GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F
MATHEMATICS & DECISION SCIENCES

VOLUME 20 ISSUE 2 (VER. 1.0)

OPEN ASSOCIATION OF RESEARCH SOCIETY
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. John Korstad</td>
<td>Ph.D., M.S. at Michigan University, Professor of Biology, Department of Biology Oral Roberts University, United States</td>
</tr>
<tr>
<td>Dr. Alicia Esther Ares</td>
<td>Ph.D. in Science and Technology, University of General San Martin, Argentina State University of Misiones, United States</td>
</tr>
<tr>
<td>Dr. Sahraout Chaieb</td>
<td>Ph.D. Physics and Chemical Physics, M.S. Theoretical Physics, B.S. Physics, cole Normale Suprieure, Paris, Associate Professor, Bioscience, King Abdullah University of Science and Technology United States</td>
</tr>
<tr>
<td>Tuncel M. Yegulalp</td>
<td>Professor of Mining, Emeritus, Earth & Environmental Engineering, Henry Krumb School of Mines, Columbia University Director, New York Mining and Mineral, Resources Research Institute, United States</td>
</tr>
<tr>
<td>Andreas Maletzky</td>
<td>Zoologist University of Salzburg, Department of Ecology and Evolution Hellbrunnerstraße Salzburg Austria, Universitat Salzburg, Austria</td>
</tr>
<tr>
<td>Dr. Gerard G. Dumancas</td>
<td>Postdoctoral Research Fellow, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK United States</td>
</tr>
<tr>
<td>Dr. Mazeyar Parvinzadeh Gashti</td>
<td>Ph.D., M.Sc., B.Sc. Science and Research Branch of Islamic Azad University, Tehran, Iran Department of Chemistry & Biochemistry, University of Bern, Bern, Switzerland</td>
</tr>
<tr>
<td>Dr. Richard B Coffin</td>
<td>Ph.D., in Chemical Oceanography, Department of Physical and Environmental, Texas A&M University United States</td>
</tr>
<tr>
<td>Dr. Indranil Sen Gupta</td>
<td>Ph.D., Mathematics, Texas A & M University, Department of Mathematics, North Dakota State University, North Dakota, United States</td>
</tr>
<tr>
<td>Dr. Richard B Coffin</td>
<td>Ph.D., in Chemical Oceanography, Department of Physical and Environmental, Texas A&M University United States</td>
</tr>
<tr>
<td>Dr. A. Heidari</td>
<td>Ph.D., D.Sc, Faculty of Chemistry, California South University (CSU), United States</td>
</tr>
<tr>
<td>Dr. Vladimir Burtman</td>
<td>Research Scientist, The University of Utah, Geophysics Frederick Albert Sutton Building 115 S 1460 E Room 383, Salt Lake City, UT 84112, United States</td>
</tr>
<tr>
<td>Dr. Shyny Koshy</td>
<td>Ph.D. in Cell and Molecular Biology, Kent State University, United States</td>
</tr>
<tr>
<td>Dr. Gayle Calverley</td>
<td>Ph.D. in Applied Physics, University of Loughborough, United Kingdom</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Bingyun Li</td>
<td>Ph.D. Fellow, IAES, Guest Researcher, NIOSH, CDC, Morgantown, WV Institute of Nano and Biotechnologies, West Virginia University, United States</td>
</tr>
<tr>
<td>Dr. Baziotis Ioannis</td>
<td>Ph.D. in Petrology-Geochemistry-Mineralogy Lipson, Athens, Greece</td>
</tr>
<tr>
<td>Dr. Matheos Santamouris</td>
<td>Prof. Department of Physics, Ph.D., on Energy Physics, Physics Department, University of Patras, Greece</td>
</tr>
<tr>
<td>Dr. Vyacheslav Abramov</td>
<td>Ph.D in Mathematics, BA, M.Sc, Monash University, Australia</td>
</tr>
<tr>
<td>Dr. Fedor F. Mende</td>
<td>Ph.D. in Applied Physics, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine</td>
</tr>
<tr>
<td>Dr. Yilun Shang</td>
<td>Ph.d in Applied Mathematics, Shanghai Jiao Tong University, China</td>
</tr>
<tr>
<td>Dr. T. David A. Forbes</td>
<td>Associate Professor and Range Nutritionist Ph.D. Edinburgh University - Animal Nutrition, M.S. Aberdeen University - Animal Nutrition B.A. University of Dublin-Zoology</td>
</tr>
<tr>
<td>Dr. Bing-Fang Hwang</td>
<td>Department of Occupational, Safety and Health, College of Public Health, China Medical University, Taiwan Ph.D., in Environmental and Occupational Epidemiology, Department of Epidemiology, Johns Hopkins University, USA Taiwan</td>
</tr>
<tr>
<td>Dr. Moaed Almeselmani</td>
<td>Ph.D in Plant Physiology, Molecular Biology, Biotechnology and Biochemistry, M. Sc in Plant Physiology, Damascus University, Syria</td>
</tr>
<tr>
<td>Dr. Giuseppe A Provenzano</td>
<td>Irrigation and Water Management, Soil Science, Water Science Hydraulic Engineering, Dept. of Agricultural and Forest Sciences Universita di Palermo, Italy</td>
</tr>
<tr>
<td>Dr. Yaping Ren</td>
<td>School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China</td>
</tr>
<tr>
<td>Dr. Claudio Cuevas</td>
<td>Department of Mathematics, Universidade Federal de Pernambuco, Recife PE, Brazil</td>
</tr>
<tr>
<td>Dr. Arshak Poghossian</td>
<td>Ph.D. Solid-State Physics, Leningrad Electrotechnical Institute, Russia Institute of Nano and Biotechnologies Aachen University of Applied Sciences, Germany</td>
</tr>
<tr>
<td>Dr. Qiang Wu</td>
<td>Ph.D. University of Technology, Sydney, Department of Mathematics, Physics and Electrical Engineering, Northumbria University</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Lev V. Eppelbaum</td>
<td>Ph.D. Institute of Geophysics, Georgian Academy of Sciences, Tbilisi</td>
</tr>
<tr>
<td></td>
<td>Assistant Professor Dept Geophys & Planetary Science, Tel Aviv University Israel</td>
</tr>
<tr>
<td>Dr. Linda Gao</td>
<td>Ph.D. in Analytical Chemistry, Texas Tech University, Lubbock, Associate</td>
</tr>
<tr>
<td></td>
<td>Professor of Chemistry, University of Mary Hardin-Baylor, United States</td>
</tr>
<tr>
<td>Prof. Jordi Sort</td>
<td>ICREA Researcher Professor, Faculty, School or Institute of Sciences, Ph.D.,</td>
</tr>
<tr>
<td></td>
<td>in Materials Science Autonomous, University of Barcelona Spain</td>
</tr>
<tr>
<td>Dr. Eugene A. Permyakov</td>
<td>Institute for Biological Instrumentation Russian Academy of Sciences, Director</td>
</tr>
<tr>
<td></td>
<td>Pushchino State Institute of Natural Science, Department of Biomedical</td>
</tr>
<tr>
<td></td>
<td>Engineering, Ph.D., in Biophysics Moscow Institute of Physics and Technology,</td>
</tr>
<tr>
<td></td>
<td>Russia</td>
</tr>
<tr>
<td>Prof. Dr. Zhang Lifei</td>
<td>Dean, School of Earth and Space Sciences, Ph.D., Peking University, Beijing,</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td>Dr. Hai-Linh Tran</td>
<td>Ph.D. in Biological Engineering, Department of Biological Engineering, Inha</td>
</tr>
<tr>
<td></td>
<td>University, Incheon, Korea</td>
</tr>
<tr>
<td>Dr. Yap Yee Jiun</td>
<td>B.Sc.(Manchester), Ph.D.(Brunel), M.Inst.P.(UK) Institute of Mathematical</td>
</tr>
<tr>
<td></td>
<td>Sciences, University of Malaya, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Dr. Shengbing Deng</td>
<td>Departamento de Ingenieria Matematica, Universidad de Chile. Facultad de</td>
</tr>
<tr>
<td></td>
<td>Ciencias Fisicas y Matematicas. Blanco Encalada 2120, Piso 4., Chile</td>
</tr>
<tr>
<td>Dr. Bingsuo Zou</td>
<td>Ph.D. in Photochemistry and Photophysics of Condensed Matter, Department of</td>
</tr>
<tr>
<td></td>
<td>Chemistry, Jilin University, Director of Micro- and Nano- technology Center,</td>
</tr>
<tr>
<td></td>
<td>China</td>
</tr>
<tr>
<td>**Dr. Bondage Devanand</td>
<td>Ph.D. No. 8, Alley 2, Lane 9, Hongdao station, Xizhi district, New Taipei</td>
</tr>
<tr>
<td>Dhondiram</td>
<td>city 221, Taiwan (ROC)</td>
</tr>
<tr>
<td>Dr. Latifa Oubedda</td>
<td>National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco,</td>
</tr>
<tr>
<td></td>
<td>Lotissement Elkhier N66, Bettana Sal Marocco</td>
</tr>
<tr>
<td>Dr. Lucian Baia</td>
<td>Ph.D. Julius-Maximilians, Associate professor, Department of Condensed Matter</td>
</tr>
<tr>
<td></td>
<td>Physics and Advanced Technologies, Department of Condensed Matter Physics and</td>
</tr>
<tr>
<td></td>
<td>Advanced Technologies, University Wrzburg, Germany</td>
</tr>
<tr>
<td>Dr. Maria Gullo</td>
<td>Ph.D., Food Science and Technology Department of Agricultural and Food</td>
</tr>
<tr>
<td></td>
<td>Sciences, University of Modena and Reggio Emilia, Italy</td>
</tr>
<tr>
<td>Dr. Fabiana Barbi</td>
<td>Prof. Ulrich A. Glasmacher</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>B.Sc., M.Sc., Ph.D., Environment, and Society, State University of Campinas, Brazil Center for Environmental Studies and Research, State University of Campinas, Brazil</td>
<td>Institute of Earth Sciences, Director of the Steinbeis Transfer Center, TERRA-Explore, University Heidelberg, Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Yiping Li</th>
<th>Prof. Philippe Dubois</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. in Molecular Genetics, Shanghai Institute of Biochemistry, The Academy of Sciences of China Senior Vice Director, UAB Center for Metabolic Bone Disease</td>
<td>Ph.D. in Sciences, Scientific director of NCC-L, Luxembourg, Full professor, University of Mons UMONS Belgium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nora Fung-yee TAM</th>
<th>Dr. Rafael Gutierrez Aguilar</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPhil University of York, UK, Department of Biology and Chemistry, MPhil (Chinese University of Hong Kong)</td>
<td>Ph.D., M.Sc., B.Sc., Psychology (Physiological), National Autonomous, University of Mexico</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Sarad Kumar Mishra</th>
<th>Ashish Kumar Singh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D in Biotechnology, M.Sc in Biotechnology, B.Sc in Botany, Zoology and Chemistry, Gorakhpur University, India</td>
<td>Applied Science, Bharati Vidyapeeth's College of Engineering, New Delhi, India</td>
</tr>
</tbody>
</table>
Contents of the Issue

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Contents of the Issue

1. Solution of Integral Equation in Two-Dimensional using Spectral Relationships. **1-10**
2. On Lorentzian α-Sasakian Manifolds. **11-19**
3. Triple Reflections- A Discourse on Twin Prime Conjecture, Pascal’s Triangle, and Euler’s E. **21-34**
5. On a Metric on the Space of Monetary Risk Measures. **45-53**
6. Elliptic Blending with One-Equation Model. **55-64**

v. Fellows
vi. Auxiliary Memberships
vii. Preferred Author Guidelines
viii. Index
Solution of Integral Equation in Two-Dimensional using Spectral Relationships

By F. M. Alharbi
Umm Al-Quraa University

Abstract- This paper concerned using spectral relationships in the solution of the integral equation (IE) in two-dimensional. To discuss that, the (IE) in two-dimensional under certain conditions was considered. The existence of at least one solution of the (IE) was discussed by proving the continuity and compactness of an integral operators. Chebyshev polynomials of the first kind were used to transform the (IE) to a linear algebraic system. Many numerical results and estimating errors were calculated and plotted by the Maple program in different cases.

Keywords: Integral equation (IE) in two-dimensional. Schauder fixed point theorem. Continuity and compactness of an integral operators. Spectral relationships. Linear algebraic system.

GJSFR-F Classification: MSC 2010: 31A10

Strictly as per the compliance and regulations of:
Solution of Integral Equation in Two-Dimensional using Spectral Relationships

F. M. Alharbi

Abstract: This paper concerned using spectral relationships in the solution of the integral equation (IE) in two-dimensional. To discuss that, the (IE) in two-dimensional under certain conditions was considered. The existence of at least one solution of the (IE) was discussed by proving the continuity and compactness of an integral operators. Chebyshev polynomials of the first kind were used to transform the (IE) to a linear algebraic system. Many numerical results and estimating errors were calculated and plotted by the Maple program in different cases.

