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Absorption Properties from Microwire Composite and Films 
from Microwires and its Application to the Safety Control of 
Infrastructures          

By S. A. Baranov 
Shevchenko Pridnestrov’e State University      

Abstract- The properties of films made of shielding from a microwire composite and films made of shielding from  
parallel array of  microwires have been studied in the distant diagnostics of dangerous deformations of critical 
infrastructure objects are investigate. Natural ferromagnetic resonance in glass-coated cast amorphous microwires 
reveals large residual stresses appearing in the microwire core during castingand external stresses. These stresses, 
together with magnetostriction, determine the magnetoelastic anisotropy. A correlation between the frequency of 
natural ferromagnetic resonance (NFMR) (0,1 to 12 GHz), determined from the dispersion of permeability, and alloy 
composition (or magnetostriction between 1 and 40 ppm) of glass-coated microwires has been systematically 
confirmed. Absorption of composite (microwire pieces embedded in a polymer matrix) screens has been 
experimentally investigated. Parallel theoretical studies suggest that a significant fraction of the absorption can be 
ascribed to a geometrical resonant effect,  while a concentration effect is expected for the thinnest microwires. A 
wide absorption properties profile has been measured from 0.1 to 12 GHz, the form of this profile is ascribed to the 
presence of natural ferromagnetic resonance (NFMR) in cast glass-coated amorphous magnetic microwires.   

Keywords: amorphousmagnetic microwires; ferromagnetic resonance;  natural ferromagnetic resonance microwires, 
radio-absorption shielding;  high frequency properties; films from  parallel array of microwires. 
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Abstract-

 

The properties of films made of shielding from a 
microwire

 

composite and films made of shielding from  parallel 
array of  microwires have been studied in the distant 
diagnostics of dangerous deformations of critical infrastructure 
objects are investigate. Natural ferromagnetic resonance in 
glass-coated cast amorphous microwires reveals large 
residual stresses appearing in the microwire core during 
castingand external stresses. These stresses, together with 
magnetostriction, determine the magnetoelastic anisotropy. A 
correlation between the frequency of natural ferromagnetic 
resonance (NFMR) (0,1 to 12 GHz), determined from the 
dispersion of permeability, and alloy composition (or 
magnetostriction between 1 and 40 ppm) of glass-coated 
microwires has been systematically confirmed. Absorption of 
composite (microwire pieces embedded in a polymer matrix) 
screens has been experimentally investigated. Parallel 
theoretical studies suggest that a significant fraction of the 
absorption can be ascribed to a geometrical resonant effect,  
while a concentration effect is expected

 

for the thinnest 
microwires. A wide absorption properties profile has been 
measured from 0.1 to 12 GHz, the form of this profile is 
ascribed to the presence of natural ferromagnetic resonance 
(NFMR) in cast glass-coated amorphous magnetic microwires. 

 

Keywords:

 

amorphousmagnetic

 

microwires; 
ferromagnetic resonance;  natural ferromagnetic 
resonance microwires,

 

radio-absorption shielding;  high 
frequency properties; films from  parallel array of 
microwires.

 

I.

 

Introduction

 

nterest in magnetic micro and nanowires has greatly 
increased in the last few years mainly due to their 
technological applications. Glass-coated amorphous 

magnetic micro-

 

and nanowires

 

(GCAMNWs) [1-4] are

 

attracting particular attention because of their 
applicability for multifunctional radioabsorbing shielding 
(important results published, for example in Refs. 

                 

[2-20]). 

 

Cast GCAMNWs

 

are produced by the Taylor
Ulitovsky method (see in Ref. [1-4]) as depicted in Fig.1. 

The alloy is

 

heated, in an inductor, up to the melting 
point. The portion of the glass tube adjacent to melting 
metal softens, enveloping the metal droplet. 

 
Under suitable conditions, the molten metal fills 

the glass capillary and a microwire is thus formed, with 
the metal core completely covered by a glass shell.

 
The microstructure of

 

GCAMNWs

 

depend 
mainly upon the cooling rate, which can be controlled 
when the metal-filled capillary enters a stream of cooling 
liquid on its way to the receiving coil. Critical quenching 
rates (105-107

 

K/s) for fabrication of amorphous material 
may be obtained.

 

 

Fig. 1: Process of casting glass-coated amorphous 
magnetic microwires (see [4] and below).  
1. Glass tube.    2. Drop of metal.  3. Inductor. 4. Water. 
5. Glass-coated microwire. 6. Rotating support. 

The glass coating of the cast GCAMNWs, in 
addition to protecting the metallic nucleus from 
corrosion and providing electrical insulation, induces 
large mechanical stresses in the nucleus. Coupled with 
its magnetostriction, these determine its magnetoelastic 
anisotropy, at the origin of a unique magnetic behaviour. 
The residual stresses are the result of differences in the 
coefficients of thermal expansion of the metal and of the 
glass. A simple theory for the distribution of residual 
stresses was presented in Refs. [2- 8]. 

I
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The theory of residual stress is presented in Ref. 
[4]. We will use results of this theory. Coupled with the 
magnetostriction of the latter, these factors determine 
the magnetoelastic anisotropy which is at the origin of a 
unique magnetic behavior.  

In cylindrical coordinates, the residual tension is 
characterized by the axial,σz, radial,σr, and tangential, 
σφ, components which are independent of the radial 
coordinate. The value of these stresses depends on the 
ratio of the radius, Rm, of the metallic kernel to the total 
microwire radius, Rc: 

                                 
1

2

−







=

m

C

R
Rx                                   (1) 

Using the cylinder–shell model, we then obtain 
a formula for stresses in the metallic kernel of the cast 
GCAMNWs: 

                                   ,                          (2) 

               ,     (3) 

                                                                                                             
where P0~ εE1 = σo~ 2 GPa is the maximum stress in 
the metallic kernel;  ε is the difference between the 
thermal expansion of the metallic core and that of the 
glass shell with the expansion coefficients α1 and α2: 
(ε = (α1 – α2)(T* – T)); E1 is the Young modulus of the 
metal core, T* is the solidification temperature of the 
composite in the metal / glass contact region (T* ~ 
(800…1000) K), T is the room temperature. The 
technological parameter k is the ratio of Young's 
modulus of the glass and the metal: 

k = E2/E1 ~ 0.3…0.6  ;ν is the Poisson ratio. 

Let us consider the case where all the Poisson 
ratios 

ν = 1/3 

in order to obtain 

                    

,                (4)
 

                              
.                    (5) 

For materials with positive magnetostriction, the 
orientation of the microwire magnetization is parallel to 
the maximal component of the stress tensor, which is 
directed along the axis of the microwire. Therefore, cast 
microwires with a positive magnetostriction show a 
rectangular hysteresis loop with a single large 
Barkhausen jump between two stable magnetization 

states and exhibit the phenomenon of NFMR. 
Equations (1-5) adequately explain the experiments 
concerning FMR and NFMR (see below). 

We suggested a model in which the residual 
stresses σr and σz in the GCAMNW monotonically 
decrease towards the strand axis. This model differs 
from the models of the standard theory (see Ref.  [2-8]). 

With additional  longitudinal strain, which occurs 
when the microwire is embedded in a solid matrix that 
itself deforms under external influence, the following 
term is added to the expression for the residual axial 
tension: 

                            

,
( 1)

o
ez

m

P
S k x

σ =
+

                  (6) 

where Po is the force applied to the composite; Sm is the 
microwire cross-sectional area; k is the ratio of the 
Young modulus of the shell to that of the microwire; x is 
the ratio of the cross-sectional area of the shell to that of 
the microwire. 

For materials with positive magnetostriction, the 
orientation of the microwire magnetization is parallel to 
the maximal component of the stress tensor, which is 
directed along the axis of the wire (see [2-8]). Therefore, 
cast Fe–based microwires with positive magnetostriction 
constant show a rectangular hysteresis loop with single 
large Barkhausen jump between two stable 
magnetization states and exhibit the phenomenon of 
natural ferromagnetic resonance (NFMR) (see [2-8]). 

The ferromagnetic-resonance (FMR) method is 
often used for investigation of amorphous magnetic 
materials (ribbons, wires, thin films).  Both macroscopic 
and microscopic heterogeneity of amorphous materials 
can be investigated by FMR. Residual stress is an 
important parameters for amorphous materials which 
can be studied by FMR (see [1-3]). 

FMR is also used for diagnostics of the 
uniformity of amorphous materials. Extrinsic broadening 
of FMR lines due to fluctuations of the anisotropy, 
magnetization, and exchange-interaction constant in 
amorphous materials has also been investigated. 
Microwave experiments are very useful for investigation 
of spin-wave effects. In particular, microwave generation 
and amplification are of great interest. Investigation of 
structural relaxation of amorphous materials during heat 
treatment, using FMR is also important. Differential FMR 
curves combined with hysteresis curves can give 
important information in this case.  

 In the present work, cast glass-coated 
amorphous microwires with metallic cores and 
diameters between 0.5 and 25 μm are considered. The 
amorphous structure of the core was investigated by X-
ray methods. The thickness of the glass casing varied 
between 1 and 20 μm. Using microscopy, we have 
chosen samples with the most ideal form, and with 
lengths of about 3-5 mm, for investigation. Microwires 

r Pφ νσ σ= ≡

( ) ( )1 [ 1 2 1] 2 1
kxP E

k xν ε
ν ν

=
− + + −

( )1 / 3 1 4 / 3
kxP E

k x
ε=

+ +

( )1 2
1z

k x
P

kx
σ

+ +
=

+
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based on iron, cobalt, and nickel (doped with 
manganese), with additions of boron, silicon, and 
carbon, were studied. Microwires made from different 
materials have diverse magnetostriction.  We have 
studied microwire from the same spool, whose glass 
casing was removed by etching in hydrofluoric acid.  

In almost all cases, standard FMR 
spectrometers from 2 to 32 GHz were used. The 
magnetic field was measured using a Hall sensor (with 
accuracy within 0.1 %). In addition, magnetometer 
measurements determined the magnetization, needed 
for calculation. 

The basic measurements were made in a 
longitudinal field configuration (external magnetic field 
was directed along the microwire axis). In this case, a 
signal of the correct form was obtained from good 
samples. This gives the possibility of measuring 
resonant-curve width. 

 For thick cores, skin effect must be taken into 
account. In this case the resonant frequency was 
described by the Kittel formula for a plane (with 
longitudinal magnetization). The g factor was estimated 
at two resonant frequencies as ~ 2.08 ÷ 2.1 on 
average. Our results are in good agreement with 
literature data on the g factor for amorphous materials 
(see Refs. [2-20]). In a transverse field (when the 
external field is perpendicular to the microwire axis), the 
signal was weak or not observed in samples with 
negative magnetostriction. Obviously, the presence of 
this signal is associated with non-uniformity of the high-
frequency demagnetizing factor. 

II. Natural Ferromagnetic Resonance 

A microwire was considered to be a 
ferromagnetic cylinder with small radius r.  For its 
characterization we introduce following parameters: 

1. The depth of the skin layer is: 

                 δ ~ [ω(µµ0)eΣ]-1/2  ~  δ0(µ)e
-1/2 ,                     (7) 

(µµ0)e  is the effective magnetic permeability, and Σ  is 
the microwire electrical conductivity. In the case of our 
magnetic microwires, with the relative permeability ׀µ׀ 
near resonance of the order 102, (ω~ (8 ÷ 10) GHz) δ  
changes from1 to 3 µm. 

2. The size of the domain wall (according to Landau-
Lifshits theory) is: 

                  Δ
 
~ (A/K)1/2  ~ (10 ÷ 0,1) µm,                   (8)

 

where
 

A is the exchange constant and K
 

is the 
anisotropy energy of the microwire (K~λσ, where λ is the 
magnetostriction

 
constant and  σ  is the effective

 

residual stress from the fabrication procedure (see Refs. 
[2, 4] and Eqs. (1-6))). The full theory gives Δf

 
~ 0,1µm 

for the size of the domain wall of glass-coated 
microwires (see Ref. [4]).

 

3. The radius of a single domain (according to Brown    
theory) is 

                
1/ 2~ / Sa A M ~ (0,1÷ 0,01) µm,                  (9) 

where Ms is the saturation magnetization of microwire. 
According to Refs. [2-8] the frequency of the 

NFMRis: 

           
( ) ( )

2
2 22π 2π exp{ 2 / }

γ e S SH M M rω 
= + − − 

 
δ  , (10) 

where γ is the gyromagnetic ratio (γ  ~ 3  МHz/Oe). The 
anisotropy field is He ~ 3λσ/Ms(for exact calculations of 
anisotropy field, see below). 
If r<δ  , we have: 

                             

2π
γ e SH Mω

= +
.                         

(11) 

If r>δ, the NFMR frequency is given by (see 
Refs. [2 - 8]): 

                         

( )
2

4π
γ e e SH H Mω 

= + 
 

.               (12)
 

The discovery of natural ferromagnetic 
resonance (NFMR) in amorphous microwires [2] was 
preceded by their study using standard FMR methods 
[4-7]. Then, the shift in the resonant field, due to core 
deformation of the microwire associated with fusing the 
glass and core at the temperature of microwire 
formation, was observed.  The FMR line width is also of 
interest because it characterizes, in particular, the 
structural parameters [2-18].  

Since the skin penetration depth of a microwave 
field in a metallic wire is relatively small in comparison 
with its diameter the resonant frequency of FMR can be 
determined by means of Kittel formula (Eq. (12)). Taking 
into account the magnetoelastic stress field [2, 3], for a 
thin film magnetized parallel to the surface, we can 
obtain: 

      
[ ])4)(

2

SSXZ MMNNН π
γ
ω

+′−′+=







 

                × ))(( SYZ MNNH ′−′+ ,                      (13) 

where H is the FMR field; ZYX NNN ′′′ ,,  are 
components of tensor of effective demagnetizing factors 
in case of magnetoelastic stress: 

                    

2
2

3 1cos ;
32i

S

i
N i

M
λ σ

θ ′ = − 
           

(14) 

where: 
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.0,90 321 === θθθ   

Components σI (see Eqs. (1-6)) are residual 
stresses (see in Ref. [2, 3]).  Then,  

        
      

       

( )

2

2

;
2

1 2
;

2 1

X Y
S

Z
S

P
N N

M

P k x
N

M kx

λ

λ

′ ′= = −

+ +
′ =

+
         

 

(15)

 

Substituting the σi values obtained in our 
previous works [3-8] (see Eqs. (1-6)), and taking into 
account Eqs. (13),  (14), we can calculate conditions for 
FMR: 

(16)

 
 
 
 
 
 
 
 
 
 

 
 
 

                                              
If the glass is removed, the stress is completely 

removed. Then the FMR
 
resonant field of wire without 

glass casing, 0H , is  determined from:                                               
 

              ( )
2

0 0 4π
γ SH H Mω 

= + 
 

.                     (17) 

We have shown (see Ref. [1-4, 6-8])

 

that these 
relations quantitatively explain all of the basic features of 
NFMR

 

and FMR.  

 

Note that the value of SM
 

required 
for the calculations was determined both by standard 
methods on a vibration magnetometer and with the use 
of interpolation formulas given here. The error relative to 
tabular values for the given alloys is not greater than 5%.

 
 

For the frequency of NFMR under the simple 
approximation taking 1Eε ~ 2GPaand k~ 0.4

 
this 

formula can be written as:
 

2
1

14.0
4.0)( 








+

≈
x
xoGHz ωω

,

 

              
         ( ) 2

16105,1)( λω ≈GHzo
 

.     
 
             

 
(18)

 

 

As you can see, dependence for the frequency 
of NFMR (Eqs. (18), and Figs 2, 3, 4) is determined from 
two typical values, x, λ. 

The basic contribution to the NFMR frequency  and 
NFMR line width is due to the effective magnetostriction and 
parameter x (Eqs. (18), and Figs. 2-4).The residual stress in 
the microwire plays the dominant role in the formation of the 
absorption  line width,  as it will be shown below(Figs 5, 6). 

The NFMR frequency in the distant diagnostics 
of dangerous deformations of critical infrastructure 
objects  can be written as 

            
,               (18a)

 

where  

 

These formulas allow you to determine stress in 
the distant diagnostics of dangerous deformations of 
critical infrastructure objects such as bridges, dams, 
wind turbine towers, skyscrapers, stack-furnaces, 
embankments, etc. To this end, fragments of magnetic 
microwires will be embedded in the bulk of concrete 
structures or on their surface during construction or after 
it by means of coating with a special concrete-adhesive 
plaster. 

 

Fig. 2: Theoretical curve of NFMR frequency as a 
function of x (according to Egs. (16) – (18)) and 
experimental data (see [2]) 

 

1
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Fig. 3a: Dependence of relative magnetostriction λ/λm for 
alloy composition (Coy Fe1-y)75(BSiC)25 series cast glass-
coated amorphous magnetic microwires according to 
Eqs. (16) – (18), where y = Co/(Co+Fe) (see [2]) 

 

 Typical  saturation magnetostriction λs in the 
amorphous Co –Fe alloys: ○(Fe1-yCoy)80(PC)20; 

●(Fe1-yCoy)75(SiB)25(according to Ref. [2]). 

When the penetration depth of the microwave 
field in the metallic wire is small relative to the wire 
diameter (on account of the skin effect), the resonant 
frequency in FMR and NFMR may be determined by 
means of Eqs. (1-6).(The general theory of residual 
tension is presented in Refs. [2, 4], but here it is enough 
to use the simple theory from [3]) 

Substituting typical values of λand xin Eq. (18) 
we reach numerical values of NFMR in a range from 1 to 
12 GHz. A systematic study on the NFMR frequency for 
the alloy series (CoyFe100-y)75(BSiC)25 has been performed 
as a function of the Co content (Fig.3). The 
magnetostriction has then been evaluated using Eq. 
(18).  The result is plotted in Fig. 3a  which shows good 
agreement with the magnetostriction values as 

determined through conventional techniques (Fig3b.).  
Thus, the final theory quantitatively explains all the basic 
features of NFMR  and  FMR.  However the area of 
experimental research in the case of small radius of a 
metallic nucleus radius of a microwire remains vacant. 

III. Radio-Absorption Shielding 

The designs of composites from GCAMNWs 
have following configurations.  

 

Fig. 4a: Composite shielding for radio absorption 
protection with GCAMNWs where were maked in grating 
form. We can consider two types of orientation of a 
magnetic field: E and H 

 
 
 
 
 
 
 
 
 

Fig. 4b:
 
Diffraction grating with GCAMNWs

 

 

Fig.

 

4b:

 

Composite shielding for radio absorption 
protection with GCAMNWs where were made ina 
stochastic mixture of

 

microwires in the polymeric matrix

 

Natural ferromagnetic resonance (NFMR)occurs 
when the sample is submitted to a microwave field 
without application of any biasing field other than the 
intrinsic anisotropy field of the microwire. 

 

Near the natural ferromagnetic resonance 
frequency, Ω, the dispersion of permeability

 

μ. given by 

 

                     μ(ω) = μ' (ω) + iμ'' (ω),  (19)

 

exhibits a peak in μ''

 

and a zero crossing of μ' . 
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Fig. 3b:



 

a                                        b 

Fig. 5: Real and imaginary relative permeability 
components around NFMR for Co59Fe15B16Si10 (a) and 
Fe69C5B16Si10 (b)  microwires (r~5µm, x>8 (see [2, 5]) 

 

Fig. 5c: Frequency dispersion of the real and imaginary 
parts of the relative permeability around the NFMR 
frequency for the Fe68C4B16Si10Mn2 microwire (Rm ~ 
5 μm, x ~ 5)(see [19] ). 

Figures 5a, 5b and 5c show resonance 
frequencies of 4.4; 9.0 and 9.5 GHz, and resonance 
widths of 1,5; 1 and 0.5 GHz.  Near resonance, μ'' is 
expected to be described by  

                   μ''/ μdc ~ ГΩ / [ (Ω– ω) ² +  Г ²],            (20) 

where μdc
 is static magnetic permeability and Г is the 

width of the resonant curve. Very near resonance,, when 
Г> (Ω– ω), Eq. (20) reduces to 

μ''/ μdc
 ~ Ω / Г~ (10 ÷ 102). 

Note that in Fig. 5a the imaginary component is 
rather symmetrically distributed around the resonance 
frequency. This is due to the symmetric distribution of 
the circular permeability in the near surface layer,  within 
the penetration depth.  In contrast, in Figs. 5b, 5c the 
imaginary component shows a non-symmetric feature 
around the resonance frequency. This can be attributed 
to the inhomogeneous character of the permeability in 
the region close to the surface of the microwire where 
metastable phases form, as demonstrated by X-ray 
studies.  

Monitoring the geometry of the microwire (i.e., 
its diameter) and the magnetostriction through its 
composition enables one the fabrication of microwires 
with tailor able permeability dispersion and for creating 
Radioabsorption materials: 
1. Determining the resonant frequency in a range from 

1 up to 12 GHz;  
2. Controlling the maximum of the imaginary part of 

magnetic permeability. 
High-frequency properties, pieces of microwires 

have been embedded in planar polymeric matrices to 
form composite shielding for radio absorption 
protection. Experiments have been performed 
employing commercial polymeric rubber around (2 ÷ 3) 
mm thick. Microwires are spatially randomly distributed 
within the matrix before its solidification. Concentration 
is kept below (8 ÷ 10) g of microwire dipoles (1 ÷ 3)mm 
long) per 100g rubber [2, 6, 7]. A typical result obtained 
in an anechoic chamber is shown in Fig. 6a for a screen 
with embedded Fe69C5B16Si10microwires. 

As observed, an absorption level of at least 10 
dB is obtained in the frequency range from 8 to 12 GHz 
with a maximum attenuation pick of 30 dB at around 10 
GHz. In general, optimal absorption is obtained with 
microwires with metallic nuclei of diameter 2r = (1÷3) 
μm (2R ~ 20μm (x>10)) and length L = (1÷3) mm. 
Such pieces of microwires can be treated as dipoles 
whose length, L, is comparable to the half value of the 
effective wavelengths, Λeff/2, of the absorbed field in the 
composite material (i.e., in connection to a geometric 
resonance).  

Fig. 6a also shows how the frequency 
absorption spectrum of shielding with Fe69C5B16Si10 
microwires changes when it is rotated (90º each 
spectrum). We attribute the changing attenuation to the 
lack of perfect angular distribution of microwires which 
length not always fit within the shielding thickness.  

 

Fig. 6a: Absorption characteristics of shielding by a 
microwire composite with NFMR in the HF - field in the 
range of frequencies 10-12 GHz. Curve 1 represents an 
initial situation of the screen; then 2, 3, 4: the screen is 
turned by 90° about a perpendicular axis each time  

© 2020 Global Journals
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The effect doesn’t even have mirror symmetry. 
(The measurement error was less than 10% for 

the frequency, and while the spread of the attenuation 
factor was 5 dB). 

Small fluctuations in concentration of dipoles at 
a concentration of dipoles near the percolation threshold 
can lead to fluctuation of the absorption curve. Similar 
results were presented in [2].  

As observed, both frequency dependences 
(Fig. 5b and 6) are similar except for the half-width value 
of the permeability. 

Although the design of absorption shielding can 
be based on disposing the dipolar pieces in a 
stochastic way, we consider, for simplicity, a theoretical 
analysis for a diffraction grating (see Fig 6b) with 
spacing between wires Q <Λ (Λ is wavelength of 
absorbed field).(Another simple example is in Appendix 
A). 

The propagation of an electromagnetic wave 
through absorption shielding with microwire-based 
elements is characterized by transmittance, |T|, and 
reflectance, |Rr|, coefficients given by:  

|T| = (α2 + β2)/[(1+ α) 2+ β2]; 

                   |Rr|= 1/[(1+ α) 2+ β2],      (21) 

whereα=2Xr/Z0, and β=2 Y/Z0, with Z0=120π/Q, and the 
complex impedance Z= Xr + iY.  

The absorption function, G, is correlated with 
the generalized high-frequency complex conductivity Σ 
(or high-frequency impedance Z).  

Here, we use the analogy between the case of a 
conductor in a waveguide and that of a diffraction 
grating. The absorption function, given by: 

        |G| = 1 - |T|2 - |Rr|
2 = 2α / [(1+ α) 2+ β2],     (22) 

Has a maximum,  

|Gm|=0,5≥|G|, 

for simultaneous α=1, and  β=0, for which 

|T|2 = |Rr|
2 =0,25. 

The minimum, |G|=0, occurs atα=0, β any 
positive number). 

Theoretical estimations taking into account only 
the active résistance of microwires result in attenuation 
within the range (5 ÷ 15) dB being much lower than 
experimental results, which for spacing of microwires            
Q =10-2 m ranges between 18 and 15 dB, while for a 
spacing Q = 10-3 m it increases up to 20 to 40 dB. Thus, 
it becomes clear that shielding exhibit anomalously high 
absorption factors, which cannot be explained solely by 
the resistive properties of microwires.  

The high-frequency conductivity, Σm, of a 
stochastic mixture of microwires in the polymeric matrix 
can be expressed as a function of the conductivities, Σi, 
of non-conducting (polymeric matrix) and conducting 

(microwire) elements, denoted by sub-indices 1 and 2, 
respectively, as [2]: 

                       Σm
 = B + ( B2 + AΣ1Σ2 )

 ½,               (23) 

where 

B=1/2{[Σ1(X1-AX2)+Σ2(X2-AX1)]; 

Xi is fractional volume: 

(X1+X2)=1; 

A=1/(J1 -1), with          J1~ (J+Y/Xr) 

being the fractal dimension of the system (J is the 
geometrical dimension of the system) and  

Y/ Xr ~ (r/δ)2. 

Fig. 7 shows that in case of a thick microwire     
(r >δ≈1µm), the conductivity of the system becomes 
very large, even in case of small microwire 
concentration, indicating the case of an antenna 
resonance as reported in [2].  

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

X2

relative conductivity Σm/Σ2

1

2
3

 

Fig. 7: Generalized conductivity calculated using formula 
(23) forΣ2 / Σ1 ~ 104 

1 thin microwire (r<δ~1 µm) J =2, Y =0 
2 thin microwire (r<δ~ 1 µm) J =3, Y =0 
3 thick microwire (r>δ~1 µm) J1 =4, Y/Xr = 1 

Let us consider the effective absorption 
function, (as in Eq. (22)): 

              |Geff| ~ ГeffΩeff/ [(Ωeff– Ω)² + Гeff²],     (24) 

whereГeff≥  Г (see Eq. (12)) and Ω ~ Ωeff =2πc/Λ. 
A microwave antenna will resonate when its 

length, L, satisfies  

                               L ~ Λ/ 2(μ 
eff)

 
½ .                           (25) 

The  maximum absorption (see  Fig 6) occurs 
for Ωeff

 ~10 GHz  (Λ ~ 3 cm) and μ 
eff ~102, (according 

to Fig. 5).  This corresponds to: 

                         L ~ (1,5÷ 2) mm,                             (26)
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when the microwire concentration((see Fig.7) X2<0,2) is 
much less than the  percolation threshold..  A greater 
concentration of dipoles increases absorption, |Geff|, 
but also increases reflectance, |Rr1|, which can be 
simply evaluated to be [2]: 

                        |Rr1| ~1 - 2√ (Ω/2πΣm),                    (27) 

where  Ω/2π ~1010 Hz.  
The formula is applicable, and calculation of 

small reflectance, |Rr1| is possible, only if 

Σm~1011Hz,  

for concentration below the  percolation threshold (as 
Σ2~ 1015Hz). 

