
    

Occupational Related Hazards Reliability(5%)

 
    

Occupational Related Hazards Reliability (95%)

 
    

Occupational  Related Hazards Reliability (5%)

 
 

203

  

Human Personnel Resourse Hazards

 

0.785607

 

204

  

OIM

 

0.511124

 

205

  

Production Supervisor

 

0.865187

 

206

  

Maintenance Coordinator

 

0.180422

 

207

  

Shift Supervisor

 

0.8816

 

208

  

Production Operators Staff (oil, gas, utilities)

 

0.148113

 

209

  

Instrument Engineer

 

0.498624

 

210

  

Instrument  Technician

 

0.060353

 

211

  

Electrical Staff

 

0.850599

 

212

  

Mechanical  Engineer

 

0.803781

 

213

  

Mechanical  Technician

 

0.119317

 

214

  

Subsea Staff

 

0.181005

 

215

  

Berthing Master (Also Tanker Safety Supervisor)

 

0.995288

 

216

  

Marine Supply

 

0.796298

 

217

  

Offloading Support Staff

 

0.583852

 

218

 
 

Telecoms Engineer

 

0.111915

 

219

  

Medics/Admin

 

0.093324

 

220

  

Core Offshore  Crew

 

0.668866

 

221

  

Crane Operator

 

0.612093

 

222

  

Facility Management (including Catering)

 

0.356764

 

223

  

Core  Offshore Services Crew

 

0.838698

 

224

  

Specialist Operations Staff (including Loading)

 

0.034068

 

225

  

Intergated Service Contractor Staff

 

0.091184

 

  

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

226 Revenue Engineering 0.287148
227 Commisioning Allowance 0.000236
228 Total Services and Suport 0.562159
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230

  

Campaign Offshore Crew

 

0.073438

 

231

  

Government Reps

 

0.785982

 

232

  

Human Hazards

 

0.138105

 

233

  

Human errors are of Seven Types

 

0.144795

 

234

  

1.     

 

Design Errors

 

0.229739

 

235

  

2.     

 

Operators Error

 

0.294726

 

236

  

3.     

 

Fabrication Error

 

0.171199

 

237

  

4.     

 

Maintenance Error

 

0.818781

 

238

  

5.     

 

Inspection Error

 

0.32683

 

240

  

6.     

 

Contributory Error

 

0.893129

 

241

  

7.      Handling Error

 

0.615725

 

242

  

1. Poor Training or Skill

 

0.171947

 

243

 
 

2. Poorly documented or Lack of Documented and Updated Operational Procedures

 

0.213275

 

244

  

3.  Environmental Factors and Occupational

 

Safety

 

0.733409

 

244

  

4. Poor Incentives by Management

 

0.661781

 

244

  

5. Negligence and Organizational Attitudes

 

0.543797

 

a) Safety Factors Design

 

The plot of failure rate and reliability rate

 

as 
revealed in Figure 7 and Figure 8 respectively show a 
parabolic curve with a peak maximum at five years. The 
measure of failure rate determined as number of failures 
per year of personnel for the FPSO predicted a peak of 
2 fatalities within 5 years which is good performance 
and tapers down due to improve performance. Whereas 
the predicted reliability FPSO degrades over a period of 
time reaching all time high of 2.7% poor performance. 
The poor performance of reliability may be due to over 
design of some facilities. Figure 9 and Figure 10 are the 
predicted safety  and risk potential which is the net risk 
and safety factors put in place based on all possible 
scenario of Table 3.0, we have a net average risk 
potential to FPSO increasing slowly in a parabolic

 

fashion reaching a threshold after 15 years and peaking 
at a maximum. The risk potential is the measure of risk 

over the reliability of the safety systems. Since the 
studied FPSO risers, hull and production facilities have 
been overdesign against risk by putting in place the 
safety measures, the relative risk profile is low and 
therefore risk potential is a good measure to determine 
the measure of risk. A cursory look at the safety potential 
shows a continual degrade of safety measures of time. 
The complicated interrelated threats all work to 
undermine facility and therefore recommended repair 
operations is recommended. The plots presented in 
Figure 7, Figure 8, Figure 9 and Figure 10 are based on 
the simulated table based on Monte Carlos simulation of 
the hazard data supplied by operators assuming 
occupational related hazard risks of 95%, process 
related hazards reliability of 5%, and their measures of 
safety simulated by the deterministic model and learning 
algorithm disclosed in our work. 
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Figure 3: Plot of Reliability rate with time of Riser System  

Failure Rate

Years
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            Figure 4:
 
Plot of Reliability Rate with time of FPSO Riser System

 

 

Figure 5:

 

Plot of Safety Potential with time of FPSO Riser System

 

 
 

 
 
 
 
 

Figure 6: Plot of Risk Potential with time of FPSO Riser System

 

b) Weighted Hazard Rate and the Belief Function

 

This section discusses plots of weighted hazard 
rated and belief function. Thus Figure 11 shows the 
weighted hazard rate with the hazard shape function. 
The hazard shape function describes the nature of risk. 
A hazard shape function of 1 is a constant hazard rate, 
below 1, is a decreasing hazard rate and above is the 
increasing hazard rate. The weighted hazard rate shows 
increasing hazard rate is significant. By the term 
weighted hazard rate implies a safety measures have 

been incorporated and takes into consideration change 
in hazard behaviour. A safety fraction of 0 shows a 
hazard rate at its minimum and decreases as safety 
fraction increases. The belief function describes the level 
of confidence an operator views the reliability of such 
systems. A reliability of 90% at fuzzy class 1, very likely 
to occur, a linguistic term shows a belief function that is 
parabolic with time.
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Figure 7:
 