Keywords: Integral equation (IE) in two-dimensional. Schauder fixed point theorem. Continuity and compactness of an integral operators. Spectral relationships. Linear algebraic system.

I. Introduction

In recent years, the main theorem of spectral relationships plays an important role in many applications in various areas, including models of nanotechnology particles, genetic engineering, medicine, mathematical chemistry, heat condition and physical phenomena, see [1-4].

On the other side, many problems of mathematical physics, contact problems in elastic media, many applications in electronic engineering applications, and mathematical biology models lead to an (IES) in smooth or singular forms. The references [5-7] discuss the methods for solving the (IES) in smooth form antically. While the singular forms take a large aria in types of researches, see [8-11]. In [10], a spectral technique for solving two-dimensional fractional integral equations with singular kernel was discussed by using Legendre and Chebyshev polynomials. Abdou and Salama in [12] obtained the spectral relationships for the Volterra-Fredholm integral equation (V-FIE) of the first kind. Abdou [13] discussed the spectral relationships that have many important applications in astrophysics, for the (F-VIE) of the first kind, when the kernel of position takes a generalized potential form. The relation between the contact problems and the (F-VIE) in three dimensions were obtained by Abdou and Moustafa in [14]. Abdou and Nasr in [15] used Chebyshev polynomial to obtain the solution of (F-VIE) when the kernel takes a logarithmic form. The application of Orthogonal polynomials in spectral relationships of some kinds of singular contact problems is discussed by Alharbi in [16]. Abdou and Basseem in [17] used Chebyshev polynomial, the main theorem of spectral relationships of (FIE) to obtain the solution of (F-VIE) of the second
kind numerically. Abdou and Alharbi in [18] derived a general main theorem of spectral relationships for a mixed integral equation of the first kind (MIE) in the space $L_2[-1,1] \times C[0,T]$.

Consider the integral equation,

$$\phi(x, y) = f(x, y) + \lambda \int_{-1}^{1} \int_{-1}^{1} k(x, u, y, v) \phi(u, v) du dv, \quad (1)$$

Under the following conditions:

i. $\left[\int_{-1}^{1} \int_{-1}^{1} k^2(x, u, y, v) dx du dy dv \right]^{1/2} \leq c$, c is constant.

ii. The function $f(x, y)$ with its partial derivatives with respect to x and y are continuous in $L_2[-1,1] \times [-1,1]$ and its norm can be defined as,

$$\|f(x, y)\| = \left[\int_{-1}^{1} \int_{-1}^{1} f^2(x, y) dx dy \right]^{1/2} \leq M, \quad M \text{ is constant.}$$

iii. The unknown function $\phi(x, y)$ in the space $L_2[-1,1] \times [-1,1]$ behaves as the given function $f(x, y)$.

II. **The Existence of at Least one Solution of a Two Dimensional IE**

Theorem 1

The integral equation (1) has at least one solution under the previous condition (i)-(iii). Define the integral operator forms:

$$W\phi = \lambda \int_{-1}^{1} \int_{-1}^{1} k(x, u, y, v) \phi(u, v) du dv \quad (2)$$

Eq. (1) can be written in operator form as:

$$\bar{W}\phi = f + W\phi. \quad (3)$$

The proof of *Theorem 1* can be obtained automatically from the proofs of following lemmas.

Lemma 1

The integral operator (3) under the conditions (i)-(iii) is bounded in the space $L_2[-1,1] \times [-1,1]$.

Ref

Proof:

Taking the norm of Eq.(3) we get

\[\|\bar{W}\phi\| \leq \|f(x,y)\| + |\lambda| \left\| \int_{-1}^{1} \int_{-1}^{1} k(x,u,y,v) \phi(u,v) dudv \right\| \]

(4)

Applying the Cauchy-Schwarz inequality, then using conditions (i)-(iii) to have

\[\|\bar{W}\phi(x,y)\| \leq M + |\lambda| C. \]

(5)

Eq.(5) means that the integral operator \(\bar{W} \) maps the ball \(S_\alpha \) into itself, where \(\alpha = M + |\lambda| C \).

Also, in the second term of inequality (5), we deduce that the integral operator \(W\phi(x,y) \) is bounded in the space \(L_2([-1,1] \times [-1,1]) \). Therefore, \(\bar{W}\phi(x,y) \) is also bounded.

Lemma 2

The integral operator (3) under the conditions (i)-(iii) is continuous in the space \(L_2[-1,1] \times [-1,1] \).

Proof:

Let \(\phi_1(x,y), \phi_2(x,y) \) be any two functions in the space \(L_2[-1,1] \times [-1,1] \) then,

\[\|\bar{W}\phi_1(x,y) - \bar{W}\phi_2(x,y)\| \leq |\lambda| \left\| \int_{-1}^{1} \int_{-1}^{1} |k(x,u,y,v)| |\phi_1(x,y) - \phi_2(x,y)| dudv \right\| \]

After applying Cauchy-Shwarz inequality then using the conditions(i)-(iii), the previous inequality becomes,

\[\|\bar{W}\phi_1(x,y) - \bar{W}\phi_2(x,y)\| \leq |\lambda| c \|\phi_1(x,y) - \phi_2(x,y)\| \]

So,

\[\|\bar{W}\| \leq |\lambda| c \]

(6)

Inequality (6) implies the continuity of \(\bar{W} \) in the space \(L_2[-1,1] \times [-1,1] \).

Lemma 3

Suppose that a sequence of continuous functions \(\{k_{n,m}(x,u,y,v)\} \) such that,

\[\lim_{n,m\to\infty} \left[\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} |k_{n,m}(x,u,y,v) - k(x,u,y,v)|^2 dxdudyd\nu \right]^{1/2} = 0. \]

(7)

Then, there exist positive integers \(n_0, m_0 \), such that, for \(n > n_0, m > m_0 \), in general \(n \neq m \), after neglecting the very small constants, we have
Solution of Integral Equation in Two-Dimensional using Spectral Relationships

\[
\left[\int \int \int \int |k_{n,m}(x, u, y, v)|^2 \, dx \, du \, dv \, dy \right]^{1/2} \leq c \tag{8}
\]

\[\int \int \int \int |k_{n,m}(x, u, y, v)|^2 \, dx \, du \, dv \, dy \]

\[
\leq \left[\int \int \int \int |k_{n,m}(x, u, y, v) - k(x, u, y, v)|^2 \, dx \, du \, dv \, dy \right]^{1/2} \\
+ 2|k_{n,m}(x, u, y, v) - k(x, u, y, v)| \, |k(x, u, y, v)| \\
+ |k(x, u, y, v)|^2 \right) \, dx \, du \, dv \, dy
\]

Hence, for each \(n > n_0, m > m_0 \) using Eq.(7) and conditions(i), formula (8) is verified after neglected a small constant.

\[‖W̅_{n,m}(x, y)‖ \leq \alpha , \quad \alpha = M + |\lambda|c \tag{10}\]

Therefore \(\overline{W}_{n,m} \) maps the largest ball \(S_\alpha \) into itself.

Also to prove the continuity of \(\overline{W}_{n,m} \) we choose any two functions \(\phi_1(x, y), \phi_2(x, y) \) in \(S_\alpha \) then applying Cauchy-Schwarz inequality and the conditions (i)-(iii) we get

\[
‖\overline{W}_{n,m} \phi_1(x, y) - \overline{W}_{n,m} \phi_2(x, y)‖ \leq |\lambda|c \quad \forall \ n > n_0, m > m_0 \tag{11}\]
Lemma 5
If conditions (i)-(iii) are verified then the $\mathcal{W}(S_\alpha)$ is compact.

Proof:

$$
\|\mathcal{W}_{n,m}\phi(x,y) - \mathcal{W}\phi(x,y)\| = |\lambda| \left\| \int_{-1}^{1} \int_{-1}^{1} \left(k_{n,m}(x,u,y,v) - k(x,u,y,v) \right) \phi(u,v) du dv \right\|
$$

Hence, using condition(iii) yields

$$
\|\mathcal{W}_{n,m}\phi(x,y) - \mathcal{W}\phi(x,y)\| \\
\leq |\lambda| E \left[\int_{-1}^{1} \int_{-1}^{1} \left| k_{n,m}(x,u,y,v) - k(x,u,y,v) \right|^2 dx du dy dv \right]^{1/2}
$$

Also, from Eq.(7) we have the following condition:

$$
\|\mathcal{W}_{n,m}\phi(x,y) - \mathcal{W}\phi(x,y)\| = 0, \quad \text{as } n, m \to \infty . \quad (12)
$$

To prove the compactness of \mathcal{W}, we let $\{\phi_{n,m}(x,y)\}$ be any sequence in S_α. Then we can choose a subsequence $\{\phi_{n1,m}(x,y)\}$ such that $\{\mathcal{W}_{n1,m}\phi_{n1,m}(x,y)\}$ converges. From that subsequence, we can extract a new subsequence $\{\phi_{n1,m1}(x,y)\}$ in which $\{\mathcal{W}_{n1,m1}\phi_{n1,m1}(x,y)\}$ converges, and so on. Thus, we obtain a chain of subsequences,

$$
\{\phi_{n,m}(x,y)\} \supset \{\phi_{n1,m}(x,y)\} \supset \{\phi_{n1,m1}(x,y)\} \supset \cdots \supset \{\phi_{n_i,m_j}(x,y)\} \supset \cdots
$$

Such that the sequence $\{\mathcal{W}_{n1,mk}\phi_{n1,m}(x,y)\}$ converges for all $i = 1,2,\ldots,j$ and $k = 1,2,\ldots,l$. Finally, we pick the sequence $\{\phi_{n,m}(x,y)\}$ which is a subsequence of every $\phi_{n1,mk}$ except for a finite number of elements, and clearly $\{\mathcal{W}_{n1,mk}\phi_{n,m}(x,y)\}$ converges for every i,k. Now, since

$$
\|\mathcal{W}_{n1,mk}\phi_{n,m} - \mathcal{W}_{n1,mk}\phi_{p,q}\| \to 0 \quad \text{as } m, n, p, q \to 0 .
$$

For large j, k, and from(), we get

$$
\|\mathcal{W}\phi_{n,m} - \mathcal{W}\phi_{p,q}\| \leq 2\sigma, \quad \forall n,p > n_0(\sigma) , m,q > m_0(\sigma).
$$

Hence, $\{\mathcal{W}\phi_{n,m}\}$ is a Cauchy sequence, so $\mathcal{W}(S_\alpha)$ is compact.

According to the previous lemmas, by Schauder fixed point theorem, see [19-20], \mathcal{W} has at least one fixed point in S_α, and Theorem 1 is proved.
III. CHEBYSHEV POLYNOMIALS AND THE SYSTEM OF THE INTEGRAL EQUATION

Suppose the approximate kernel $k_{n,m}(x, u, y, v)$ in the continuous case as,

$$k_{n,m}(x, u, y, v) = \sum_{n=0}^{N} \sum_{m=0}^{M} \psi_n(x) \chi_n(u) \omega_m(y) \eta_m(v) \quad (12)$$

where it satisfies the condition in Eq.(7).

Therefore Eq.(1) reduce to the algebraic system form as,

$$\phi_{n,m}(x, y) = f_{n,m}(x, y) - \lambda \int_{-1}^{1} \int_{-1}^{1} k_{n,m}(x, u, y, v) \phi_{n,m}(u, v) dudv + R_{n,m} \quad (13)$$

where,

$$R_{n,m} = |\phi - \phi_{n,m}| \to 0 \quad as \ n, m \to \infty \quad (14)$$

is the approximate error.

To use the spectral relationships, we write the kernel of Eq.(12) in the form

$$k_{n,m}(x, u, y, v) = \sum_{n=0}^{N} \sum_{m=0}^{M} T_n(x)T_n(u)T_m(y)T_m(v) \quad (15)$$

where $T_l(z)$ is the Chybeshev polynomials of first kind and degree l.