Thus, for very thin microwires (i.e., thinner than 
1 μm diameters) embedded in a composite matrix with 
concentration larger than the percolation level X2 ~ 0,2 a 
noticeable absorption effect should be expected.  

Atypical result obtained in an anechoic chamber 
is shown in Fig. 8 for radio-absorbing shielding with 
embedded Fe68C4B16Si10Mn2 microwires. As observed, 
an absorption level of at least 10 dB is obtained in a 
frequency range of (8…12) GHz with a maximum 
attenuation peak of 30 dB at about 10 GHz. In general, 
optimal absorption is obtained for microwires with 
metallic kernels of diameter 2Rm ~10 μm (x ~ 5) and 
length L = (1…2) mm. These micro wire pieces can be 
treated as dipoles whose length L is comparable to the 
half value of the effective wave lengths Λeff/2 of the 
absorbed field in the composite material (i.e., in 
connection to a geometric resonance). A similar result 
has been received for radio-absorbing shielding with a 
different GCAMNW  (see Refs. [2-8]).  

 

Fig. 8a: 1–Average absorption characteristics of a 
shielding containing a microwire composite exhibiting 
NFMR at microwave frequencies ranging from (10…12) 
GHz for Fe68C4B16Si10 Mn2  microwires (Rm

 ~ 5 μm, 

x ~ 5). 

2 – Absorption curve in case of anexternal pressure. 

(see Ref. [19]) 
 

 

Fig. 8b:  A  – Average absorption characteristics of 
diffraction grating with GCAMNWs exhibiting NFMR at 
microwave frequencies ranging from (1…10) GHz for 
Co65Fe10B15Si10 microwires (Rm ~ 5 μm, x ~ 5) 

B – Absorption curve in case of anexternal pressure. 

IV. Final Remarks 

One of the important technological features of 
the GCAMNWsis the high rate of cooling and 
solidification of the composite fibers drawn from the 
molten alloy and consisting of a ferromagnetic metal 
core and a glass coating. Significant differences 
between the thermal expansion coefficients of the glass 
and metal alloy lead to the appearance of large residual 
stresses. 

Particular attention has been paid to the 
parameters determining the anisotropy of cast 
GCAMNWs. The continuous casting of GCAMNWs 
(Taylor-Ulitovsky method) has some limitations, 
determined by the physical properties of metal and 
glass (see Ref. [2]). 

We have presented simple analytical 
expressions for the residual stresses in the metallic 
kernel of the microwire, which clearly show their 
dependence on the ratio of the external radius of the 
microwire to the radius of the metal kernel and on the 
ratio of Young's modules of glass and metal. Our 
modeling based on the theory of thermoelastic 
relaxation, shows that the residual stresses increase 
from the axis of the microwire to the surface of its 
metallic kernel, which is in accordance with the 
previously obtained experimental data (see Ref. [2]). 
Thus, in the manufacture of cast microwires with a glass 
coating by the Taylor-Ulitovsky method, the residual 
stresses reach maximum values on the surface of the 
metal core (see Refs. [2-8]). 

The cast GCAMNWs exhibit natural 
ferromagnetic resonance (NFMR), whose frequency 
depends on the composition, geometrical 
parametersand deformationof the microwire. The NFMR 

© 2020 Global Journals
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phenomenon observed in glass-coated magnetic 
microwires opens up the possibility of developing new 
radio-absorbing materials with a wide range of 
properties. An important feature of cast microwires with 
an amorphous magnetic core is the dependence of the 
NFMR frequency on the deformation (stress effect). In 
this regard, the microwave response of a composite 
consisting of segments of amorphous magnetic 
microwires with a glass coating in a flat dielectric plate is 
investigated when the plate is deformed in a microwave 
field with a frequency in the range from (1...10) GHz. As 
shown by calculations (see Equations (18), (18a)), the 
shift of the NFMR frequency as a result of the stress 
effect can reach 20% before the destruction of the 
composite. Therefore, this effect can be used for 
contactless diagnostics of deformations in distant 
objects (including critical infrastructures) reinforced by 
cast magnetic microwires with the stress effect of 
NFMR. To this end, these objects are periodically 
scanned with a floating-frequency radar to determine 
the deviation of the initial NFMR frequency due to 
potentially dangerous deformations of the monitored 
object. 

 

   

 
 

 Figure 9:
 

Stress dependence of the transmission 
coefficient for a single-layer composite sample 
measured in the free-space near field (see Ref.

 
[20])

 According to the above, the proposed method 
(based on the NFMReffect) is more technologically 
advanced than the method based on the GMI effect. 

V.   Conclusion
 The microwave electromagnetic response has 

been analyzed for a composites consisting of dipoles 

and   diffraction grating of amorphous magnetic glass-
coated microwires in a dielectric. Thys materials can be 
employed for radio absorbing screening. The 
spontaneous NFMR phenomena observed in glass-
coated microwires has opened the possibility of 
developing novel materials with broad-band of radio 
absorbing materials. 

The described studies provide the following 
basic conclusions. 

(A) We have derived simple analytical expressions for 
residual and mechanical stresses in the metallic 
core of the microwire, which clearly show their 
dependence on the ratio of the external radius of the 
microwire to the radius of the metal core and on the 
ratio of Young's moduli of the glass and the metal. 
Our modeling based on the theory of thermoelastic 
relaxation shows that the residual stresses increase 
from the axis of the microwire to the surface of the 
microwire metallic core, which is in accordance with 
the previously obtained experimental data (see [2]). 
Thus, in the case of glass-coated cast microwires 
prepared by the Taylor–Ulitovsky method, the 
residual stresses achieve maximum values on the 
surface of the metal core (see [2–8]). 

(B) Cast GCAMNWs exhibit NFMR, whose frequency 
depends on the composition, geometrical 
parameters, and deformation of the microwire. The 
NFMR phenomenon observed in glass-coated 
magnetic microwires opens up the possibility of 
developing new radio-absorbing materials with a 
wide range of properties. An important feature of 
cast microwires with an amorphous magnetic core 
is the dependence of the NFMR frequency on the 
deformation (stress effect). The calculations have 
shown (see (18), (18a)) that the shift of the NFMR 
frequency caused by the stress effect bc an achieve 
20% before the degradation of the composite.  

(C) This effect can be used for contactless diagnostics 
of deformations in distant objects (including critical 
infrastructures) reinforced by cast magnetic 
microwires with the stress effect of NFMR. To this 
end, these objects are periodically scanned with a 
floating-frequency radar to determine the deviation 
of the initial NFMR frequency due to potentially 
dangerous deformations of the monitored object. 

(D) The overall technology of magnetic wire composites 
is cost-effective and is suitable for large-scale 
applications. 

Here
 

we
 

have
 

discussed
 

the
 

electromagnetic
 

properties
 
of

 
composites

 
with

 
magnetic

 
wires

 
showing

 

NFMR phenomena. A striking
 

property
 

of
 

these
 

materials
 

is
 

that
 

the
 

spectra
 

of
 

the
 

effective
 

electromagnetic
 

parameters
 

(permittivity
 

and
 

permeability)
 
can

 
be

 
actively

 
tuned.
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It is worth mentioning also another principle of 
detecting mechanical strain which is examined in
Ref. [20]. This principle is based on the giant 
magnetoimpedance (GMI) effect (see Figure 9),so that it 
is different from that presented in Figure 8a.The GMI
effect demands external magnetization of the sample 
which is not required in the NFMR method (see Refs. [2-
8]).



Technology of glass coated amorphous and 
nanocrystalline microwires allows the fabrication of 
continuous wires 

Appendix A.Scheme for measuring the radio-absorbing 
properties 

The material parameters in microwaves 
frequencies usually are found from the measurement of 
the reflection and/or transmission coefficients from 
which the complex permittivity (permeability) are 
calculated.  

The measurement methods can be divided in 
two categories:  

1) Transmission line methods (coaxial lines probes, 
rectangular waveguides, cavity resonators ((see 
Ref. [15]). Thus methods (in the first category) 
require cutting a piece of a sample to be placed 
inside the transmission line or cavity making a close 
contact with the probe. The transmission line 
methods work best for homogeneous materials that 
can be precisely machined to fit inside the sample 
holder. 

2) Antenna techniques in free space (see below). 
 

Figure A: A variant of the experimental scheme for microwave measurements 

 
Figure A1: Scheme for measuring the radio-absorbing properties of samples with EFMR (according [2, 6, 19])  

under the influence of external mechanical stresses 

 
 Figure A2:

 
Scheme for measuring the radio-absorbing properties of sampleswith GMI (according [20])

 
under the 

influence of external mechanical stresses
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Let's examine the simple theory of 
measurement of radio absorbing composition materials 

It is well known, that the simple model of 
contact of vacuum with the absorbing material gives the 
following equations [2, 5, 19]  

                                    1+ Rr
 = T,                            (A. 1) 

(α+iβ)(1- Rr)= T;
 

that gives
 

                           rR ,i
i

1− α − β
=

1+ α + β
                 (A. 2)

 

and at   β
 
=0 , α

 
=1,

 
we find

 

                                        Rr

 
=0.                               (A. 3)

 

From these it is possible to obtain a simple 
criterion for  matching of vacuum with a radio absorbing 
material:

 

                               μm~ Σm / Ω,                                (A. 4)
 

(where
 
μm is

 
effective magnetic permeability of 

composite). This condition cannot be satisfied for 
composites containing amorphous magnetic wires. This 
forces us to use other physical principles for creation of 
radio absorbing materials presented above).

 

We note that similar results were obtained in 
Refs. [2, 7, 8, 19].
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Abstract-

 

A

 

toroidal plasma system (Batorm) were designed, 
constructed and developed in Egyptian Atomic Energy 
Authority (EAEA) since 1998. The plasma  parameters of this 
device have been studied and obtained for the first 
dimensions  during PhD thesis 2003. The word “BATORM” is 
an abbreviation to “Baby Toroidal of Masoud”. The main 
feature of the system is a low-cost machine which  can be 
operated as a small toroidal plasma device. In this system, the 
plasma is  initiated by linear axial discharge between two 
plates which create an applied axial  field all over the 
discharge device. This system could be provided rich 
information  on toroidal discharge physics which includes 
small

 

impurities. The design of the

 

Batorm is upgraded by 
change its dimensions, according that, the turns number of  
toroidal, ohmic and vertical coils are increased. The discharge 
current Idis

 

and total  inductance of these three coils were (2 A) 
and (934.4 μH) respectively. The  experimental results have 
been preliminary taken depending on measurment of electron 
temperature (KTe) and ion density (ni) at each one cm from the 
outer wall  to the inner wall of the chamber. From these results, 
it is found that the highest  values of (KTe) and (ni)

 

arrived to 10 
eV and 1.52 x10-9cm-3 (respectivelely) at  distance 7 cm. 
Besides, it has been seen that there are no plasma arrived to 
the  inner wall according to the toroidal confienment.  

 

Keywords:

 

toroidal plasma/aspect ratio/coils inductance/

 

electric circuit/

 

electron temperature and ion density.

  

I.

 

Introduction

 

ATORM is the first toroidal plasma machine 
designed and operated in our  lab at EAEA [1]. It 
was designed and built in 1998 depending on an 

idea to  produced plasma in two ranges. In beginning, a 
low pressure DC glow plasma  discharge is produced. 
After that, the excited magnetic trap in toroidal chamber 
are  used to confine the energy and charged particles of 
the plasma to produce toroidal  plasma confinement (as 
in the to

 

kamaks devices [2]).

 

In this work, we are going to study and 
investigate experimentally the  different parameters of 
the plasma of low pressure toroidal glow discharge in 
radial magnetic field [3]. The magnetic field has two 
orthogonal components: one that is

 

created by a system 
of current-carrying coils around the plasma (toroidal 

magnetic  field (TF)) and the other is created by a 
current that is induced in the plasma (poloidal magnetic 
field (PF)). The resulting magnetic field lines spiral 
around a  set of nested toroidal flux surfaces, providing 
an effective plasma-confinement  system, which can 
heat the plasma [4]. There is a weak vertical field is 
added by  two separate set of external coils parallel to 
the Ohmic coil [5-7] provides  additional stabilizing 
forces which required to prevent the radial expansion of 
the  plasma column.  

The Batorm is considered as one of the small 
and low cost devices. The first  one (from 1998 to 2003) 
had aspect ratio (R/a) 1.68 with R = 6.125 cm and                     
a =  3.625 cm. The toroidal coil consisted of 48 turns 
while the Ohmic coil had 22 turns  and the vertical coil 
had 5 turns. In that work, there are four electrical circuits 
was  designed and demonstrated to produce toroidal 
plasma inside the vacuum and magnetic vessel. The 
discharge energy was in the range between 45 J to 
around  384 J. It was during discharge time around 0.68 
msec to 1.6 msec. The plasma  current was between 3.4 
KA to 12.75 KA with electron temperature from 2.25 eV  
to 9 eV by double electric probe [1].  

Recently, updating Batorm configuration is 
beginning to increase the plasma  properties (current, 
temperature and magnetic field). The new updating one 
will be  explained in details in next section. Our study 
gives some preliminary results and  makes complete 
survey to the plasma properties from this system. Also, it 
is considered as the first step to make use this plasma 
in different industry  applications in future plan.   

II. Design and Operation of the Batorm 

The BATORM consists mainly of vacuum 
chamber, vacuum system,  magnetic vessel and electric 
circuit [1]. The photographic view of the new Batorm is 
illustrated in figure (1). The vacuum chamber consists of 
two parallel aluminum  plate electrodes, which is fixed at 
Pyrex glass discharge chamber of 15 cm length,  and 32 
cm inner diameter. At the center of it there is another 
glass tube of 15 cm  length, and 10 cm outer diameter. 
So, the aspect ratio of this device R/a = 2. The  working 
gas pressure of helium is 9 x 10-2Torr. 
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A magnetic vessel is used to contain and 
stabilize the plasma by Toroidal,  Ohmic and Vertical 
coils. The toroidal magnetic field (TF) is produced by an  
external coil consisting of 75 turns wound directly on the 
discharge chamber after insulating the two electrodes. 
And the poloidal magnetic field is produced by 30  turns 

which generates large plasma current. These turns form 
the cylindrical air  solenoid for the OH transformer. The 
weak vertical field is generated by two coils  parallel to 
the OH-coil, each coil has 6 turns. The schematic 
diagram of the  vacuum chamber and magnetic vessel 
is shown in figure (2).  

Fig. 1:
 
Photographic view of the BATORM device

 

The inductances of the toroidal, ohmic and 
vertical coils are calculated from  the following equations 
(1) and (2) as [8]:  
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Fig. 2: Schematic diagram of the plasma discharge chamber and magnetic vessel

 

1- Two parallel aluminum plate electrodes                 

 

         6- Two (T) connections 

 

2- Pyrex glass discharge chamber

 

                                                                7- Toroidal Coil 

 

3- Glass tube                                                                         8- Ohmic coil  
4- Three small ports                                                              9- Vertical coil 

 

5- Two large ports  

Where; μο

 

is

 

the permeability constant, n is the number of turns per unit length and A is the area of one turn. 
Therefore,  

Ltoroidal = 785 μH, LOhmic = 28.4 μH and Lvertical = 121 μH

 

So, the total inductance of the all coils: 934.4 μH.
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Fig. 3: Schematic diagram of the plasma discharge circuit. It has three parts  (I) to produce plasma, (II) to prepare 
the coils to confinement the plasma and (III)  as a trigger circuit to confinement the plasma.

 

The discharge period 

 

and the discharge 
current Idis can be calculated from  equations (3) and (4) 
as follows [1]:  

 

(3)

 

 

Where, C is the capacity of the capacitor bank.  
Therefore, Idis= 2 A.

  

b)

 

Double Probe Method  
The double electric probe is a diagnostic tool to 

measure the electron plasma

 

temperature and ion 
density. It consists of two identical probes, normally  
cylindrical configuration, biased with respect to each 
other by an external source  voltage (Vprobe) with an 
associated current (id), but the entire system floats with 
the  plasma potential. Its technical data is illustrated in 
table (1). The double probe has

 

an advantage that it can 
be used in plasma, with high space potential and it 
could  disturb the plasma only at its location [9, 10].  

If the potential difference between the probes is 
increased, then the relatively  positive probe collects 
more electrons, until at a certain potential it reaches  
saturation.  

 
 
 
 
 
 
 
 
 

 

Probe material

 

Tungsten

 

Tip length

 

4mm

 

Tip diameter

 

1.5 mm

 

Tip area

 

9.87 mm2

 

Insulating material

 

Glass

 

DC power supply

 

From 0 V to 27 V

 

  

IV.

 

The Experimental Results and 
Discusion

 

The (I-V) characteristics of double Langmuir 
probe at each cm of the length  of the plasma inside the 
BATORM are shown in figure (4). In this figure the (I-V)

 

characteristics for glow discharge drown by black 
points, while for toroidal  confinement by red points. This 
figure illustrated that the confinement success to  move 
the plasma far from the inner wall of the BAtorm (r = 11 
cm) more than the  outer wall (r = 0 cm).  
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I

II

III

volts. Then to confine the plasma connected the 
Torodia, Ohmic and Vertical  coils with the electric circuit  
which is illustrated in figure (3). It consists of three phase 
electric tap has a neutral  point, three diodes as rectifier, 
three heater wire with different power values  connected 
in series with the tree coils To, Oh, V during an overload 
150 A.  

III. Evaluation of Plasma Parameters

a) The Electrical Circuit and Operation Conditions  
In this section, the electrical Circuit in our 

system has been investigated in figure (3). The plasma 
is initiated by linear axial discharge between the two 
plates which will apply an axial electric field all over the 
discharge. So, first make pre ionization by connected 
the two electrodes in series with DC power supply has 7

  

kV and 125 mA to get glow discharge plasma at 300 

Table 1: The technical Data for Probe Designing

(4)

 = CLtotal2          



CV2
Idis         





Table 2: The different values of electron temperature (KTe), ion density  (ni) and energy density at different distances 

r (cm)  KTe (ev)  ni (cm-3) x 109 (KTe x ni) x 109 

0 2.5 1.6 3.99 

1 2.5 1.89 4.7 

2 3.5 1.28 4.48 

3 5.5 1.02 5.61 

4 6.25 1.44 8.98 

5 6.25 0.72 4.5 

6 8.75 0.81 7.1 

7 10 1.52 15.2 

8 7.5 1.75 13.1 

9 2.5 1.06 2.7 

10 2.5 0.38 0.947 

11 0 0 0 

Figure (5) shows the variation of plasma 
temperature, plasma density and  plasma energy 
density at deferent distances from 0 to 11 cm. From the 
results, it is  clear that, the plasma has maximum 
temperature and density at distance 7 cm from  the 
outer wall. Plasma is found around the minor

 
axis but 

there are run away  electrons which escape in direction 
of the outer wall. From knowing the energy  density, the 
biggest value of plasma kinetic pressure is 15.2 x 
109eV/cm3; at 7 cm  from the outer wall.  

V.
 

Conclusion
 

BATORM is the first toroidal plasma machine 
designed and operated in our  lab at EAEA. This device 
is the first step to build small and not expensive plasma  
toroidal devices. The aim from them is to produce 
plasma in different properties by  using available 
equipment and facilities. On condition, this plasma is in 
high  accuracy to useful in different applications. By this 
way our lab will open contacts  with the universities to 
explain experimentally and simply the plasma 
technology  for students. Adding to contact with any 
destination need to use these sources of  plasma in 
different applications such as industry, archeology, 
petroleum, medicine,  agriculture, environment and etc. 
according to plan will stomach for each  application.
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 Fig. 4:

 
The variation of plasma temperature, plasma density and plasma energy  density at deferent distances from 0 

to 11 cm
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Fig. 5: The variation of plasma temperature, plasma density and plasma  energy density at deferent distances from 
0 to 11 cm
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The BATORM device consists mainly of vacuum 
chamber & vacuum  system, Toroidal, Ohmic & Vertical 
coils and electrical circuit. The vacuum chamber 
consists of two parallel aluminum plate electrodes, 
which is fixed at Pyrex  glass discharge chamber of 15 
cm length, and 32 cm inner diameter. At the center of 
this chamber there is another glass tube of 15 cm 
length, and 10 cm outer  diameter. From that, the aspect 
ratio for this device is R/a = 2.  

This is the first attempt to obtain DC plasma in 
BATORM device. The  double electric probe estimates 
the electron temperature. The peak electron  
temperature is 10 eV and peak ion density is 1.5 x 109 

cm-3at 7 cm from the outer  wall of the device.  
It is clear that from the values of ion density, it 

could be increased the dc  glow discharge voltage in 
future to give maximum values for ni. Besides, it is  
possible to connect more capacitor banks with ohmic 
coil circuit to increase  poloidal magnetic field. This work 
has be considered as the first step to produce a  good 
view for Batorm system. This will be used as a sourse of 
toroidal plasma  machien which very useful in different 
applications related to material science.  
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Summary-

 

John Wheeler proposed the idea “It from Bit,” 
suggesting that information gives rise to physics.

 

However, the process of “It from Bit” remains to be 
clarified. In this work, we propose

 

Information Mechanics. We

 

suggest

 

that information determines observed phenomena. 
The interaction of the two basic elements making up 
information creates everything we observe. We introduce

 

information space and time to be the basic elements. The 
interaction of information space and time

 

creates everything 
we observe. Based on these assumptions, we derive an 
action,

 

the information action, and the information function. 
The information action represents the maximum possibilities, 
i.e., information, in a system. Information action appears to be 
similar to the string action in string theory and superstring 
theory but with a different meaning.

 

The information function 
calculates the possible states

 

in a system. We demonstrate 
that elementary particles and their wave-particle duality, 
fundamental forces, dark matter, and dark energy can emerge 
from the information function. We show that it is possible to 
derive a value of the cosmological constant consistent with 
astrophysical observation.

 

We demonstrate that one may 
derive the hierarchy between the weak scale and the Planck 
scale. We point out that one may

 

study what is inside a black 
hole and deduce that the entropy of a black hole to an outside 
observer is proportional to the area of the

 

event horizon.

 

Based on the various problems Information Mechanics

 

may 
address, we suggest that it could lead to  the grand unification 
theory we seek.

 

Keywords: 

I.

 

Introduction

 

information mechanics, hierarchy problem, 
cosmological constant problem, dark matter, dark 
energy, black hole, it from bit, grand unification theory.  

he principles and laws

 

of creation are

 

sought in 
many disciplines, including

 

sciences, philosophies, 
and ideologies. Current cosmology suggests that 

the creation of our universe is through a “big bang.” 
However, the natural law that has led to the big bang

 

waits to be explored further. 

 

John Wheeler proposed [Refs 1, 2, 3] the idea 
“It from Bit.” He suggested that

 

information sits at the 
core of physics and every "it," whether a particle or field, 
derives its existence from observations. To show how 
everything comes to existence through observation, 

 
 

  
The Grand Unification Theory is an attempt to 

use one mathematical formula to explain everything, 
including all elementary particles, fundamental forces, 
dark matter, dark energy, and the macro structure of the 
universe, and to unify quantum physics with Einstein’s 
general relativity theory about gravity. So far, string 
theory is the only mathematically consistent theory that 
can unify everything [Refs 4, 5]. However,

 

current string 
theory is still limited in its

 

ability to make predictions. 
Something is still missing. 

 
In this paper, we propose Information 

Mechanics, in which

 

information determines and creates 
everything we observe. We present

 

the

 

basic

 

principles

 
and formula about

 

how information underlies

 

all 
observed phenomena, including giving the emergence 
to elementary particles, fundamental forces, dark matter, 
dark energy, black holes, and the universe. We proffer 
two basic laws governing Information Mechanics. The 
First Law of Information Mechanics comes from 
quantum physics, indicating the information contained in 
our measurement determines the observed phenomena.

 
The Second Law of Information Mechanics comes from 
the ancient Chinese wisdom about yin yang. It proposes 
that two basic elements, yin and yang, make up 
everything, including information, and that the 
interaction of these two elements creates all the 
observed physical phenomena. We will show that the 
interaction of two pairs of yin yang elements: space-time 
and exclusion-exclusion, create all elementary particles, 
forces, dark matter, dark energy, and the universe we 
observe.  

We

 

show that the laws of Information 
Mechanics

 

give rise to an information action. Information 
action represents the maximum possibilities, i.e., 
information, in a system. Information action appears to 
be similar to string action. From the information action, 
one can define information function. Information function 
calculates the possible states

 

in a system.

 

Information 
function

 

seems to be an extension of wave function in 
quantum mechanics. With information action and 
information function, we demonstrate that elementary 
particles and their wave-particle duality emerge from the 
Poincaré

 

symmetry, fundamental forces come about 
due to the diffeomorphism symmetry, and classical

 
equations of motion come from Weyl symmetry. 
Observation of dark matter and dark energy at the large 

T
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scale of universe can be explained in Information 
Mechanics. We find that it is possible to calculate the 



cosmological constant consistent with the current 
astrophysical observation. The hierarchy problem 
regarding cosmological constant can be possibly 
explained and derived. We also demonstrate that it is 
plausible to deduce the large hierarchy between the 
weak symmetry breaking scale and Planck scale. We 
find that information action and function provide a way 
to

 

study what is inside a black hole and also to derive

 
the entropy of a black hole as seen by an outside 
observer to be

 

proportional to the area of its event 
horizon. 

 II.

 

Basic

 

Principles

 

and

 

Laws

 

of

 
Information

 

Mechanics

 a)

 

First Law of Information Mechanics

 
The observed phenomenon is determined by 

the information of the measurement.

 
The First Law of Information Mechanics comes 

from quantum physics, which indicates that the process 
of making a measurement determines the observed 
phenomenon. 

 
For instance, quantum physics shows us that 

what detector we use and where we place the detector 
determines what phenomenon we observe.

 b)

 
Second Law

 

of Information Mechanics

 Everything is made of two basic elements. 
These two elements are opposite, relative, co-created, 
inseparable, and co-dependent. The interaction of these 
two elements creates everything. 

 The
 

Second Law of Information Mechanics
 originates from ancient Chinese wisdom about yin yang 

[Ref 6, 7]. We keep
 
the Chinese words here and call 

these two basic elements that make up everything: yin 
and yang. 

 These two basic elements, yin and yang, make 
up the

 
“Bit” of information. The

 
Second Law of 

Information Mechanics
 
suggests the interaction of yin 

and yang, the essential elements of information, creates 
everything.

 
III.

 
Space and Time as the Fundamental 

Yin-Yang
 
Pair

 
What are the basic yin yang elements that 

create the observed elementary particles, forces, dark 
matter, dark energy, and the

 
universe?

 We suggest
 
that space and time are one of the 

fundamental pairs of yin-yang elements that create 
everything we observe. 

