

Coupling of Rainfall Triggered Debris Flow Simulation in Parts of Bandarban, Bangladesh: An Earth Observation based Approach for Landslide Hazard Assessment

By Md Moniruzzaman & Shovan L. Chattoraj

Indian Institute of Remote Sensing (ISRO)

Abstract- Debris flow modeling is process oriented approach in nature and considers avalanches, flows, falls and has become necessary to plan, manage and mitigate. There have numbers of empirical equations to depict kinematics of debris flow and scientific simulations. In the current study, the Rapid Mass Movements Software (RAMMS) has employed for natural flow modeling of displaced geophysical mass for parts of Rangamati area in Bangladesh. The digital elevation model (DEM) with 12.5m spatial resolution and supported by related secondary data, various geo-mechanical factors, cues from Voellmy rheological model are used as an important inputs for the model. The simulated result provide spatial variability of different geophysical parameters like pressure, momentum, velocity and height in the affected run-out zone. These outputs provides crucial information on real time landslide hazard mitigation and support to development of early warning systems.

Keywords: *debris flow, DEM, hazard, landslide and RAMMS.*

GJSFR-H Classification: FOR Code: 961099

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Coupling of Rainfall Triggered Debris Flow Simulation in Parts of Bandarban, Bangladesh: An Earth Observation based Approach for Landslide Hazard Assessment

Md Moniruzzaman ^a & Shovan L. Chattoraj ^a

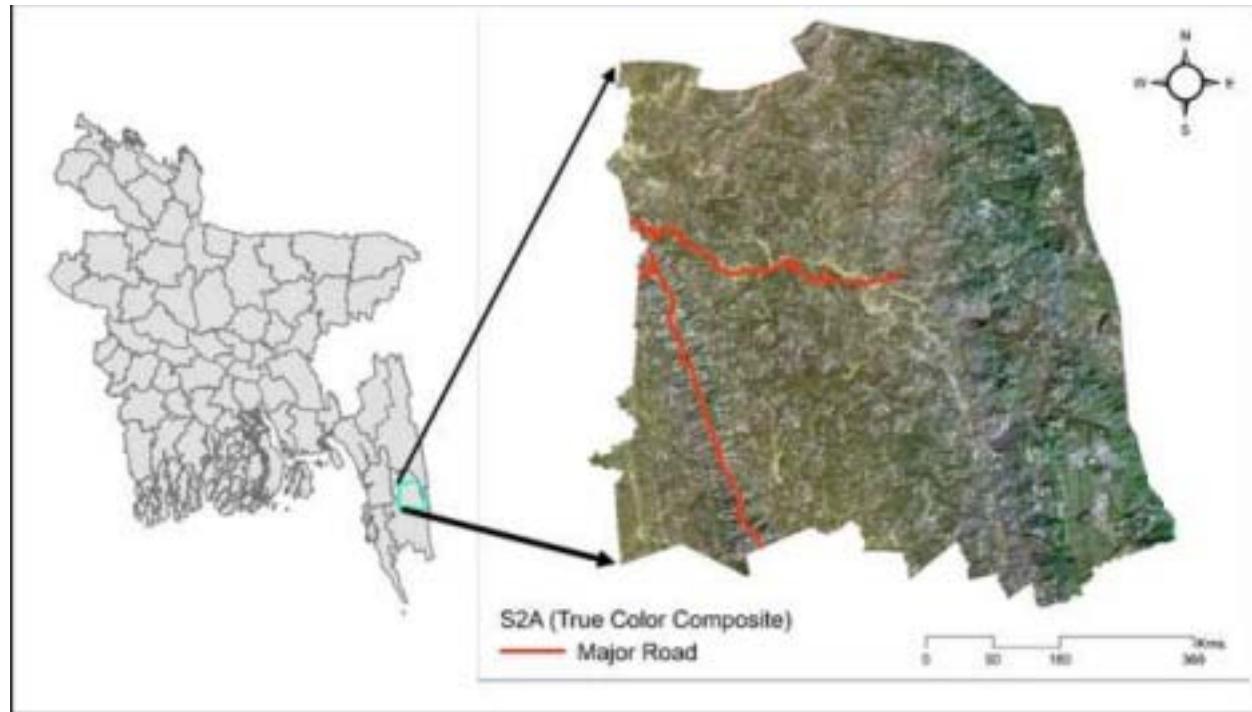
Abstract- Debris flow modeling is process oriented approach in nature and considers avalanches, flows, falls and has become necessary to plan, manage and mitigate. There have numbers of empirical equations to depict kinematics of debris flow and scientific simulations. In the current study, the Rapid Mass Movements Software (RAMMS) has employed for natural flow modeling of displaced geophysical mass for parts of Rangamati area in Bangladesh. The digital elevation model (DEM) with 12.5m spatial resolution and supported by related secondary data, various geo-mechanical factors, cues from Voellmy rheological model are used as an important inputs for the model. The simulated result provide spatial variability of different geophysical parameters like pressure, momentum, velocity and height in the affected run-out zone. These outputs provides crucial information on real time landslide hazard mitigation and support to development of early warning systems.