Then Eq.(13) reduces to

$$\phi_{n,m}(x, y) - \lambda \int_{-1}^{1} \int_{-1}^{1} T_n(x)T_m(y) \int_{-1}^{1} T_n(u)T_m(v) \phi(u, v) dudv = f_{n,m}(x, y) \quad (16)$$

Such that,

$$\phi_{n,m}(x, y) = \sum_{n=0}^{N} \sum_{m=0}^{M} a_{n,m}T_n(x)T_m(y) \quad (17)$$

Since,

$$\int_{-1}^{1} \int_{-1}^{1} k_{n,m}(x, u, y, v) \phi_{n,m}(u, v) dudv = T_n(x)T_m(y) \int_{-1}^{1} \int_{-1}^{1} T_n(u)T_m(v)T_i(u)T_j(v) dudv \quad (18)$$

then by using the relation, see [21]

$$T_n(u)T_i(u) = \frac{1}{2} \left[T_{n+i}(u) + T_{|n-i|}(u) \right] \quad (19)$$
and,
\[
\int_{-1}^{1} T_n(u)du = \begin{cases}
\frac{2}{1-n^2}, & n=0,2,4,... \\
0, & n=1,3,5,...
\end{cases}
\] (20)

Eq.(18) reduce to
\[
T_n(x)T_m(y) \int_{-1}^{1} \int_{-1}^{1} T_n(u)T_m(v)T_i(u)T_j(v)dudv \\
= \left[\frac{1}{1-(n+i)^2} + \frac{1}{1-(n-i)^2} \right] \left[\frac{1}{1-(m+j)^2} + \frac{1}{1-(m-j)^2} \right] T_n(x)T_m(y)
\] (21)

Then, Eq.(13) reduce to obtaining the following algebraic system,
\[
(l - \lambda \mu_{n,m,i,j})a_{n,m} = b_{n,m}
\] (22)

where,
\[
\mu_{n,m,i,j} = \left[\frac{1}{1-(n+i)^2} + \frac{1}{1-(n-i)^2} \right] \left[\frac{1}{1-(m+j)^2} + \frac{1}{1-(m-j)^2} \right]
\] (23)

\[
b_{n,m} = \int_{-1}^{1} \int_{-1}^{1} f(x,y)T_n(x)T_m(y)dxdy
\] (24)

IV. Application and Numerical Discussion

Consider the IE
\[
\phi(x, y) = f(x,y) + \lambda \int_{-1}^{1} \int_{-1}^{1} (x + u^2)y^2v \phi(u,v)dudv
\] (25)

For fixed values of \(N = M = 100\), we can graph the solution \(\phi(x,y)\) at different values of \(\lambda\), and different shapes of surfaces \(f(x,y)\), then we can graph the estimating errors
\[
f(x,y) = xy, \quad \lambda = 0.04
\]
The solution $\phi_{n,m}(x, y)$

$E_{100}(f(x, y)) = xy$, $\lambda = 0.1$

Figure (1)

The solution $\phi_{n,m}(x, y)$

$E_{100}(f(x, y)) = x + y$, $\lambda = 0.04$

Figure (2)

The solution $\phi_{n,m}(x, y)$

$E_{100}(f(x, y))$

Figure (3)
The solution \(\phi_{n,m}(x, y) \)

\[f(x, y) = x + y, \lambda = 0.1 \]

Figure(4)

REFERENCES Références Referencias

19. S. Brzychczy and R. R. Poznanski, *Mathematical Neuroscience*, Copyright © 2013 Elsevier Inc. All rights reserved.

20. G. Kassay and V. D. Rădulescu, *Equilibrium Problems and Applications*, Copyright © 2019 Elsevier Inc. All rights reserved.

On Lorentzian α–Sasakian Manifolds

By Archana Srivastava & Amit Prakash

Sr Institute of Management and Technology

Abstract- The object of this paper to study various curvature tensors in a Lorentzian α– Sasakian manifold, we also study φ–pseudo projectively flat, φ–quasi conformally flat, φ–quasi concircularly flat, φ–m–projectively flat Lorentzian α–Sasakian manifolds are an η–Einstein Manifold.

Keywords: φ–pseudo projectively flat, φ–quasi conformally flat, φ–quasi concircularly flat, φ–m–projectively flat, Lorentzian α–Sasakian manifold, η–Einstein Manifold.

GJSFR-F Classification: MSC 2010: 53C25
On Lorentzian α–Sasakian Manifolds

Archana Srivastava a & Amit Prakash a

Abstract: The object of this paper to study various curvature tensors in a Lorentzian α–Sasakian manifold, we also study φ–pseudo projectively flat, φ–quasi conformally flat, φ–quasi concircularly flat, φ–m–projectively flat Lorentzian α–Sasakian manifolds are an η–Einstein Manifold.

Keywords: φ–pseudo projectively flat, φ–quasi conformally flat, φ–quasi concircularly flat, φ–m–projectively flat, Lorentzian α–Sasakian manifold, η–Einstein Manifold.

I. Introduction

Let $(M^n, g), n > 3$, be a connected semi Riemannian manifold of class C^∞ and ∇ be its Levi-Civita connection. Riemannian curvature tensor R is defined by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$$

(1.1)

Pseudo–projective curvature tensor \tilde{P} on a Riemannian manifold $(M^n, g), n > 2$ of type(1,3) is defined as follows (Prasad [20]).

$$\tilde{P}(X,Y)Z = a R(X,Y)Z + b [S(Y,Z)X - S(X,Z)Y] - \frac{r}{n} \left[\frac{a}{n-1} + b \right] [g(Y,Z)X - g(X,Z)Y]$$

(1.2)

where a and b are constants such that $a, b \neq 0$.

If $a = 1$ and $b = -\frac{1}{n-1}$, then (2) takes the form

$$\tilde{P}(X,Y)Z = R(X,Y)Z - \frac{1}{n-1} [S(Y,Z)X - S(X,Z)Y] = P(X,Y)Z$$

where P is Projective curvature tensor. Thus the Projective curvature tensor P is a particular case of the tensor \tilde{P}, for this reason \tilde{P} is called Pseudoprojective curvature tensor.

Quasi–conformal curvature tensor \tilde{C} on a Riemannian manifold $(M^n, g), n > 2$ of type (1,3) is defined as follows (Yano and Swaki [24]).

$$\tilde{C}(X,Y)Z = a R(X,Y) + b [S(Y,Z)X - S(X,Z) + g(Y,Z)QX - g(X,Z)QY]$$

$$- \frac{r}{n} \left[\frac{a}{n-1} + 2b \right] [g(Y,Z)X - g(X,Z)Y]$$

(1.3)

where a and b are constants such that $a, b \neq 0$.

Author a: Department of Mathematics, SR Institute of Management and Technology, BKT, Lucknow - 227 202, India. e-mail: archana.srivastava13@gmail.com

Author a: Department of Mathematics, National Institute of Technology, Kurukshetra, Haryana-136119, India.
If $a = 1$ and $b = -\frac{1}{n-2}$, then (3) takes the form
\[
\tilde{C}(X,Y)Z = R(X,Y) - \frac{1}{n-2} [S(Y,Z)X - S(X,Z)Y + g(Y, Z)QX - g(X, Z)QY] + \frac{r}{(n-1)(n-2)} [g(Y, Z)X - g(X, Z)Y] = C(X,Y)Z
\]
where C is Conformal curvature tensor. Thus the Conformal curvature tensor C is a particular case of the tensor \tilde{C}. For this reason \tilde{C} is called Quasi–conformal curvature tensor.

Quasi–concircular curvature tensor \tilde{V} on a Riemannian manifold $(M^n, g), n > 2$ of type $(1,3)$ is defined as follows (Prasad and Maurya[19]).
\[
\tilde{V}(X,Y)Z = a R(X,Y)Z + \frac{r}{n} \left[\frac{a}{n-1} + 2b \right] [g(Y, Z)X - g(X, Z)Y] \tag{1.4}
\]
where a and b are constants such that $a, b \neq 0$. If $a = 1$ and $b = -\frac{1}{n-1}$, then from (4)
\[
\tilde{V}(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y, Z)X - g(X, Z)Y] = V(X,Y)Z
\]
where V is the Concircular curvature tensor. Thus the Concircular curvature tensor V is a particular case of the tensor \tilde{V}. For this reason \tilde{V} is called Quasi–concircular curvature tensor.

m–projective curvature tensor W on a Riemannian manifold $(M^n, g), n > 3$ of type $(1,3)$ is defined as follows (Pokhariyal and Mishra [18]).
\[
W(X,Y)Z = R(X,Y)Z - \frac{1}{2(n-1)} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY] \tag{1.5}
\]
where Q is the Ricci operator defined by $S(X,Y) = g(QX,Y)$, S is the Ricci tensor, $r = \text{trace}(S)$ is the scalar curvature and $X, Y, Z \in \chi(M)$. $\chi(M)$ is being Lie algebra of vector fields of M.

In [21], Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. He showed that they can be divided into three classes:

1. Homogeneous normal contact Riemannian manifolds with $c > 0$,
2. Global Riemannian products of a line or a circle with a Kaehler manifold of constant homolomorphic sectional curvature if $c = 0$,
3. A warped product space $\mathbb{R} \times_f C$ if $c < 0$.

It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure, (2) Kenmotsu [11] characterized the differential geometric properties of the manifolds of class (3); the structure so obtained is now known as Kenmotsu structure.

In general, these structures are not Sasakian[14]. In the Gray–Hervella classification of almost Hermitian manifolds[8], there appears a class, W_4 of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds[10]. An almost contact metric structure on a manifold M is called a trans–Sasakian structure[13] if the product manifold $M \times \mathbb{R}$ belongs to the class W_4. The class $C_6 \oplus C_5$ ([13], [14])...
coincides with the class of the trans–Sasakian structures of the type \((\alpha, \beta)\). In fact, in [13], local nature of the two subclasses, namely, \(C_5\) and \(C_6\) structures, of trans–Sasakian structures are characterized completely.

Also, in [16], Özgür and De studied quasi–conformally flat and quasi–conformally semisymmetric Kenmotsu manifolds. Then, in [25], Yildiz and Murathan studied Lorentzian \(\alpha\)-Sasakain manifolds.

We note that trans–Sasakian structures of the type\((0,0), (0, \beta)\) and \((\alpha, 0)\) are cosymplectic [2], \(\beta\)-Kenmotsu[11] and \(\alpha\)-Sasakain [11] respectively. In [22], it is proved that trans–Sasakian structures are generalised quasi–Sasakian. Thus, trans–Sasakian structures also provide a large class of generalised quasi–Sasakian structures.

An almost contact metric structure \((\varphi, \xi, \eta, g)\) on \(M\) is called trans–Sasakian structure [13], if \((M \times \mathbb{R}, J, G)\) belongs to the class \(W_4\) [8], where \(J\) is the almost complex structure on \(M \times \mathbb{R}\) defined by

\[
J(X, f \frac{d}{dt}) = (\varphi X - f \xi, \eta(X) \frac{d}{dt})
\]

for all vector fields \(X\) on \(M\) and a smooth function \(f\) on \(M \times \mathbb{R}\) and \(G\) is the product metric on \(M \times \mathbb{R}\). This may be expressed by the condition [3]

\[
(\nabla_X \varphi)Y = \alpha (g(X, Y) \xi - \eta(Y) X) + \beta (g(\varphi X, Y) \xi - \eta(Y) \varphi(X))
\]

(1.6)

For some smooth functions \(\alpha\) and \(\beta\) on \(M\) and we say that the trans–Sasakian structure is of type \((\alpha, \beta)\).

From (6) it follows that

\[
\nabla_X \xi = -\alpha \varphi(X) + \beta(X - \eta(X) \xi)
\]

(1.7)

\[
(\nabla_X \eta)Y = -\alpha g(\varphi X, Y) + \beta g(\varphi X, \varphi Y)
\]

(1.8)

Trans–Sasakian manifolds have been studied by De and Tripathi[7] and they obtained the following results:

\[
R(X, Y) \xi = (\alpha^2 - \beta^2) (\eta(Y)X - \eta(X)Y) + 2 \alpha \beta (\eta(Y) \varphi X \eta(X) \varphi Y) + (Y \alpha) \varphi X
\]

\[- (X \alpha) \varphi Y + (Y \beta) \varphi^2 X - (X \beta) \varphi^2 Y\]

(1.9)

\[
R(\xi, Y) X = (\alpha^2 - \beta^2) (g(X, Y) \xi - \eta(X) Y) + 2 \alpha \beta (g(\varphi X, Y) \xi - \eta(X) \varphi Y)
\]

\[+ (X \alpha) \varphi Y + g(\varphi X, Y) (grad \alpha) + (X \beta) (Y - \eta(Y) \xi) - g(\varphi X, \varphi Y) (grad \beta)\]

(1.10)

\[
R(\xi, X) \xi = (\alpha^2 - \beta^2 - \xi \beta) (\eta(X) \xi - X)
\]

(1.11)

\[
2 \alpha \beta + \xi \alpha = 0
\]

(1.12)

\[
S(X, \xi) = ((n - 1)(\alpha^2 - \beta^2) - \xi \beta) \eta(X) - (n - 2) X \beta - (\varphi X) \alpha
\]

(1.13)

\[
Q \xi = ((n - 1)(\alpha^2 - \beta^2) - \xi \beta) \xi - (n - 2)(grad \beta) + \varphi (grad \alpha)
\]

(1.14)

A trans–Sasakian structure of type \((\alpha, \beta)\) is \(\alpha\)-Sasakian if \(\beta = 0\) and \(\alpha\) is a non–zero constant [10].

If \(\alpha = 1\), then \(\alpha\)-Sasakian manifold is a Sasakian manifold.
II. Lorentzian α–Sasakian Manifold

A differentiable manifold of dimension n is called Lorentzian α–Sasakian manifold if it admits a $(1,1)$–tensor field φ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy ([2], [5], [6], [7], [8], [12])

$$\eta(\xi) = -1,$$

$$\varphi^2 = I + \eta \otimes \xi$$

$$g(\varphi X, \varphi Y) = g(X, Y) + \eta(X)\eta(Y)$$

$$g(X, \xi) = \eta(X), \quad \varphi \xi = 0, \quad \eta(\varphi X) = 0$$

for all $X, Y \in TM$.