Weight Hazard Rate with Hazard Function for Fuzzy Class 1

 

Figure 8:
 
Plot of Belief Variable eij

 
with Time (yrs) for Fuzzy Class 1 for 90%

 

Safety Level Protection for different fuzzy failures F1(1,-10)
 
 
 

             
 

0

20

40

60

80

100

120

140

160

180

200

0 0.5 1 1.5 2 2.5

W
ei

gh
te

d 
Ha

ar
d 

Ra
te

,  
pe

r y
ea

r

Hazard Shape Function

Safety 
Fraction: 0
Safety 
Fraction: 0.1
Safety 
Fraction: 0.2
Safety 
Fraction: 0.3

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60

Be
lie

f  
Va

ria
bl

e.
e I

J

Time,yrs

Fuzzy Class 
(F1,1)
Fuzzy Class 
(F1,2)
Fuzzy Class 
(F1,3)
Fuzzy Class 
(F1,4)
Fuzzy Class 
(F1,5)

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
 e

rs
io
n 

I
V

III
Y
ea

r
20

20

61

  
 

( A
)

© 2020 Global Journals



 
Figure 9: Weight Index Variation with Hazard Shape Index for Different Class of Safety Fraction for Fuzzy Class 1 
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Figure 10: Plot of Belief Variable eij with Time for 90% Safety Protection for Fuzzy Class 2 for Fuzzy  Failures 1-10
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Figure 11: Plot of Risk Profile and Risk Potential for 0.95 Safety Reliability

Figure 12: Weights Function against Hazard Shape Function B1 for Safety Fraction of 0.9
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Figure 13: Risk Profile with Time for B (1.8) , Fuzzy Class 2 and Weight Function (B1, SRFi) : SFRi (0,0.1, 0.2......0.9)
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Figure 14:

 

PDE tool box displaying a plot of the initial boundary conditions

 

The MAT file derived from the PDE tool is feed 
into the neural networks tool box as a source of raw data 
in other for the fitting networks, Perceptions and 

predictive control networks to be trained. In this work, it 
was saved as data.mat

 

For the curve fitting networks

 

  

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Figure 15: MATLAB neural networks data manager

Here is the neural networks data manager 
showing the functions and data imported from the 
model in the PDE tool. All variables represented by 

letters in the network/data manager signify various 
vectors and matrices derived from the risk that have 
been further simplified with learning algorithms.
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Figure 16:

 

MATLAB neural network viewer

 

 

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Figure 17: MATLAB neural network fitting tool

The network is to be trained using levenberg-
Marquardt back propagation. Levenberg-Marquardt is 
the best training algorithm adopted for .complex 
problems and the application of multiple networks in 
solving problems like Risk system in oil and gas riser 
systems
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Figure 18:

 

MATLAB neural network training tool

 

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

The general graphic user interface (GUI) for the 
neural network in training showing the training 
procedures and a link for the outcomes of the training 

like the performance, training state, fit, regression Here 
is the performance plot for the performance.

Figure 19: performance plot

This is for 11 iterations known as epochs
This training stopped when the validation error 

increased for six iterations, which occurred at iteration 
23. If you click Performance in the training window, a 
plot of the training errors, validation errors, and test 
errors appears, as shown in the following figure. In this 

example, the result is reasonable because of the 
following considerations: The final mean-square error is 
small. The test set error and the validations set error 
have similar characteristics. No significant over fitting 
has occurred by iteration 17 (where the best validation 
performance occurs).
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Figure 20:

 

Training state

 

This is the training state. These plots are 
characteristic to a group of distributions of vectors fed 
from the model to be used in predictive control and 

decision support. Any deviation from this plot will be 
recorded and seen as anomaly during Risk system. 

 

Reliability Modelling and Safety Learning Algorithms in Complex Risk Multifunctional Systems

Figure 21: Neural Network Fit

This is a plot fit between the input functions (the 
pressure distribution data of the field during Risk system 
production) and the output data which is the Risk 
systeming factor Cf and the targets which is the true 
value the dimensionless pressure used in the IMPES 

PDE model. The training targets are shown by the blue 
circles while training inputs are the blue +, validation 
targets and Output d is green respectively while test 
details are red, Errors appear orange the fit is black.
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Figure 22:
 
Regression plot

 

Here is the regression analysis for the network 
trained. An interpretation of these reports can be used 
for the decision support system. Further production 
process management can be conducted to a point 
where each Risk systeming rate and Risk systeming 
factor will be identified separately by a Regression 
pattern of two characteristic to it. This can help in 
predicting future rate of Risk system. And in the decision 
making process of a production team. All the output 
from the neural networks can be used to design a 
hardware system that has been programmed to 
generate these output when fed with data from the 
production system, this system generates output, stores 
them in its memory and compares them with the 
previous output generated as production continues. A 
transition from a point of minimal Risk systeming to a 
critical Risk systeming can be noticed by this system. 
The system would trigger an alarm or other forms of 
communications (probably red light) to inform the 
Production Personnel.  

VI. Conclusion and Recommendation 

The Learning algorithms provides a method of 
resolving risk modelling of complex production systems. 
The production platforms, storage and riser/flowline 
systems was considered for distribution of risk factor at 
different times and along the. Data is obtained from the 
production system and fed into the neural networks the 
difference in patterns signifies a difference in the 
condition of the production system. This project involves 
a series of projects starting from Risk system production 
modelling, to Risk system management technologies, 
Risk system transportation modelling and simulations 
etc. it is recommended that the background of Risk 
systeming problems be taught in Petroleum Production 
Engineering courses. The knowledge of various tools for 
this kind of simulation should be introduced to the 
engineering curricular.  
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