 
We propose another meaning of space-time, 

which we call information space and time. Information 
space and time are related to two basic measurements 
we conduct. Information time relates to the 
measurement of movement and change. Information 

space relates to the measurement of stillness and 
solidity. For instance, the flow of sand in an hourglass 
and the movements of the sun and the moon have all 
been used as measurements of time. The duration of a 
day is based on the measurement of the rotation of the 
earth. The measurements of space, such as the length, 
height, and width of an object, are the measurement of 
its fixedness and stillness. 

Information space and time are a yin-yang pair. 
They are opposite and relative. Change and stillness are 
opposites and relative. Space and time are co-created 
because whenever one measures change, one refers to 
something unchanged. Whenever one measures 
something as unchanged, one compares it with 
something one considers changing. Therefore, 
information space and time are inseparable and co-
dependent. 

According to quantum physics, it takes energy 
and momentum to measure time and space. How 
accurately time and space can be measured depends 
on the amount of energy and momentum used in the 
measurement. More specifically, to measure the time of 
duration ∆τ, it takes an energy of∆𝐸𝐸 ~ ħ/∆𝜏𝜏. To measure 
a space of size ∆σ, it takes the momentum ∆𝑝𝑝 ~ ħ/∆𝜎𝜎.   

If one takes gravity into consideration, 
according to general relativity, energy curves space-
time. When one measures time interval ∆τ, the energy 
∆E used for a time measurement will curve space-time. 
It will create a black hole with the horizon on the order of 
G∆E/c4. When ∆σ is smaller than G∆E/c 4, no information 
can escape. Therefore, the measurable causal region is:  

∆σ ≥ G∆E/c4. 

Therefore, there exists the uncertainty relation 
between the measurable space ∆σ 

and measurable 
time

 
∆τ, 

                                    ∆σ ∆τ ≥ lp
 
tp.

  

Here lp
 
is the Planck length and tp is

 
the Planck 

time. This uncertainty relation suggests that information 
space and time affect each other. They are not 
independent. They are a yin-yang pair. 

 

Next, we propose that inclusion and exclusion 
are the other

 
basic yin-yang pair in measurement. This is 

because, when one makes a measurement, one needs 
to give the information about what is included and what 
is excluded. 

 

We propound, all measurements are based on 
these two basic yin-yang pairs: information space-time 
measurement and inclusive-exclusive measurement. To 
see this, one can examine all

 
possible measurements, 

such as measurement of velocity, acceleration, energy, 
momentum, temperature, spin, electricity, magnetic 
field, mass, charge, and force. One can see that these 
measurements are various combinations of space and 
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time measurement and inclusive and exclusive 
measurement.  

IV. Derivation of Information Action 

If all measurement is made of two basic 
measurements: space-time measurement and inclusion-
exclusion measurement, according to the first and 
second laws of Information Mechanics, the interaction of 
the space and time yin-yang pair and the interaction of 
the inclusion and exclusion yin-yang pair should create 
all observed phenomena. 

The simplest action created by the interaction of 
the information space time is: 

                                           A1=α∫∆τ∆σ. 

(6)

 

Here the symbol σ represents information 
space and the symbol τ represents information time. 
The integral symbol ∫ represents the summation over 
information space and time, and𝛼𝛼 is a constant. From 
the uncertainty relation between information space and 
time (1), we get 

α=1/(lptp). 

To introduce the second yin-yang pair into the 
action, we need to include the inclusion and exclusion 
elements. To do this, we realize that corresponding to 
the inclusion and exclusion yin-yang pair, in nature there 
exist two types of particles, fermions and bosons. 
Fermions have half (1/2) spin. They repel each other. 
They cannot be in the same state. Bosons have integer 
spin. They tend to clump. The normal time and space 
coordinates τ and σ are of bosonic nature. If we assume 
each information space or time coordinate has both the 
fermion (yang, repulsive) and boson (yin, clumping) 
parts, each information time and space coordinate 
become two elements: 

                                          τ ->(τ, θτ)  (3)  

                                          σ ->(σ, θσ).  (4)  

Here we use θσand θτ to represent the fermion 
part of information space and time coordinates σ and τ. 
The θσand θτcan only take on the value of 0 or 1 
because they are repulsive and refuse to stay at the 
same place. The four elements of the two yin-yang pairs 
are represented by σ, τ, θσ,and θτ.  

The simplest action created by these two yin-
yang pairs is: 

                                  A2=α’∫∆τ∆σ∆ θτ∆θσ. 

(7)

 

We will call the action A1 and A2the information action.  
One can see that the action A1 is basically the 

action of bosonic string and the action A2 is the action of 
the super string[Ref 4, 5]. It is interesting to see that 
from the basic laws of Information Mechanics we can 
derive string action [Ref 4, 5].  

There is a fundamental difference in the 
meaning and function between information action and 
string action. For instance, suppose the integration of τ 
and σ is over (0, T) and (0, L). We can see that T and L 
correspond to the time and space scale involved in our 
measurement in Information Mechanics. They are 
different in different measurements. If our measurement 
and observation is the whole universe, T and L should 
be the age and horizon length of the universe. This is 
different from string theory, in which L is set to be the 
string length and T is set to be infinite. 

The information actions A1 and A2 in equations 
(2) and (5) give the amount of the information in a 
system with the observation scale (0, T) and (0, L). 
Information action expresses the possible states that 
can be observed in a system. Seth Lloyd derived a 
similar result in his paper [Ref 8], viz. that the maximum 
observable information in a system is represented by 
(2).  

V. Two Types of Space-Time 
To derive the observable phenomena in 

Information Mechanics, it is necessary to realize that 
there exist two types of space time. One is the 
information space time associated with the fundamental 
yin-yang pair (τ, σ). It is related to the basic elements of 
information. We call it information space and time. The 
other is the physical measurement of space distance 
and time duration or physical location of space time 𝑋𝑋𝜇𝜇 .  
Let’s call𝑋𝑋𝜇𝜇  physical space and time.  

The physical space and time 𝑋𝑋𝜇𝜇 is a projection 
from the information space and time (τ, σ), 

𝑋𝑋𝜇𝜇 : (τ, σ) ->𝑋𝑋𝜇𝜇  (τ, σ). 

Suppose in this projection, the total information 
is unchanged. The action A1 becomes: 

                                𝐴𝐴1
′ = 𝛼𝛼 ∫𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (− det ℎ𝑎𝑎𝑎𝑎 ) 

1/2
.   

Here, ℎ𝑎𝑎𝑎𝑎 = 𝜕𝜕𝑎𝑎𝑋𝑋𝜇𝜇𝜕𝜕𝑏𝑏𝑋𝑋𝜇𝜇 . 

In the following, for the sake of the simplicity of 
illustration, we will work with the “bosonic string,” 

A1= α∫ 𝑑𝑑𝑑𝑑𝑇𝑇
0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿

0 . 

One can follow and extend the same discussion 
to the general case of “superstring,” 

A2= α′ ∫ 𝑑𝑑𝑑𝑑𝑇𝑇
0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿

0 dθτdθσ. 

VI. Definition of Information Function 

Now let’s define the information function Ψ: 

                                                 Ψ=exp(i A).   

Here A is the information action. We can see 
that the information function Ψ is related to the amount 
of information I in a system through the formula: 
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(5)



                                      I = A= - ilnΨ. (8)  

Suppose the information function at τ = 0 and   
σ = 0 is Ψ0. The information Ψ at τ = T and σ = L is 

                                            Ψ=exp(iA1)Ψ0.
 (9)  

Here A1= α∫ 𝑑𝑑𝑑𝑑𝑇𝑇
0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿

0
 𝑜𝑜𝑜𝑜 

A2= α∫ 𝑑𝑑𝑑𝑑𝑇𝑇
0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿

0 dθτdθσ. 
 

Using the action
 
𝐴𝐴1
′
 

in (6),
 

the information 
function at τ

 
= T and σ

 
= L now becomes

 

Ψ=exp(iA1)Ψ0

 
= ∫𝒟𝒟𝒟𝒟

 
exp(i𝐴𝐴1

′ ) Ψ0.

 

Here 𝐴𝐴1
′ = α∫ 𝑑𝑑𝑑𝑑𝑇𝑇

0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿
0 (− det ℎ𝑎𝑎𝑎𝑎 )1/2.

 

Here ∫𝒟𝒟𝒟𝒟
 

represents summing over all 
possible 𝑋𝑋,

 
similar to Feynman’s path integral definition 

[Ref 9]. 
 

Compare to the wave function in quantum physics:

 

Ψ(T) =∫𝒟𝒟𝒟𝒟
 

exp(iS) Ψ0.

 

Here S = ∫ 𝑑𝑑𝑑𝑑

 

ℒ(𝑥𝑥(𝑡𝑡), 𝑥̇𝑥𝑇𝑇
0 (t)).

 

One can see that the information function is a 
natural extension of the wave function in quantum 
physics. The action in Information

 

Mechanics integrates 
over both time and space while the action in quantum 
physics integrates over time.

 

Information Mechanics is also different from 
quantum field theory. The action of Information 
Mechanics integrates over two-dimensional information 
space and time, while in quantum field theory the action 
integrates over four-dimensional physical space time. 
The main task of quantum field theory is to calculate the 
correlation function and scattering cross-sections. In 
Information Mechanics, the correlation function and, 
thus, scattering cross-section can be obtained through 
the information function

 

in the equation (9). Note that the 
wavelength and frequency in quantum field theory are 
now replaced with the measurement scales T and L in 
Information Mechanics. We will discuss the 
correspondence between the calculations of Information 
Mechanics with those of quantum field theory in more 
detail in future work.

 

VII.

 
Emergence

 

of Elementary Particles 
and Fundamental

 

Forces

 

As

 

discovered in particle physics, the basic 
constituents of everything are elementary particles and 
fundamental forces. It is found that elementary particles

 

have wave-particle duality, meaning that they behave 
like a wave but each elementary particle has its own 
specific mass and spin, no matter where and when one 
makes the measurement. The wave-particle duality of 
elementary particles and fundamental forces was 
proposed by Einstein and Niels Bohr and indicated by 
experiments [Ref10, 11]. However, it is never derived 
from the first principle in theoretical physics. 

 
 

In the following, we show how the wave-particle 
duality of elementary particles and fundamental force se 
merge in Information Mechanics.  

To do this, first notice, as shown in string theory 
[Ref 4,5],it is possible to introduce a metric tensor 𝛾𝛾𝑎𝑎𝑎𝑎  
and rewrite the action 𝐴𝐴1

′ in (6) in the form: 

𝐴𝐴1
′′
 

[X,
 
𝛾𝛾]

 
= 𝛼𝛼 ∫𝑑𝑑𝑑𝑑

 
𝑑𝑑𝑑𝑑

 
(− det 𝛾𝛾𝑎𝑎𝑎𝑎 )

 1/2 𝛾𝛾𝑎𝑎𝑎𝑎 𝜕𝜕𝑎𝑎𝑋𝑋𝜇𝜇𝜕𝜕𝑏𝑏𝑋𝑋𝜇𝜇 .
  

In Information Mechanics, the possibility to 
introduce tensor 𝛾𝛾𝑎𝑎𝑎𝑎

 
is due to the relativity between the 

yin yang, the information time and space (𝜏𝜏,𝜎𝜎). 
 

The action 𝐴𝐴1
′′

  

is invariant under the following 
three transformations:

 

1.

 

D-dimensional Poincaré

 

transformation

 

                              𝑋𝑋′𝜇𝜇(𝜏𝜏,𝜎𝜎) =
 
Λ𝜈𝜈
𝜇𝜇𝑋𝑋𝜇𝜇 (𝜏𝜏,𝜎𝜎) +

 
𝑎𝑎𝜇𝜇

 

 
                                     𝛾𝛾′𝑎𝑎𝑎𝑎 (𝜏𝜏,𝜎𝜎) =

 
𝛾𝛾𝑎𝑎𝑎𝑎 (𝜏𝜏,𝜎𝜎)

  

2.
 

Diffeomorphism transformation
 

                                    𝑋𝑋′𝜇𝜇(𝜏𝜏,𝜎𝜎) =   𝑋𝑋𝜇𝜇 (𝜏𝜏,𝜎𝜎)
 

 
                       𝜕𝜕𝜎𝜎

′ 𝑐𝑐

𝜕𝜕𝜎𝜎′ 𝑎𝑎
𝜕𝜕𝜎𝜎′ 𝑑𝑑

𝜕𝜕𝜎𝜎′ 𝑏𝑏
𝛾𝛾′𝑐𝑐𝑐𝑐 (𝜏𝜏′,𝜎𝜎′) =  𝛾𝛾𝑎𝑎𝑎𝑎 (𝜏𝜏,𝜎𝜎)

  

3.
 

Two-dimensional Weyl transformation
 

    𝑋𝑋′𝜇𝜇 (𝜏𝜏,𝜎𝜎) =   𝑋𝑋𝜇𝜇 (𝜏𝜏,𝜎𝜎) 

                       𝛾𝛾′𝑎𝑎𝑎𝑎 (𝜏𝜏,𝜎𝜎) =  exp�2𝜔𝜔(𝜏𝜏,𝜎𝜎)� 𝛾𝛾𝑎𝑎𝑎𝑎 (𝜏𝜏,𝜎𝜎).  

Information action has three symmetries: 
Poincaré symmetry, diffeomorphism symmetry, and Weyl 
symmetry. 

VIII.
 

Emergence and
 
Observation of 

Elementary Particles Due to
 
Poincaré

 

Symmetry
 

In Information Mechanics, the observed world is 
made of a certain amount of information, which 
represents different possibilities in a system. The 
observation of the same elementary particles regardless 
of physical space and time is due to the Poincare 
symmetry. The observed elementary constituents should 
be invariants of Poincaré transformation.

 
From group 

theory, one knows that mass and spin are the two 
invariants under Poincaré transformation. Because of 
this, the basic constituents, elementary particles, are 
specified by mass and spin. 

 

The wave aspect of elementary particles is 
represented by the information function. It comes from 
the basic assumption that everything we observe comes 
from information. Information represents different 
possibilities. In this way, the wave-particle duality of 
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elementary particles and fundamental forces emerge in 
Information Mechanics. 

IX. Emergence of Gravity and Gauge 
Force Due to Diffeomorphism 

Symmetry 

In Information Mechanics, the emergence of 
gravity and gauge interaction is due to diffeomorphism 
symmetry (12). Diffeomorphism invariance(12) suggests 
one can introduce the physical space-time metric tensor 
𝐺𝐺𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 )and anti-symmetric tensor 𝐵𝐵𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ) in the action 
(10): 

           𝐴𝐴1
′′′  

[X, 𝛾𝛾,𝐺𝐺𝜇𝜇𝜇𝜇 , 𝐵𝐵𝜇𝜇𝜇𝜇 ] = 

𝛼𝛼 ∫𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (− det 𝛾𝛾𝑎𝑎𝑎𝑎 )
1
2 (𝛾𝛾𝑎𝑎𝑎𝑎𝐺𝐺𝜇𝜇𝜇𝜇 +  𝜀𝜀𝑎𝑎𝑎𝑎𝐵𝐵𝜇𝜇𝜇𝜇 )𝜕𝜕𝑎𝑎𝑋𝑋𝜇𝜇𝜕𝜕𝑏𝑏𝑋𝑋𝜈𝜈 .  

The action 𝐴𝐴1
′′′

 
[X,

 𝛾𝛾,𝐺𝐺𝜇𝜇𝜇𝜇 , 𝐵𝐵𝜇𝜇𝜇𝜇 ] ℎ𝑎𝑎𝑎𝑎 
the

 
diffeo-

morphism invariance in physical space-time𝑋𝑋𝜇𝜇 : 
 

𝜕𝜕𝑋𝑋′𝛼𝛼

𝜕𝜕𝑋𝑋′𝜇𝜇
𝜕𝜕𝑋𝑋′𝛽𝛽

𝜕𝜕𝑋𝑋′𝜈𝜈
𝐺𝐺′𝛼𝛼𝛼𝛼 (𝑋𝑋′𝜇𝜇 ) =  𝐺𝐺𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ) 

 

𝜕𝜕𝑋𝑋′ 𝛼𝛼

𝜕𝜕𝑋𝑋′ 𝜇𝜇
𝜕𝜕𝑋𝑋′ 𝛽𝛽

𝜕𝜕𝑋𝑋′ 𝜈𝜈
𝐵𝐵′𝛼𝛼𝛼𝛼 (𝑋𝑋′𝜇𝜇 ) =  𝐵𝐵𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ). 

The introduction of physical space-time tensor 
metric 𝐺𝐺𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 )and anti-symmetric tensor 𝐵𝐵𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 )can 
induce gravity and gauge interaction in physical space-
time. 

The fact that 𝐺𝐺𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ) and 𝐵𝐵𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ) describe the 
gravity and gauge interaction in physical space-time can 
be further confirmed by the equations of motion 
associated with𝐺𝐺𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝜇𝜇𝜇𝜇 (𝑋𝑋𝜇𝜇 ). In the following, 
we will show that, from the Weyl invariance, one can 
obtain the equations of motion regarding 𝐺𝐺𝜇𝜇𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝜇𝜇𝜇𝜇 , 
which shows that 𝐺𝐺𝜇𝜇𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝜇𝜇𝜇𝜇  follow the equations of 
motion associated with gravity and gauge force.  

X. Weyl Invariance, Holography, and 
Classical Equations of Motion 

The Weyl invariance (13) is automatically 
preserved at the first order in information action. 
However, higher-order corrections could possibly violate 
it. For instance, in [Refs 4, 5], it is shown that there are 
the following second-order corrections to the information 
action: 

                      βG
μν=α Rμν+ α/4 HμλωHν

λω+ O(α2)  (15)  

                             βB
μν= - α/4 ∇ωHμλω+ O(α2). (16)  

The preservation of Weyl Invariance at the 
higher orders requires that: 

βG
μν= βB

μν= 0. 

Notice that βG
μν= 0 leads to the generalized 

Einstein’s equation with the source terms from the anti-

symmetric tensor. The equation βB
μν=0 is the anti 

symmetric generalization of Maxwell’s equations.  
We can see that requiring Weyl invariance, one 

is able to obtain classical equations of motion including 
Einstein’s general relativity and gauge interactions. In 
this way, Information Mechanics includes classical 
physics.  

In Information Mechanics, all the physical 
phenomena are projected from a two-dimensional 
information space time. The two-dimensional 
information space time has Weyl invariance. This  
means that the two-dimensional information space time 
is a hologram from which all observed phenomena, 
including physical space time, elementary particles, 
gravity, and gauge interactions emerge. Classical 
equations of motion come from the holographic nature, 
the Weyl invariance of information space time.  

XI. Emergence of Dark Energy and Dark 

Matter 

The observed accelerated expansion and large 
structure of our universe [Refs12, 13, 14, 15, 
16]indicates an unknown source of energy, dark energy, 
and an unknown source of matter, dark matter. There 
are many proposals about the potential candidates for 
dark matter and dark energy. 

 

In the following, we will show that Information 
Mechanics may explain the observation of dark energy 
and dark matter. Dark matter and dark energy can 
emerge from information function. 

 

Dark energy and dark matter are phenomena 
observed in the large structure of the universe. To see 
what matter and energy emerges in the large structure 
of universe, we need to study the information function:

 

Ψ=exp(i𝐴𝐴1
′′

 

)  = ∫𝒟𝒟𝒟𝒟
 
exp(i 𝐴𝐴1

′′
 

).
 

Here 
 

𝐴𝐴1
′′

 

=α∫ 𝑑𝑑𝑑𝑑𝑇𝑇
0 ∫ 𝑑𝑑𝑑𝑑𝐿𝐿

0 (− det𝛾𝛾𝑎𝑎𝑎𝑎 )
1
2(𝛾𝛾𝑎𝑎𝑎𝑎𝐺𝐺𝜇𝜇𝜇𝜇 +

 

𝜀𝜀𝑎𝑎𝑎𝑎𝐵𝐵𝜇𝜇𝜇𝜇 )𝜕𝜕𝑎𝑎𝑋𝑋𝜇𝜇𝜕𝜕𝑏𝑏𝑋𝑋𝜈𝜈 ,

 

where T is the age of the universe and L is the length of 
the horizon of the universe. 

 

One may notice that in the information function 
Ψ, there exist vibrations in the energy state (n, m) with 
the frequency νn= n/T and wavelength λm

 

= L/m. The 
frequency and wavelength of some of these vibrations 
have a frequency and wavelength on the order of 1/T 
and L. These vibrations are almost impossible to detect 
at this moment. This is because, to observe them,

 

it 
takes a

 

detector as large as the universe or it takes time 
as long as the age of the universe. These vibrations are 
very “dark” due to this innate difficulty to be observed by 
detectors.  They can only be observed on the large 
structure of the universe. They are natural possible 
candidates

 

for dark matter and dark energy.
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XII. Calculation of Cosmological 
Constant 

The cosmological constant is the simplest 
possible form of dark energy. The current standard 
model of cosmology, the Lambda-CDM model, 
assumes a non-zero cosmological constant as the 
source of dark energy. It is found that, in terms of the 
Planck unit, and as a natural dimensionless value, the 
cosmological constant is calculated to be on the order 
of 10−122 [Ref 15, 16]. The large discrepancy between 
the natural energy scale, Planck scale, and the observed 
value of 10−122 in terms of Planck scale is the so called 
cosmology constant problem.  

In the following, we will estimate the vacuum 
energy of the information function. Surprisingly, we are 
able to obtain a value for the cosmological constant 
consistent with the observation. 

To calculate the vacuum energy of the universe, 
we use the fact that the energy at state (n, m) with the 
frequency νn= n/T and wavelength λm

 = L/m is: 

En,m
 = (n + ½) ħ/T. 

The lowest energy
 
of the vacuum fluctuation is 

E0n,m
 
= ħ/2T. 

 

In Information Mechanics, with the space and 
time measurement scale at T and L, the total number of 
possible states N is:

 

N = TL/(lptp).
 

If we assume each of the possible states can 
contribute to vacuum fluctuation energy of E0n,m

 
= ħ/2T, 

then the total vacuum energy is:
 

Evac = ħ
 
/2T x TL/ lp

2
 
= ħ

 
L/(2 lp

2).
 

The vacuum energy density in three-
dimensional observed space is:

 

ρvac= Evac/(4π L3 /3) =  ρp3lp
2/(8 πL2).

 

Here ρp is the Planck energy density, 

 

ρp

 

= Ep /lp
3,

 

and Ep

 

is the Planck energy Ep = ħ/tp

 

= 1.956 x 109

 

Joule. 

 

The cosmological constant Λc

 

is:

 

Λc

 

= 8π ρvac. Therefore

 

Λc

 

= 8π ρvac

 

= 3ρp

 

lp
2/L2.

 

We know that:

 

lp
2/L2 =tp

2/tu
2 =10-122.

 

Here tu

 

is

 

the age of the universe. We use:

 

tu

 

=13.799 billion years = 4.35 x 1017

 

seconds. 

 

From this, we obtain:

 

                                    Λ

 

= 3 x10−122ρp.

  

 

According to results published by the Planck 
Collaboration in 2018 [Refs 15,16], the cosmological 
constant is 2.888 x 10-122 in Planck units. The result in 
(17), Λ = 3 x10−122ρp, is consistent with the data from 
the Planck Collaboration in 2018 [Refs 15, 16].  

Information Mechanics seems to be able to 
address the large hierarchy problem regarding the 
cosmological constant. 

XIII. Emergence of the Electroweak Scale 
and Planck Scale Hierarchy 

There are two outstanding hierarchy problems 
in physics. One is the cosmological constant problem.

 

The other is to derive the large difference between weak 
force and gravity, or equivalently between Higgs mass 
and Planck mass [Ref 17, 18, 19, 20]. We have shown 
above that

 
Information Mechanics

 
may help address the 

cosmological constant problem; next, we will explore 
how it may

 
help cope with the second hierarchy 

problem. 
 

To derive the weak scale and Higgs mass in 
Information Mechanics, we study the information action 
A2 and write it

 
in terms of complex coordinates, z, 𝑧𝑧̅, θ, 

and 𝜃̅𝜃[Ref 4, 5]: 
 

A2= α’∫dzdz�
 
dθ

 
d𝜃̅𝜃

 
= α∫d2z d2θ.

 

We introduce observable space-time Xμ(z,

 

𝑧𝑧̅, θ, 
θ�) in superspace, which includes both bosonic 
spacetime  X

 

μ(𝑍𝑍, 𝑧𝑧̅) and its fermionic counterpart 𝜓𝜓μ

 

(𝑍𝑍, 
𝑧𝑧̅) and ψ�μ(z,

 

𝑧𝑧̅): 

X

 

μ(z, 𝑧𝑧̅, θ, θ�) = X

 

μ(𝑍𝑍, 𝑧𝑧̅) + θ𝜓𝜓μ

 

(𝑍𝑍, 𝑧𝑧̅) + θ�ψ�μ(z, 𝑧𝑧̅)  + θθ�F

 

μ.

 

The term Fμ

 

is the auxiliary field, which can 
usually be eliminated through equations of motion. We 
suggest that bosonic space

 

time Xμ(z, 𝑧𝑧̅) corresponds to 
observable spacetime coordinates and the fermionic 
spacetime 𝜓𝜓μ

 

(z, 𝑧𝑧̅) and ψ�μ(z, 𝑧𝑧̅) correspond to 
elementary particles. In superspace X

 

μ(z, 𝑧𝑧̅, θ, θ�), there 
is supersymmetry, which is the invariance under the 
transformation between space-time bosonic coordinates 
and fermion coordinates. After integrating over fermion 
coordinates (θ, θ�), the action A2

 

including metric tensor 
Gμv

 

and anti

 

symmetric tensor Bμv

 

becomes [Ref 4, 5]:

 

        A2

 

= α∫d2z[(Gμv+ Bμv) ∂zX
μ𝜕𝜕𝑧𝑧̅Xv+ Gμν(X)(ψμ

 

𝐷𝐷𝑧𝑧̅ψν+ 

ψ�μDzψ�v)+ ½ Rμνρσ(X)ψμψνψ�ρψ�σ].

 

     (18)

 

Here, covariant derivatives are:

  

 

𝐷𝐷𝑧𝑧̅ψ
ν

 

= 𝜕𝜕𝑧𝑧̅

 

ψν+ [ Γνρσ(X) +1
2
Hνρσ(X) ] 𝜕𝜕𝑧𝑧̅X

ρψσ

 

Dzψ�v = ∂zψ�v+ [ Γνρσ(X) − 1
2
Hνρσ(X) ]

 

∂zXρ

 

ψ�σ.
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Here Γνρσ(X) is the Christoffel connection. It is 
related to the gravitational interaction. And Hν

ρσ(X) is 
the anti-symmetric tensor field strength.

 To see how the hierarchy between Higgs mass 
and Planck mass emerges, we use the

 
similarity 

between Higgs mechanism and superconductivity. The 
Higgs mechanism was originally suggested in 1962 by 
Philip Anderson when he noticed the similarity between 
electroweak symmetry breaking and superconductivity 
[Ref 21, 22]. In the following, we show that in

 
Information 

Mechanics, one may use superconductor theory, BCS 
theory, to induce the large hierarchy between Planck 
mass and Higgs mass.