From (1.7) and (1.8), a Lorentzian α–Sasakian manifold M satisfying

$$\nabla_X \xi = -\alpha \varphi(X)$$

$$(\nabla_X \eta)Y = -\alpha g(\varphi X, Y)$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

A Lorentzian α–Sasakian manifold M is said to be η–Einstien if its Ricci tensor S is of the form

$$S(X, Y) = a g(X, Y) + b \eta(X)\eta(Y)$$

for any vector fields X, Y, where a, b are functions on M.

Further, from equations (1.9)–(1.14) on a Lorentzian α–Sasakian manifold M the following relations holds:

$$R(\xi, X)Y = \alpha^2 (g(X, Y)\xi + \eta(Y)X)$$

$$R(X, Y)\xi = \alpha^2 (\eta(Y)X + \eta(X)Y)$$

$$R(\xi, X)\xi = \alpha^2 (\eta(X)\xi + X)$$

$$S(X, \xi) = (n - 1)\alpha^2 \eta(X)$$

$$Q\xi = (n - 1)\alpha^2 \xi$$

$$S(\xi, \xi) = -(n - 1)\alpha^2$$

$$S(\varphi X, \varphi Y) = S(X, Y) + (n - 1)\alpha^2 \eta(X)\eta(Y)$$

III. φ–Pseudo Projectively Flat Lorentzian α–Sasakian Manifold

A differentiable manifold $(M^n, g), n > 2$, satisfying the condition

$$\varphi^2 \tilde{P}(\varphi X, \varphi Y)\varphi Z = 0,$$

is called φ–pseudo projectively flat Lorentzian α–Sasakian manifold.

In this section we assume that Lorentzian α–Sasakian manifold $(M^n, g), n > 2$, is φ–pseudo projectively flat. Then $\varphi^2 \tilde{P}(\varphi X, \varphi Y)\varphi Z = 0$, implies
for any vector fields X, Y, Z, W.

By the use of (1.2), φ–pseudo projectively flat means

$$a' R(\varphi X, \varphi Y, \varphi Z, \varphi W) = -b [S(\varphi Y, \varphi Z) g(\varphi X, \varphi W) - S(\varphi X, \varphi Z) g(\varphi Y, \varphi W)] + \frac{r}{n} \left[\frac{a}{n-1} + b \right]$$

$$[g(\varphi Y, \varphi Z) g(\varphi X, \varphi W) - g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)]$$

(3.2)

where $'R(X, Y, Z, W) = g(R(X, Y) Z, W)$.

Let $\{e_1, e_2, ..., e_{n-1}, \xi\}$ be a local orthonormal basis of vector fields in M^n. By using the fact that $\{\varphi e_1, \varphi e_2, ..., \varphi e_{n-1}, \xi\}$ is also a local orthonormal basis, if we put $X = W = e_i$ in (3.2) and sum up with respect to i, then we have

$$a \sum_{i=1}^{n-1} 'R(\varphi e_i, \varphi Y, \varphi Z, \varphi e_i) = -b \sum_{i=1}^{n-1} [S(\varphi Y, \varphi Z) g(\varphi e_i, \varphi e_i) - S(\varphi e_i, \varphi Z) g(\varphi Y, \varphi e_i)] + \frac{r}{n} \left[\frac{a}{n-1} + b \right]$$

$$\sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z) g(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z) g(\varphi Y, \varphi e_i)]$$

(3.3)

It can be easily verified that ([2])

$$\sum_{i=1}^{n-1} 'R(\varphi e_i, \varphi Y, \varphi Z, \varphi e_i) = S(\varphi Y, \varphi Z) + g(\varphi Y, \varphi Z)$$

(3.4)

$$\sum_{i=1}^{n-1} S(\varphi e_i, \varphi e_i) = r - (n-1) \alpha^2$$

(3.5)

$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi Z) S(\varphi Y, \varphi e_i) = S(\varphi Y, \varphi Z)$$

(3.6)

$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi e_i) = (n-1)$$

(3.7)

$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi Z) g(\varphi Y, \varphi e_i) = g(\varphi Y, \varphi Z)$$

(3.8)

So by the use of the (3.4)–(3.8), the equation (3.3) takes the form

$$[a + b(n-2)] S(\varphi Y, \varphi Z) = \left[\frac{r}{n} \left(\frac{a}{n-1} + b \right) (n-2) - a \right] g(\varphi Y, \varphi Z)$$

(3.9)

Then, by making use of (4.2.3) and (4.2.14), the equation (4.3.10) takes the form

$$S(Y, Z) = \frac{1}{[a + b(n-2)]} \left[\frac{r}{n} \left(\frac{a}{n-1} + b \right) (n-2) - a \right] g(Y, Z) + \frac{1}{[a + b(n-2)]}$$

$$[\frac{r}{n} \left(\frac{a}{n-1} + b \right) (n-2) - a - a \alpha^2 - b(n-1)(n-2) \alpha^2] \eta(Y) \eta(Z)$$

(3.10)

which shows that M^n is an η–Einstein manifold. Hence we can state the following theorem:

Theorem 3.1: Let M^n be an n–dimensional, $n > 2$, φ–pseudo projectively flat Lorentzian α–Sasakian manifold, then M^n is an η–Einstein Manifold.

IV. φ–Quasi Conformally Flat Lorentzian α–Sasakian Manifold

A differentiable manifold $(M^n, g), n > 2$, satisfying the condition $\varphi^2 \mathcal{E}(\varphi X, \varphi Y) \varphi Z = 0$, is called φ–quasi conformally flat. (Cabrero, Fernandez,
Fernandez and Zhen [28]). In this section we assume that Lorentzian \(\alpha\)-Sasakian manifold \((M^n, g), n > 2\), is \(\varphi\)-quasi conformally flat. Then \(\varphi^2 \tilde{V}(\varphi X, \varphi Y) \varphi Z = 0\) implies
\[
g(\tilde{V}(\varphi X, \varphi Y) \varphi Z, \varphi W) = 0 \tag{4.1}
\]
for any vector fields \(X, Y, Z, W \in \chi(M^n)\). So by the use of (4.1.3), \(\varphi\)-quasi conformally flat means
\[
a' R(\varphi X, \varphi Y, \varphi Z, \varphi W) = -b[S(\varphi Y, \varphi Z)g(\varphi X, \varphi W) - S(\varphi X, \varphi Z)g(\varphi Y, \varphi W) + g(\varphi Y, \varphi Z)S(\varphi X, \varphi W) - g(\varphi X, \varphi Z)S(\varphi Y, \varphi W)] + \frac{r}{n} \left[\frac{a}{n-1} + 2b\right] [g(\varphi Y, \varphi Z)g(\varphi X, \varphi W) - g(\varphi X, \varphi Z)g(\varphi Y, \varphi W)] \tag{4.2}
\]
where \(R(\varphi X, \varphi Y, \varphi Z, \varphi W) = g(R(\varphi X, \varphi Y) \varphi Z, \varphi W)\).

Let \(\{e_1, e_2, ..., e_{n-1}, \xi\}\) be a local orthonormal basis of vector fields in \(M^n\). By using the fact that \(\{\varphi e_1, \varphi e_2, ..., \varphi e_{n-1}, \xi\}\) is also a local orthonormal basis, if we put \(X = W = e_i\) in (4.2) and sum up with respect to \(i\), then we have
\[
a \sum_{i=1}^{n-1} a' R(\varphi e_i, \varphi Y, \varphi Z, \varphi e_i) = -b \sum_{i=1}^{n-1} \left[S(\varphi Y, \varphi Z)g(\varphi e_i, \varphi e_i) - S(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i)
+ g(\varphi Y, \varphi Z)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)S(\varphi Y, \varphi e_i) \right] + \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)g(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i)] \tag{4.3}
\]
So by the virtue of (3.4)—(3.8), the equation (4.3) takes the form
\[
[a + b(n - 3)]S(\varphi Y, \varphi Z) = [-a - b(r - (n - 1)\alpha^2)] + \frac{r(n - 2)}{n} \left\{\frac{a}{n-1} + 2b\right\} g(\varphi Y, \varphi Z) \tag{4.4}
\]
Then, by making use of (2.3) and (2.14), the equation (4.4) takes the form
\[
S(Y, Z) = \frac{1}{[a + b(n - 3)]} \left\{\frac{r(n - 2) - n(n - 1)}{n(n - 1)} \alpha + \left\{\frac{n(n - 1)\alpha^2 + (n - 4)}{n}\right\} b\right\} g(Y, Z) + \frac{1}{[a + b(n - 3)\alpha^2 + n(n - 1)]} \left\{\frac{r(n - 2) - n(n - 1)\alpha^2 - n(n - 1)}{n(n - 1)}\right\} +
\]
\[
a \left\{\frac{(n - 4) - n(n - 1)\alpha^2}{n}\right\} b\right\} \eta(Y) \eta(Z) \tag{4.5}
\]
which shows that \(M^n\) is an \(\eta\)-Einstein manifold. Hence we can state the following theorem:

Theorem 4.1: Let \(M^n\) be an \(n\)-dimensional, \(n > 2\), \(\varphi\)-quasi conformally flat Lorentzian \(\alpha\)-Sasakian manifold, then \(M^n\) is an \(\eta\)-Einstein Manifold.

V. \(\textbf{\varphi} - \textbf{QUASI CONCIRCULARLY FLAT LORENTZIAN} \textbf{\alpha} - \textbf{SASAKIAN MANIFOLD}

A differentiable manifold \((M^n, g), n > 2\), satisfying the condition \(\varphi^2 \tilde{V}(\varphi X, \varphi Y) \varphi Z = 0\), is called \(\varphi\)-quasi concircularly flat Lorentzian \(\alpha\)-Sasakian manifold.

In this section we assume that Lorentzian \(\alpha\)-Sasakian manifold \((M^n, g), n > 2\), is \(\varphi\)-quasi concircularly flat. Then \(\varphi^2 \tilde{V}(\varphi X, \varphi Y) \varphi Z = 0\), implies
\[
g(\tilde{V}(\varphi X, \varphi Y) \varphi Z, \varphi W) = 0 \tag{5.1}
\]
for any vector fields \(X, Y, Z, W \in \chi(M^n)\).
So, by the use of (1.4), \(\varphi\)-quasi concircularly flat means

\[
a' R(\varphi X, \varphi Y, \varphi Z, \varphi W) = -\frac{\gamma}{n} \left[\frac{a}{n-1} + 2b \right] [g(\varphi Y, \varphi Z)g(\varphi X, \varphi W) - g(\varphi X, \varphi Z)g(\varphi Y, \varphi W)] \tag{5.2}
\]

where \(R(\varphi X, \varphi Y, \varphi Z, \varphi W) = g(\varphi X, \varphi Y)\varphi Z, \varphi W \).

Let \(\{e_1, e_2, \ldots, e_{n-1}, \xi\} \) be a local orthonormal basis of vector fields in \(M^n \) by using the fact that \(\{\varphi e_1, \varphi e_2, \ldots, \varphi e_{n-1}, \xi\} \) is also a local orthonormal basis, if we put \(X = W = e_i \) in (5.2) and sum up with respect to \(i \), then we have

\[
a \sum_{i=1}^{n-1} R(\varphi e_i, \varphi Y, \varphi Z, \varphi e_i) = -\frac{\gamma}{n} \left[\frac{a}{n-1} + 2b \right] \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)g(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i)]
\]

\[
- g(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i)] \tag{5.3}
\]

So, by virtue of (3.4)–(3.8), the equation (5.3) takes the form

\[
a S(\varphi Y, \varphi Z) = -\left[a + \frac{r(n-2)}{n} \left(\frac{a}{n-1} + 2b \right) \right] g(\varphi Y, \varphi Z) \tag{5.4}
\]

Then, by making use of (2.3) and (2.14), the equation (5.4) takes the form

\[
S(Y, Z) = -\left[1 + \frac{r(n-2)}{na} \left(\frac{a}{n-1} + 2b \right) \right] g(Y, Z) - \left[\frac{r(n-2)}{na} \left(\frac{a}{n-1} + 2b \right) + 1 + (n - 1)a^2 \right] \eta(Y)\eta(Z) \tag{5.5}
\]

which shows that \(M^n \) is an \(\eta \)-Einstein manifold.

Hence we can state the following theorem:

Theorem 5.1: Let \(M^n \) be an \(n \)-dimensional, \(n > 2 \), \(\varphi \)-quasi concircularly flat Lorentzian \(\alpha \)-Sasakian manifold, then \(M^n \) is an \(\eta \)-Einstein manifold.