Keywords: debris flow, DEM, hazard, landslide and RAMMS.

I. INTRODUCTION

Landslide is collapse of earth, rock or debris from mountain or hill cliff down a slope. And defined as costly interruption of functioning a society/community causing extensive human, economic, social, material and environmental losses that goes beyond the ability of affected community. Landslide is the most significant geological hazards that contribute to natural disasters in hilly terrain of Chittagong, Bangladesh due to triggering influences e.g. heavy rainstorms, earthquakes, cloudbursts, geo-engineering setting, population intensification, indiscriminate hill cutting, unauthorized settlements, unplanned human activities, deforestation etc. [1-9]. The landslide is resultant by the effects of gravity and landform from the sliding movement of rock, soil, and organic materials under [10]. Landslide has become a frequent phenomenon for parts of Chittagong which

Author a: Center for Space Science and Technology in Asia and the Pacific (CSSTEAP), IIRS Campus, 4-Kalidas Road, Dehradun 248001, India, ASICT Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh. e-mail: moniruzzaman1313ku@gmail.com


Author a: Indian Institute of Remote Sensing (ISRO), 4-Kalidas Road, Dehradun 248001, India. e-mail: shovan@iirs.gov.in

brutally affects life, livelihood and property of the inhabitants blooming on every day trip, tourism and agriculture [5,7,11]. Physiographically, 18% of Bangladesh is hilly area and more of floodplain [12]. It has been found that over 0.5 million insolvent people are living on the lethal foothills of Chittagong [13,14]. Nearly 235 people died due to landslides in several informal settlements during 1997 in Chittagong and its contiguous urban fringes [15].

Debris flows and debris rushes have become a major natural hazard process in hilly regions which are complex, gravity-driven, water and sediments with extreme moveable capacity [16-23]. Modeling debris flow is a dynamic research arena and can play substantial role in disaster mitigation and management [24-26]. In this study, evolved Rapid Mass Movements Software (RAMMS) as an art of mathematical simulation model to forecast motion of stirring mass declining naturally from relief area (head) to base area via 3D/2D. Digital elevation model (DEM), the Voellmy rheological inputs and secondary ground data i.e. geotechnical parameters are fundamental prerequisites for RAMMS [9, 27-31].

a) Study area

The study undertaken is mostly surrounded in Bandarban district and a small part of south-eastern Rangamati district. The study area is approximately in-between 92.230282 decimal degrees (dd) to 92.594080 dd east longitude and 22.211499 dd to 21.850400 dd north latitude (Figure-1). Both Bandarban and Rangamati are the two hill districts among there of Bangladesh. The Tahjindong (1280m) Mowdok Mual (1052m), and Keokradong (883m) are the height hill peaks of Bangladesh including newly reported Saka Haphong (1063.1424m). The Sangu River (also known as Sango or Shankha), Matamuhuri and Bakkhali are the major river in Bandarban district [32]. The Rangamati district shares international border with India (Tripura state to the north and Mizoram state to the east) and Myanmar (Chin State to the east) comprising of 1292 km² is riverine and 4825 km² is under forest vegetation [33].