 Notice the observable space-time coordinates 
Xμ(𝑍𝑍, 𝑧𝑧̅)consist of a series of  vibrations. Similar to the 
phonons in a superconductor interacting with fermions 
through electromagnetic force, Xμ(𝑍𝑍, 𝑧𝑧̅) vibrations 
interact with fermions, gravity, and gauge interactions, 
as indicated in the information action (18) through the 
interaction terms:

 
Vint

 
= Gμν(X)ψμ

 
[ Γνρσ(X) +1

2
Hνρσ(X) ]

 
𝜕𝜕𝑧𝑧̅X

ρψσ+ Gμν(X) 

ψ�μ[ Γνρσ(X) –1
2
Hνρσ(X) ] ∂zXρ ψ�

σ
 

                    + ½ Rμνρσ(X)ψμψνψ�ρψ�σ.     (19) 

As discovered in BCS theory, these interactions 
can add a negative potential energy which leads to a 
ground state with the formation of coherent fermion 
pairs. This ground state energy results in a non-zero 
gauge field, which breaks the gauge symmetry.   

In the interaction terms (19), the gauge 

interaction is proportional to 𝜕𝜕𝑧𝑧̅X
ρ and ∂zXρ. This 

indicates that the ground state with the formation of 
fermion pairs will not only break gauge symmetry but 
also space-time translational symmetry. This means that 
it can lead to space-time compactification and also 
super symmetry breaking. This may be a natural non-
perturbative mechanism for gauge symmetry breaking, 
space-time compactification, and super symmetry 
breaking.  

According to the BCS mechanism, the non-
perturbative ground state potential energy in the weak 
interaction limit is on the order of [Ref 21, 22]: 

W = - ncℏ𝜔𝜔exp[- 1
𝑁𝑁𝑁𝑁

]. 

Here N is the state density and V is the 
interaction potential. The energy termℏ𝜔𝜔corresponds to 
the energy of space-time vibration. It can be on the 
order of the space-time compactification scale, which 
may be of the same energy scale as the super 

symmetry breaking. One can see that the Higgs mass is 
exponentially smaller than the space-time compactifi-
cation scale.  

Because of the exponential form of the non-
perturbative potential energy in the ground state, the 
large hierarchy between Higgs mass and compactifica-
tion scale and thus Planck scale can be easily 
generated. We will expand the detailed model, 
calculation, and discussion of this possible scheme in 
future work.  

XIV. Black Holes 

Any fundamental physics theory including 
gravity should be able to address what is happening 
inside a black hole. Let’s take a look at how Information 
Mechanics could help us study what is inside a black 
hole.  

A black hole is created when the gravity force 
becomes stronger than the fermionic exclusion force, 
and matter is collapsed by gravity to the point that all 
matter including light is confined to a limited space and 
time [Ref 23, 24]. Thus, we propose that a black hole is 
related to physical space-time compactification in the 
observable four-dimensional space-time.  

In Information Mechanics, to study black holes, 
we can start with the action (18): 

A2
 = α∫d2z[(Gμv+ Bμv) ∂zX

μ𝜕𝜕𝑧𝑧̅Xv+ Gμν(X)(ψμ 𝐷𝐷𝑧𝑧̅ψν+ ψ�μDzψ�v) 

+ ½ Rμνρσ(X)ψμψνψ�ρψ�σ].
 

In the case of a black hole, Gμv

 
and Rμνρσ(X)

 

become very large,
 

and we assume this leads to
 

compactification of space-time in the observable four-
dimensional space-time. This means that:

 

X0 ≅
 
X0 + D0

,

 

Xi ≅
 
Xi+ Di, i = 1,2,3.

 

Inaction A2(18), this space-time 
compactification will lead to a positive kinetic energy:

 

            (Gμv+ Bμv) ∂zX
μ𝜕𝜕𝑧𝑧̅Xv≅

 
(Gμv+ Bμv) 

1
𝐷𝐷𝜇𝜇

1
𝐷𝐷𝜈𝜈

 
    (19)

 

This additional kinetic energy term will balance 
the negative potential energy from the gravity and gauge 
interaction term:

 

Gμν(X)ψμ
 

[ Γνρσ(X) +1
2
Hνρσ(X) ] 𝜕𝜕𝑧𝑧̅X

ρ𝜓𝜓𝜎𝜎+ Gμν(X)ψ�μ[ Γνρσ(X) − 

1
2
Hνρσ(X) ]

 

∂zXρ
 

ψ�σ
 

+  ½ Rμνρσ(X)ψμψνψ�ρψ�σ

 

                                (20)  
  

The balance between the kinetic energy in (19) 
and the potential energy in (20) could lead to a new 
stable ground state. It indicates that the internal 
structure of a black hole is similar to a crystal, or liquid 
crystal, or some other ordered and coherent state. The 
action A2 can enable us to study the detailed dynamics 
inside a black hole with matter, space-time, gravity, and 
gauge interactions all present in one formula. We will 
defer the detailed calculation and discussion to future 
work.  
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To study the dynamics outside of the black 
hole, the measurement scale L is larger than the horizon 
of the black hole. For an observer outside a black hole, 
a black hole appears as a particle with specific mass 
and spin.  

Like everything, a black hole carries information. 
For an outside observer, the entropy of a black hole is 
the unknown information or possibilities associated with 
the black hole. Since the outside observer can’t receive 
any information beyond the horizon of a black hole, the 
information space scale, L, for the observation of a 
black hole is the black hole’s horizon. The information 
time scale associated with the external observation of a 
black hole is L/c. According to the equation (2), the 
maximum amount of unknown information associated 
with the observation of a black hole for an outside 
observer is: 

It’s interesting that, in Information Mechanics, 
one may derive the result that the entropy of a black 
hole is proportional to the area of the event horizon in 
units of Planck scale.  

The holographic principle [Ref 25, 26, 
27]emerges in Information Mechanics, but in a different 
way. Here the maximum information is proportional to 
the area covered by the information space-time, not the 
physical space-time. In three-dimensional space, the 
area covered by the physical space could be the same 
as or proportional to the area of information space-time. 
This coincidence only happens in four-dimensional 
physical space-time. 

XV.
 Discussion

 
and

 Conclusion
 

In this paper we introduce Information 
Mechanics and its two basic principles and laws. We 
propose that information determines the observed 
phenomena. The interaction of basic yin yang elements 
making up information and everything creates the 
observed phenomena. We derive the information action 
and information function. We show that the observed 
phenomena, such as physical space time, elementary 
particles and their wave-particle duality, fundamental 
forces, classical equations of motion, dark matter, and 
dark energy, may emerge from the information action 
and information function. We show how classical 
physics, quantum physics, quantum field theory, and 
string theory may emerge in information Mechanics. We 
discover that it is possible to derive a value of the 
cosmological constant consistent with astrophysical 
observation. We suggest a plausible scheme to derive 
the hierarchy between the weak scale and the Planck 
scale using information action. We indicate that one can 
study what is inside a black hole and deduce that the 
entropy of a black hole to an outside observer is 
proportional to the area of the event horizon. 

Information Mechanics appears to be promising 
to address various challenging problems facing 
theoretical physics. More detailed calculations and 
further investigation are still needed. We welcome more 
people to participate in this project.  
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The study of non-arbitrage markets was begun for the first time in Bachelier’s work
[1]. Then, in the famous works of Black F. and Scholes M. [2] and Merton R. S. [3]
the formula was found for the fair price of the standard call option of European type.
The absence of arbitrage in the financial market has a very transparent economic
sense, since it can be considered reasonably arranged. The concept of non arbitrage
in financial market is associated with the fact that one cannot earn money without
risking, that is, to make money you need to invest in risky or risk-free assets. The
exact mathematical substantiation of the concept of non arbitrage was first made
in the papers [4], [5] for the finite probability space and in the general case in the
paper [6]. In the continuous time evolution of risky asset, the proof of absent of
arbitrage possibility see in [7]. The value of the established Theorems is that they
make it possible to value assets. They got a special name ”The First and The
Second Fundamental Asset Pricing Theorems.” Generalizations of these Theorems
are contained in papers [8], [9], [10].

If the martingale measure is not the only one for a given evolution of a risky
asset, then a rather difficult problem of describing all martingale measures arises in
order to evaluate, for example, derivatives.

Assessment of risk in various systems was begun in papers [11], [12], [13], [14].
Statistical studies of the time series of the logarithm of the price ratio of risky

assets contain heavy tails in distributions with strong elongation in the central re-
gion. The temporal behavior of these quantities exhibits the property of clustering
and a strong dependence on the past. All this should be taken into account when
building models for the evolution of risky assets.

In this paper, we generalize the results of the papers [15], [16], [17] and construct
the evolution of risky assets for which we completely describe the set of equivalent
martingale measures.

The aim of this study is to describe the family of martingale measures for a
wide class of risky asset evolutions. The paper proposes the general concept for
constructing the family of martingale measures equivalent to a given measure for a
wide class of evolutions of risky assets. In particular, it also contains the description
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martingale is proposed. The family of spot measures is introduced and the representation is found for them. 
The conditions are found under which each martingale measure is an integral over the set of spot measures. 
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of the family of martingale measures for the evolution of risky assets given by the
ARCH [18] and GARCH [19], [20] models. In section 2, we formulate the conditions
relative to the evolution of risky assets and give the examples of risky asset evolution
satisfying these conditions. Section 3 contains the construction of measures by
recurrent relations. It is shown that under the conditions relative to the evolution
of risky assets such construction is meaningful. It is proved that the constructed set
of measures is equivalent to an initial measure. In theorem 1, we are proved that
under certain integrability conditions of risky asset evolution the set of constructed
measures is a set of martingale measures relative to this evolution of risky asset. In
Section 4 we prove the inequalities for the nonnegative random values very useful for
the proof of optional decomposition for the non negative super-martingales relative
to the set of all martingale measures.

First, we show an integral inequality for a nonnegative random variable under
the inequality for this nonnegative random variable with respect to the constructed
family of measures. Further, using this integral inequality for the non-negative
random variable, a pointwise system of inequalities is obtained for this non-negative
random variable for a particular case. After that, the pointwise system of inequalities
is obtained for the non-negative random variable in the general case. Then, using
the resulting pointwise system of inequalities, an inequality is established for this
non-negative random variable whose right-hand side is such that its conditional
mathematical expectation is equal to one.

On the basis of the results of Section 4, in Section 5, we prove the optional
decomposition for the non negative super-martingales. In Section 6, we introduce
the spot measures by the recurrent relations and find the representation for them.
Using these facts under certain conditions we prove integral representation for every
martingale measure over the set of spot measures.

First, the optional decomposition for diffusion processes super-martingale was
opened by by El Karoui N. and Quenez M. C. [21]. After that, Kramkov D. O.
and Follmer H. [22], [23] proved the optional decomposition for the nonnegative
bounded super-martingales. Folmer H. and Kabanov Yu. M. [24], [25] proved anal-
ogous result for an arbitrary super-martingale. Recently, Bouchard B. and Nutz
M. [26] considered a class of discrete models and proved the necessary and sufficient
conditions for the validity of the optional decomposition.

Section 7 contains applications of the results obtained. A class of random pro-
cesses is considered, which contains well-known processes of the type ARCH and
GARCH ones. Two types of random processes are considered, those for which the
price of an asset cannot go down to zero and those for which the price can go down
to zero during the period under consideration. The first class of processes describes
the evolution of well-managed assets. We will call these assets relatively stable. For
the evolution of relatively stable assets in the period under consideration, the family
of martingale measures is one and the same. The family of martingale measures
for the evolution of risky assets whose price can drop to zero is contained in the
family of martingale measures for the evolution of relatively stable assets. Each of
the martingale measures for the considered class of evolutions is an integral over the
set of spot martingale measures.

The interval of non-arbitrage prices is found for a wide class of payoff functions in
the case when evolution describes relatively unstable assets. This range is quite wide
for the payoff functions of standard put and call options. The fair price of the super
hedge is in this case the starting price of the underlying asset. The estimates are
found for the fair price of the super-hedge for the introduced class of evolutions with
respect to stable assets. The formulas are found for the fair price of contracts with
call and put options for the evolution of assets described by parametric processes.

The same formulas are found for Asian-type put and call options. A characteris-
tic feature of these estimates is that for the evolution of relatively stable assets the
fair price of the super hedge is less than the price of the underlying asset.

In Section 8, the estimates of the parameters of risky assets included in the
evolution are obtained. The formulas are found for the fair price of contracts with
call and put options for the obtained parameter estimates, and the interval of non-
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Let {ΩN ,FN , PN} be a direct product of the probability spaces {Ω0
i ,F0

i , P
0
i }, i =

1, N, ΩN =
N∏
i=1

Ω0
i , PN =

N∏
i=1

P 0
i , FN =

N∏
i=1

F0
i , where the σ-algebra FN is a min-

imal σ-algebra, generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i . On the measurable space

{ΩN ,FN}, under the filtration Fn, n = 1, N, we understand the minimal σ-algebra

generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i , where Gi = Ω0

i for i > n. We also intro-

duce the probability spaces {Ωn,Fn, Pn}, n = 1, N, where Ωn =
n∏
i=1

Ω0
i , Fn =

n∏
i=1

F0
i ,

. There is a one-to-one correspondence between the sets of the σ-algebra

Fn, belonging to the introduced filtration, and the sets of the σ-algebra Fn =
n∏
i=1

F0
i

of the measurable space {Ωn,Fn}, n = 1, N. Therefore, we don’t introduce new
denotation for the σ-algebra Fn of the measurable space {Ωn,Fn}, since it always
will be clear the difference between the above introduced σ-algebra Fn of filtration
on the measurable space {ΩN ,FN} and the σ-algebra Fn of the measurable space
{Ωn,Fn}, n = 1, N.

We assume that the evolution of risky asset {Sn}Nn=0, given on the probabil-
ity space {ΩN ,FN , PN}, is consistent with the filtration Fn, that is, Sn is a Fn-
measurable. Due to the above one-to-one correspondence between the sets of the
σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-algebra
Fn of the measurable space {Ωn,Fn}, n = 1, N, we give the evolution of risky assets
in the form {Sn(ω1, . . . , ωn)}Nn=0, where Sn(ω1, . . . , ωn) is an Fn-measurable random
variable, given on the measurable space {Ωn,Fn}. It is evident that such evolution
is consistent with the filtration Fn on the measurable space {ΩN ,FN , PN}.

Further, we assume that

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0) > 0,

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn < 0) > 0, n = 1, N, (1)

where ∆Sn = Sn(ω1, . . . , ωn)− Sn−1(ω1, . . . , ωn−1), n = 1, N.

Let us introduce the denotations

Ω−n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn ≤ 0}, Ω+
n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0}, (2)

∆S−n = −∆SnχΩ−
n

(ω1, . . . , ωn), ∆S+
n = ∆SnχΩ+

n
(ω1, . . . , ωn), (3)

Vn(ω1, . . . , ωn−1, ω
1
n, ω

2
n) = ∆S−n (ω1, . . . , ωn−1, ω

1
n) + ∆S+

n (ω1, . . . , ωn−1, ω
2
n),
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arbitrage prices for different statistics is found. The same results are obtained for
Asian-style call and put options.

II. Evolutions of Risky Assets

Pn =
n∏
i=1

P 0
i



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We use the following denotation Ωa
n, n= 1, N, where a takes two values − and +.

Our assumption, in this paper, is that for Ωa
n, a = −,+, the representations

Ω−n =
Nn⋃
k=1

[A0,k−
n × V k

n−1], Ω+
n =

Nn⋃
k=1

[A0,k+
n × V k

n−1], Nn ≤ ∞, (5)

are true, where

Ωn−1 =
Nn⋃
k=1

V k
n−1, A

0,k−
n , A0,k+

n ∈ F0
n, A0,k−

n ∪ A0,k+
n = Ω0

n,

A0,k−
n ∩ A0,k+

n = ∅, V k
n−1 ∩ V

j
n−1 = ∅, k 6= j, V k

n−1 ∈ Fn−1. (6)

The number Nn may be finite or infinite. Since Ω−n ∪ Ω+
n = Ωn, Ω−n ∩ Ω+

n = ∅, and
Pn(Ω−n ) > 0, Pn(Ω+

n ) > 0, we have

Pn(Ω−n ) =
Nn∑
k=1

P 0
n(A0,k−

n )Pn−1(V k
n−1),

Pn(Ω+
n ) =

Nn∑
k=1

P 0
n(A0,k+

n )Pn−1(V k
n−1), P 0

n(A0,k−
n ) + P 0

n(A0,k+
n ) = 1. (7)

Further, in this paper, we assume that P 0
n(A0,k−

n ) > 0, P 0
n(A0,k+

n ) > 0, n =
1, N, k = 1, Nn. We also assume some technical suppositions: there exist subsets
B0,k−
n,i ∈ F0

n, i = 1, In, In > 1, and B0,k+
n,s ∈ F0

n, s = 1, Sn, Sn > 1, satisfying the
conditions

B0,k−
n,i ∩B

0,k−
n,j = ∅, i 6= j, B0,k+

n,s ∩B
0,k+
n,l = ∅, s 6= l, k = 1, Nn,

P 0
n(B0,k−

n,i ) > 0, i = 1, In, P
0
n(B0,k+

n,s ) > 0, s = 1, Sn, k = 1, Nn,

A0,k−
n =

In⋃
i=1

B0,k−
n,i , A0,k+

n =
Sn⋃
s=1

B0,k+
n,s , k = 1, Nn. (8)

Below, we give the examples of evolutions {Sn(ω1, . . . , ωn)}Nn=1 for which the
representations (5) are true.

Suppose that the random values ai(ω1, . . . , ωi), ηi(ωi) satisfy the inequalities
0 < ai(ω1, . . . , ωi) ≤ 1, 1 + ηi(ωi) ≥ 0, P 0

i (ηi(ωi) < 0) > 0, P 0
i (ηi(ωi) > 0) > 0,

i = 1, N. If Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), n = 1, N, (9)

Derivatives Pricing in Non-Arbitrage Market

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (4)
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then

{ωi ∈ Ω0
i , ηi(ωi) ≤ 0} = A0,1−

i , {ωi ∈ Ω0
i , ηi(ωi) > 0} = A0,1+

i ,

V 1
i−1 = Ωi−1, Ω−i = A0,1−

i × Ωi−1, Ω+
i = A0,1+

i × Ωi−1, i = 1, N. (10)

In general case, let us consider the evolution of risky asset {Sn(ω1, . . . , ωn)}Nn=1, given
by the formula

Sn(ω1, . . . , ωn) =

S0

n∏
i=1

(1 +

Ni∑
k=1

ηki (ωi)χV k
i−1

(ω1, . . . , ωi−1)aki (ω1, . . . , ωi)), n = 1, N, (11)

where the random values aki (ω1, . . . , ωi), η
k
i (ωi) satisfy the inequalities

0 < aki (ω1, . . . , ωi) ≤ 1, 1 + ηki (ωi) ≥ 0, P 0
i (ηki (ωi) < 0) > 0, P 0

i (ηki (ωi) > 0) > 0,

i = 1, N, k = 1, Nn, and
Ni⋃
k=1

V k
i−1 = Ωi−1, , k 6= s. Then, if to put

{ωi ∈ Ω0
i , η

k
i (ωi) ≤ 0} = A0,k−

i , {ωi ∈ Ω0
i , η

k
i (ωi) > 0} = A0,k+

i ,

we obtain

Ω−i =

Ni⋃
k=1

[A0,k−
i × V k

i−1], Ω+
i =

Ni⋃
k=1

[A0,k+
i × V k

i−1], i = 1, N. (12)

∆Sn(ω1, . . . , ωn−1, ωn) ≤ 0, (ω1, . . . , ωn−1, ωn) ∈ Ω−n , , n = 1, N,

∆Sn(ω1, . . . , ωn−1, ωn) > 0, (ω1, . . . , ωn−1, ωn) ∈ Ω+
n , n = 1, N. (13)

In this section, we present the construction of the set of measures on the ba-
sis of evolution of risky assets given by the formulas (9), (11) on the measur-
able space {ΩN ,FN}. For this purpose, we use the set of nonnegative random
values αn({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), given on the probability space

{Ω−n × Ω+
n ,F−n × F+

n , P
−
n × P+

n }, n = 1, N, where F−n = Fn ∩ Ω−n , F+
n = Fn ∩ Ω+

n .
The measure P−n is a contraction of the measure Pn on the σ-algebra F−n and the
measure P+

n is a contraction of the measure Pn on the σ-algebra F+
n . After that, we

prove that this set of measures, defined the above set of random values, is equiv-
alent to the measure PN . At last, Theorem 1 gives the sufficient conditions under
that the constructed set of measures is a set of martingale measures for the con-
sidered evolution of risky assets. Sometimes, we use the abbreviated denotations
{ω1

1, . . . , ω
1
n} = {ω}1

n, {ω2
1, . . . , ω

2
n} = {ω}2

n.

We assume that the set of random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

αn({ω}1
n; {ω}2

n), ({ω}1
n; {ω}2

n) ∈ Ω−n × Ω+
n , n = 1, N, satisfies the following con-

ditions:
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III. Construction of the Set of Martingale Measures

V k
i−1 ∩ V s

i−1 = ∅



 
 

 
 

 
 
 
 
 
 
 
 
 
 

P−n × P+
n (({ω}1

n; {ω}2
n) ∈ Ω−n × Ω+

n , αn({ω}1
n; {ω}2

n) > 0) =

Pn(Ω−n )× Pn(Ω+
n ), n = 1, N ; (14)∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1,

(ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N ; (15)∫
Ω0

n×Ω0
n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1, n = 1, N. (16)

In the next Lemma 1, we give the sufficient conditions under which the conditions
(14) - (16) are valid.

Suppose that for Ωa
n, a = −,+, n = 1, N, the representations (5) are

true. If the conditions

inf
1≤k≤Nn

P 0
n(A0,k−

n \B0,k−
n,i ) > 0, i = 1, In, In > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(A0,k+

n \B0,k+
n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(B0,k−

n,i ) > 0, i = 1, In, In > 1, n = 1, N,

inf
1≤k≤Nn

P 0
n(B0,k+

n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

∫
ΩN

∆S−n (ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N, (17)

are true, then the set of bounded random values αn({ω}1
n; {ω}2

n), satisfying the con-
ditions (14) - (16), is a nonempty set.
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Lemma 1. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Proof. Let us put

αi−n (ω1
1, . . . , ω

1
n) =

Nn∑
k=1

α−n,k,i(ω
1
n)χA0,k−

n
(ω1

n)χV k
n−1

(ω1
1, . . . , ω

1
n−1),

αs+n (ω2
1, . . . , ω

2
n) =

Nn∑
k=1

α+
n,k,s(ω

2
n)χA0,k+

n
(ω2

n)χV k
n−1

(ω2
1, . . . , ω

2
n−1),

where

α−n,k,i(ω
1
n) = (1− δni )

χB0,k−
n,i

(ω1
n)

P 0
n(B0,k−

n,i )
+ δni

χA0,k−
n \B0,k−

n,i
(ω1

n)

P 0
n(A0,k−

n \B0,k−
n,i )

,

0 < δni < 1, i = 1, In, k = 1, Nn, (18)

α+
n,k,s(ω

2
n) = (1− µns )

χB0,k+
n,s

(ω2
n)

P 0
n(B0,k+

n,s )
+ µns

χA0,k+
n \B0,k+

n,s
(ω2

n)

P 0
n(A0,k+

n \B0,k+
n,s )

,

0 < µns < 1, s = 1, Sn, k = 1, Nn. (19)

If to introduce the nonnegative set of real numbers

γi,s ≥ 0, i = 1, In, s = 1, Sn,

In,Sn∑
i,s=1

γi,s = 1, n = 1, N, (20)

then

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

In,Sn∑
i,s=1

γi,sα
i−
n (ω1

1, . . . , ω
1
n)αs+n (ω2

1, . . . , ω
2
n), n = 1, N, (21)

satisfies the condition (14) - (16).

Really, due to the Lemma 1 conditions, the random values αn({ω}1
n; {ω}2

n}),
n = 1, N, are strictly positive by construction. Therefore, the conditions (14) are
true.

Due to the boundedness of αn({ω}1
n; {ω}2

n}) ≤ C, n = 1, N, 0 < C < ∞, the
inequalities ∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) ≤
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are true for almost everywhere (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N, relative to the

measure Pn−1, owing to the inequalities (17) and Foubini Theorem. This proves
the inequality (15). The equality (16) is also satisfied due to the construction of
αn({ω}1

n; {ω}2
n). Lemma 1 is proved.

The values, which the random variables αn({ω}1
n; {ω}2

n}), n = 1, N, constructed
in Lemma 1, take, are determined by the values at points ω1

n ∈ Ω0−
n and ω2

n ∈ Ω0+
n

for all (ω1, . . . , ωn−1) ∈ Ωn−1.