VI. \(\varphi \)-m–Projectively Flat Lorentzian \(\alpha \)-Sasakian Manifold

A differentiable manifold \((M^n, g), n > 3 \), satisfying the condition

\[
\varphi^2 W(\varphi X, \varphi Y)\varphi Z = 0
\]

is called \(\varphi \)-m–projectively flat Lorentzian \(\alpha \)-Sasakian manifold (Cabrera, Fernandez, Fernandez and Zhen [28]).

In this section we assume that Lorentzian \(\alpha \)-Sasakian manifold \((M^n, g), n > 3 \), is \(\varphi \)-m–projectively flat. Then \(\varphi^2 W(\varphi X, \varphi Y)\varphi Z = 0 \) implies

\[
g(W(\varphi X, \varphi Y)\varphi Z, \varphi W) = 0 \tag{6.1}
\]

for any vector fields \(X, Y, Z, W \in \chi(M^n) \).

So, by the use of (1.5), \(\varphi \)-m–projectively flat means

\[
R(\varphi X, \varphi Y, \varphi Z, \varphi W) = \frac{1}{2(n-1)} \left[S(\varphi Y, \varphi Z)g(\varphi X, \varphi W) - S(\varphi X, \varphi Z)g(\varphi Y, \varphi W) + g(\varphi Y, \varphi Z) \right]
\]

\[
S(\varphi X, \varphi W) - g(\varphi X, \varphi Z)S(\varphi Y, \varphi W) \tag{6.2}
\]

where \(R(\varphi X, \varphi Y, \varphi Z, \varphi W) = g(R(\varphi X, \varphi Y)\varphi Z, \varphi W) \).
Let \(\{e_1, e_2, ..., e_{n-1}, \xi\} \) be a local orthonormal basis of vector fields in \(M^n \). By using the fact that \(\{\varphi e_1, \varphi e_2, ..., \varphi e_{n-1}, \varphi \xi\} \) is also a local orthonormal basis, if we put \(X = W = e_i \) in (6.2) and sum up with respect to \(i \), then we have

\[
\sum_{i=1}^{n-1} 'R(\varphi e_i, Y, \varphi Z, \varphi e_i) = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} [S(\varphi Y, \varphi Z)g(\varphi e_i, \varphi e_i) - S(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i) + g(\varphi Y, \varphi Z)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)S(\varphi Y, \varphi e_i)] \tag{6.3}
\]

So, by the use of the (3.4)–(3.8), the equation (6.3) takes the form

\[
S(Y, Z) = \frac{1}{(n + 1)} [r - (n - 1)\alpha^2 - 2(n - 1)] g(Y, Z) + \frac{1}{(n + 1)} [r - 2(n - 1) - (n - 1)
(n + 2)\alpha^2] \eta(Y) \eta(Z) \tag{6.4}
\]

which shows that \(M^n \) is an \(\eta \)-Einstein manifold. Hence we can state the following theorem:

Theorem 6.1: Let \(M^n \) be an \(n \)-dimensional, \(n > 3, \varphi-m \)-projectively flat Lorentzian \(\alpha \)-Sasakian manifold, then \(M^n \) is an \(\eta \)-Einstein manifold.

References

Triple Reflections - A Discourse on twin Prime Conjecture, Pascal’s Triangle, and Euler’s E

By Kwesi Atta Sakyi

ZCAS University

Abstract - The twin prime conjecture has attracted a lot of attention worldwide. It is still an unresolved problem, even though the work of Yitang Zhang has partially resolved it. The author of this paper aims to contribute to the discourse by employing basic mathematics and logic to arrive at some conclusions on the topic, and also to help in breaking new grounds. The researcher used secondary data to build his arguments in an exploratory manner, relying on the existing literature. The paper traces the background of the problem, and points to some of the breakthroughs that were made in the past. The paper examines Pascal’s triangle and, it makes some revealing discoveries on the coefficients. The author also examines Euler’s E, and links it to Pascal’s triangle, and the twin prime problem. Furthermore the author derives new arithmetic terms that he can use to produce infinite numbers of twin primes. The author also discusses how numbers so obtained can thoroughly be checked to be non-composite, thus extending the field of twin primes. The author finally points to the application of twin primes in industry, academia, and other areas of practical knowledge.

Keywords: arithmetic progression, binomial expansion, brun, cryptology, eratosthenes, euclid, euler, fractal geometry, hardy-littlewood, induction, natural numbers, probability density function, reciprocals, self-similarity, twin primes conjecture, pascal, data science.

GJSFR-F Classification: MSC 2010: 35Q31
Trip Reflections- A Discourse on twin Prime Conjecture, Pascal’s Triangle, and Euler’s E

Kwesi Atta Sakyi

Abstract: The twin prime conjecture has attracted a lot of attention worldwide. It is still an unresolved problem, even though the work of Yitang Zhang has partially resolved it. The author of this paper aims to contribute to the discourse by employing basic mathematics and logic to arrive at some conclusions on the topic, and also to help in breaking new grounds. The researcher used secondary data to build his arguments in an exploratory manner, relying on the existing literature. The paper traces the background of the problem, and points to some of the breakthroughs that were made in the past. The paper examines Pascal’s triangle and, it makes some revealing discoveries on the coefficients. The author also examines Euler’s E, and links it to Pascal’s triangle, and the twin prime problem. Furthermore the author derives new arithmetic terms that he can use to produce infinite numbers of twin primes. The author also discusses how numbers so obtained can thoroughly be checked to be non-composite, thus extending the field of twin primes. The author finally points to the application of twin primes in industry, academia, and other areas of practical knowledge.

Keywords: arithmetic progression, binomial expansion, brun, cryptology, eratosthenes, euclid, euler, fractal geometry, hardy-littlewood, induction, natural numbers, probability density function, reciprocals, self-similarity, twin primes conjecture, pascal, data science.

1. Introduction

We can observe from the expansion of binomial expressions of the form $(x+y)^n$ that the numerical coefficients of the terms in the expansion can be derived by using Pascal’s triangle, named after the French mathematician(Wong, 2013). We can use Pascal’s triangle to generate the binomial coefficients in the binomial expansion where a binomial is of the form $(x+y)^n$ and, the expansion takes the form of $\binom{n}{r}$ (Wong, 2013). Below are a few rows of the triangle showing the binomial coefficients of the first six terms, which are as follows

\[
\begin{align*}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
\end{align*}
\]

These coefficients when, summed up line by line horizontally, form the geometric series to infinity of the form, $1, 2, 4, 8, 16, 32, 64, 128,, 2^{n-1}$. They form the series of the form 2^{n-1}, where n is an integer from $n=1$ to $n = \infty$. If we sum the reciprocals of the series to infinity using a geometric progression, we obtain the sum to infinity as

\[
\frac{1}{1} = 1
\]
\[a/r \]

where \(a \) is the first term \(2^0 \) and \(r \) is the ratio \(\frac{1}{2} \) where, \(r \) is less than 1.

The sum of the reciprocals of the series \(1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 \ldots \) \(1/2^{n-1} \) to infinity is, therefore, \(2^0/1/2 = 1/1/2 = 2 \).

\[1 \to \infty \sum 1/2^{n-1} = 2. \text{ (Author’s derivation)} \] (2)

(cf. Math Stack Exchange, 2018; Math Stack Exchange, n.d.)

Thus, the reciprocals of Pascal’s triangle numbers form an infinite series that sum up to 2 in the limit. Brothers (2012) dealt with the products of the Pascal triangle and their ratios, which in the limit, summed up to \(E \) or Euler’s constant, 2.7183. When we use the expressions \(S_{n+1}/S_n \) divided by \(S_n/S_{n+1} \), we can take one line in the triangle and hold it as our baseline for computation. We use the product of the line just below it, and divide it by the multiplication of the numbers on the line we have taken as our reference point. We divide the resultant by the product of the baseline. We again divide the result by the multiplication of the numbers on the line above it. An example here will suffice.

\[
\begin{array}{cccc}
1 \\
1 & 1 \\
1 & 2 & 1 \\
& 3 & 3 & 1 \\
& 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
& 6 & 15 & 20 & 15 & 6 & 1 \\
& & 20 & & & & \\
& & & & & & \\
\end{array}
\]

\(1 \to 6 \) 15 20 15 6 1 \(S_{n+1} \ldots \ldots 3 \) Product = 162,000

\[
162,000/2,500 \text{ divided by } 2,500/96 = 2.48832
\]

If we continue this process to infinity, in the limit, we will find that the result that we obtain each time will approach the terminal value of 2.7183 or \(E \) (Euler’s \(E \)), which is the sum of the reciprocals of the natural numbers to infinity (Brothers, 2012).

When we examine Euler’s \(E \), we find that \(E \) is the sum to infinity of the reciprocals of the natural numbers, \(1/1, 1/2, 1/3, 1/4, \ldots \) \(1/n \) that gives us the sum to infinity of the series of reciprocals of the natural counting numbers of the common term, \(1/n \). Euler’s \(E \) is the same as the expansion of the expression \((1+ 1/n)^n \) (Brothers, 2012). In the limit, this binomial term, gives us the approximate value 2.7183 or Euler’s \(E \) (Brothers, 2012).

In 2012, this author posted an article on Ghanaweb.com and Academia. edu to the effect that a great deal of the majority of the Twin Prime numbers (about 90 to 99 percent) can be generated by pairs of the terms 30n-1, 30n+1, on the one hand, and another two terms 30n-17, and 30n-19, on the other side. These arithmetic terms provide evidence of proof by induction (Stanford.edu, n.d.). These four terms were arrived at by sieving and using a formula for terms of arithmetic series. We can use the expressions 30n-1, 30n+1, 30n-17, and 30n-19 to produce an infinite number of twin...
primes, thus, proving that we have unlimited amount of twin primes (cf. Sebah & Gourdon, 2002).

That was the author’s contribution to the Twin Prime Conjecture conundrum. However, in this article, the author has elaborated more on this, as presented below. Caldwell (n.d.) stated that the Greek mathematicians, Euclid (c. 300) and Eratosthenes were the first people to develop sieves of elimination to produce twin primes. This author developed an interest in twin primes and thought of using simple patterns of recognition and critical thinking to contribute to the enlightened discourse on the twin prime conjecture, which is said to be one of the unresolved mathematical problems, which were first put forward by Polignac in 1849 in France (Sha, 2016; Kiersz, 2018).

II. Historical Background to Twin Prime Conjecture

The twin prime conjecture dates back from antiquity in ancient Greece, during the period of Euclid and Eratosthenes (Murty, n.d.; Brent, 1975). The problem was resurrected in 1849 by Alphonse Polignac. Viggo Brun, the Norwegian mathematician, in 1915, developed a new sieve based on those of Euclid and Eratosthenes (Murty, 2015).

In 1923, Hardy and Littlewood from Oxford University gave their proof of the twin prime conjecture: $2\pi (1- 1/(p-1)^2 \times x/\log^2x)$ with $p > 2$. Hardy and Littlewood’s proof was based on a circular method, on that was developed by an Indian genius called Srinivasa Ramanujan (Murty, n.d.). In 2015, Murty discussed Yitang Zhang’s breakthrough theorem towards the solution of the twin prime conjecture, with the absolute value of $p-q< 70$ million. Zhang had given his proof from the University of New Hampshire in 2013 in a paper proving that, in fact, there are infinite numbers of twin primes (cf. Wolfram Math World, n.d. Agama, 2018).

Murty (n.d.) wrote that if there are infinitely p primes such that $p+2$ is also a prime, then generally if for an even number A here there are infinitely many primes p, then it follows that $p + A$ is also prime (proof by induction, fractal geometry, and self-similarity as well as set theory). This author therefore humbly posits that he can prove the twin prime conjecture by simple logic and simple mathematics using arithmetic progression or series. Similar approaches had been made in the past including the work of two Frenchmen, Sebah and Gourdon(2002).

III. Discussion

Let us consider the first eight pairs of twin primes. These are:

$(3,5), (5,7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61)$ and $(71, 73)$
(Source: en.wikipedia.org/wiki/Prime_pair)

Each pair of twin primes shows a difference of 2, hence the names twin primes or sexy primes or cousin primes or conjugate primes(Wolfram Math World, n.d.).

We can form their reciprocals and find the sum of these first eight pairs.

$1/3, 1/5, 1/7, 1/11, 1/13, 1/17, 1/19, 1/29, 1/31, 1/41, 1/43, 1/59, 1/61, 1/71, 1/73$.

Their decimal representations are as follows

$1/3 = 0.3333333333$
$1/5 = 0.2000000000
The sum of all the above reciprocals gives a total of 1.3, approximately. Thus the sum of the reciprocals of the first eight pairs of twin primes or first fifteen twin primes is 1.3, while the sum of the reciprocals of all natural numbers to infinity, contained in Euler’s E, is 2.71823. The sum of the reciprocals of the first fifteen twin prime numbers shows us that the probability density function or distribution of twin primes is about 50 percent or more of all natural numbers if we consider the first fifteen twin prime numbers of significance.