Figure 1: Study area showing in parts of Bandarban and Rangamati district

II. METHODS AND MATERIALS

a) Satellite Data Used

European Space Agency (ESA) operated Sentinel 2A (S2A) multispectral remote sensing data acquired for the study. In the present study 10 m spatial resolution bands used (bands specifications are shown

in table-1). At first cloud-free, orthorectified and radiometrically corrected S2A scenes acquired in 10 March 2018 was retrieved from Copernicus Sentinel Scientific Data Hub [34]. The S2 A data was processed using ESA SNAP 6.0 platform.

Table 1: Used Sentinel 2A data details

Used S2A Bands	Central Wavelength (μm)	Resolution (m)
Band 2 - Blue	0.490	10
Band 3 - Green	0.560	10
Band 4 - Red	0.665	10
Band 8 - NIR	0.842	10

The Advanced Land Observing Satellite-1 (ALOS), the Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR 12.5 m spatial resolution open source and freely available DEM used in this research. The elevation of the study area varies 4 meters to 980 meters (Figure-2a). Figure-2a also denoted 10 primary samples and 3 selected samples from total of 13 samples on which the simulation model run. In figure-2b aspects details and in figure-2c the slope have shown where slope is categorized into four classes and found maximum slope in the hilly terrain in-between 31.9-77.5.

b) Model Input Data

i. Digital Elevation Model

The fundamental pre-requisite datasets for RAMMS model are digital elevation model (DEM)

release area and mass along with friction properties and others associated geo-engineering parameters. Topographic settings is an initial input for simulation model of debris flow because the movement of flows will be determined, directed and dominated by elevation. Hence, high resolution precise DEM is required to define release area. The present study used ALOS-PALSAR 12.5m DEM. Two must needed inputs were given in debris flow modeling (i) Release/block release; and (ii) hydrograph. In this study, block release was favored due to its applicability.

Generally, RAMMS model usually follow unchannelized debris flow state particularly for superficial landslides and hill-slope debris flows. The designed model flow path was validated via satellite imagery. An important fact is the release area, for small unchannelized debris flows by a known initial height

which will be released as a block [35]. The release areas and approximate corresponding calculation domains

had been identified and demarcated over the DEM (Figure-2a).

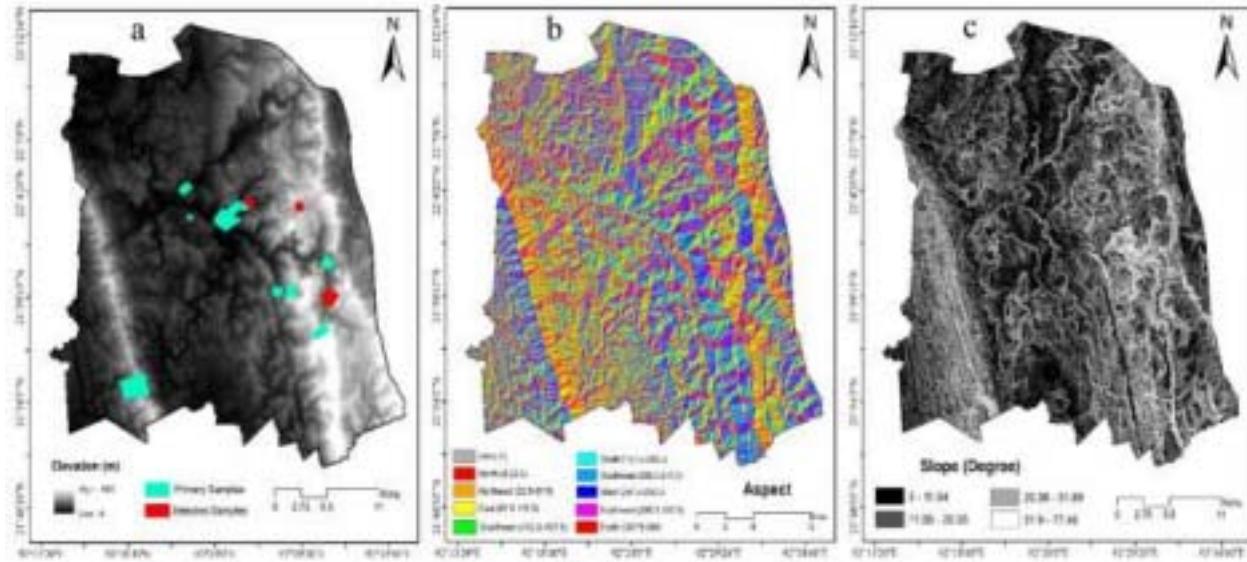


Figure 2: Elevation distribution throughout the study area (a); Aspect details (b); And slope variations

ii. Others parameters and model calibration

The rheological features and shear strength factors of slope is fundamental for RAMMS simulation model. The RAMMS physical model follows the Voellmy friction law [36] and (i) Dry-coulomb friction (μ); and (ii) Viscous-turbulent friction (ξ) are frictional resistance. The equation to calculate total frictional resistance (S) in Pa unit is as following