On the basis of the set of random values αn({ω}1
n; {ω}2

n), n = 1, N, constructed
in Lemma 1, let us introduce into consideration the family of measure µ0(A) on the
measurable space {ΩN ,FN} by the recurrent relations

µ
(ω1,...,ωN−1)
N (A) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
dP 0

N(ω1
N)dP 0

N(ω2
N), (23)

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 2, N, (24)

µ0(A) =

∫
Ω0

1×Ω0
1

χΩ−
1

(ω1
1)χΩ+

1
(ω2

1)α1(ω1
1;ω2

1)×

[
∆S+

1 (ω2
1)

V1(ω1
1, ω

2
1)
µ

(ω1
1)

1 (A) +
∆S−1 (ω1

1)

V1(ω1
1, ω

2
1)
µ

(ω2
1)

1 (A)

]
dP 0

1 (ω1
1)dP 0

1 (ω2
1), (25)

”

C

∫
Ω0

n

∆S−n (ω1, . . . , ωn−1, ω
1
n)dP 0

n(ω1
n) <∞, n = 1, N, (22)
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Suppose that the conditions of Lemma 1 are true. For the measure µ0(A)
A ∈ FN , constructed by the recurrent relations (23) - (25), the representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (27)

is true and µ0(ΩN) = 1, that is, the measure µ0(A) is a probability measure being
equivalent to the measure PN , where we put

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (28)

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (29)

2
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (30)

Proof. Due to Lemma 1 conditions, the set of the strictly positive bounded random
values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions (14) - (16), is a non empty

set. We prove Lemma 2 by induction down. Let us denote

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN). (31)

Then, ∫
Ω0

N

N(ω1, . . . , ωN−1, ωN)µ
(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

where we put

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN−1, ωN), A ∈ FN . (26)
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∫
Ω0

N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N) 1

N(ω1, . . . , ωN−1, ω
1
N)µ

(ω1,...,ωN−1,ω
1
N )

N (A)dP 0
N(ω1

N)+

∫
Ω0

N

χΩ+
N

(ω1, . . . , ωN−1, ω
2
N) 2

N(ω1, . . . , ωN−1, ω
2
N)µ

(ω1,...,ωN−1,ω
2
N )

N (A)dP 0
N(ω2

N). (32)

Substituting 1
N(ω1, . . . , ωN−1, ω

1
N), ψ2

N(ω1, . . . , ωN−1, ω
2
N) into (32), we obtain

∫
Ω0

N

N(ω1, . . . , ωN−1, ωN)µ
(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
dP 0

N(ω1
N)dP 0

N(ω2
N) =

µ
(ω1,...,ωN−1)
N−1 (A). (33)

Suppose that we are proved that

µ(ω1,...,ωn−1,ωn)
n (A) =

∫
N∏

i=n+1
Ω0

i

N∏
i=n+1

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)
N∏

i=n+1

dP 0
i (ωi). (34)

Let us calculate

∫
Ω0

N

χΩ+
N

(ω1, . . . , ωN−1, ωN) 2
N(ω1, . . . , ωN−1, ωN)µ

(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN) =

∫
Ω0

N

χΩ−
N

(ω1, . . . , ωN−1, ωN) 1
N(ω1, . . . , ωN−1, ωN)µ

(ω1,...,ωN−1,ωN )
N (A)dP 0

N(ωN)+
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∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)

n (A)dP 0
n(ωn)+

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)

n (A)dP 0
n(ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n) 1

n(ω1, . . . , ωn−1, ω
1
n)µ(ω1,...,ωn−1,ω1

n)
n (A)dP 0

n(ω1
n)+

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n) 2

n(ω1, . . . , ωn−1, ω
2
n)µ(ω1,...,ωn−1,ω2

n)
n (A)dP 0

n(ω2
n). (35)

Substituting 1
n(ω1, . . . , ωn−1, ω

1
n), ψ2

n(ω1, . . . , ωn−1, ω
2
n) into (35), we obtain

∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n). (36)

From the recurrent relations (23) - (25), we have

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

µ(ω1,...,ωn−1,ω1
n)

n (A)+
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∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N. (37)

From the last equality, we have

Substituting into (38) the induction supposition (34), we obtain

µ
(ω1,...,ωn−1)
n−1 (A) =∫

N∏
i=n

Ω0
i

N∏
i=n

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)
N∏
i=n

dP 0
i (ωi). (39)

To prove that µ0(ΩN) = 1, let us prove the equality∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) = 1, (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (40)

We have ∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1. (41)

The last equality follows from the fact that the set of random values αn({ω1}1
n; {ω1}2

n),
n = 1, N, satisfies the condition (16). The equalities (40) proves that every measure
(27), defined by the set of random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N,

satisfying the conditions (14), (16), is a probability measure being equivalent to the
measure PN .
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(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n

n(ω1, . . . , ωn−1, ωn)µ(ω1,...,ωn−1,ωn)
n (A)dP 0

n(ωn), n = 1, N. (38)𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Due to the equality (40), the contraction of measure µ0(A), A ∈ FN , on
the σ-algebra Fn of filtration we denote by µn0 . If A belongs to the σ-algebra Fn
of filtration, then A = B ×

N∏
i=n+1

Ω0
i , where B belongs to the σ-algebra Fn of the

measurable space {Ωn,Fn}, therefore, for this contraction we obtain the formula

µn0 (A) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi), B ∈ Fn. (42)

Further, we also use the probability spaces {Ωn,Fn, µn0}, n = 1, N, where under the
measure µn0 (B), B ∈ Fn, we understand the measure, given by the formula

µn0 (B) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi), B ∈ Fn. (43)

Assume that for αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), constructed in

Lemma 1, the inequalities

0 < cn ≤ αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) ≤ Cn <∞,

are true. Suppose that the conditions

∆S−n (ω1, . . . , ωn−1, ωn) ≤ Bn <∞, n = 1, N, (44)

are valid, where cn, Cn, Bn are constant, then the set of equivalent measures to the
measure PN , described in Lemma 2, is nonempty one.

Proof. Due to Lemma 2 conditions, the equality (14) is true. Further,∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) ≤ Bn,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1, (ω1, . . . , ωn−1) ∈ Ωn−1,∫

Ω0
n×Ω0

n

χΩ−
n

(ω1
1, . . . , ω

1
n−1, ω

1
n)χΩ+

n
(ω2

1, . . . , ω
2
n−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n) = 1,

({ω1
1, . . . , ω

1
n−1}; {ω2

1, . . . , ω
2
n−1}) ∈ Ωn−1 × Ωn−1. (45)

This proves Lemma 2
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The last inequality and the equality (45) means that the conditions (14) - (16)
are satisfied. Note 2 is proved.

For the nonnegative random value αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), given on the

measurable space {Ω−n × Ω+
n ,F−n × F+

n }, F−n = Fn ∩ Ω−n , F+
n = Fn ∩ Ω+

n , n = 1, N,
let us define the integral for the nonnegative random value fN(ω1, . . . , ωN) relative
to the measure µ0(A) using the recurrent relations

µfNn−1(ω1, . . . , ωn−1) =∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µfNn (ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µfNn (ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N, (46)

µfNN−1(ω1, . . . , ωN−1) =

∫
Ω0

N×Ω0
N

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

αN({ω1, . . . , ωN−1, ω
1
N}; {ω1, . . . , ωN−1, ω

2
N})×[

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
fN(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
fN(ω1, . . . , ωN−1, ω

2
N)

]
dP 0

N(ω1
N)dP 0

N(ω2
N). (47)

From the formula (27) of Lemma 2, it follows that

Eµ0fN =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)fN(ω1, . . . , ωN−1, ωN)
N∏
i=1

dP 0
i (ωi) (48)

for every nonnegative FN -measurable random value fN(ω1, . . . , ωN−1, ωN).

Suppose that the conditions of Lemma 1 are true. Then, the set of
nonnegative random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (49)
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is a nonempty one and the convex linear span of the set of measures (27), defined
by the random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the con-

ditions (49), is a set of martingale measures being equivalent to the measure PN .

Proof. Taking into account the equality (40), the conditions (49) can be written in
the form ∫

ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
n∏
i=1

dP 0
i (ωi) =

2

∫
Ωn−1

n−1∏
i=1

i(ω1, . . . , ωi)

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

×

dP 0
n(ω1

n)dP 0
n(ω2

n)
n−1∏
i=1

dP 0
i (ωi), n = 1, N. (50)

Since the conditions of Lemma 1 are true, then the the set of bounded random
values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, constructed in Lemma 1, satisfy

the conditions (14) - (16).
From the equality (50) for the set of bounded random values αn({ω}1

n; {ω}2
n),

n = 1, N, satisfying the conditions (14) - (16), we obtain the inequality∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) ≤

C

∫
ΩN

∆S−n (ω1, . . . , ωn−1, ω
1
n)dPN <∞, n = 1, N, (51)

for a certain constant 0 < C <∞. This proves that the set of nonnegative random
values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the conditions (49), is a

non empty set.
Let us prove that∫

Ω0
n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) = 0,

(ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (52)
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Really, ∫
Ω0

n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
− ∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

∆S−n (ω1, . . . , ωn−1, ω
1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) = 0, (53)

due to the condition (15).

To complete the proof of Theorem 1, let A belongs to the filtration Fn−1, then

A = B ×
N∏
i=n

Ω0
i , where B belongs to the σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Taking into account the equality (41), (53), we have, due to Foubini
theorem,

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)χA(ω1, . . . , ωN)∆Sn(ω1, . . . , ωn)
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) =

∫
Ωn−1

n−1∏
i=1

i(ω1, . . . , ωi)χB(ω1, . . . , ωn−1)
n−1∏
i=1

dP 0
i (ωi)×

(54)

The last means that Eµ0{Sn(ω1, . . . , ωn)|Fn−1} = Sn−1(ω1, . . . , ωn−1). Since every
measure, belonging to the convex linear span of the measures considered above, is
a finite sum of such measures, then it is a martingale measure being equivalent to
the measure PN . Theorem 1 is proved.

Our aim is to describe this convex span of martingale measures in particular
cases.
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∫
Ω0

n

n(ω1, . . . , ωn)∆Sn(ω1, . . . , ωn)dP 0
n(ωn) = 0.𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section, we prove some inequalities, which will be very useful for to prove
optional decomposition for super-martingale relative to all martingale measures.
First, we prove an integral inequality for a nonnegative random variable under the
fulfillment of the inequality for this nonnegative random variable with respect to
the constructed family of measures µ0(A). Further, using this integral inequality for
the non-negative random variable, a pointwise system of inequalities is obtained for
this non-negative random variable for a particular case. After that, the pointwise
system of inequalities is obtained for the non-negative random variable in the general
case. Then, using the resulting pointwise system of inequalities, the inequality is
established for this non-negative random variable whose right-hand side is such that
its conditional mathematical expectation is equal to one.

Let {Ω1,F1} be a measurable space. The decomposition An,k, n, k =
1,∞, of the space Ω1 we call exhaustive one, if the following conditions are valid:

1) An,k ∈ F1, An,k ∩ An,s = ∅, k 6= s,
∞⋃
k=1

An,k = Ω1, n = 1,∞;

2) the (n + 1)-th decomposition is a sub-decomposition of the n-th one, that is, for
every j, An+1,j ⊆ An,k for a certain k = k(j);
3) the minimal σ-algebra containing all An,k, n, k = 1,∞, coincides with F1.

Let {Ω1,F1} be a measurable space with a complete separable metric
space Ω1 and Borel σ-algebra F1 on it. Then, {Ω1,F1} has an exhaustive decompo-
sition.

The proof of Lemma 3 see, for example, in [15], [16].
For the proof of integral inequalities, we cannot require the fulfillment for the

random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, the condition (15) in the

Lemma 4.

Suppose that Ω0
n is a complete separable metric space, F0

n is a correspond-
ing Borel σ-algebra on Ω0

n, n = 1, N, and the conditions of Lemma 1 are valid. If,
on the probability space {Ωn−1,Fn−1, µ

n−1
0 }, for each B ∈ Fn−1, µ

n−1
0 (B) > 0, the

nonnegative random value fn(ω1, . . . , ωn−1, ωn) satisfies the inequality

1

µn−1
0 (B)

∫
B

∫
Ω0

n

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) ≤ 1, B ∈ Fn−1, (55)

then the inequality ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1,

{ω1, . . . , ωn−1} ∈ Ωn−1, n = 1, N, (56)

is true almost everywhere relative to the measure Pn−1.

Proof. The metric space Ωn−1 is a complete separable metric space with the met-

ric ρ(x, y) =
n−1∑
i=1

ρi(xi, yi), where x = (x1, . . . , xn−1), y = (y1, . . . , yn−1) ∈ Ωn−1,

(xi, yi) ∈ Ω0
i , ρi(xi, yi) is a metric in Ω0

i . This means that the metric space
Ωn−1 has an exhaustive decomposition{Bmk}∞m,k=1. Suppose that (ω1, . . . , ωn−1) ∈
Bm,k for a certain k, depending on m, and there exists an infinite number
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IV. Inequalities for the Nonnegative Random Values

Lemma 3. 

Lemma 4. 

Definition 1. 

𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

of m for which µn−1
0 (Bm,k) > 0. On the probability space {Ωn−1,Fn−1, µ

n−1
0 },

for every integrable finite valued random value ϕn−1(ω1, . . . , ωn−1) the sequence

Eµn−1
0 {ϕn−1(ω1, . . . , ωn−1)|F̄m} converges to ϕn−1(ω1, . . . , ωn−1) with probability

one, as m → ∞, since it is a regular martingale. Here, we denoted F̄m the σ-
algebra, generated by the sets Bm,k, k = 1,∞.

It is evident that for those Bm,k, for which µn−1
0 (Bm,k) 6= 0,

Eµn−1
0 {ϕn−1(ω1, . . . , ωn)|F̄m} =∫

Bm,k

ϕn−1(ω1, . . . , ωn−1)dµn−1
0

µ
n−1
0 (Bm,k)

, (ω1, . . . , ωn) ∈ Bm,k. (57)

Denote Am = Am(ω1, . . . , ωn−1) those sets Bm,k for which (ω1, . . . , ωn) ∈ Bm,k for
a certain k, depending on m, and µn−1

0 (Am) > 0. Then, for every integrable finite
valued ϕn−1(ω1, . . . , ωn−1)

lim
m→∞

∫
Am

ϕn−1(ω1, . . . , ωn−1)dµn−1
0

µn−1
0 (Am)

= ϕn−1(ω1, . . . , ωn−1) (58)

almost everywhere relative to the measure µn−1
0 . If to put

ϕn−1(ω1, . . . , ωn−1) =

(59)

then we obtain the proof of Lemma 4.

In Theorem 2, we assume that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the repre-
sentation

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ωn)ηn(ωn) =

dn(ω1, . . . , ωn−1, ωn)ηn(ωn), n = 1, N, S0 > 0, (60)

is true, where the random values dn(ω1, . . . , ωn−1, ωn), an(ω1, . . . , ωn−1, ωn), ηn(ωn),
n = 1, N, given on the probability space {Ωn,Fn, Pn}, satisfy the conditions

0 < an(ω1, . . . , ωn−1, ωn) ≤ 1, 1 + an(ω1, . . . , ωn−1, ωn)ηn(ωn) > 0,

dn(ω1, . . . , ωn−1, ωn) > 0, P 0
n(ηn(ωn) > 0) > 0, P 0

n(ηn(ωn) < 0) > 0. (61)

From these conditions we obtain Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1, where

Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0}.
From the suppositions above, it follows that P 0

n(Ω0−
n ) > 0, P 0

n(Ω0+
n ) > 0. The

measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n = Ω0−

n ∩ F0
n,

P 0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩ F0
n.
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∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn), (ω1, . . . , ωn−1) ∈ Ωn−1,𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let Ω0
i be a complete separable metric space and let F0

i be a Borell
σ-algebra on Ω0

i , i = 1, N. Suppose that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the
representation (60) is valid and Lemma 4 conditions are true. Then, for the non-
negative random value fn(ω1, . . . , ωn−1, ωn) the inequalities

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1,

(ω1, . . . , ωn−1) ∈ Ωn−1, (ω1
n, ω

2
n) ∈ Ω0−

n × Ω0+
n , n = 1, N, (62)

are true almost everywhere relative to the measure Pn−1 × P 0−
n × P 0+

n on the mea-
surable space {Ωn−1 × Ω0−

n × Ω0+
n ,Fn−1 ×F0−

n ×F0+
n }.

Proof. Under Theorem 2 conditions, the set of martingale measures is a nonempty
one. Due to the equality (40), we obtain∫

ΩN

N∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
N∏
i=1

dP 0
i (ωi) =

∫
Ωn

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi). (63)

Further, ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n). (64)

χΩ−
n

(ω1, . . . , ω
1
n) = χΩn−1(ω1, . . . , ωn−1)χΩ0−

n
(ω1

n),

χΩ+
n

(ω1, . . . , ω
2
n) = χΩn−1(ω1, . . . , ωn−1)χΩ0+

n
(ω2

n). (65)
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Due to Lemma 4, the inequality∫
Ω0

n

∫
Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1, (66)

is true almost everywhere relative to the measure Pn−1 on the σ-algebra Fn−1. Let
us put

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n}) = αn(ω1

n;ω2
n), (67)

where αn(ω1
n;ω2

n) satisfy the condition∫
Ω0−

n

∫
Ω0+

n

αn(ω1
n;ω2

n)dP 0
n(ω1

n)dP 0
n(ω2

n) = 1. (68)

Since, on the probability space {Ω0−
n ×Ω0+

n ,F0−
n ×F0+

n , P 0−
n ×P 0+

n }, there exists an
exhaustive decomposition {Am,k}∞m,k=1, let us put

αn(ω1
n;ω2

n) = (1− ε)
χAm,k

(ω1
n;ω2

n)

µn(Am,k)
+ ε

χΩ0−
n ×Ω0+

n \Am,k
(ω1

n;ω2
n)

µn(Ω0−
n × Ω0+

n \ Am,k)
, (69)

where µn(A) = [P 0−
n ×P 0+

n ](A), A ∈ F0−
n ×F0+

n , and we assume that µn(Am,k) > 0,
µn(Ω0−

n × Ω0+
n \ Am,k) > 0. Suppose that (ω1

n;ω2
n) ∈ Am,k and µn(Am,k) > 0 for the

infinite number of m and k. Then,∫
Ω0

n

∫
Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
(1− ε)

χAm,k
(ω1

n;ω2
n)

µn(Am,k)
+ ε

χΩ0−
n ×Ω0+

n \Am,k
(ω1

n;ω2
n)

µn(Ω0−
n × Ω0+

n \ Am,k)

]
×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1. (70)

Going to the limit as m, k →∞ and then as ε→ 0, we obtain the inequality

χΩ0,−
n

(ω1
n)χΩ0,+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1 (71)
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Let Ω0
n be a complete separable metric space and let F0

n be a Borel σ-
algebra on Ω0

n, n = 1, N . If the conditions of Lemma 4 are true, then the inequality

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1, (72)

is valid almost everywhere relative to the measure Pn−1×[P 0
n×P 0

n ] on the measurable
space {Ωn−1 × Ω0

n × Ω0
n,Fn−1 ×F0

n ×F0
n}.

Proof. Due to the conditions for Ωa
n, a = −,+, the representation

Ωa
n =

Nn⋃
k=1

[A0,ka
n × V k

n−1] (73)

is true. Owing to Lemma 5 conditions, there exists an exhaustive decomposition

Dn
mi, m, i = 1,∞, such that

∞⋃
i=1

Dn
mi = Ω0

n, m = 1,∞. Let us denote A0,ka
n ∩Dn

mi =

Enka
mi . It is evident that Enka

mi forms an exhaustive decomposition of sets A0,ka
n , n =

1, N, k = 1,∞, a = −,+, correspondingly. Due to Lemma 4, the inequality∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1, (ω1, . . . , ωn−1) ∈ Ωn−1, (74)

is true almost everywhere relative to the measure Pn−1. The equality∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) =

∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) (75)

which is valid almost everywhere relative to the measure µn. Theorem 2 is proved.
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𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

is valid. From the equality (75) and Lemma 4, the inequality∫
Ω0

n

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1, . . . , ωn−1, ω
1
n}; {ω1, . . . , ωn−1, ω

2
n})×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) ≤ 1, (76)

is true almost everywhere relative to the measure Pn−1 on the σ-algebra Fn−1. Let
us put

αm,i+n (ω2
1, . . . , ω

2
n) =

Nn∑
k=1

α+
n,k,m,i(ω

2
n)χA0,k+

n
(ω2

n)χV k
n−1

(ω2
1, . . . , ω

2
n−1),

αr,s,m,in ({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) = αr,s−n (ω1

1, . . . , ω
1
n)αm,i+n (ω2

1, . . . , ω
2
n), (77)

where

α−n,k,r,s(ω
1
n) =

[
(1− δ)

χEnk−
rs

(ω1
n)

P 0
n(Enk−

rs )
+ δ

χA0k−
n \Enk−

rs
(ω1

n)

P 0
n(A0k−

n \ Enk−
rs )

]
,

α+
n,k,m,i(ω

2
n) =

[
(1− δ)

χEnk+
mi

(ω2
n)

P 0
n(Enk+

mi )
+ δ

χA0k+
n \Enk+

mi
(ω2

n)

P 0
n(A0k+

n \ Enk+
mi )

]
, 0 < δ < 1. (78)

In the formulas (78), we assume that the inequalities

P 0
n(Enk−

rs ) > 0, P 0
n(A0k−

n \ Enk−
rs ) > 0, P 0

n(Enk+
mi ) > 0, P 0

n(A0k+
n \ Enk+

mi ) > 0, (79)

are true. Let us consider

αr,s,m,in ({ω1, . . . , ωn−1, ω
1
n−1}; {ω1, . . . , ωn−1, ω

2
n}) =

αr,s−n (ω1, . . . , ωn−1, ω
1
n)αm,i+n (ω1, . . . , ωn−1, ω

2
n). (80)

Suppose that (ω1, . . . , ωn−1) ∈ V k
n−1 for a certain k. Then,
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αr,s−n (ω1
1, . . . , ω

1
n) =

Nn∑
k=1

α−n,k,r,s(ω
1
n)χA0,k−

n
(ω1

n)χV k
n−1

(ω1
1, . . . , ω

1
n−1),



 
 

 
 

 
 
 
 
 
 
 
 
 
 

αr,s,m,in ({ω1, . . . , ωn−1, ω
1
n−1}; {ω1, . . . , ωn−1, ω

2
n}) =[

(1− δ)
χEnk−

rs
(ω1

n)

P 0
n(Enk−

rs )
+ δ

χA0k−
n \Enk−

rs
(ω1

n)

P 0
n(A0k−

n \ Enk−
rs )

]
×

[
(1− δ)

χEnk+
mi

(ω2
n)

P 0
n(Enk+

mi )
+ δ

χA0k+
n \Enk+

mi
(ω2

n)

P 0
n(A0k+

n \ Enk+
mi )

]
. (81)

We assume that the point (ω1
n, ω

2
n) ∈ Enk−

rs × Enk+
mi for the infinite number of r, s

and m, i , where P 0
n(Enk−

rs ) > 0, P 0
n(Enk+

mi ) > 0.
Substituting (81) into (76) and going to the limit as m, k → ∞ r, s → ∞ and

then as δ → 0, we obtain the needed inequality. Lemma 5 is proved.

Suppose that the conditions of Theorem 2 are true. If for a certain
ω1
n ∈ Ω0−

n and ω2
n ∈ Ω0+

n the inequalities

sup
(ω1,...,ωn−1)∈Ωn−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
<∞,

sup
(ω1,...,ωn−1)∈Ωn−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
<∞, n = 1, N, (82)

are true, then the nonnegative random values fn(ω1, . . . , ωn−1, ωn), n = 1, N, satisfy
the inequalities

fn(ω1, . . . , ωn−1, ωn) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (83)

where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.

Proof. From the inequality (71), it follows the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤

1 +
1− fn(ω1, . . . , ωn−1, ω

1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n), ω1

n ∈ Ω0−
n , ω2

n ∈ Ω0+
n . (84)

Let us define

γn−1(ω1, . . . , ωn−1) = inf
{ω1

n,η
−
n (ω1

n)>0}

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)
, (85)

then, taking into account the inequality (84), we obtain the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 + γn−1(ω1, . . . , ωn−1)∆S+

n (ω1, . . . , ωn−1, ω
2
n). (86)

From the definition of γn−1(ω1, . . . , ωn−1), we obtain the inequality
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Theorem 3. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

fn(ω1, . . . , ωn−1, ω
1
n) ≤ 1− γn−1(ω1, . . . , ωn−1)∆S−n (ω1, . . . , ωn−1, ω

1
n). (87)

The inequalities (86), (87) give the inequality

fn(ω1, . . . , ωn−1, ωn) ≤ 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn). (88)

Let us prove the boundedness of γn−1(ω1, . . . , ωn−1). From the inequalities (86), (87)
we obtain

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≥

γn−1(ω1, . . . , ωn−1) ≥ − 1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
. (89)

Due to Theorem 3 conditions, we obtain the boundedness of γn−1(ω1, . . . , ωn−1).
The Fn−1 measurability of the random value γn−1(ω1, . . . , ωn−1) follows from the
fact that Ω0

n is separable metric space and infimum is reached on the countable set,
which is dense in Ω0

n. Theorem 3 is proved.

Let the conditions of Lemma 5 be valid. If there exist ω1
n ∈ A0k−

n , ω2
n ∈

A0k+
n , and the real numbers ak, bk, k = 1, Nn, such that

sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)

= ank <∞,

sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
= bnk <∞, k = 1, Nn, n = 1, N,

max
1≤n≤N

sup
1≤k≤Nn

max{ank , bnk} <∞, (90)

then there exists a bounded Fn−1-measurable random value γn−1(ω1, . . . , ωn−1) such
that the inequalities

fn(ω1, . . . , ωn−1, ωn)) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (91)

are true.

Proof. For ω1
n ∈ A0k−

n , ω2
n ∈ A0k+

n and (ω1, . . . , ωn−1) ∈ V k
n−1, we have that

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . Then, from the inequality (72),
we obtain the inequality[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1. (92)
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Theorem 4. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

From the inequality (92), it follows the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 +

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)

∆S+
n (ω1, . . . , ωn−1, ω

2
n). (93)

Let us define

γkn−1(ω1, . . . , ωn−1) =

inf
{ω1

n∈A
0,k−
n }

1− fn(ω1, . . . , ωn−1, ω
1
n)

∆S−n (ω1, . . . , ωn−1, ω1
n)
, (ω1, . . . , ωn−1) ∈ V k

n−1, (94)

then, taking into account the inequality (93), we have the inequality

fn(ω1, . . . , ωn−1, ω
2
n) ≤ 1 + γkn−1(ω1, . . . , ωn−1)∆S+

n (ω1, . . . , ωn−1, ω
2
n). (95)

From the definition of γkn−1(ω1, . . . , ωn−1), we obtain the inequality

fn(ω1, . . . , ωn−1, ω
1
n) ≤ 1− γkn−1(ω1, . . . , ωn−1)∆S−n (ω1, . . . , ωn−1, ω

1
n). (96)

The inequalities (95), (96) give the inequality

fn(ω1, . . . , ωn−1, ωn) ≤ 1 + γkn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn). (97)

Let us prove the boundedness of γkn−1(ω1, . . . , ωn−1). From the inequalities (95), (96),
we obtain the inequalities

ank = sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≥

γkn−1(ω1, . . . , ωn−1) ≥ − sup
(ω1,...,ωn−1)∈V k

n−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
= −bnk . (98)

From this, it follows the boundedness of γkn−1(ω1, . . . , ωn−1). The Fn−1 measurability
of the random value γkn−1(ω1, . . . , ωn−1) follows from the fact that Ω0

n is separable
metric space and infimum is reached on the countable set, which is dense in Ω0

n. To
complete the proof of Theorem 4, let us put

γn−1(ω1, . . . , ωn−1) =
Nn∑
k=1

χV k
n−1

((ω1, . . . , ωn−1)γkn−1(ω1, . . . , ωn−1), (99)

then for such γn−1(ω1, . . . , ωn−1) the inequality (91) are satisfied. Theorem 4 is
proved.
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In this section, we give simple proof of optional decomposition for the nonnegative
super-martingale relative to the set of equivalent martingale measures. Such a proof
first appeared in the paper [16]. First, the optional decomposition for diffusion
processes super-martingale was opened by El Karoui N. and Quenez M. C. [21]. After
that, Kramkov D. O. and Follmer H. [22], [23] proved the optional decomposition for
the nonnegative bounded super-martingales. Folmer H. and Kabanov Yu. M. [24],
[25] proved analogous result for an arbitrary super-martingale. Recently, Bouchard
B. and Nutz M. [26] considered a class of discrete models and proved the necessary
and sufficient conditions for the validity of the optional decomposition.

Let Ω0
i be a complete separable metric space and let F0

i be a Borell
σ-algebra on Ω0

i , i = 1, N. Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of risky
assets satisfies the conditions of Theorems 1, 2, 3, 4, then for every nonnegative
super-martingale {f 1

n(ω1, . . . , ωn)}Nn=0 relative to the set of martingale measure M,
described in Theorem 1, the optional decomposition is true.