Thus, twin primes are far in between as we approach infinity, but they never terminate as they become asymptotic to the reciprocals’ distribution function of all natural numbers (Brent, 1975). In a distribution of say p and q (where p and q are fractional), we shall assume q to have a very low probability of occurrence in an infinite series, where n is extremely huge. As we know, in the limit, this approximates the Poisson distribution in a case where q is very low in value and n is extraordinarily huge (Spiegel 1975: 108-130).

\[
e^{-\lambda}\frac{x^p}{x!}\text{for } x = 0, 1, 2, 3...
\]

(library 2. lincoln; Spiegel, 1975: 108-130)

The average or mean of the Poisson distribution is given as np.

Therefore, if we take Euler’s E into consideration, we can subtract the sum of reciprocals of Pascal’s coefficients derived from his triangle, which is the sum of 2 from Euler’s E and remain with 0.71823. This remainder or residual is significant because it represents the sum of all reciprocals of odd numbers (which are not part of Pascal’s series), and also the total of all reciprocals of numbers which end with either 0 or 5 or those numbers which are squares such as 49, 121, 441, 169, among others. The process alluded to here is part of the elimination or sieving method, which uses both deductive and inductive logic. Euclid and Eratosthenes were the first mathematicians to devise means of sieving numbers that generated the twin prime numbers (Murty, 2013; Wong, 2012).

We subtract 1.3 (sum of reciprocals of the first 15 twin primes) from 2.71823. We end up with 1.41823 as the sum of all non-twin prime number reciprocals including primes, which do not twin as well as other numbers which are not of the form...
Looking at the total of all reciprocals of natural numbers, and their sum to infinity to be Euler’s E or 2.71823, and the sum of the reciprocals of the first fifteen twin primes to be 1.3 (as if these were all the significant reciprocals of twin primes), we would conclude that approximately, twin primes are distributed in probability density space to account for about 50 percent of all the natural numbers, which would be a false assumption to have.

None-the-less, despite their paucity or scarcity, as we go towards infinity, twin primes never end just as the natural numbers also never end because twin primes are a subset of the natural numbers, and they have all the characteristics and properties of natural numbers, but they become asymptotic as we approach infinity (proof by deduction according to theories of self-similarity and fractal geometry by Feigenbaum and Mandelbrot, respectively).

Thus, since natural numbers are to infinity, so are twin primes, since twin primes are a subset of all natural numbers (Wong, 2012). Wong (2012), in his paper, mentioned that Mitchell Feigenbaum came up with the concept of self-similarity, while Benoit Mandelbrot was the originator of the concept of fractal geometry. Self-similarity and fractal geometry, therefore, can be used to state that twin primes are infinite, since they are a subset of natural numbers, which are infinite. Thus, we can use the terms 30n-1, 30n+1, on the one hand, and the pair of terms, 30n-17, and 30n-19 on the other side as expressions to derive twin primes by making n as large as possible. These terms were derived first by using elimination methods and generating them by using the formula of arithmetic series (see Chen et al.). The scenario presents us with a unique binomial distribution, where both p and q are almost equal as n approaches infinity. Let us assume $p=0.5$ and $q=0.5$, and n is an exceptionally huge number say 50,000. We have
\[
(p+q)^{50000} = (1)^{50000} = 1
\]
which is the total area under the Gaussian or Normal curve (Spiegel 1975: 108-130; library2. lincoln)

The above discussion shows us that the distribution of twin primes is dense in about the first 300 natural number series but, as the series increases to infinity, the twin primes become scarce, yet they do not finish as they are like an asymptotic graph approaching zero but never becoming zero. Inherent here is the Central Limit Theorem, which states that the mean, as the distribution gets larger, stabilizes and approaches a fixed sum or parameter close to the center of the Gaussian Curve or Normal Curve (Spiegel 1975:112; Kwak & Jim, 2017).

Brun (1919) gave the sum of all reciprocals of twin primes as 1.90216054. Seventy-five years later, in 1994, Nicely, (1994) improved the total of twin prime reciprocals to 1.902160583209. However, we know that all twin primes tend to end with the digits 1, 3, 7, and 9, even though not all numbers that end with these digits are prime numbers. Examples of numerals that end with digits 1, 3, 7, and 9 and, which are non-twin primes, are 441, 443, 169,171, 837,839, 341, and 343, some of which, are squares of numbers.

In considering twin primes, we should eliminate all even numbers or numbers which end with 2, 4, 5, 6, 8, and 0. So, twin primes are distributed as approximately 4 out of every 10 numbers with ending digits of all numbers, giving a ratio of 0.4 or 40 percent of all-natural numbers. This inference gives us an idea that number space is everywhere dense with twin primes. Euclid long ago created a sieve for generating prime numbers (Wong, 2012). However, our distribution of sums of reciprocals is as follows:

1. Sum to infinity of all reciprocals of natural counting numbers is (Euler’s E) $=2.71823$
2. Sum to infinity of reciprocals of Pascal’s Triangle coefficients, part of reciprocals of even numbers, is: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{n}$ which adds up to 2.0 in the limit (author’s discovery).

3. Sum to infinity of reciprocals of all Twin Primes is approximately 1.9 (according to Brun, 1919, and Nicely, 1994).

4. Sum of reciprocals of all numbers which end with either 0 or 5 is 0.5438 (author’s estimate):

$$\left(\frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \ldots \ldots + \frac{1}{n}\right) = \frac{1}{5} \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots \ldots + \frac{1}{n}\right)$$

$$= \frac{1}{5}(E) = \frac{1}{5}(2.7183) = 0.5438$$

5. Sum of reciprocals of all numbers which are squares or end with the digits 1, 3, 7, and 9 but which include twin primes and primes that are non-twin primes-------(residual- ?) Residual= 2.71823- (0.5438 + 2) = 0.1745

Therefore, the addition of reciprocals of twin primes divided by addition of reciprocals of all natural numbers is 1.96/2.71823, which is approximately 72%. This author found a relationship among the three mathematicians, namely Euler, Pascal, and Brun, in terms of the numbers they are associated with, hence, the title of this article. The numbers are Euler (2.7183 - sum of reciprocals of all natural numbers from 1 to infinity), Pascal (2 - sum of the series formed from the reciprocals of the coefficients of the binomial expansion to infinity), and Brun (1.96 - sum of reciprocals of all twin primes to infinity). The relationship is

$$Euler - Pascal = Brun/Euler \quad \text{(4)}$$

Or $$Euler^2 - Euler \times Pascal = Brun \quad \text{(5)}$$

From 1, $2.7183 - 2 = 1.96/2.7183$

0.7183 = 0.72

Thus $(1+1/n)^n - (1 + \alpha + \beta + \frac{1}{8} + \frac{1}{16} + \ldots + \frac{1}{2^{n-1}})$

$$= \text{(Sum of reciprocals of twin primes)} / (1+1/n)^n$$

When we consider Equation 2, we have $(2.7183)^2 - (2.7183 \times 2) = 1.96$

$7.38915489 - 5.4366 = 1.95255489$

From statement 5 above, we had a residual of 0.1745.

We shall make the following propositions or assumptions:

$$p (v - \text{the probability of drawing an even number from natural numbers is 0.5})$$

$$p(d - \text{the probability of drawing an odd number is 0.5})$$

Therefore, the percentage probability distribution of twin prime numbers

$$= 0.5 \times 0.4 \times 0.1745$$

$$= 0.03490$$

Or 3.49%.
At the beginning of this discussion, we stated that all twin prime numbers end with digits 1, 3, 7, and 9 only, thus 4 out of 10 of all Arabic numerals. However, not all numerals that end with digits 1, 3, 7, and 9 are twin primes. We have, all the same, established here that twin primes, on average, in interval estimation, constitute only 3.49% of all natural numbers up to infinity.

Table 1: Frequency table of Twin Primes occurrence at intervals of 100 up to 1000

<table>
<thead>
<tr>
<th>Interval</th>
<th>Frequency of twin primes in interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-100</td>
<td>15</td>
</tr>
<tr>
<td>101-200</td>
<td>14</td>
</tr>
<tr>
<td>201-300</td>
<td>8</td>
</tr>
<tr>
<td>301-400</td>
<td>4</td>
</tr>
<tr>
<td>401-500</td>
<td>6</td>
</tr>
<tr>
<td>501-600</td>
<td>5</td>
</tr>
<tr>
<td>601-700</td>
<td>7</td>
</tr>
<tr>
<td>701-800</td>
<td>0</td>
</tr>
<tr>
<td>801-900</td>
<td>10</td>
</tr>
<tr>
<td>901-1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Adapted from: https://prime-numbers.info/list/twin-primes-up-to-10000

The average frequency is therefore 6.9 twin primes per 100 (6.9%) gap, which to infinity will approach 3.49 per 100 intervals or 3.49%.

IV. Analysis and Proof of Twin Prime Conjecture by Inference

However, subtracting (2) from (1) leaves us with 0.71823 as the residual, accounting for the sum of reciprocals other than the reciprocals of even numbers including twin primes, which as we have shown above is 72% of all numbers. As we said before, twin prime numbers account for approximately 4 out of every ten numbers. So, we shall find 0.4 of this residual 0.1745, which is 0.0687292 or 6.9 percent, as we estimated in Table 1 above. Nevertheless, as we observed before, there are some numbers that end with the four digits 1, 3, 7, and 9, that are not twin prime numerals as some are squares of numbers and, therefore, they are composite. Thus, the value 0.0687292 could be slightly lower.

Thus, we can conclude that about 6.9% of all the natural numbers are prime numbers, including twin primes, which are statistically significant in the sense that twin prime numbers become rare as we approach infinity, but they do not terminate, just as all the natural numbers do not terminate. Twin primes are a subset of prime numbers, which in turn are also subsets of natural numbers and, as such, they have all the attributes of the natural numbers, in the sense that they are never-ending, and they are everywhere dense in probability density space.

In an article by Dubner (2005) he quoted that Hardy-Littlewood’s C_2, which was derived by them in 1923 as Twin Prime Constant, was of the value 0.6601618158, and that their method could generate primes as large as those of about 600 digits by using the sieving method.

However, this author maintains that the pairs of terms derived by this author, namely (30n-17) and (30n-19) on the one hand, and (30n-1) and (30n+1) on the other hand, can generate an infinite series of twin primes with the proviso that for any numbers generated by those terms, we have to test them for compositeness by applying
the Fermat’s test as cited by Dubner (2005). Below, we make a presentation on how arithmetic progression can be used to generate terms for twin prime numbers (cf. Sebah & Gourdon, 2002).

V. **SUM OF SQUARES OF RECPROCALS OF THE NATURAL NUMBERS**

We shall here, examine the sum of the squares of the reciprocals of the natural numbers. We shall concentrate on the first 20 terms. The distribution is $1/1$, $1/4$, $1/9$, $1/16$, $1/25$, $1/36$, $1/49$, $1/64$, $1/81$, $1/100$, $1/121$, $1/144$, $1/169$, $1/196$, $1/225$, $1/256$, $1/289$, $1/324$, $1/361$, and $1/400$. Their decimal equivalents are

<table>
<thead>
<tr>
<th>Reciprocal</th>
<th>Decimal Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/1$</td>
<td>1.00000</td>
</tr>
<tr>
<td>$1/4$</td>
<td>0.25000</td>
</tr>
<tr>
<td>$1/9$</td>
<td>0.11110</td>
</tr>
<tr>
<td>$1/16$</td>
<td>0.06250</td>
</tr>
<tr>
<td>$1/25$</td>
<td>0.04000</td>
</tr>
<tr>
<td>$1/36$</td>
<td>0.02778</td>
</tr>
<tr>
<td>$1/49$</td>
<td>0.02041</td>
</tr>
<tr>
<td>$1/64$</td>
<td>0.01563</td>
</tr>
<tr>
<td>$1/81$</td>
<td>0.01235</td>
</tr>
<tr>
<td>$1/100$</td>
<td>0.01000</td>
</tr>
<tr>
<td>$1/121$</td>
<td>0.00826</td>
</tr>
<tr>
<td>$1/144$</td>
<td>0.00694</td>
</tr>
<tr>
<td>$1/169$</td>
<td>0.00592</td>
</tr>
<tr>
<td>$1/196$</td>
<td>0.00510</td>
</tr>
<tr>
<td>$1/225$</td>
<td>0.00444</td>
</tr>
<tr>
<td>$1/256$</td>
<td>0.00391</td>
</tr>
<tr>
<td>$1/289$</td>
<td>0.00309</td>
</tr>
<tr>
<td>$1/324$</td>
<td>0.00277</td>
</tr>
<tr>
<td>$1/361$</td>
<td>0.00250</td>
</tr>
</tbody>
</table>

Total = 1.59172

The total summation of the squares of reciprocals of the first twenty natural numbers is 1.59172. Eremenko (2013) pointed out in his paper that in 1735, Euler solved the problem of summing up squared reciprocals of all-natural numbers to infinity by obtaining a value 1.6462614966 by using the formula

$$1 + \sum_{n=2}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \text{ (Eremenko, 2013)}.$$

We can see that the total of the first twenty squared reciprocals of the natural numbers is 1.59172, compared with Euler’s sum of all the squared reciprocals to infinity. If we divide 1.59172 by Euler’s sum, 1.6462614966, we obtain approximately
This result informs us that only the first twenty terms are remarkably significant, contributing 97% of the total value of the sum of reciprocals of squared numbers to infinity. This result leads to us to conclude that in examining number theory, the further away we get into extraordinarily gigantic numbers, the more abstract and elusive the analysis becomes, so it is like the saying, ‘the harder you look, the less you see’. This also informs us to use the first few numbers within our reach, as our reliable sample, for rigorous analysis in order to arrive at valid, reliable, and verifiable truths through deductive and inductive logic.