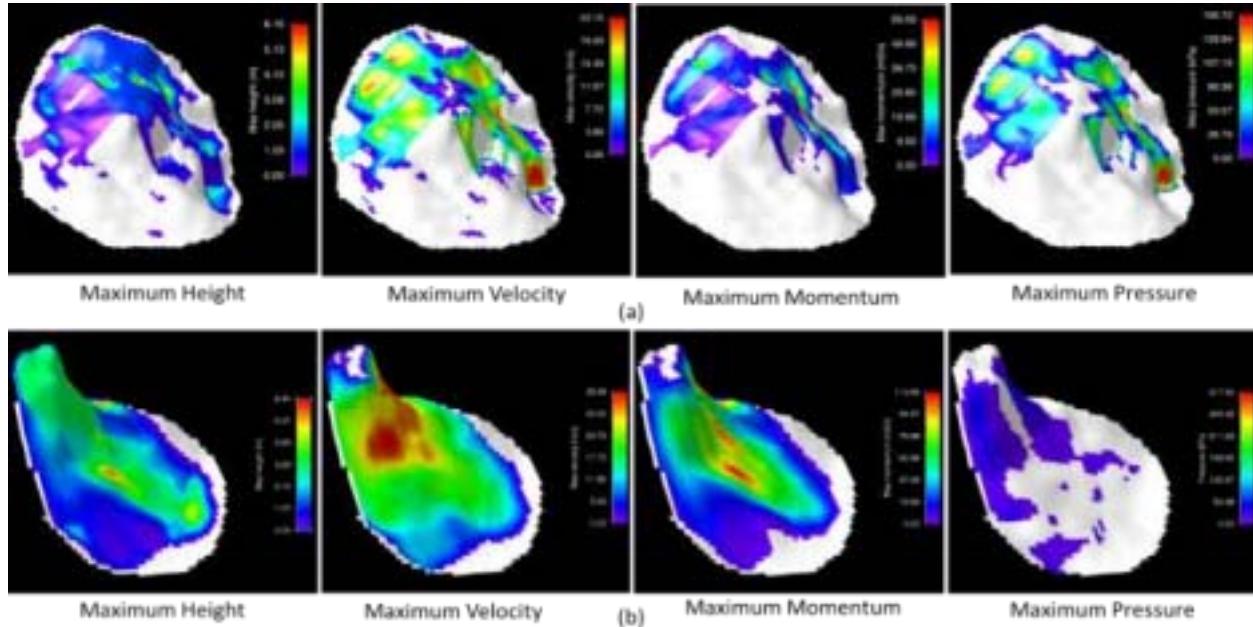
$$S = \mu \rho H g \cos(\phi) + (\rho g U^2) / \xi$$

Assuming, g -gravitational acceleration, H -flow height, ρ -density of the debris, ϕ -slope angle, and U -initial flow velocity.

The collected samples were analyzed at the Indian Institute of Remote Sensing (IIRS), Dehradun at various capacity levels using shear testing electronic tools (Model No. AIM 104-2kN, Make Aimil Ltd, New Delhi). Samples were tested at 0.25, 0.50 and 1 kgf/cm² regular load and subsequent shear strength factors at failure were determined.

RAMMS uses a single-phase model which is difficult for flow simulation with higher variety of debris flow materials. If the debris flow events are known the friction factors should vary to follow observed flow pathways so the simulation model ran multiple times to get desire results. Afterwards the best fit simulation outcomes were collected for further investigation [37]. A range of friction values used (e.g. dry friction 0.05-0.2) to fix optimal values and turbulent flow as 100-2000 m/s² [37]. Others input factors e.g. release height, materials density, momentum and lambda (coefficient) were eventually retained constant. At the time simulation model flow found nearly 90% matched compare to real event the parameters frozen immediately. Among all

typical outputs of RAMMS, momentum is relative. Momentum is measured in m²/s unit, furthermore multiplied by density of debris and area under consideration to derive actual momentum in (kg*m/s).