Proof. Without loss of generality, we assume that f 1
n(ω1, . . . , ωn) ≥ a, where a is

a real positive number. If it is not so, then we can come to the super-martingale
f 1
n(ω1, . . . , ωn) + a. Let us consider the set of random values

fn(ω1, . . . , ωn) =
f 1
n(ω1, . . . , ωn)

f 1
n−1(ω1, . . . , ωn−1)

, n = 1, N. (100)

Every random value fn(ω1, . . . , ωn) satisfies the conditions of Lemma 4. Due to
Theorems 3, 4, the inequalities

f 1
n(ω1, . . . , ωn)

f 1
n−1(ω1, . . . , ωn−1)

≤ 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn), n = 1, N, (101)

are true, where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.
Since EQ|∆Sn(ω1, . . . , ωn)| <∞, Q ∈M, we have

EQ{γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn)|Fn−1} = 0, Q ∈M, n = 1, N. (102)

Let us denote

ξ0
n(ω1, . . . , ωn) = 1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn), n = 1, N. (103)

Then, from the inequalities (101), we obtain the inequalities

f 1
n(ω1, . . . , ωn) ≤

f 1
n−1(ω1, . . . , ωn−1) + f 1

n−1(ω1, . . . , ωn−1)[ξ0
n(ω1, . . . , ωn)− 1], n = 1, N. (104)

Introduce the denotations

gn(ω1, . . . , ωn) =

−f 1
n(ω1, . . . , ωn) + f 1

n−1(ω1, . . . , ωn−1)ξ0
n(ω1, . . . , ωn), n = 1, N. (105)

Then, gn(ω1, . . . , ωn) ≥ 0, n = 1, N, and
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EQgn(ω1, . . . , ωn) ≤ EQf 1
n(ω1, . . . , ωn) + EQf 1

n(ω1, . . . , ωn−1). (106)

The equalities (105) give the equalities

f 1
n(ω1, . . . , ωn) =

f 1
0 +

n∑
i=1

f 1
i−1(ω1, . . . , ωn−1)[ξ0

i (ω1, . . . , ωi)− 1]−
n∑
i=1

gi(ω1, . . . , ωi), n = 1, N.(107)

Let us put

Mn(ω1, . . . , ωn) = f 1
0 +

n∑
i=1

f 1
i−1(ω1, . . . , ωi−1)[ξ0

i (ω1, . . . , ωi)− 1], n = 1, N, (108)

then EQ{Mn(ω1, . . . , ωn)|Fn−1} = Mn−1(ω1, . . . , ωn−1). Theorem 5 is proved.

In this section, we introduce the family of spot measures. After that, we obtain
the representations for the family of spot measures and define integral over these
set of measures. The sufficient conditions are found, under which the integral over
these set of measures is a set of martingale measures being equivalent to the initial
measure. The introduced family of spot measures is a family of extreme points for
these set of equivalent measures.

We give an evident construction of the set of martingale measures for risky
assets evolution, given by the formula (9). First of all, to do that we consider a
simple case as the measures P 0

n is concentrated at two points ω1
n, ω

2
n ∈ Ω0

n, where
ω1
n ∈ A0k−

n , ω2
n ∈ A0k+

n for a certain k, depending on n, for the representation Ω−n
and Ω+

n , given by the formula (5). Let us put P 0
n(ω1

n) = pkn, P
0
n(ω2

n) = 1− pkn, where
0 < pkn < 1. Then, to satisfy the conditions (14) - (16), we need to put

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

1

pkn(1− pkn)
, n = 1, N, (109)

and to require that

∆S−n (ω1, . . . , ωn−1, ω
1
n) <∞, (ω1, . . . , ωn−1, ω

1
n) ∈ Ω−n ,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) <∞, (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (110)

Let us denote µ{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}(A) the measure, generated by the recurrent relations

(23) - (25), for the measures P 0
n , n = 1, N, concentrated at two points. For the point

{ω1
n, ω

2
n}, . . . , {ω1

N , ω
2
N} ∈ ΩN × ΩN , the recurrent relations (23) - (25) is converted

relative to the set of measures µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) into the recurrent relations

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) = χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×
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VI. Spot Measures and Integral Representation for
Martingale Measures



 
 

 
 

 
 
 
 
 
 
 
 
 
 

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
1
N )

N (A)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
µ

(ω1,...,ωN−1,ω
2
N )

N (A)

]
, A ∈ FN , (111)

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) = χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
, n = 2, N, A ∈ FN , (112)

µ{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}(A) = χΩ−

1
(ω1

1)χΩ+
1

(ω2
1)×

[
∆S+

1 (ω2
n)

V1(ω1
1, ω

2
1)
µ

(ω1
1)

{ω1
2 ,ω

2
2},...,{ω1

N ,ω
2
N}

(A) +
∆S−1 (ω1

1)

V1(ω1
1, ω

2
1)
µ

(ω2
1)

{ω1
2 ,ω

2
2},...,{ω1

N ,ω
2
N}

(A)

]
, (113)

where we put

µ
(ω1,...,ωN−1,ωN )
N (A) = χA(ω1, . . . , ωN−1, ωN), A ∈ FN . (114)

The recurrent relations (111) - (113) we call the recurrent relations for the spot
measures µ{ω1

n,ω
2
n},...,{ω1

N ,ω
2
N}(A).

Let us consider the random values

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (115)

where

1
n(ω1, . . . , ωn−1, ωn) = χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (116)

2
n(ω1, . . . , ωn−1, ωn) = χΩ−

n
(ω1, . . . , ωn−1, ω

1
n)×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (117)
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For the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (118)

is true.

Proof. The proof of Lemma 6 we lead by induction down. Let us prove the equality

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) =

2∑
iN=1

N(ω1, . . . , ωN−1, ω
iN
N )χA(ω1, . . . , ωN−1, ω

iN
N ). (119)

Really,

N(ω1, . . . , ωN−1, ω
1
N)χA(ω1, . . . , ωN−1, ω

1
N)+

N(ω1, . . . , ωN−1, ω
2
N)χA(ω1, . . . , ωN−1, ω

2
N) =[

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

+

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

1
N)

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

]
×

χA(ω1, . . . , ωN−1, ω
1
N)+

Derivatives Pricing in Non-Arbitrage Market

[
χΩ−

N
(ω1, . . . , ωN−1, ω

2
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S+
N(ω1, . . . , ωN−1, ω

2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

+

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)

]
×

χA(ω1, . . . , ωN−1, ω
2
N) =

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN . (120)
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The last prove the needed. Suppose that we proved that the equality

µ
(ω1,...,ωn−1,ωn)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A) =

2∑
in+1=1

. . .

2∑
iN=1

N∏
j=n+1

j(ω1, . . . , ωn, ω
in+1

n+1 , . . . , ω
ij
j )χA(ω1, . . . , ωn, ω

in+1

n+1 , . . . , ω
iN
N ),

A ∈ FN , (121)

is true. By the same way as above, we have

2∑
in=1

n(ω1, . . . , ωn−1, ω
in
n )µ

(ω1,...,ωn−1,ω
in
n )

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A) =

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
=

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A), A ∈ FN . (122)

The last proves Lemma 6.

Let us define the integral for the random value fN(ω1, . . . , ωN−1, ωN) relative to
the measure µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) by the formula∫

ΩN

fN(ω1, . . . , ωN−1, ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )fN(ωi11 , . . . , ω

iN
N ). (123)

To describe the convex set of equivalent martingale measures, we introduce the
family of α-spot measures, depending on the point ({ω1

1, {ω2
1}, . . . , {ω1

N , {ω2
N}) be-

longing to ΩN × ΩN and the set of strictly positive random values

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, (124)

at points Wn = ({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), being constructed by the point

({ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}).
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Further, in this section, we assume that the evolution of risky asset is given by
the formula (9). Therefore, in this case

Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1, n = 1, N, (125)

and the condition (16) is formulated, as follows:∫
Ω0

n×Ω0
n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

dP 0
n(ω1

n)dP 0
n(ω2

n) = 1, n = 1, N. (126)

Let us determine the random values

α
n(ω1, . . . , ωn) = χΩ−

n
(ω1, . . . , ωn−1, ωn) 1

n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (127)

1
n(ω1, . . . , ωn−1, ωn) =

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (128)

2
n(ω1, . . . , ωn−1, ωn) =

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})χΩ−

n
(ω1, . . . , ωn−1, ω

1
n)×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (129)

Let us define the set of α-spot measures on the σ-algebra FN by the formula

µαWN
(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

α
j (ωi11 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (130)

and the set of the measures

µ0(A) =∫
ΩN×ΩN

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

α
j (ωi11 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N )dPN × dPN , A ∈ FN . (131)
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Derivatives Pricing in Non-Arbitrage Market

Suppose that the conditions of Lemma 1 are true. If the strictly positive
random values

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, (132)

given on the probability space {Ωn × Ωn,Fn × Fn, Pn × Pn}, n = 1, N, satisfy the
conditions (126), then for the measure µ0(A), given by the formula (131), the rep-
resentation

µ0(A) =∫
ΩN×ΩN

N∏
i=1

αi({ω1
1, . . . , ω

1
i }; {ω2

1, . . . , ω
2
i })µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A)dPN × dPN (133)

is true.

Proof. Due to Lemma 1, the set of random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}),

n = 1, N, satisfying the conditions (126), is a non empty set.

We prove Theorem 6 by induction down. For the spot measure the relation

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A) =

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN , (134)

is true. Multiplying the relation (134) on αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})

and after that, integrating relative to the measure P 0
N ×P 0

N on the set Ω0
N ×Ω0

N , we
obtain ∫

Ω0
N

∫
Ω0

N

αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})×

µ
(ω1,...,ωN−1)

{ω1
N ,ω

2
N}

(A)dP 0
N(ω1

N)dP 0
N(ω2

N) =

∫
Ω0

N

∫
Ω0

N

αN({ω1
1, . . . , ω

1
N−1, ω

1
N}; {ω2

1, . . . , ω
2
N−1, ω

2
N})×

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×
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[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
dP 0

N(ω1
N)dP 0

N(ω2
N) =

µ
(ω1,...,ωN−1)
N−1 (A), A ∈ FN . (135)

Suppose that we proved the equality∫
N∏

i=n+1
[Ω0

i×Ω0
i ]

N∏
i=n+1

αi({ω1
1, . . . , ω

1
n, ω

1
n+1, . . . , ω

1
i }; {ω2

1, . . . , ω
2
n, ω

2
n+1, . . . , ω

2
i })×

µ
(ω1,...,ωn)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)
N∏

i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = µ(ω1,...,ωn)
n (A). (136)

Then, using the induction supposition (136), the relation for the spot measure

µ
(ω1,...,ωn−1)

{ω1
n,ω

2
n},...,{ω1

N ,ω
2
N}

(A) =

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω1
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ

(ω1,...,ωn−1,ω2
n)

{ω1
n+1,ω

2
n+1},...,{ω1

N ,ω
2
N}

(A)

]
, A ∈ FN , (137)

and multiplying it on
N∏
i=n

αi({ω1
1, . . . , ω

1
n−1, ω

1
n, . . . , ω

1
i }; {ω2

1, . . . , ω
2
n−1, ω

2
n, . . . , ω

2
i })

and then integrating relative to the measure
N∏
i=n

[P 0
i × P 0

i ] on the set
N∏
i=n

[Ω0
i × Ω0

i ],

we obtain the equality∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n})
[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+
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∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

µ
(ω1,...,ωn−1)
n−1 (A), n = 1, N. (138)

Thus, we proved the following recurrent relations

µ
(ω1,...,ωn−1)
n−1 (A) =

∫
Ω0

n×Ω0
n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n})
[

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n), n = 1, N. (139)

To finish the proof of Theorem 6, let us calculate∫
Ω0

N×Ω0
N

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N )dP 0

N(ω1
N)dP 0

N(ω2
N). (140)

Calculating the expression

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N ) =

α
N(ω1, . . . , ωN−1, ω

1
N)χA(ω1, . . . , ωN−1, ω

1
N)+

α
N(ω1, . . . , ωN−1, ω

2
N)χA(ω1, . . . , ωN−1, ω

2
N) =

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})×

χΩ−
N

(ω1, . . . , ωN−1, ω
1
N)χΩ+

N
(ω1, . . . , ωN−1, ω

2
N)×

[
∆S+

N(ω1, . . . , ωN−1, ω
2
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

1
N)+

∆S−N(ω1, . . . , ωN−1, ω
1
N)

VN(ω1, . . . , ωN−1, ω1
N , ω

2
N)
χA(ω1, . . . , ωN−1, ω

2
N)

]
, A ∈ FN , (141)

and substituting (141) into (140), we obtain the equality∫
Ω0

N×Ω0
N

2∑
iN=1

α
N(ω1, . . . , ωN−1, ω

iN
N )χA(ω1, . . . , ωN−1, ω

iN
N )dP 0

N(ω1
N)dP 0

N(ω2
N) =
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Derivatives Pricing in Non-Arbitrage Market

µ
(ω1,...,ωN−1)
N−1 (A). (142)

Suppose that we already proved the equality∫
N∏

i=n+1
Ω0

i×Ω0
i

2∑
in+1=1

. . .
2∑

iN=1

N∏
j=1

α
j (ω1, . . . , ωn, ω

in+1

n+1 . . . , ω
ij
j )

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i ) =

µ(ω1,...,ωn)
n (A). (143)

Then, acting as above, we obtain the equalities∫
Ω0

n×Ω0
n

2∑
in=1

α
n(ω1, . . . , ωn−1, ω

in
n )µ(ω1,...,ωn−1,ω

in
n )

n (A)dP 0
n(ω1

n)dP 0
n(ω2

n) =

∫
Ω0

n×Ω0
n

αn({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})×

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)χΩ+

n
(ω1, . . . , ωn−1, ω

2
n)×

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω1

n)
n (A)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
µ(ω1,...,ωn−1,ω2

n)
n (A)

]
dP 0

n(ω1
n)dP 0

n(ω2
n) =

µ
(ω1,...,ωn−1)
n−1 (A), A ∈ FN . (144)

We proved that the recurrent relations (144) are the same as the recurrent relations
(139). This proves Theorem 6.

Let us introduce the denotations

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j ),

WN = {ω1
1, . . . , ω

1
N ;ω2

1, . . . , ω
2
N} = {{ω}1

N , {ω}2
N}. (145)

Further, only those points ({ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}) ∈ ΩN ×ΩN play important role

for which µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) 6= 0.

Below, in the next two Theorems, we assume that the random value

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) (146)

given on the probability space {Ωn × Ωn,Fn × Fn, Pn × Pn}, n = 1, N, satisfy the
conditions (126).
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Derivatives Pricing in Non-Arbitrage Market

Under the above conditions, for the measure µ0(A), given by the formula (133),
the representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (147)

is true, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (148)

1
n(ω1, . . . , ωn−1, ωn) =

∫
Ω0

n

χΩ+
n

(ω1, . . . , ωn−1, ω
2
n)αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (149)

2
n(ω1, . . . , ωn−1, ωn) =

∫
Ω0

n

χΩ−
n

(ω1, . . . , ωn−1, ω
1
n)αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (150)

Due to the conditions (126) relative to the random values αn({ω}1
n; {ω}2

n), we have∫
Ω0

n

n(ω1, . . . , ωn)dP 0
n(ωn) = 1, n = 1, N. (151)

for n(ω1, . . . , ωn), given by the formula (148). The proof of the equalities (151) is
the same as in Theorem 1.

Suppose that the conditions of Lemma 1 are true. Then, the set of
strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (152)

is a non empty set for the measures µ0(A), given by the formula (133). The measure
µ0(A), constructed by the strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N,

satisfying the conditions (126), (152) is a martingale measure for the evolution of
risky asset, given by the formula (9). Every measure, belonging to the convex linear
span of such measures, is also martingale measure for the evolution of risky asset,
given by the formula (9). They are equivalent to the measure PN . The set of spot
measures µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale measures for the evolution of

risky asset, given by the formula (9).
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Derivatives Pricing in Non-Arbitrage Market

Proof. The first fact, that the set of random values αn({ω}1
n; {ω}2

n), n = 1, N, satis-
fying the conditions (126), (152) is a non empty one, follows from Lemma 1. From
the representation (147) for the set of measures µ0(A), given by the formula (133), as
in the proof of Theorem 1, it is proved that this set of measures is a set of martingale
measures being equivalent to the measure PN .

Let us prove the last statement of Theorem 7. Since for the spot measure
µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (153)

is true, let us calculate

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j ) = j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j ) + j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ+
n

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j )+

χΩ+
n

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

+

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

       

               

                          

                   

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
  
Is
s u

e 
  
  
  
 e

rs
io
n 

I
V

X
IV

Y
ea

r
20

20

69

  
 

( A
)

© 2020 Global Journals

𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Derivatives Pricing in Non-Arbitrage Market

χΩ+
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )χΩ−

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j ) = χΩ0−

j
(ω1

j )χΩ0+
j

(ω2
j ) =

{
1, ω1

j ∈ Ω0−
j ω2

j ∈ Ω0+
j ,

0, otherwise,
, j = 1, N. (154)

Further,

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j )∆Sj(ω

i1
1 , . . . , ω

ij
j ) =

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )+

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
2
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ−
j

(ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )χΩ+

j
(ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )×[

−
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )+

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

]
= 0, j = 1, N. (155)

Let us prove that the set of measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale

measures. Really, for A, belonging to the σ-algebra Fn−1 of the filtration we have

A = B ×
N∏
i=n

Ω0
i , where B belongs to σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Then, ∫
A

∆Sn(ω1, . . . , ωn)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in=1

n∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in−1=1

n−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )×
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Derivatives Pricing in Non-Arbitrage Market

2∑
in=1

n(ωi11 , . . . , ω
in
n )∆Sn(ωi11 , . . . , ω

in
n ) = 0, A ∈ Fn−1. (156)

The last means the needed statement. Theorem 7 is proved.

Below, in Theorem 8, we present the consequence of Theorems 6, 7.

Let the evolution of risky asset be given by the formula (9) and let
Lemma 1 conditions be true. Suppose that the random value αN({ω}1

N ; {ω}2
N), given

on the probability space {Ω−N × Ω+
N ,F

−
N ×F

+
N , P

−
N × P

+
N }, satisfy the conditions

P−N × P
+
N (({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}), αN({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}) > 0) =

N∏
n=1

P 0
n(Ω0−

n )× P 0
n(Ω0+

n ); (157)

∫
Ω0−

n ×Ω0+
n

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

(ω1, . . . , ωn−1) ∈ Ωn−1; (158)

∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = 1, (159)

where

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = (160)

∫
N∏

i=n+1
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i )

∫
N∏

i=n
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n

dP 0
i (ω1

i )dP
0
i (ω2

i )

, n = 1, N.

If the set of strictly positive random values αn({ω}1
n; {ω}2

n), n = 1, N, given by
the formula (160), satisfies the condition

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =
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∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (161)

then, for the martingale measure µ0(A) the representation

µ0(A) =∫
ΩN×ΩN

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A)dPN × dPN (162)

is true.

Proof. The random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, sat-

isfy the conditions (14) - (16), due to the conditions of Theorem 8. It is evident
that

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
n=1

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}). (163)

Due to Theorem 7, µ0(A), given by the formula (162), is a martingale measure being
equivalent to the measure PN .

Let us indicate how to construct the random values αN({ω}1
N ; {ω}2

N), since these
random values determine the set of all martingale measures. Suppose that the
random value αki (ω

1
i , ω

2
i ), k = 1, K, is a bounded strictly positive random value,

given on the measurable space {Ω0−
i × Ω0+

i ,F0−
i × F0+

i }, i = 1, N, and satisfying
the conditions∫

Ω0−
i ×Ω0+

i

αki (ω
1
i , ω

2
i )dP

0
i (ω1

i )dP
0
i (ω2

i ) = 1, i = 1, N, k = 1, K. (164)

Let us denote

αkN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
i=1

αki (ω
1
i , ω

2
i ), k = 1, K, (165)

where K runs natural numbers. If γk, k = 1, K, are strictly positive real numbers

such that
K∑
k=1

γk = 1, then

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

K∑
k=1

γkα
k
N({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}) (166)

satisfy the conditions of Theorem 8. The set of random values (166) is dense in the
set of random values αN({ω1

1, . . . , ω
1
N}; {ω2

1, . . . , ω
2
N}), satisfying the condition (157)

- (159). Theorem 8 is proved.
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Derivatives Pricing in Non-Arbitrage Market

Another way to construct αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) is to use the equalities

(126). The set of αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) can construct as follows:

suppose that α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) satisfies the inequalities

0 < hn ≤ α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) ≤ Hn <∞ (167)

for a certain real positive numbers hn, Hn. If to put

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) =

α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})∫

Ω0−
n ×Ω0+

n

α1
n({ω1

1, . . . , ω
1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})dP 0

n(ω1
n)dP 0

n(ω2
n)
, (168)

then the set of random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N,

is bounded and satisfy the conditions (14) - (16) under the conditions of Theorem
7. We can put

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) =

N∏
n=1

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}). (169)

It is evident that αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}), n = 1, N, must satisfy

the conditions (161).

In the papers [27], [28], the range of non arbitrage prices are established. In the
paper [27], for the Levy exponential model, the price of super-hedge for call option
coincides with the price of the underlying asset under the assumption that the
Levy process has unlimited variation, does not contain a Brownian component,
with negative jumps of arbitrary magnitude. The same result is true, obtained in
the paper [28], if the process describing the evolution of the underlying asset is a
diffusion process with the jumps described by Poisson jump process. In these papers
the evolution is described by continuous processes. Below, we consider the discrete
evolution of risky assets that is more realistic from the practical point of view. Two
types of risky asset evolutions are considered: 1) the price of an asset can take any
non negative value; 2) the price of the risky asset may not fall below a given positive
value for finite time of evolution. For each of these types of evolutions of risky assets,
the bounds of non-arbitrage prices for a wide class of contingent liabilities are found,
among which are the payoff functions of standard call and put options.

Below, on the probability space {ΩN ,FN , PN}, where ΩN =
N∏
i=1

Ω0
i , FN =

N∏
i=1

F0
i ,

PN =
N∏
i=1

P 0
i , Ω0

i is a complete separable metric space, F0
i is a Borel σ-algebra on

Ω0
i , P

0
i is a probability measure on F0

i , i = 1, N, we consider the evolution of risky
asset given by the formula

Sn(ω1, . . . , ωn) =
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Derivatives Pricing in Non-Arbitrage Market

S0

n∏
i=1

(1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1)), n = 1, N, (170)

where ai(ω1, . . . , ωi−1), σi(ω1, . . . , ωi−1) are Fi−1-measurable random values, satis-
fying the conditions 0 < ai(ω1, . . . , ωi−1) ≤ 1, σi(ω1, . . . , ωi−1) ≥ σi > 0, where
σi, i = 1, N, are real positive numbers. Further, we assume that the random value
εi(ωi) satisfy the conditions: there exists ω1

i ∈ Ω0
i such that εi(ω

1
i ) = 0, i = 1, N,

and for every real number t > 0, P 0
i (εi(ωi) < −t) > 0, P 0

i (εi(ωi) > t) > 0, i = 1, N.

For the evolution of risky asset (170), we have

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(eσn(ω1,...,ωn−1)εn(ωn) − 1) = (171)

dn(ω1, . . . , ωn−1, ωn)(eσnεn(ωn) − 1),

where

dn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)
(eσn(ω1,...,ωn−1)εn(ωn) − 1)

(eσnεn(ωn) − 1)
. (172)

It is evident that dn(ω1, . . . , ωn−1, ωn) > 0, therefore for ∆Sn(ω1, . . . , ωn−1, ωn) the
representation (60) is true with ηn(ωn) = (eσnεn(ωn) − 1). Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

eσn(ω1,...,ωn−1)εn(ω2
n) − 1

eσn(ω1,...,ωn−1)εn(ω2
n) − eσn(ω1,...,ωn−1)εn(ω1

n)
, ω2

n ∈ Ω0+
n , (ω1, . . . , ωn−1) ∈ Ωn−1,(173)

∆S−n (ω1, . . . , ωn−1, ωn1)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

1− eσn(ω1,...,ωn−1)εn(ω1
n)

eσn(ω1,...,ωn−1)εn(ω2
n) − eσn(ω1,...,ωn−1)εn(ω1

n)
, ω1

n ∈ Ω0−
n , (ω1, . . . , ωn−1) ∈ Ωn−1,(174)

where we denoted

Ω0−
n = {ωn ∈ Ω0

n, εn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, εn(ωn) > 0},

Ω−n = Ω0−
n × Ωn−1, Ω+

n = Ω0+
n × Ωn−1. (175)

From the formulas (173), (174) and Theorem 1, it follows that the set of martin-
gale measures M do not depend on the random values ai(ω1, . . . , ωi−1), i = 1, N. If
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Derivatives Pricing in Non-Arbitrage Market

to put ai(ω1, . . . , ωi−1) = 1, i = 1, N, in the formula (170), then for the risky asset
evolution we obtain the formula

Sn(ω1, . . . , ωn−1, ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N. (176)

The evolution of risky assets, given by the formula (176), includes a wide class
of evolutions of risky assets, used in economics. For example, under an appro-
priate choice of probability spaces {Ω0

i ,F0
i , P

0
i } and a choice of sequence of in-

dependent random values εi(ωi) with the normal distribution N(0, 1), we obtain
ARCH model (Autoregressive Conditional Heteroskedastic Model) introduced by
Engle in [18] and GARCH model (Generalized Autoregressive Conditional Het-
eroskedastic Model) introduced later by Bollerslev in [19]. In these models, the
random variables σi(ω1, . . . , ωi−1), i = 1, N, are called the volatilities which satisfy
the nonlinear set of equations.

The very important case of evolution of risky assets (170) is when ai(ω1, . . . , ωi−1) =
ai, i = 1, N, are constants, that is,

Sn(ω1, . . . , ωn−1, ωn) = S0

n∏
i=1

(1 + ai(e
σi(ω1,...,ωi−1)εi(ωi) − 1)), n = 1, N, (177)

where 0 ≤ ai ≤ 1.
If 0 < ai < 1, i = 1, N, then the evolution of risky asset, given by the formula

(177), we call the evolution of relatively stable asset.
Further, we assume that the evolution of risky asset given by the formulas (170),

(176), (177) satisfy the conditions∫
ΩN

Sn(ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N. (178)

From the conditions (178), it follows the inequalities∫
ΩN

∆S−n (ω1, . . . , ωn)dPN <∞, n = 1, N. (179)

Taking into account that

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(1− eσn(ω1,...,ωn−1)εn(ω1
n)), ω1

n ∈ Ω0−
n , (180)

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)(eσn(ω1,...,ωn−1)εn(ω2
n) − 1), ω2

n ∈ Ω0+
n , (181)

we have

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
≤ 1

n−1∏
i=1

(1− a1
i )a

0
n(1− eσnεn(ω1

n))

<∞, εn(ω1
n) < 0, (182)
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Derivatives Pricing in Non-Arbitrage Market

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
≤ 1

n−1∏
i=1

(1− a1
i )a

0
n(eσnεn(ω2

n) − 1)

<∞, εn(ω2
n) > 0, (183)

under the conditions that

0 < a0
n ≤ an(ω1, . . . , ωn−1) ≤ a1

n < 1, n = 1, N. (184)

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by one of the formula (170), (176), (177) that satisfies the conditions (178).