VI. Findings and Analysis

Consider terms of an arithmetic progression (A.P.) or series, all of which have a common difference of 6. We derive the general term of an A.P. as

\[a + (n-1) d, \]

where, “a” is the first term of the series, and, “d” is a common difference.

[1] 5, 11, 17, 23, 29, 35, 41, 47, 6n-1
[9] 31, 37, 43, 49, 55, 61, 67, 6n+25

We can generate an infinite number of twin primes by using the pairs of terms in [1] [2], [3] [4], [5] [6], and [8] [9].

These are

\[(6n-1), (6n+1)\]
\[(6n+5), (6n+7)\]
\[(6n+11), (6n+13)\]
\[(6n+23), (6n+25)\]

We can extend the same series by having a common difference of 30 instead of 6. Let us consider the following sets of arithmetic series

[1] 5, 35, 65, 95, 125, 155......(This series collapses since all the terms are divisible by 5)

[2] 7, 37, 67, 97, 127......... 30n-23

From the above sets, we can see the pairs of terms \([3] [4], [5] [6], \) and \([8] [9]\) that can be used to generate infinite numbers of twin prime pairs. These are

\[
[(30n-19), (30n-17)],

[(30n-13), (30n-11)],

[(30n-1), (30n+1)]
\]

We can use the first set of terms by setting \(n=9,999,999,999,999\). We can set up two twin primes with values of 299,999,999,999,953 and 299,999,999,999,951 or 2.99 x 10^{14}(cf. Kurzweg, 2016; Sebah & Gourdon, 2002). We can see that these two numbers are not divisible by any even number, nor by a number ending with 0 or 5. The test of divisibility, by 7, states that the last three digits should be taken off the number, and deducted from the remaining digits, whichever is larger. If the resultant number is not exactly divisible by 7, then the original number is not divisible by 7 (Maths Smart, 2013).

In this case, the numbers are both not divisible by 7. We can, therefore, conclude that we can make ‘\(n\)’ as large as we can, and use any of the terms above to generate twin primes. We can also, therefore, generalize as \([30 \ (10^z - 1) -17]\) and \([30 \ (10^z-1)-19]\) where, the power \(Z\), is astronomically a huge number to which 10 is raised, such as a zillion or quintillion or octillion. We subtract 1 from it to leave us with a number which is made up of digits of 9, for example, the gigantic number 999,999,999,999,999,999,999,999,999.

When we multiply this number by 30 and subtract 17 and 19 from the resulting number respectively, we obtain resultant numbers that always end up with the last three digits as 951 and 953 respectively. The sums of all the digits in these numbers give us even numbers, which means they are not divisible by either 3 or 9. We chose the power \(Z\) as the symbol of an exceptionally gigantic number, because \(Z\) is the last letter of the alphabet.

VII. Uses and Practical Applications of Twin Prime Numbers

We can use twin primes in many ways, in cryptology or encoding a secret language (cf. Alan Turing), or in medicine in naming unique drugs or viruses such as SARS, CORONAVIRUS, MERS, or in astronomy, in naming newly discovered planets, asteroids, stars, and constellations, as twin primes are peculiar, and they do not recur in number space, nor are they divisible by any number, except by themselves, and 1 (Wong, 2013). We can liken twin primes to the Kondratieff cycle in Economics, which is a long cycle with periodicity that lasts between 40 to 60 years(Ganti, 2020).
We can also, in line with demands for non-recurring numbers for use in the sciences and industry, envisage a new series distribution given by reciprocals of Euler’s e thus

\[(1+1/e)^n \text{ for } n=0 \text{ to } n=\infty. 1/e =0.367886456.\]

Therefore, the first term in the series is 1, followed by 1.367886456, then 1.367886456², 1.367886456³, +……….+ 1.367886456^n.

These numbers also produce unique irrational numbers, which can be used in many applications just as the twin prime numerals.

VIII. A Test for Twin Prime Numbers

We can use the pairs of terms (2n+1) and (2n-1); or (30n-1) and (30n+1); and (30n-17) and (30n-19) to produce twin prime numbers with a difference of 2. We will need to test the numbers generated by having a computerized algorithm flowchart thus

1. Use (2n+1) and (2n-1) to generate pairs of twin primes. You can also use the terms derived by this author (30n-1) and (30n+1) on one side, or (30n-17) and (30n-19) on the other side.
2. Find out whether the numbers generated by these terms end with the digits 1, 3, 7, and 9. If yes, proceed to the next stage.
3. We need to test using Fermat’s composite test whether numbers generated by step 1 are divisible by 3, 7, 11, and 13. If yes, discard them. If no, go to the next step.
4. Find the square root of the number, and if it is a perfect square, reject it. If it is not a perfect square, move on to the next stage.
5. List all numbers tested which have successfully passed these steps as twin primes, if they have a difference of 2, end with the digits 1, 3, 7, and 9 and they are not divisible by any number except by 1 and themselves.

IX. Conclusion

We can, therefore, assert that we can generate infinite series of twin prime numbers using the pair of terms (30n-1) and (30n+1) on the one hand, and on the other side, the dual terms (30n-17) and (30n-19) as well as the other duo terms tabulated above. However, numbers that are generated by all the terms of the arithmetic series produced in this article have to undergo the examination for compositeness by using Fermat’s method. Twin prime numbers have numerous practical applications in medicine, pharmacology, astronomy, cryptology, data science, and machine learning, among many other uses.

References Références Referencias

25. WolframMathWorld(n.d.) Euler’s 6n+1 Theorem.

Bibliography

11. Nicely, T. (1999) Enumeration to 1.6×10^{15} of the twin primes and Brun’s constant
 http://www.trnicely.net/twins/twins/twins2.html
 Tao, T’s blog.terrytao.wordpress.com/tag/yoichi-motohashi/

Acknowledgements

I want to thank God first for giving me strength to do this work. Secondly, I wish to acknowledge
the huge support given me by Mr Eugene Owusu-Agyeman who constantly urges me to achieve
higher goals and, who generously agreed to foot the bill for this publication. Lastly but not the least,
I wish to thank my friend and work colleague, Mr Anderson Malumo, who always gives me positive
feedback whenever I share my work with him. I am eternally grateful to all these, including my close
associates and family members in Ghana.

Note

The author is Head of Research at ZCAS University in Lusaka, Zambia. He is originally from
Ghana but has lived and taught in Zambia for the last 29 years. Before coming to Zambia in 1991,
he had taught for 11 years in Nigeria, and 10 years in his native country, Ghana. His teaching
career started in 1970 in Ghana after completing a 4 year Teacher Training course at Komenda
Teachers’ Training College. He attended the University of Ghana in 1975 where he read Economics
with Geography and Statistics. In 2000, he earned an MPA degree with distinction from the University
of South Africa. He recently completed an MBA degree through the University of Zambia’s 100
per cent online degree programme in conjunction with Astria Learning which is based in the USA.
This author enjoys writing poetry and short stories and he has published two books of poetry and a
book on Fufu, Ghana’s staple food. His teaching interests are vast as he has lectured in many subject
areas in half a century of teaching. He is married with two grown-up daughters and two grown-up
step-sons. He is an Executive Board member of the Economic Association of Zambia as well as a
member of International Round Table which convenes yearly at Oxford University in the UK.
Analysis and Calculation of Energy Indicators based on the Formation of the Predicted Value of the Total and Specific Energy Consumption

By I. U. Rakhmonov
Tashkent State Technical University

Abstract- Accurate forecasting of electricity consumption determines the success of industrial enterprises. Each enterprise, having an accurate prediction of the amount of power consumed, strictly controls it, since deviations entail disruptions in work, is subject to fines. Power consumption forecasting for a certain period is the most urgent task in the today’s electricity market. Existing forecasting methods have individual characteristics and have their own advantages and disadvantages. The choice of forecasting methods depends on such major factors as the time for which the forecasting is performed, as well as the amount of information.

Keywords: forecasting method, power consumption, specific energy consumption, products, raw materials, technological factors, production factors, calculation accuracy, energy indicators, components of the technological process.

GJSFR-F Classification: MSC 2010: 83C40

Strictly as per the compliance and regulations of:

© 2020. I. U. Rakhmonov. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Analysis and Calculation of Energy Indicators based on the Formation of the Predicted Value of the Total and Specific Energy Consumption

I. U. Rakhmonov

Abstract: Accurate forecasting of electricity consumption determines the success of industrial enterprises. Each enterprise, having an accurate prediction of the amount of power consumed, strictly controls it, since deviations entail disruptions in work, is subject to fines. Power consumption forecasting for a certain period is the most urgent task in the today’s electricity market. Existing forecasting methods have individual characteristics and have their own advantages and disadvantages. The choice of forecasting methods depends on such major factors as the time for which the forecasting is performed, as well as the amount of information. When forecasting power consumption, it is necessary to take into account various factors related to the technological features of production, organization of equipment operation, etc. The present article describes the proposed method for determining the forecasted values of power consumption parameters in terms of total and specific power consumption, which differs from the existing methods in that it takes into account, when forecasting power consumption parameters, the features of production that characterize the production process, the power consumption modes of process equipment, and the impact of technological and operational factors on energy performance that affect the forecast of readings. Accounting for the above factors can significantly simplify and improve the accuracy of forecasting calculations. When determining the forecast values, the components of electricity consumption for the main, auxiliary and additional production are directly included in the calculation. In addition, the method allows to investigate and optimize the power consumption modes of both a separate production unit and the enterprise as a whole in conjunction with the indicators of processed products and components of the technological process used. The reliability of the method is justified by calculating the energy indicators of a specific section rolling shop of a steel industry.

Keywords: forecasting method, power consumption, specific energy consumption, products, raw materials, technological factors, production factors, calculation accuracy, energy indicators, components of the technological process.

I. Introduction

The resulting indicators of energy saving are the reduction in the specific consumption of energy resources per unit of industrial production. The complexity of the problem of energy conservation lies in the fact that this indicator is a function of many variables - quantitative and qualitative indicators of production. Considering this problem in terms of power consumption, it can be argued that, in addition to electrical factors, both technological and operational, as well as factors causing deviations from the norms of consumption of raw materials, intermediate products and auxiliary
components, should be involved in the analysis and calculation of specific energy consumption, as well as in identifying reserves of savings. Technological process (compressed air, oxygen, water, etc.). The latter, to one degree or another, are usually taken into account, but are not directly included in the calculation of standards. In many cases, this interferes with an objective assessment of energy performance. The increasing scale of electrification of enterprises requires continuous improvement of methods for analysis, assessment and calculation of energy consumption levels, especially in industry, which accounts for more than half of all electricity produced. Although at present there are a fairly large number of methods for predicting energy consumption, the results of their application do not always reflect the real situation. In this regard, we set the task of scientifically-based calculation, analysis and forecasting of power consumption for each production, taking into account its specific features [1,2].

Ferrous metallurgy has a number of specific production features that distinguish it from other industries. Existing methods for forecasting electricity do not take into account these features that characterize the production process, modes of power consumption of technological equipment, as well as the influence of technological and operational factors on energy performance. In addition, energy services are forced to normalize, evaluate and distribute energy resources based on experience and intuition, taking into account data on the actual and planned performance of individual enterprises, which leads to certain inaccuracies and errors. It should be noted that power consumption depends on the quality of the metal, on the technical perfection of technological equipment and the production process. Sometimes, to obtain 1 ton of finished products, it is necessary to process several tons of metal. And if the organization of production is not perfect, then there may be excess losses and, accordingly, energy overruns. Therefore, today it is relevant to improve the work on forecasting electricity [2,3,4].

II. The Main Part

Assessment of the levels of absolute and specific energy consumption of integrated production, which includes a number of independent units, requires taking into account a large number of indicators.

The complexity of the analysis of power consumption modes and the calculation of energy indicators of ferrous metallurgy enterprises is caused by a number of reasons. Firstly, the range of finished products of the enterprise is very wide, has dozens of items and various energy intensity. At the same time, energy accounting, both for each production and the plant as a whole, is single. Secondly, a number of industries receive part of the intermediate production through internal and external production relations, while at the same time, they sell a certain amount of their products to the side. At the same time, depending on which production unit received the intermediate products from the outside, and what is the number of processing conversions, differences in energy consumption are produced [5,6].