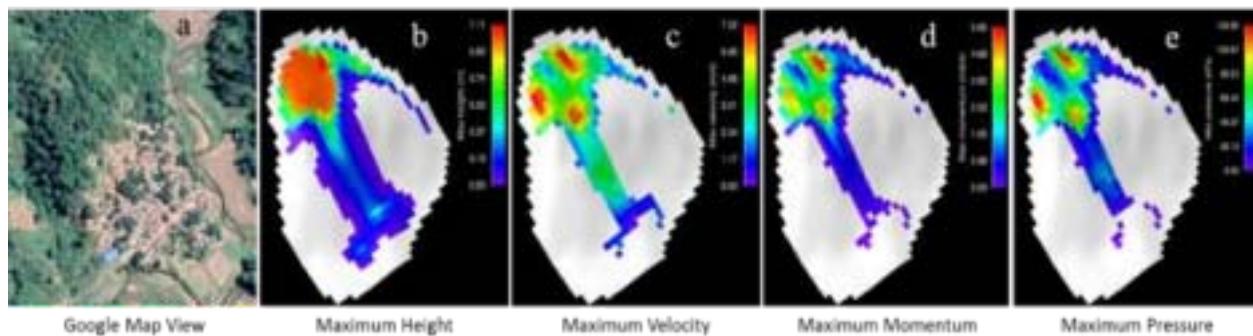

III. RESULTS AND DISCUSSIONS

a) Interpretation of simulation

Generally, RAMMS simulation provides four fundamental outputs are height, momentum, pressure and velocity. In addition, specific information of any point, line profile, run-out longitudinal profile are also possible to visualize in 2D and 3D format. The major concerns of debris flow are height, velocity and momentum. The high expenses of clearing huge debris and the detachment of roads for the large quantity debris eventually interrupt the local inhabitant's daily life. Thereafter velocity and momentum plays vital role to signify remedial specifications (by type, magnitude and nature) to stop debris flow movement and damage reduction. The dynamic physical parameters of RAMMS simulations are narrated as following:

b) Mendrui Para

Debris flow-1 (Figure-3a) Mendrui Para, is beside Raikhiyang Lake in the Eastern part of Bandarban. On the foot of the small hill local inhabitants occupied entire hazardous area by building human settlements. A small divergence into all branches observed from top to downwards. The simulated maximum flow height was 6.15m and maximum velocity 23.15m/s for flow-1. The debris flow-2 (Figure-3b) is slightly and flow-2 respectively. Comparatively debris flow-2 was little extensive than flow-1 with longer flow height (6.44m) and velocity (35.58m/s). The debris flow-


Figure 3: Simulation outputs of debris flow at Mendrui Para. (a) 3-D spatial variation of height, velocity, momentum and pressure along with run out path way of debris flow-1; (b) 3-D spatial variation of height, velocity, momentum and pressure along with run out path way of debris flow-2

c) Prangsha Para

Prangsha Para is basically settlement area and nearby western part of Rangamati district. A small channel goes to downstream of the hill foot. The simulated debris flow (Figure-4) model provides

m^2/s respectively. The distribution of pressure along the entrainment path was found 160.72kPa and 317.909kPa separately for flow-1 and flow 2.

maximum flow height 1.11m and velocity 7.02m/s at the initial zone and gets surrounded afterwards. The height pressure recorded in the model 120.80kPa and the maximum momentum of $5.85m^2/s$ was observed at the primary zone.

Figure 4: Google map view of present settlement status at Prangsha Para (a); 3-D spatial variation of maximum height, velocity, momentum and pressure along with run out path way of debris flow (b-e)

d) Dadru Khyong

Bottom of the selected hill human settlement found in hazardous situation at Dadru Khyong area. The debris flow simulated model (Figure-5) of the selected area was recorded 4.75m maximum height at the centroid. Model result show that maximum velocity of 22.78m/s at the centroid. Maximum momentum was found $54.09m^2/s$.