If the inequalities 0 < a0
n ≤ an(ω1, . . . , ωn−1) ≤ a1

n < 1, 0 < ai < 1, i = 1, N, are
true, then the set of martingale measures M is the same for every evolution of risky
assets, given by the formulas (170), (177). For every non-negative super-martingale
relative to the set of martingale measures M the optional decomposition is valid.
Every measure of M is an integral over the spot measures. The fair price f0 of
super-hedge for the nonnegative payoff function f(x) is given by the formula

f0 = sup
P∈M

EPf(SN) = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}. (185)

The set of martingale measures M1 for the evolution of risky asset, given by the
formula (176), is contained in the set M.

Proof. From the equalities (173) - (174) and the inequalities (178), it follows that
the set M is a nonempty one and every martingale measure constructed by the set
of random values αn(ω1

1, . . . , ω
1
n;ω2

1, . . . , ω
2
n), n = 1, N, belongs to the set M, if the

inequalities (49) are true. To prove that the set of martingale measures, defined by
the evolutions (170), (177), coincide it is necessary to prove the inequalities

0 < A1
n ≤

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤ B1
n <∞, n = 1, N, (186)

where we denoted by S1
n(ω1, . . . , ωn) the evolution, given by the formula (170), and

by S2
n(ω1, . . . , ωn) the evolution, given by the formula (177). Under the conditions

of Theorem 9, we have

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

=

S0

n∏
i=1

(1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1))

S0

n∏
i=1

(1 + ai(eσi(ω1,...,ωi−1)εi(ωi) − 1))
, n = 1, N. (187)

Since

1 + ai(ω1, . . . , ωi−1)(eσi(ω1,...,ωi−1)εi(ωi) − 1)

1 + ai(eσi(ω1,...,ωi−1)εi(ωi) − 1)
=

1− ai(ω1, . . . , ωi−1) + ai(ω1, . . . , ωi−1)eσi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
= Di, i = 1, N, (188)
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we have

1− a1
i + a0

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
≤ Di ≤

1− a0
i + a1

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N. (189)

Let us denote

Ai = inf
(ω1,...,ωi)∈Ωi

1− a1
i + a0

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N,

Bi = sup
(ω1,...,ωi)∈Ωi

1− a0
i + a1

i e
σi(ω1,...,ωi−1)εi(ωi)

1− ai + aieσi(ω1,...,ωi−1)εi(ωi)
, i = 1, N. (190)

It is evident that 0 < Ai, Bi <∞, i = 1, N, and

Ai ≤ Di ≤ Bi, i = 1, N, (191)

therefore

A1
n =

n∏
i=1

Ai ≤
S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤
n∏
i=1

Bi = B1
n, n = 1, N. (192)

So,

A2
N ≤

S1
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤ B2
N , n = 1, N, (193)

where we put A2
N = min

1≤n≤N
A1
n, B

2
N = max

1≤n≤N
B1
n. Since

|∆S1
n(ω1, . . . , ωn−1, ωn)| =

S1
n−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)|(eσn(ω1,...,ωn−1)εn(ωn) − 1)|, (194)

|∆S2
n(ω1, . . . , ωn−1, ωn)| =

S2
n−1(ω1, . . . , ωn−1)an|(eσn(ω1,...,ωn−1)εn(ωn) − 1)|, (195)

we have

|∆S1
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

=

S1
n−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1)

S2
n−1(ω1, . . . , ωn−1)an

. (196)
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Taking into account the obtained inequalities, we have the inequalities

A2
N

min
1≤n≤N

a0
n

max
1≤n≤N

an
≤ |∆S

1
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

≤ B2
N

max
1≤n≤N

a1
n

min
1≤n≤N

an
, n = 1, N. (197)

The inequalities (197) proves that the set of martingale measures for the evolutions
of risky assets given by the formulas (170), (177) are the same, since the inequalities
(49) for the evolutions of risky assets, given by formulas (170), (177), are fulfilled
simultaneously.

For the evolution of risky assets (177), satisfying the conditions (184), the in-
equalities (182), (183) are true. From this, it follows that the conditions of Theorem
5 are valid. This proves the optional decomposition for every nonnegative super-
martingale relative to the family of martingale measures M. From [17], it follows
the formula for the fair price f0 of super-hedge

f0 = sup
P∈M

EPf(SN). (198)

Further, the conditions of Theorem 8 is also true. Therefore, the formula

sup
P∈M

EPf(SN) = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (199)

is valid.
To complete the proof of Theorem 9, it needs to show that the set M1 ⊆M. Let

us denote S3
n(ω1, . . . , ωn) the evolution of risky asset, given by the formula (176).

Then, as above

S3
n(ω1, . . . , ωn)

S2
n(ω1, . . . , ωn)

≤
n∏
i=1

1

ai
= Cn, n = 1, N. (200)

Therefore,

|∆S3
n(ω1, . . . , ωn−1, ωn)|

|∆S2
n(ω1, . . . , ωn−1, ωn)|

=

S3
n−1(ω1, . . . , ωn−1)

S2
n−1(ω1, . . . , ωn−1)an

≤
max

1≤n≤N
Cn

min
1≤n≤N

an
, n = 1, N. (201)

The inequality (201) proves the needed statement. Theorem 9 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 ≤ ai(ω1, . . . , ωi−1) ≤ 1,
σi(ω1, . . . , ωi−1) > σi > 0, i = 1, N, and an = 1 for a certain 1 ≤ n ≤ N. If
the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:

1) f(0) = 0, f(x) ≤ ax, lim
x→∞

f(x)
x

= a, a > 0, then

sup
P∈M

EPf(SN) = aS0. (202)
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If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (203)

where M is a set of equivalent martingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(SN) lies in the set [f(S0), aS0].

Proof. Since the conditions of Theorem 9 are satisfied, then the formula

sup
Q∈M

∫
ΩN

f(SN)dQ = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (204)

is true, where for the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (205)

is valid, and

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (206)

where we denoted Ω0−
s = {ωs ∈ Ω0

s, εs(ωs) ≤ 0}, Ω0+
s = {ωs ∈ Ω0

s, εs(ωs) > 0}.
From the inequality, f(SN) ≤ aSN , we have

sup
Q∈M

∫
Ω

f(SN)dQ ≤ aS0. (207)

To prove the inverse inequality, we use the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (208)
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Derivatives Pricing in Non-Arbitrage Market

In the right hand side of the last inequality, let us put εs(ω
1
s) = 0, s 6= n. Such

elementary events ω1
s exist, due to the conditions relative to the random values

εs(ωs), s = 1, N. We obtain

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (209)

Therefore,

sup
Q∈M

∫
Ω

f(SN)dQ ≥

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (210)

Further,

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

in
n )×

f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)

=

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

[
∆S+

n (ω1
1, . . . , ω

1
n−1, ω

2
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

∆S−n (ω1
1, . . . , ω

1
n−1, ω

1
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]
≥

lim
εn(ω2

n)→∞
lim

εn(ω1
n)→−∞

[
eσn(ω1

1 ,...,ω
1
n−1)εn(ω2

n) − 1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
×

f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

1− eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]

=

lim
εn(ω2

n)→∞

1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)

= aS0. (211)
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Derivatives Pricing in Non-Arbitrage Market

Substituting the inequality (211) into the inequality (209), we obtain the needed
inequality.

Let us prove the equality (203). Using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(EPSN) = f(S0). (212)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (213)

Putting in this inequality εi(ω
1
i ) = 0, i = 1, N, we obtain the needed. The last state-

ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
10 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky
asset be given by the formula (170). Suppose that 0 ≤ ai(ω1, . . . , ωi−1) ≤ 1,
σi(ω1, . . . , ωi−1) > σi > 0, i = 1, N, and an = 1 for a certain 1 ≤ n ≤ N. If
the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:
1) f(0) = K, f(x) ≤ K, then

sup
P∈M

EPf(SN) = K. (214)

If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (215)

where M is a set of equivalent maqtingale measures for the evolution of risky as-
set, given by the formula (170). The interval of non-arbitrage prices of contingent
liability f(SN) coincides with the set [f(S0), K].

Proof. Due to Theorem 9, the equality

sup
Q∈M

∫
ΩN

f(SN)dQ = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} (216)

is valid, where for the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) the representation

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (217)
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is true, and

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (218)

It is evident that

sup
P∈M

EPf(SN) ≤ K. (219)

Further,

sup
Q∈M

∫
Ω

f(SN)dQ ≥

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (220)

In the right hand side of the last inequality, let us put εs(ω
1
s) = 0, s 6= n. We obtain

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (221)

From the last equality, we obtain

sup
Q∈M

∫
Ω

f(SN)dQ ≥

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)
. (222)
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Derivatives Pricing in Non-Arbitrage Market

Further,

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

2∑
in=1

n(ω1
1, . . . , ω

1
n−1, ω

in
n )f

(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ωin

n )
)

=

sup
ω1
n∈Ω0−

n ,ω2
n∈Ω0+

n

[
∆S+

n (ω1
1, . . . , ω

1
n−1, ω

2
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

∆S−n (ω1
1, . . . , ω

1
n−1, ω

1
n)

Vn(ω1
1, . . . , ω

1
n−1, ω

1
n, ω

2
n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]
≥

lim
ε(ω2

n)→∞
lim

ε(ω1
n)→−∞

[
eσn(ω1

1 ,...,ω
1
n−1)εn(ω2

n) − 1

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
)

+

1− eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)

eσn(ω1
1 ,...,ω

1
n−1)εn(ω2

n) − eσn(ω1
1 ,...,ω

1
n−1)εn(ω1

n)
f
(
S0e

σn(ω1
1 ,...,ω

1
n−1)εn(ω2

n)
)]

=

f(0) = K. (223)

Substituting the inequality (223) into the inequality (221), we obtain the needed
inequality.

Let us prove the equality (215). Due to the convexity of the payoff function f(x),
using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(EPSN) = f(S0). (224)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as(ω

i1
1 , . . . , ω

is−1

s−1 )
(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (225)

Putting in this inequality εi(ω
1
i ) = 0, i = 1, N, we obtain the needed. The last state-

ment about the interval of non-arbitrage prices follows from [7] and [6]. Theorem
11 is proved.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. If the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:

1) f(0) = 0, f(x) ≤ ax, lim
x→∞

f(x)
x

= a, a > 0, then the inequalities
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f S0

N∏
i=1

(1− ai)

)
+ aS0 1−

N∏
i=1

(1− ai)

)
≤ sup

P∈M
EPf(SN) ≤ aS0 (226)

are true. If, in addition, the nonnegative payoff function f(x) is a convex down one,
then

inf
P∈M

EPf(SN) = f(S0), (227)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. As before,

aS0 ≥ sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (228)

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

2∑
iN=1

N(ωi11 , . . . , ω
iN
N )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

[
∆S+

N(ωi11 , . . . , ω
iN−1

N−1 , ω
2
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

∆S−N(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

≥

lim
εN (ω2

N )→∞
lim

εN (ω1
N )→−∞

[
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×
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f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

1− eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

=

f(SN−1(1− aN)) + aaNSN−1, (229)

where we put

SN−1 = S0

N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
))

. (230)

Substituting the inequality (229) into (228), we obtain the inequality

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N−1

2∑
i1=1,...,iN−1=1

N−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0(1− aN)
N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

+ aaNS0. (231)

Applying (N − 1) times the inequality (231), we obtain the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥ f(S0

N∏
i=1

(1− ai)) + aS0

N∑
i=1

ai

N∏
s=i+1

(1− as) =

f S0

N∏
i=1

(1− ai)

)
+ aS0 1−

N∏
i=1

(1− ai)

)
. (232)

Let us prove the equality (227). Using the Jensen inequality, we obtain

inf
P∈M

EPf(SN) ≥ f(S0). (233)

Derivatives Pricing in Non-Arbitrage Market
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Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (234)

Putting in the inequality (234) εn(ωn) = 0, n = 1, N, we obtain the inverse inequal-
ity.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. If the nonnegative payoff function f(x), x ∈ [0,∞), satisfies the conditions:
1) f(0) = K, f(x) ≤ K, then

f S0

N∏
i=1

(1− ai)

)
≤ sup

P∈M
EPf(SN) ≤ K. (235)

If, in addition, the nonnegative payoff function f(x) is a convex down one, then

inf
P∈M

EPf(SN) = f(S0), (236)

where M is the set of equivalent martingale measures for the evolution of risky asset,
given by the formula (177).

Proof. Let us obtain the estimate from below. Really,

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (237)

Further,

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

2∑
iN=1

N(ωi11 , . . . , ω
iN
N )f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

=

sup
ω1
N∈Ω0−

N ,ω2
N∈Ω0+

N

[
∆S+

N(ωi11 , . . . , ω
iN−1

N−1 , ω
2
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
×

Derivatives Pricing in Non-Arbitrage Market
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)

)

)
K ≥ sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =



 
 

 
 

 
 
 
 
 
 
 
 
 
 

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

∆S−N(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N)

VN(ωi11 , . . . , ω
iN−1

N−1 , ω
1
N , ω

2
N)
f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

≥

lim
εN (ω2

N )→∞
lim

εN (ω1
N )→−∞

[
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N ) − 1
)))

+

1− eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )

eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − eσN (ω
i1
1 ,...,ω

iN−1
N−1 )εN (ω1

N )
×

f
(
SN−1

(
1 + aN

(
eσN (ω

i1
1 ,...,ω

iN−1
N−1 )εN (ω2

N ) − 1
)))]

=

f(SN−1(1− aN)), (238)

where we put

SN−1 = S0

N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
))

. (239)

Substituting the inequality (238) into (237), we obtain the inequality

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N−1

2∑
i1=1,...,iN−1=1

N−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0(1− aN)
N−1∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

. (240)

Applying (N − 1) times the inequality (240), we obtain the inequality

sup
Q∈M

∫
Ω

f(SN)dQ ≥ f(S0

N∏
i=1

(1− ai)). (241)

Derivatives Pricing in Non-Arbitrage Market
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Let us prove the equality (236). Using the Jensen inequality we obtain

inf
P∈M

EPf(SN) ≥ f(S0). (242)

Let us prove the inverse inequality. It is evident that

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≥

inf
P∈M

EPf(SN). (243)

Putting in the inequality (243) εn(ωn) = 0, n = 1, N, we obtain the inverse inequal-
ity.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. For the payoff function f(x) = (x − K)+, x ∈ (0,∞), K > 0, the fair
price of super-hedge is given by the formula

sup
Q∈M

EQf(SN) =


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(244)

If S0

N∏
i=1

(1 − ai)) ≥ K, then the set of non arbitrage prices coincides with the point

(S0 − K)+, in case if S0

N∏
i=1

(1 − ai) < K the set of non arbitrage prices coincides

with the set

[
(S0 −K)+, S0

(
1−

N∏
i=1

(1− ai)
)]

.

Proof. Let us introduce the denotations

IN =
2∑

i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (245)
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I1
N =

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (246)

I0
N = sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

, (247)

where we put f1(x) = (K − x)+. Let us estimate from above the value IN . For this
we use the equality

IN = I1
N + S0 −K, (248)

which follows from the identity: f(x) = f1(x) + x−K, x ≥ 0. Since

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≤ f1 S0

N∏
s=1

(1− as)

)
, (249)

we obtain the inequality

IN ≤ S0 −K + f1 S0

N∏
s=1

(1− as)

)
. (250)

From the inequality (250), we have

I0
N ≤ S0 −K + f1 S0

N∏
s=1

(1− as))

)
=


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(251)

Due to the inequality (226) of Theorem 12,

I0
N ≥ f S0

N∏
i=1

(1− ai)

)
+ S0 1−

N∏
i=1

(1− ai)

)
(252)
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and the inequality

I0
N ≥ (S0 −K)+, (253)

which follows from the Jensen inequality, we have

I0
N ≥ max

{
S0 −K)+, f S0

N∏
i=1

(1− ai)

)
+ S0 1−

N∏
i=1

(1− ai)

)}
=


(S0 −K)+, if S0

N∏
i=1

(1− ai)) ≥ K,

S0

(
1−

N∏
i=1

(1− ai)
)
, if S0

N∏
i=1

(1− ai) < K.

(254)

This proves Theorem 14.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,
i = 1, N. For the payoff function f1(x) = (K − x)+, x ∈ (0,∞), K > 0, the fair
price of super-hedge is given by the formula

sup
Q∈M

EQf1(SN) = f1 S0

N∏
i=1

(1− ai)

)
. (255)

The set of non arbitrage prices coincides with the interval[
(K − S0)+, f1

(
S0

N∏
i=1

(1− ai)
)]

.

Proof. The inequality

I1
N =

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1 S0

N∏
s=1

(
1 + as

(
eσs(ω

i1
1 ,...,ω

is−1
s−1 )εs(ωis

s ) − 1
)))

≤ f1 S0

N∏
i=1

(1− ai)

)
(256)

is true. Taking into account the inequality (235) of Theorem 13, we prove Theorem
15.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,

i = 1, N. For the payoff function f1(S0, S1, . . . , SN) =

K − N∑
i=0

Si

N+1

+

, K > 0, the

fair price of super-hedge is given by the formula
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sup
Q∈M

EQf1(S0, S1, . . . , SN) =

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (257)

The set of non arbitrage prices coincides with the interval

(K − S0)+,

K − S0

N∑
i=0

i∏
s=1

(1−as)

N+1

+ , if K >
S0

N∑
i=0

i∏
s=1

(1−as)

N+1
.

For K ≤
S0

N∑
i=0

i∏
s=1

(1−as)

N+1
the set of non arbitrage prices coincides with the point 0.

Proof. Let us denote

Sn(ω1
1, . . . , ω

1
n) = S0

n∏
s=1

(
1 + as

(
eσs(ω1

1 ,...,ω
1
s−1)εs(ω1

s) − 1
))

, n = 1, N,

tN(ω1
1, . . . , ω

1
N) =

N∏
s=1

eσs(ω1
1 ,...,ω

1
s−1)εs(ω2

s) − 1

eσs(ω1
1 ,...,ω

1
s−1)εs(ω2

s) − eσs(ω1
1 ,...,ω

1
s−1)εs(ω1

s)
. (258)

It is evident that

Let us prove the inverse inequality. We have
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I2
N = sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×

f1

(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)
≥

lim
εs(ω1

s)=−∞, εs(ω2
s)→∞,s=1,N

f1

(
S0, S1(ω1

1), . . . , SN(ω1
1, . . . , ω

1
N)
)
×

tN(ω1
1, . . . , ω

1
N) = f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
, (259)

I2
N ≥ f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (260)

)

)
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f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

f1 S0, S0(1− a1), . . . , S0

N∏
s=1

(1− as)

)
=

K − S0

N∑
i=0

N∏
s=1

(1− as)

N + 1


+

. (261)

Therefore,

I2
N ≤

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

. (262)

The inequalities (260), (262) prove Theorem 16.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177). Suppose that 0 ≤ ai ≤ 1, σi(ω1, . . . , ωi−1) > σi > 0,

i = 1, N. For the payoff function f(S0, S1, . . . , SN) =

 N∑
i=0

Si

N+1
−K

+

, K > 0, the

fair price of super-hedge is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =


(S0 −K)+, if

S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K,

S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 , if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K.

(263)

If
S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K, then the set of non arbitrage prices coincides with the point

(S0 − K)+, in case if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K the set of non arbitrage prices coincides

with the interval

(S0 −K)+, S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 .
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I2
N ≤ sup

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×𝜓𝜓

Proof. Let us introduce the denotation

VN = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω
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j )×𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Derivatives Pricing in Non-Arbitrage Market

Suppose that {gi(XN)}Ni=1 is a mapping from the set [0, 1]N into itself, where XN =
{x1, . . . , xN}, 0 ≤ xi ≤ 1, i = 1, N. If S0, S1, . . . , SN is a sample of the process
(177), let us denote the order statistic S(0), S(1), . . . , S(N) of this sample. Introduce

also the denotation gi ([S]N) = gi

(
S(0)

S(N)
, . . . ,

S(N−1)

S(N)

)
, i = 1, N.

Suppose that S0, S1, . . . , SN is a sample of the random process (177).
Then, for the parameters a1, . . . , aN the estimation

a1 = 1− τ0

S(0)

S0

g1 ([S]N) , 0 < τ0 ≤ 1,

ai = 1− gi ([S]N)

gi−1 ([S]N)
, i = 2, N, (268)
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VIII. Estimation of Parameters

Theorem 18. 

f
(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)
. (264)

Then, we have

f1

(
S0, S1(ωi11 ), . . . , SN(ωi11 , . . . , ω

iN
N )
)

+ S0 −K. (265)

Due to Theorem 16,

VN = (S0 −K) +

K − S0

N∑
i=0

i∏
s=1

(1− as)

N + 1


+

=


(S0 −K)+, if

S0

N∑
i=0

i∏
s=1

(1−ai)

N+1
≥ K,

S0

1−
N∑
i=0

i∏
s=1

(1−as)

N+1

 , if S0

N∑
i=0

i∏
s=1

(1−as)

N+1
< K.

(266)

In the formula (265) we used the denotation

f1(S0, S1, . . . , SN) =

K −
N∑
i=0

Si

N + 1


+

. (267)

Theorem 17 is proved.

VN = sup
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

2∑
i1=1,...,iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )×𝜓𝜓
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is valid, if for gN([S]N) > 0, [S]N ∈ [0, 1]N , the inequalities g1([S]N) ≥ g2([S]N) ≥
. . . ≥ gN([S]N) are true. If τ0 = 0, then ai = 1, i = 1, N.

Proof. The estimation of the parameters a1, . . . , aN we do using the representation
of random process Sn, n = 1, N. The smallest value of the random variable Sn is

equal S0

n∏
i=1

(1−ai), n = 1, N. Let us determine the parameters ai from the relations

S0

N∏
i=1

(1− ai) = τgN ([S]N) , . . . , S0

N−k∏
i=1

(1− ai) = τgN−k ([S]N) , . . . ,

S0

N−k−1∏
i=1

(1− ai) = τgN−k−1 ([S]N) , . . . , S0(1− a1) = τg1 ([S]N) , (269)

where τ > 0. Taking into account the relations (269), we obtain

S0(1− a1) = τg1 ([S]N) ,

τgN−k−1 ([S]N) (1− aN−k) = τgN−k ([S]N) , k = 2, N. (270)

Solving the relations (270), we have

a1 = 1− τ

S0

g1 ([S]N) , aN−k = 1− gN−k ([S]N)

gN−k−1 ([S]N)
, k = 2, N. (271)

It is evident that aN−k ≥ 0, k = 2, N. To provide the positiveness of a1 and the
inequalities τgN−n ([S]N) ≤ SN−n, n = 0, N − 1, S0 ≥ S(0), meaning that the

random process (177) takes all the values from the sample Sn, n = 0, N, we must
to put τ = τ0S(0), 0 < τ0 ≤ 1. It is evident that, if τ0 = 0, then ai = 1, i = 1, N
Theorem 18 is proved.

It is evident that

ai = 1, i = N − k,N, 1 < k ≤ N − 1, ai = 1− gi([S]N)

gi−1([S]N)
, i = 2, N − k − 1,

a1 = 1−
τ0S(0)

S0

g1([S]N), 0 < τ0 ≤ 1, (272)

is also estimation of the parameters a1, . . . , aN if

0 < gN−k−1([S]N) ≤ gN−k−2([S]N) . . . ≤ g1([S]N), [S]N ∈ [0, 1]N .

Such estimation is not interesting since
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Derivatives Pricing in Non-Arbitrage Market

N−i∏
i=1

(1− ai) = 0, i = 0, k.

If

g(x) =

{
S0

S(0)
x, if 0 ≤ x ≤ S(0)

S0
,

1, if
S(0)

S0
< x ≤ 1,

(273)

gi([S]N) = g

(
S(N−i)

S(N)

)
, i = 1, N, τ0 = 1,

then for the parameters a1, . . . , aN the estimation

ai =


1− S(N−i)

S(N−i+1)
, if

S(N−i+1)

S(N)
≤ S(0)

S0
,

1− S(N−i)

S(N)

S0

S(0)
, if

S(N−i+1)

S(N)
>

S(0)

S0
,
S(N−i)

S(N)
≤ S(0)

S0
,

0, if
S(N−i)

S(N)
>

S(0)

S0
.

i = 2, N, (274)

a1 =

{
1− S(N−1)

S(N)
, if

S(N−1)

S(N)
≤ S(0)

S0
,

1− S(0)

S0
, if

S(N−1)

S(N)
>

S(0)

S0

(275)

is true. The following equalities

N∏
i=1

(1− ai) =
S(0)

S0

g

(
S(0)

S(N)

)
=

S(0)

S(N)

,

N−k∏
i=1

(1− ai) =

{ S(k)

S(N)
, if

S(k)

S(N)
≤ S(0)

S0
,

S(0)

S0
, if

S(k)

S(N)
>

S(0)

S0
,

k = 1, N − 1, (276)

are valid.

Suppose that g(x) = x, x ∈ [0, 1]. Let us put gN−i([S]N) = g(
S(i)

S(N)
) =

S(i)

S(N)
, i = 0, k, gN−i([S]N) = 1, i = k + 1, N − 1. Then,

a1 = 1− τ0

S(0)

S0

, 0 < τ0 ≤ 1, ai = 0, i = 2, N − k − 1,

ai = 1− gi([S]N)

gi−1([S]N)
, i = N − k,N, (277)

is an estimation for the parameters a1, . . . , aN .

In the next Theorems we put τ0 = 1. This corresponds to the fact that fair price
of super-hedge is minimal for the considered statistic.
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On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177), with parameters ai, i = 1, N, given by the formula
(268). For the payoff function f(x) = (x−K)+, x ∈ (0,∞), K > 0, the fair price
of super-hedge is given by the formula

sup
Q∈M

EQf(SN) =

{
(S0 −K)+, if S(0)gN ([S]N) ≥ K,

S0

(
1− S(0)gN ([S]N )

S0

)
, if S(0)gN ([S]N) < K.

(278)

If S(0)gN ([S]N) ≥ K, then the set of non arbitrage prices coincides with the point
(S0 − K)+, in case if S(0)gN ([S]N) < K the set of non arbitrage prices coincides

with the closed set
[
(S0 −K)+, S0

(
1− S(0)gN ([S]N )

S0

)]
.

The fair price of super-hedge for the statistic (274), (275) is given by the formula

sup
Q∈M

EQf(SN) =

 (S0 −K)+, if S0
S(0)

S(N)
≥ K,

S0

(
1− S(0)

S(N)

)
, if S0

S(0)

S(N)
< K.

(279)

If S0
S(0)

S(N)
≥ K, then the set of non arbitrage prices coincides with the point (S0−K)+,

in case if S0
S(0)

S(N)
< K the set of non arbitrage prices coincides with the closed set[

(S0 −K)+, S0

(
1− S(0)

S(N)

)]
.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf(SN) =

{
(S0 −K)+, if S(0) ≥ K,
S0 − S(0), if S(0) < K. (280)

If S(0) ≥ K, then the set of non arbitrage prices coincides with the point (S0−K)+,
in case if S(0) < K the set of non arbitrage prices coincides with the closed set
[(S0 −K)+, S0 − S(0)].

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula
(268). For the payoff function f1(x) = (K − x)+, x ∈ (0,∞), K > 0, the fair price
of super-hedge is given by the formula

sup
Q∈M

EQf1(SN) = f1

(
S(0)gN ([S]N)

)
. (281)

The set of non arbitrage prices coincides with the closed interval[
(K − S0)+, f1

(
S(0)gN ([S]N)

)]
.

The fair price of super-hedge for the statistic (274), (275) is given by the formula
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sup
Q∈M

EQf1(SN) = f1

(
S0

S(0)

S(N)

)
. (282)

The set of non arbitrage prices coincides with the closed interval
[
(K − S0)+, f1

(
S0

S(0)

S(N)

)]
.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf1(SN) = f1

(
S(0)

)
. (283)

The set of non arbitrage prices coincides with the closed interval
[
(K − S0)+, f1

(
S(0)

)]
.

On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula

(268). For the payoff function f1(S0, S1, . . . , SN) =

K − N∑
i=0

Si

N+1

+

, K > 0, the fair

price of super-hedge is given by the formula

sup
Q∈M

EQf1(S0, S1, . . . , SN) =

K − S0 + S(0)

N∑
i=1

gi ([S]N)

(N + 1)


+

. (284)

The set of non arbitrage prices coincides with the closed interval(K − S0)+,

K − S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

+ , if K >
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
.

For K ≤
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
the set of non arbitrage prices coincides with the point 0.

The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =
gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf1(S0, S1, . . . , SN) =

(
K −

S0 + S(0)N

(N + 1)

)+

. (285)

The set of non arbitrage prices coincides with the closed interval[
(K − S0)+,

(
K − S0+S(0)N

(N+1)

)+
]
, if K >

S0+S(0)N

(N+1)
. For K ≤ S0+S(0)N

(N+1)
the set of non

arbitrage prices coincides with the point 0.
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On the probability space {ΩN ,FN , PN}, let the evolution of risky asset
be given by the formula (177) with the parameters ai, i = 1, N, given by the formula

(268). For the payoff function f(S0, S1, . . . , SN) =

 N∑
i=0

Si

N+1
−K

+

, K > 0, the fair

price of super-hedge is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =


(S0 −K)+, if

S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
≥ K,S0 −

S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

 , if
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
< K.

(286)

If
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
≥ K, then the set of non arbitrage prices coincides with the point

(S0 −K)+, in case if
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)
< K the set of non arbitrage prices coincides

with the closed interval

(S0 −K)+,

S0 −
S0+S(0)

N∑
i=1

gi([S]N )

(N+1)

 .
The fair price of super-hedge is minimal one for the statistic (268) with gi(XN) =

gN(XN) = 1, i = 1, N − 1, and is given by the formula

sup
Q∈M

EQf(S0, S1, . . . , SN) =

 (S0 −K)+, if
S0+S(0)N

(N+1)
≥ K,(

S0 −
S0+S(0)N

(N+1)

)
, if

S0+S(0)N

(N+1)
< K.

(287)

If
S0+S(0)N

(N+1)
≥ K, then the set of non arbitrage prices coincides with the point (S0 −

K)+, in case if
S0+S(0)N

(N+1)
< K the set of non arbitrage prices coincides with the closed

interval
[
(S0 −K)+,

(
S0 −

S0+S(0)N

(N+1)

)]
.

Section 1 provides an overview of the achievements and formulates the main problem
that has been solved. Section 2 contains the formulation of conditions which must
satisfy the evolution of risky assets. In Section 3, conditions (14) - (16) are formu-
lated for the set of nonnegative random variables with the help of which a family
of measures is constructed in a recurrent way. In Lemma 1, conditions were found
for the existence of bounded nonnegative random variables satisfying the conditions
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(14) - (16). In Lemma 2, it was proved that the family of measures introduced in
the recurrent way is equivalent to the original measure.

Theorem 1 gives sufficient conditions under which the introduced family of mea-
sures is the set of martingale measures equivalent to the original measure for the
evolution of risky assets considered in Section 1.

In Section 4, relying on the concept of an exhaustive decomposition of a measur-
able space, in Lemma 4, we prove an integral inequality for a nonnegative random
variable for the constructed family of martingale measures.

In Theorem 2, for a special class of evolutions of risky assets for the nonnegative
random variable satisfying the integral inequality, obtained in Lemma 4, a pointwise
system of inequalities is obtained.

In Lemma 5, on the basis of Lemma 4, we obtained a pointwise system of in-
equalities for a nonnegative random variable for the general case of the evolution of
risky assets.

Theorem 3 contains sufficient conditions under the fulfillment of which the re-
sulting system of inequalities with respect to the nonnegative random variable has
a solution whose right-hand side satisfies the condition: the conditional expectation
of the right-hand side of the inequality with respect to the filtration is equal to 1.

Theorem 4 solves the same problem as in Theorem 5 for the general case of the
evolution of risky assets.

In Section 5, based on the inequalities obtained in Theorems 3 and 4, we prove
a theorem on the optional decomposition of nonnegative super-martingales with
respect to the family of equivalent martingale measures.

The description of the family of equivalent martingale measures given in Theorem
1 is rather general, therefore, in Section 6, a spot set of measures is introduced. In
Lemma 6, the representation is obtained for the family of spot measures.

Based on the concept of the spot family of measures, the family of α-spot mea-
sures based on a set of positive random variables is introduced. Theorem 6 provides
sufficient conditions for the integral over the set of α-spot measures to be an integral
over the set of spot measures.

In Theorem 7, sufficient conditions are given when the family of spot measures
is a family of martingale measures and the constructed family of measures, that is
an integral over the set of α-spot measures, is a family of martingale measures being
equivalent to the original measure.

Theorem 8 describes the class of evolutions of risky assets for which the family of
equivalent martingale measures is such that each martingale measure is an integral
over the set of spot measures.

Section 7 is devoted to the application of the results obtained in the previous
sections. A class of random processes is considered, which contains well-known
processes of the type ARCH and GARCH ones. Two types of random processes are
considered, those for which the price of an asset cannot go down to zero and those
for which the price can go down to zero during the period under consideration. The
first class of processes describes the evolution of well-managed assets. We will call
these assets relatively stable.

Theorem 9 asserts that for the evolution of relatively stable assets in the period
under consideration, the family of martingale measures is one and the same. The
family of martingale measures for the evolution of risky assets whose price can
drop to zero is contained in the family of martingale measures for the evolution of
relatively stable assets. Each of the martingale measures for the considered class of
evolutions is an integral over the set of spot martingale measures. On this basis, the
fair price of the super hedge is given by the formula (185). In Theorems 10 and 11,
an interval of non-arbitrage prices is found for a wide class of payoff functions in the
case when evolution describes relatively unstable assets. This range is quite wide
for the payment functions of standard put and call options. The fair price of the
super hedge is in this case the starting price of the underlying asset. In Theorems
12, 13 estimates are found for the fair price of the super-hedge for the introduced
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class of evolutions with respect to stable assets. In Theorems 14 and 15, formulas
are found for the fair price of contracts with call and put options for the evolution
of assets described by parametric processes.

In Theorems 16 and 17, the same formulas are found for Asian-type put and
call options. A characteristic feature of these estimates is that for the evolution of
relatively stable assets, the fair price of the super hedge is less than the price of the
initial price of the asset.

In Section 8, the estimates of the parameters of risky assets included in the
evolution are obtained. This result is contained in Theorem 18. In Theorems 19
and 20, formulas are found for the fair price of contracts with call and put options
for the obtained parameter estimates, and the interval of non-arbitrage prices for
different statistics is found. The same results are contained in Theorems 21, 22 for
Asian-style call and put options.
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Abstract- In this research, a rectangular box is rotated in two 
direction at the same time. Which creates a rotating path to 
travel from one place in space to another. By which we can get 
99% speed of light using today`s rocket. But the speed of 
today`s rockets is only 11,000 m per second. The speed of 
the rocket increases in two stages in the spacecraft created by 
the technology of rotation. To understand this, one has to read 
the method given below.   
Keywords:
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 I.

 

Introduction

 urrently, spacecraft made of propulsion system 
are used to travel in deep space. But the 
speed of rocket is very low compared to the 

speed of light. There are some hypotheses that 
describe how to travel at the speed of light. Dr. Harold 
“Sonny” White [1] It appear that the warp drive model 
has nearly all the desirable mathematical 
characteristics of true interstellar space drive, the 
metric has one less appealing characteristic – it 
violates all 3 energy conditions (strong, weak, and 
dominant) because of the need for negative energy 
density. Kevin L. G. Parkin [2] Breakthrough Starshot 
is an initiative to prove ultra-fast light-propelled Nano 
craft.

 
Our technology has not yet been developed 

enough to make the spacecraft described in these 
hypotheses. But I can move the spacecraft at the 99% 
speed of light at the present time using the technique 
of rotation.

 II.

 

Method

 Before understanding the rotation technique, 
you need to know how it becomes a spacecraft.

 
First, make a rectangular box. Take two rockets 

and connect them both with a circular shaft. Now 
connect the circular shaft to the rectangular box at the 
same point as shown in fig 1.1. 

 Rocket (R1)             Rectangular box

 
                     Circular shaft

 
                                                     Rocket (R2)

 
                                                       

Circular shaft

 
 Fig. 1.1

 

Work of rotations in spacecraft: 
When we start the rockets engine it rotates the entire  

Rectangular box through a circular shaft in two 
direction at same time. 

a) I will try to explain the rotation of rectangular box with 
the help of fig 1.2 

In this fig 1.2 it is shown that when the 
rectangular box is rotated in two directions, what will be 
the position of the rectangular box at 90°, 180°, 270° and 
360°.  

When we look at the rotation path of a 
rectangular box in this fig 1.2, we find that it travels two 
direction at a time. In this fig 1.2, one path of the 
rectangular box is shown in green and the other in 
yellow. When the rectangular box rotates 360degrees it 
travels 3 times on the green route and 2 times more than 
its size on the yellow route. We can use the green path 
shown in the fig 1.2 to run at 99% light speed. 
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Fig. 1.2
 

 

Rocket (R1)             Circular shaft 
 
 
 

                                                    Rocket (R2) 

                                                       
Circular shaft 

 

Rotation direction                 Rectangular box 
Arrows 

With the help of the direction arrow shown 
above the rectangular box in fig 1.3, we can know in 
which direction R1 and R2 will rotate the rectangular 
box.

 

The rotation speed of rectangular box will 
depend on

 

the size of the spacecraft. If you want to 
build a small sized spacecraft, the rotation speed of the 
rectangular box must be increased.

 

Since the speed of the rocket is only 11,000m/s, 
therefore, we must reduce the size of the circumference 
of the circular shaft. So that we can increase the rotation 
speed of circular shaft. Which rotate the rectangular box. 

 

There are two side of circular shaft whose 
circumference will be different. I named both side of the 
circular shaft as C1 and C2. C1 will always connect with 
the rockets and C2 will connect with the rectangular box.      

 

If you want to increase the speed of circular shaft the 
size of C1 circumference will always be 1meter. And the 
size of C2 circumference will always be less than 1 
meter.

 

I have prepared a formula by which we can 
know the speed of the spacecraft created by the rotation 
technique. 

b)
 

3(Rotation speed of rectangular box × Length of 
rectangular box)

 

To use this formula, you must first decide the 
size of your rectangular box which you can take as your 
need. I`m taking the rectangular box length 200 meter. 
To get the speed of light we first need to know what will 
be the rotation speed of a rectangular box when the 
rectangular box is 200 meter in length.

 
 

To know this, we can use the formula given below:

 

Rotation speed of rectangular box=speed of light÷ 3(length of rectangular box)

 

Rotation speed of rectangular box = 300,000Km/s÷3 (0.2Km) = 500,000/s
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Fig. 1.3



 

 

Now, we can know by using the driven pulley formula that if we want the rotation speed of C2 to be  
124,887.083/s then what will be the diameter of C2. 
To calculate the diameter of C2 by driven pulley method: 

RPM1÷RPM2= Diameter1÷Diameter2 

We know RPM1 is C1 which is equal to speed of rocket speed. Rocket on earth can accelerated at a speed 
of 90m/s. But there is no gravity in space. So the rocket`s acceleration increases slightly in space. 

We can calculate the acceleration of rocket by using formula  

Acceleration=resultant force divided by mass and the resultant force is the thrust – weight 

But in space weight is always zero. So the resultant force in space is always equal to the thrust.  

If we accelerate the rocket to a speed of 90m/s in space, we will still achieve the speed of 35,730m/s in 397s. 

So here we can take the speed of C1 is 35730m/s. 

And RPM2 is C2 = 500000/s 

Now Diameter1 of C1 = 0.32meter  

So, the diameter of C2 is  

35730m/s÷500000/s = Diameter 2÷0.32m 

C2 = 0.32m÷ 13.99m 

Now C2= 0.0228734811 

1m = 39.38inch 

So C2 = 0.0228734811× 39.38inch 

C2 = 0.900757686inch. 

Because the entire spaceship will be rotated by C2 shaft, it is very important for C2 shaft to be strong.   
High quality graphene is the only material with ultimate tensile strength of 130 gig pascal. That can easily 

handle the weight of a spaceship. 

III. Controlling of Spacecraft 

First know that the rectangular box is only one engine of the spacecraft. We have to cover the rectangular 
box with a spherical ball. So that the rectangular box rotates easily inside it and we will find a place to place the 
payload above the spherical ball. The rectangular box inside the spherical ball can rotate in any direction. But after 
starting the rocket, it will move only in one direction. Which can be any direction of the spherical ball. So we have to 
put rocket booster on 6 direction of spherical ball. Which will help us in the direction control of the spacecraft. It will 
also be very strong due to the spherical shape of the spacecraft.  

 
Payload area                      Rectangular box

 
 
 
 
 
 
 
 
 
 

IV.

 

Result

 

and

 

Discussion

 

Speed of spacecraft = 3(rotation speed of rectangular × length of rectangular box)

 

The rotation speed of rectangular box is equal to the rotation speed of C2.

 

So the speed of space craft = 3(500,000/s × 0.2km)

 

                                           = 300,000km/s
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Fig. 1.4: Full diagram of light speed spacecraft



 

 

Currently, there is no Spacecraft that can travel 
at the 99% speed of light.  

V. Conclusion 

If we have to launch a spacecraft from earth, we 
have to consider other ways of rotating a rectangular 
box. 

Because rocket engines can move spacecraft 
made by rotation technology at a speed of 
299,729.009km/s only in space. 
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Manuscript Style Instruction (Optional) 

• Microsoft Word Document Setting Instructions. 
• Font type of all text should be Swis721 Lt BT. 
• Page size: 8.27" x 11'”, left margin: 0.65, right margin: 0.65, bottom margin: 0.75. 
• Paper title should be in one column of font size 24. 
• Author name in font size of 11 in one column. 
• Abstract: font size 9 with the word “Abstract” in bold italics. 
• Main text: font size 10 with two justified columns. 
• Two columns with equal column width of 3.38 and spacing of 0.2. 
• First character must be three lines drop-capped. 
• The paragraph before spacing of 1 pt and after of 0 pt. 
• Line spacing of 1 pt. 
• Large images must be in one column. 
• The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10. 
• The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10. 

Structure and Format of Manuscript 

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. 
Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers 
are reports of significant research (typically less than 7,000 words, including tables, figures, and references) 

A research paper must include: 

a) A title which should be relevant to the theme of the paper. 
b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.  
c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus. 
d) An introduction, giving fundamental background objectives. 
e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit 

repetition, sources of information must be given, and numerical methods must be specified by reference. 
f) Results which should be presented concisely by well-designed tables and figures. 
g) Suitable statistical data should also be given. 
h) All data must have been gathered with attention to numerical detail in the planning stage. 

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any 
paper that appears not to have adequate numerical treatments of the data will be returned unrefereed. 

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also 
be summarized. 

j) There should be brief acknowledgments. 
k) There ought to be references in the conventional format. Global Journals recommends APA format. 

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much 
more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow 
instructions. They will also be published with much fewer delays than those that require much technical and editorial 
correction. 

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity. 

 

 

 

 

 

 

XII

© Copyright by Global Journals | Guidelines Handbook



Format Structure 

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to 
published guidelines. 

All manuscripts submitted to Global Journals should include: 

Title 

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with 
spaces), names of the authors and co-authors, and the place(s) where the work was carried out. 

Author details 

The full postal address of any related author(s) must be specified. 

Abstract 

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the 
paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon. 

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing 
your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be 
viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-
friendliness of the most public part of your paper. 

Keywords 

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find 
both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, 
mining, and indexing. 

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list 
of possible keywords and phrases to try. 

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search 
should be as strategic as possible. 

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most 
important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a 
research paper?” Then consider synonyms for the important words. 

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, 
the keywords under which a research paper is abstracted are listed with the paper. 

Numerical Methods 

Numerical methods used should be transparent and, where appropriate, supported by references. 

Abbreviations 

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them. 

Formulas and equations 

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality 
image. 
 
Tables, Figures, and Figure Legends 

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic 
number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable 
format and not as images. References to these tables (if any) must be mentioned accurately. 
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Figures 

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic 
numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it. 

Preparation of Eletronic Figures for Publication 

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent 
the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/ photographs) files only. 
MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF 
only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi              (line drawings). Please give the data 
for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and 
with a TIFF preview, if possible). 

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line 
art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi. 

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that 
if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and 
return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the 
color fee after acceptance of the paper. 

Tips for Writing a Good Quality Science Frontier Research Paper 

1. Choosing the topic: 

 

In most cases, the topic is selected by the interests of the author, but it can also be suggested by the 
guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking 
several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to 
accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is 
"yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, 
you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed 
information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that 
evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So 
present your best aspect.

 

2.

 

Think like evaluators:

 

If you are in confusion or getting demotivated because your paper may not be accepted by the 
evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your 
research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or 
framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your 
outline must be related to the topic you have chosen.

 

3.

 

Ask your

 

guides:

 

If you are having any difficulty with your research, then do not hesitate to share your difficulty with 
your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you 
require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list 
of essential readings.

 

4.

 

Use of computer is recommended:

 

As you are doing research in the field of science frontier then this point is quite 
obvious.

 

Use right software: Always use good quality software packages. If you are not capable of judging good software, 
then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can 
get through the internet.

 

5.

 

Use the internet for help:

 

An excellent start for your paper is using Google. It is a wondrous search engine, where you 
can have your doubts resolved. You may also read some answers for the frequent question of how to write your research 
paper or find a model research paper. You can download books from the internet. If you have all the required books, place 
importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big 
pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should 
strictly follow here.
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6. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right? It is a good habit 
which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will 
make your search easier. 

7. Revise what you wrote: When you write anything, always read it, summarize it, and then finalize it. 

8. Make every effort: Make every effort to mention what you are going to write in your paper. That means always have a 
good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your 
work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any 
important thing like making a research paper, you should always have backup copies of it either on your computer or on 
paper. This protects you from losing any portion of your important data. 

9. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. 
Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to 
include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do 
research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant 
to science, use of quotes is not preferable. 

10. Use proper verb tense: Use proper verb tenses in your paper. Use past tense to present those events that have 
happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in 
the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete. 

11. Pick a good study spot: Always try to pick a spot for your research which is quiet. Not every spot is good for studying. 

12. Know what you know: Always try to know what you know by making objectives, otherwise you will be confused and 
unable to achieve your target. 

13. Use good grammar: Always use good grammar and words that will have a positive impact on the evaluator; use of 
good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment 
sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice. 

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish 
them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) 
complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. 
Put together a neat summary. 

14. Arrangement of information: Each section of the main body should start with an opening sentence, and there should 
be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain 
your arguments with records. 

15. Never start at the last minute: Always allow enough time for research work. Leaving everything to the last minute will 
degrade your paper and spoil your work. 

16. Multitasking in research is not good: Doing several things at the same time is a bad habit in the case of research 
activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a 
particular part in a particular time slot. 

17. Never copy others' work: Never copy others' work and give it your name because if the evaluator has seen it anywhere, 
you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you 
are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and 
food. 

18. Go to seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources. 

19. Refresh your mind after intervals: Try to give your mind a rest by listening to soft music or sleeping in intervals. This 
will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you 
acquire colleagues, they can give you ideas which will be helpful to your research. 
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20. Think technically: Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think 
and then print: When you go to print your paper, check that tables are not split, headings are not detached from their 
descriptions, and page sequence is maintained. 

21. Adding unnecessary information: Do not add unnecessary information like "I have used MS Excel to draw graphs." 
Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never 
take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove 
quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never 
go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. 
Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, 
abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or 
commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review. 

22. Report concluded results: Use concluded results. From raw data, filter the results, and then conclude your studies 
based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical 
remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot 
perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include 
examples. 

23. Upon conclusion: Once you have concluded your research, the next most important step is to present your findings. 
Presentation is extremely important as it is the definite medium though which your research is going to be in print for the 
rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A 
good quality research paper format is essential because it serves to highlight your research paper and bring to light all 
necessary aspects of your research. 

Informal Guidelines of Research Paper Writing 

Key points to remember: 

• Submit all work in its final form. 
• Write your paper in the form which is presented in the guidelines using the template. 
• Please note the criteria peer reviewers will use for grading the final paper. 

Final points: 

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the 
following sections, submitted in the order listed, with each section starting on a new page: 

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that 
directed you to make a study. As you carry out the process of study, the method and process section will be constructed 
like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar 
intellectual paths throughout the data that you gathered to carry out your study. 

The discussion section: 

This will provide understanding of the data and projections as to the implications of the results. The use of good quality 
references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings. 

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent 
preparation, and controlled record-keeping are the only means to make straightforward progression. 

General style: 

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general 
guidelines. 

To make a paper clear: Adhere to recommended page limits. 
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Mistakes to avoid: 

• Insertion of a title at the foot of a page with subsequent text on the next page. 
• Separating a table, chart, or figure—confine each to a single page. 
• Submitting a manuscript with pages out of sequence. 
• In every section of your document, use standard writing style, including articles ("a" and "the"). 
• Keep paying attention to the topic of the paper. 
• Use paragraphs to split each significant point (excluding the abstract). 
• Align the primary line of each section. 
• Present your points in sound order. 
• Use present tense to report well-accepted matters. 
• Use past tense to describe specific results. 
• Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives. 
• Avoid use of extra pictures—include only those figures essential to presenting results. 

Title page: 

Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have 
acronyms or abbreviations or exceed two printed lines. 

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported 
in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in 
itself. Do not cite references at this point. 

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer 
can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant 
conclusions or new questions. 

Write your summary when your paper is completed because how can you write the summary of anything which is not yet 
written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability 
for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The 
author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any 
summary. Try to limit the initial two items to no more than one line each. 

Reason for writing the article—theory, overall issue, purpose. 

• Fundamental goal. 
• To-the-point depiction of the research. 
• Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of 

any numerical analysis should be reported. Significant conclusions or questions that emerge from the research. 

Approach: 

o Single section and succinct. 
o An outline of the job done is always written in past tense. 
o Concentrate on shortening results—limit background information to a verdict or two. 
o Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important 

statistics) are just as significant in an abstract as they are anywhere else. 

Introduction: 

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background 
information to be capable of comprehending and calculating the purpose of your study without having to refer to other 
works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive 
appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the 
reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if 
needed, but do not present any particulars about the protocols here. 
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The following approach can create a valuable beginning: 

o Explain the value (significance) of the study. 
o Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon 

its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it. 
o Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose 

them. 
o Briefly explain the study's tentative purpose and how it meets the declared objectives. 

Approach: 

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job 
is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you 
will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The 
reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad 
view. 

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases. 

Procedures (methods and materials): 

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a 
capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of 
reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped 
as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit 
another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of 
subheadings is suggested and ought to be synchronized with the results section. 

When a technique is used that has been well-described in another section, mention the specific item describing the way, 
but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad 
procedures so that another person may use some or all of the methods in one more study or referee the scientific value of 
your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders. 

Materials: 

Materials may be reported in part of a section or else they may be recognized along with your measures. 

Methods: 

o Report the method and not the particulars of each process that engaged the same methodology. 
o Describe the method entirely. 
o To be succinct, present methods under headings dedicated to specific dealings or groups of measures. 
o Simplify—detail how procedures were completed, not how they were performed on a particular day. 
o If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all. 

Approach: 

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the 
reviewer's interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third 
person passive voice. 

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences. 

What to keep away from: 

o Resources and methods are not a set of information. 
o Skip all descriptive information and surroundings—save it for the argument. 
o Leave out information that is immaterial to a third party. 
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Results: 

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective 
details of the outcome, and save all understanding for the discussion. 

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to 
present consequences most efficiently. 

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data 
or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if 
requested by the instructor. 

Content: 

o Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables. 
o In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate. 
o Present a background, such as by describing the question that was addressed by creation of an exacting study. 
o Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if 

appropriate. 
o Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or 

manuscript. 

What to stay away from: 

o Do not discuss or infer your outcome, report surrounding information, or try to explain anything. 
o Do not include raw data or intermediate calculations in a research manuscript. 
o Do not present similar data more than once. 
o A manuscript should complement any figures or tables, not duplicate information. 
o Never confuse figures with tables—there is a difference.  

Approach: 

As always, use past tense when you submit your results, and put the whole thing in a reasonable order. 

Put figures and tables, appropriately numbered, in order at the end of the report. 

If you desire, you may place your figures and tables properly within the text of your results section. 

Figures and tables: 

If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached 
appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and 
include a heading. All figures and tables must be divided from the text. 

Discussion: 

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded 
based on problems with the discussion. There is no rule for how long an argument should be. 

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the 
paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results 
and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The 
implication of results should be fully described. 

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain 
mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have 
happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the 
data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded 
or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain." 
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Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results 
that you have, and take care of the study as a finished work. 

o You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea. 
o Give details of all of your remarks as much as possible, focusing on mechanisms. 
o Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was 

correctly restricted. Try to present substitute explanations if they are sensible alternatives. 
o One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go 

next? The best studies unlock new avenues of study. What questions remain? 
o Recommendations for detailed papers will offer supplementary suggestions. 

Approach: 

When you refer to information, differentiate data generated by your own studies from other available information. Present 
work done by specific persons (including you) in past tense. 

Describe generally acknowledged facts and main beliefs in present tense. 

The Administration Rules 

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc. 

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to 
avoid rejection. 

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your 
paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to 
identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and 
do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript. 

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is 
only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid 
plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your 
career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read 
your paper and file. 
 
 

XX

© Copyright by Global Journals | Guidelines Handbook



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Topics Grades

A-B C-D E-F

Abstract

Clear and concise with 

appropriate content, Correct 

format. 200 words or below 

Unclear summary and no 

specific data, Incorrect form

Above 200 words 

No specific data with ambiguous 

information

Above 250 words

Introduction

Containing all background 

details with clear goal and 

appropriate details, flow 

specification, no grammar 

and spelling mistake, well 

organized sentence and 

paragraph, reference cited
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