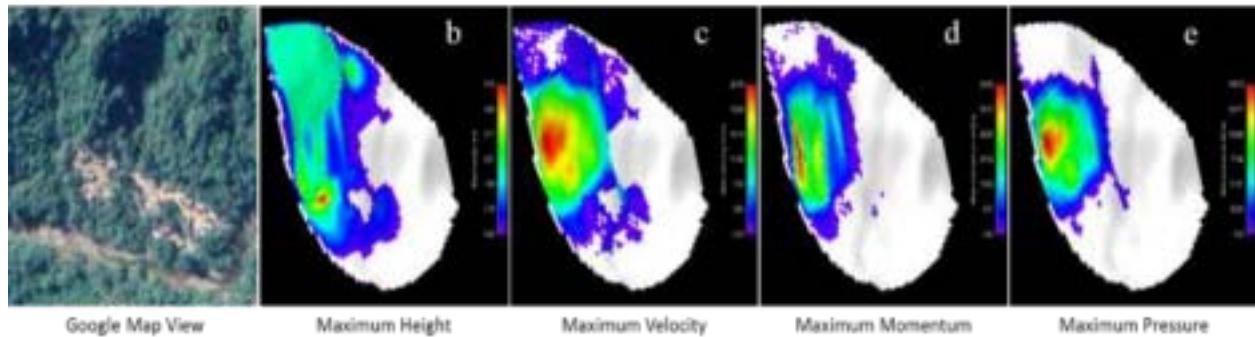


Figure 5: Google map view of present settlement status at Dadru Khyong area (a); 3-D spatial variation of maximum height, velocity, momentum and pressure along with run out path way of debris flow (b-e).

Overall, figure-6 describes the vertical profile of the three selected defies flow simulation area. The first one (Figure-6a) is showing the flow height and distance travel by the debris of *Mendrui Para* area which touches to 4.0m and suddenly slow down till the bottom. It has destructive impact on the local inhabitants due to the altitude variation tops to 350m. The second one (Figure-

6b) is describing the maximum height relationship with distance covered by debris at *Prangsha Para* area which has a clear indication of rush flow over the settlement as the lowest altitude over 400m. And the third one (Figure-6c) is showing the maximum sheer stress varies and a sudden pick denotes extreme situation raising altitude till 200m.

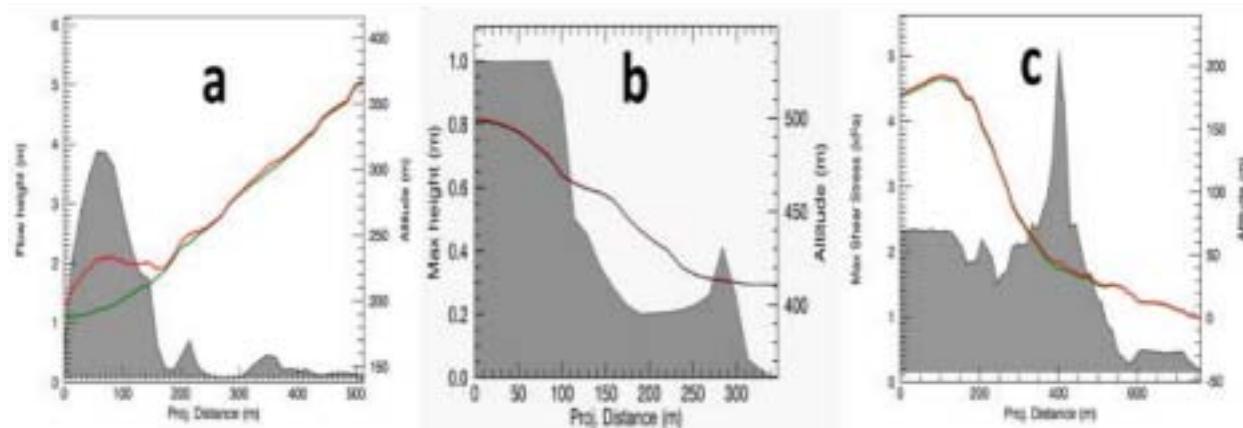


Figure 6: Vertical profile of the debris flow simulation. (a) *Mendrui Para* area flow height and covered distance relationship; (b) *Prangsha Para* area maximum height and covered distance relationship; (c) *Dadru Khyong* area Maximum sheer stress and covered distance relationship; And all the three have a common secondary axis altitude

IV. CONCLUSION

Overall the study concludes the following remarks:

- Dynamic physical flow parameters can be calculated using numerical simulation and flow modeling to aid mitigation, like height of check dams can be determined to digest initial thrust of the flow
- Collateral damage due to obstruction of rivers pathway and possible alteration resulting inundation can be assessed by knowing the velocity, height, pressure and momentum of modeled debris flow.
- Predictive modeling can be helpful in possible debris flows with little or no variation of geo

mechanical properties at adjacent susceptible localities.

Conflicts of Interest: The authors declare no conflict of interest.

Authors' Contributions: M.M. proposed the topic. M.M. and S.L.C. commanded the research design, data processing, analysis, and wrote the manuscript.

ACKNOWLEDGMENTS

Authors would like to acknowledge the Indian Institute of Remote Sensing (ISRO) and Center for Space Science and Technology in Asia and the Pacific (CSSTEAP), 4-Kalidas Road, Dehradun, for their providing financial help in procurement of the software

and infrastructural support. Helps received in projection related problems from Marc Christen of WSL Institute for Snow and Avalanche Research SLF, Switzerland is also duly acknowledged.

Funding: The study did not received any external funding.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Hervás, J.; Barredo, J.I.; Rosin, P.L.; Pasuto, A.; Mantovani, F.; Silvano, S. Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. *Geomorphology* 2003, 54, 63-75.
2. Galli, M.; Guzzetti, F. Landslide vulnerability criteria: a case study from Umbria, Central Italy. *Environmental management* 2007, 40, 649-665.
3. Schuster, R.L.; Highland, L.M. The Third Hans Cloos Lecture. Urban landslides: socioeconomic impacts and overview of mitigative strategies. *Bulletin of Engineering Geology and the Environment* 2007, 66, 1-27.
4. Ahmed, B.; Rubel, Y. *Understanding the issues involved in urban landslide vulnerability in Chittagong metropolitan area, Bangladesh*; 2013; pp 1-131.
5. Ahmed, B.; Rahman, M.S.; Rahman, S.; Huq, F.F.; Ara, S. *Landslide Inventory Report of Chittagong Metropolitan Area, Bangladesh*; BUET-Japan Institute of Disaster Prevention and Urban Safety (BUET-JIDPUS), Dhaka-1000, Bangladesh: 2014; pp 1-125.
6. Ahmed, B. Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox's Bazar Municipality, Bangladesh. *Natural Hazards* 2015, 79, 1707- 1737.
7. Mia, M.; Sultana, N.; Paul, A. Studies on the causes, impacts and mitigation strategies of landslide in Chittagong city, Bangladesh. *Journal of Environmental Science Natural Resources* 2015, 8, 1-5.
8. Ahmed, B.; Dewan, A. Application of bivariate and multivariate statistical techniques in landslide susceptibility modeling in Chittagong City Corporation, Bangladesh. *Remote Sensing* 2017, 9, 304.
9. Chattoraj, S.L.; Ray, P.C.; Kannaujiya, S. Simulation Outputs of Major Debris Flows in Garhwal Himalaya: A Geotechnical Modeling Approach for Hazard Mitigation. In *Remote Sensing of Northwest Himalayan Ecosystems*, Springer: 2019; pp. 37-56.
10. Highland, L.; Bobrowsky, P.T. *The landslide handbook: a guide to understanding landslides*; US Geological Survey Reston: 2008.
11. Ahmed, B. Community vulnerability to landslides in Bangladesh. UCL (University College London), 2017.
12. Islam, M.; Uddin, M. Country paper on hydrogeology section. In Proceedings of International workshop on arsenic issue in Bangladesh, Dhaka.
13. Islam, M. Causes of landslides and mitigation. *Daily star Roundtable on Challenges of development: Hill cutting landslide in Chittagong Bangladesh on 2008*, 30.
14. Khan, I. Hill cutting in Chittagong City Corporation area: its causes and the consequences. Khulna University, 2008.
15. *Technical Report: Identification of landslide causes and recommendation for risk reduction.*; Chittagong Divisional Office, Chittagong, Bangladesh., 2008.
16. Takahashi, T. Debris flow. *Annual review of fluid mechanics* 1981, 13, 57-77.
17. Hungr, O.; Morgan, G.; Van Dine, D.; Lister, D. Debris flow defenses in British Columbia. *Debris Flows/Avalanches: Process, Recognition, Mitigation*. Geological Society of America *Reviews in Engineering Geology* 1987, 7, 201-222.
18. Deganutti, A.; Marchi, L.; Arattano, M. Rainfall and debris-flow occurrence in the Moscardo basin (Italian Alps). In Proceedings of Debris-flow hazards mitigation: mechanics, prediction and assessment; pp. 67-72.
19. Vallance, J.W. Volcanic debris flows. In *Debris-flow hazards and related phenomena*, Springer: 2005; pp. 247-274.
20. Chattoraj, S.L.; Ray, P. Simulation and modeling of debris flows using satellite derived data: A case study from Kedarnath Area. *International Journal of Geomatics Geosciences* 2015, 6, 1498-1511.
21. Turnbull, B.; Bowman, E.T.; McElwaine, J.N. Debris flows: experiments and modelling. *Comptes Rendus Physique* 2015, 16, 86-96.
22. Rickenmann, D. Debris-flow hazard assessment and methods applied in engineering practice. *International Journal of Erosion Control Engineering* 2016, 9, 80-90.
23. Chattoraj, S.L. Debris flow modelling and risk assessment of selected landslides from Uttarakhand case studies using earth observation data. In *Remote sensing techniques and GIS applications in earth and environmental studies*, IGI Global: 2017; pp. 111-121.
24. Cruden, D.M.; Varnes, D.J. Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. *Transportation research board special report* 1996.
25. Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-flow mobilization from landslides. *Annual Review of Earth Planetary Sciences* 1997, 25, 85-138.
26. Quan Luna, B.; Blahut, J.; Van Westen, C.; Sterlacchini, C.; van Asch, T.W.; Akbas, S. The application of numerical debris flow of modelling for the generation physical vulnerability curves. *Natural*

hazards earth system sciences 2011, 11, 2047-2060.

27. Ayotte, D.; Hungr, O. Calibration of a runout prediction model for debris-flows and avalanches. In *Proceedings of Debris-flow hazards mitigation: mechanics, prediction and assessment*; pp. 505-514.

28. Iverson, R.; Denlinger, R.; LaHusen, R.; Logan, M. Two-phase debris-flow across 3-D terrain: model predictions and experimental tests. In *Proceedings of Debris-flow hazards mitigation: mechanics, prediction and assessment*; pp. 521-529.

29. Rickenmann, D. Runout prediction methods. In *Debris-flow hazards and related phenomena*, Springer: 2005; pp. 305-324.

30. Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. *Cold Regions Science Technology* 2010, 63, 1-14.

31. Tsai, M.; Hsu, Y.; Li, C.; Shu, H.; Liu, K.; Arattano, M.; Mizuyama, T. Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan. *Natural Hazards Earth System Sciences* 2011, 11.

32. Bandarban District. Available online: https://en.wikipedia.org/wiki/Bandarban_District (accessed on 23 April 2020).

33. Rangamati Hill District. Available online: https://en.wikipedia.org/wiki/Rangamati_Hill_District (accessed on 23 April 2020).

34. Copernicus Open Access Hub. Available online: <https://scihub.copernicus.eu/dhus/#/home> (accessed on November 2018).

35. Rickenmann, D.; Laigle, D.; McArdell, B.; Hübl, J. Comparison of 2D debris-flow simulation models with field events. *Computational Geosciences* 2006, 10, 241-264.

36. Salm, B.; Burkhard, A.; Gubler, H. Berechnung von Fliesslawinen: Eine Anleitung fuer Praktiker. *J mit Beispielen. Mitteilungen des Eidgenoessischen Instituts fuer Schnee- und Lawinenforschung* 1990, 47, 1-37.

37. Sosio, R.; Crosta, G.B.; Hungr, O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). *Engineering Geology* 2008, 100, 11-26.