Currently, due to the lack of developed methods for accounting for the above features, forecasting is carried out according to the general indicators of energy consumed from the network and the number of finished products. Naturally, the results of such forecasting calculations in some cases are inaccurate or erroneous and do not reflect the actual level of power consumption.

The task is to find ways to take into account the characteristics of production with a prerequisite for reflection in the calculations for predicting the energy intensity...
of processes. A technique is proposed for predicting energy indicators for a complex of industries as a whole, taking into account the above requirements.

To ensure reliable forecasting, it is necessary to study the patterns of change in the energy intensity of products and determine the conditions under which a change in time of energy consumption indicators can change significantly. In addition, the accuracy of forecasting is influenced by the development of new technologies, the improvement of equipment, the scale of modernization, which are different in each industry. The energy intensity of products and the level of energy consumption also depend on changes in the structure of energy consumption, and the latter depends on the need for such components of the process as: compressed air, oxygen, nitrogen, etc. [7,8,9].

Therefore, it is possible to formulate a set of tasks related to the above factors in order to increase the accuracy of forecasting. According to the proposed method, the projected total electric energy consumption of the enterprise is divided into the following components:

- Energy consumption by enterprises where equipment does not change during the entire forecast period and traditional technologies are applied \((W_b)\);
- Energy consumption by enterprises where it is planned to modernize technological equipment, switch to a new technology \((W_m)\);
- Energy consumption by new enterprises, with new equipment and technology \((W_n)\).

The projected energy consumption will be:

\[
W = W_b + W_m + W_n ;
\]

(1)

or

\[
W = \Pi (\beta_b d_b + \beta_m d_m + \beta_n d_n) ;
\]

(2)

where \(\Pi\) is the number of planned products; \(\beta_b, \beta_m, \beta_n\) - the share of planned types of products attributable to the relevant enterprises; \(d_b, d_m, d_n\) - respectively, the specific consumption of electricity.

The planned output for the forecast period \((\Pi)\) and, accordingly, the shares of existing, modernized and new industries \((\beta_b, \beta_m, \beta_n)\) are determined in accordance with the plan for the future development of the industry.

The I level of power consumption \(W_1\) of the production unit for the production of intermediate product \(\Pi_1\) includes the specific consumption \(e_1\) of electricity \(W_1\) for the production of products \(\Pi_1\) and the specific consumption \(q_1\) of product \(\Pi_1\) per unit of final product \(F\).

The II level of power consumption \(W_2\) of the production unit for the production of process components and secondary energy resources \(B\) includes specific costs \(e_2\) of electricity \(W_2\) for product \(B\) and specific consumption \(q_2\) of product \(B\) per unit of final product \(F\).

The III level of other electricity costs \(W_3\) for the production of final products includes the specific consumption of \(e_3\) electric power \(W_3\) per unit of final product \(F\).

It should be noted that the above levels, in addition to indicators of energy consumption, also include indicators of the consumption of raw materials and technological components.
The predicted values of specific electricity consumption by levels are determined by the following expressions:

a) The specific energy consumption for the production of this workshop is calculated according to the following formulas:
 1. For tier I
 \[
 e_1 = \frac{W_1}{\Pi_1};
 \]
 (3)
 2. For tier II
 \[
 e_2 = \frac{W_2}{B};
 \]
 (4)
 3. For tier III
 \[
 e_3 = \alpha_3 = \frac{W_3}{F}.
 \]
 (5)

b) The specific consumption of intermediate production products, technology components per unit of final product can be calculated by the formulas:
 1. For tier I
 \[
 q_1 = \frac{\Pi_1}{F};
 \]
 (6)

Fig. 1: The scheme for the formation of the predicted specific energy consumption

The predicted values of specific electricity consumption by levels are determined by the following expressions:

- Level 1
- Level 2
- Level 3
for tier II

\[q_2 = \frac{B_i}{F} \] \hspace{1cm} (7)

The specific energy consumption of the enterprise is determined by the components of each level, using the following expressions:

\[a_1 = \varepsilon_1 \cdot q_1 \] \hspace{1cm} (8)

\[a_2 = \varepsilon_2 \cdot q_2 \] \hspace{1cm} (9)

\[a_3 = \varepsilon_3 \] \hspace{1cm} (10)

Therefore, the total specific energy consumption will be:

\[d_f = \sum_{1}^{n} \alpha_1 + \sum_{1}^{n'} \alpha_2 + \alpha_3 \] \hspace{1cm} (11)

where \(n, n' \) are the number of levels of types I and II, respectively, which characterize the total value of the specific power consumption of the main and auxiliary industries.

The developed method for generating the predicted specific energy consumption by types of energy consumption and production processes (Fig. 1) can significantly simplify and improve the accuracy of calculations. This allows you to directly include in the calculation the component values of specific electricity consumption and indicators of individual energy-intensive facilities. The considered parameters are taken from the reporting data. In addition, they are considered, taken into account and controlled separately as in-plant indicators, without a direct link to the general production specific power consumption factors (for example, electric steel furnaces, compressors, etc.) [10,11].

The basis of the proposed method for forecasting energy consumption is, firstly, the division of the total value of this consumption into three categories:

1) Electricity consumption by existing and newly commissioned enterprises, in which existing equipment is stored in the forecast period;

2) Energy consumption by modernized enterprises;

3) Energy consumption by enterprises commissioned in the forecast period with new equipment and new technologies.

Secondly, differentiation is carried out within each category:

1) Electricity consumption by the main production units;

2) Energy consumption by type of energy-intensive auxiliary needs;

3) Other expenses.

As a result, all energy consumption by the industry and its units is differentiated and each calculation can be performed by levels, i.e. make it extremely easy. The calculation allows you to take into account the specifics of technological progress in each of the links in production.

As the basic (initial) data for metallurgical enterprises, the energy consumption indicators of the corresponding production facilities with operating equipment are taken.

As a result, the electricity demand for a given perspective in the industry (\(W_b \)) can be determined based on the values of \(\Pi_{\alpha}, B_{\alpha}, F_{\alpha} \).
Where

\[W_b = d_b \cdot F_b. \] (12)

The proposed method for determining the predicted value of specific electricity consumption can be applied in industrial enterprises, as well as by type of product of the main divisions of the enterprise for short-term forecasting [12-14].

The reliability of the proposed method is demonstrated as an example by determining the energy indicators of the section rolling shop №1 equipped with traditional technology equipment for the main types of products.

The initial data for the calculation is the products of the section rolling shop №1, shown in table 1.

The value of the specific energy consumption for the production of a given technological cycle by production units is calculated according to formulas 2-4:

for block I:

for ball rolling \(\varnothing 100 \) \(- e_{100} = \frac{111959.4}{3167} = 35.3 \text{kW} \cdot \text{h} / \text{t} \);

\[\text{Table 1: The main energy indicators of the rolling shop №1} \]

<table>
<thead>
<tr>
<th>№</th>
<th>Type of product</th>
<th>Output volume</th>
<th>Heat consumption</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(W_{tech})</td>
</tr>
<tr>
<td>1</td>
<td>Ball rolling (\varnothing 100)</td>
<td>3167</td>
<td>1254</td>
<td>111959.4</td>
</tr>
<tr>
<td>2</td>
<td>Ball rolling (\varnothing 68)</td>
<td>8573</td>
<td>3568</td>
<td>351861</td>
</tr>
<tr>
<td>3</td>
<td>Ball rolling (\varnothing 40)</td>
<td>431</td>
<td>568</td>
<td>36879</td>
</tr>
<tr>
<td></td>
<td>the section rolling shop №1</td>
<td>12171</td>
<td>5390</td>
<td>500699</td>
</tr>
</tbody>
</table>

for ball rolling \(\varnothing 68 \) \(- e_{68} = \frac{351861}{8573} = 41 \text{kW} \cdot \text{h} / \text{t} \);

for ball rolling \(\varnothing 40 \) \(- e_{40} = \frac{36879}{431} = 85.6 \text{kW} \cdot \text{h} / \text{t} \).

The specific consumption of intermediate production products, technology components per unit of final product is calculated according to formulas 5-6:

for block I:

Ball rolling \(\varnothing 100 \) \(- q_{100} = \frac{3167}{12171} = 0.26 \text{t} / \text{t} \);
Ball rolling Ø 68 - $q_{68} = \frac{8573}{12171} = 0,7 \, t/t$;

Ball rolling Ø 40 - $q_{40} = \frac{431}{12171} = 0,03 \, t/t$.

The total specific energy consumption for the I block is determined by the formula (8):

$$\sum e_i = 35,3 \cdot 0,26 + 41 \cdot 0,7 + 85,6 \cdot 0,03 = 40,5 \, kW \cdot h/t.$$

According to the formula (4), we calculate the value of the specific energy consumption for the production of a given technological cycle by production units:

for block I:

for ball rolling Ø 100 - $\gamma_{100} = \frac{66782,8}{1254} = 53,2 \, kW \cdot h / Gkal$;

for ball rolling Ø 68 - $\gamma_{68} = \frac{209882}{3568} = 58,8 \, kW \cdot h / Gkal$;

for ball rolling Ø 40 - $\gamma_{40} = \frac{21998}{568} = 38,7 \, kW \cdot h / Gkal$.

By the formula (7), we calculate the specific heat energy consumption per unit of final product:

for block II:

for ball rolling Ø 100 - $\omega_{100} = \frac{1254}{12171} = 0,1 \, Gkal / t$;

for ball rolling Ø 68 - $\omega_{68} = \frac{3568}{12171} = 0,3 \, Gkal / t$;

for ball rolling Ø 40 - $\omega_{40} = \frac{568}{12171} = 0,05 \, Gkal / t$.

The total specific energy consumption for block II is determined by the formula (3.9):

$$\sum \alpha_i = 53,2 \cdot 0,1 + 58,8 \cdot 0,3 + 38,7 \cdot 0,05 = 25 \, kW \cdot h / t$$

According to the formula (5), we calculate the value of the specific energy consumption by production units for block III:

for ball rolling Ø 100 - $\mu_{100} = \frac{17677,8}{12171} = 1,56 \, kW \cdot h / t$.
for ball rolling $\varnothing 68 - \mu_{68} = \frac{55557}{12171} = 4.56 \text{ kW} \cdot \text{h} / \text{t}$;

for ball rolling $\varnothing 40 - \mu_{40} = \frac{5823}{12171} = 0.5 \text{ kW} \cdot \text{h} / \text{t}$.

The total specific energy consumption for block III will be:

$$\alpha_{np} = 1.56 + 4.56 + 0.5 = 6.56 \text{ kW} \cdot \text{h} / \text{t}.$$

According to the formula (10), we calculate the total specific energy consumption for the workshop:

$$d_z = 40.5 + 25 + 6.56 = 72 \text{ kW} \cdot \text{h} / \text{t}.$$

According to formula (11), the need for electricity for a given perspective in the industry (W_b) is determined:

$$W_b = 72 \cdot 12171 = 876312 \text{ kW} \cdot \text{h}.$$

According to the calculation indices db, it is possible to determine the predicted values of the specific and absolute energy consumption of the enterprises where modernization is planned (d_m, W_m), and for each level, in accordance with the scheme (Fig. 1), the following are calculated:

for tier I

$$d_m = \frac{e_b \cdot \Pi_b \pm \sum_{i=1}^{m} \Delta W_m}{\Pi_b + \Delta \Pi_m};$$

(13)

for tier II

$$d_{m_2} = \frac{\alpha_b \cdot B_b \pm \sum_{i=1}^{m} \Delta W_m}{B_b + \Delta B_m},$$

(14)

where m is the number of units or processes to be modernized; ΔW_m—energy saving due to modernization of technological equipment.

Using the formula (9), the predicted values of the consumed raw materials and the flow rate of the components of the technological process q_2 are determined.

For enterprises with new, more advanced technologies and equipment (d_n and W_n) for given Π, B, F, the calculation of electricity demand is performed by the same method as on the basis of design data.

Values of reliable data for individual indicators - projected products, consumption of process components, etc. can be determined by expert judgment.

Thus, according to the proposed method, for each industry, it is possible to obtain the necessary set of mathematical models that can improve the accuracy of forecasting power consumption, as well as flexibly and quickly carry out their correction for any technical and technological changes in individual links of each production.
III. Conclusions

1. A method for forecasting power consumption parameters has been developed, which allows one to study and optimize power consumption modes of both a separate production unit and the enterprise as a whole in conjunction with indicators of processed products and used components of the technological process.

2. It has been established that the method for determining the predicted specific energy consumption allows us to more fully investigate the trends and patterns of changes in the specific and total energy consumption, taking into account the complex influence of technological and production factors, and allows us to significantly simplify and improve the accuracy of calculations.

References Références Referencias

On a Metric on the Space of Monetary Risk Measures

By A. A. Zaitov
Tashkent Institute of Architecture and Civil Engineering

Abstract: We introduce a metric on the space of monetary risk measures, which extends the given metric on the initial compactum. Then we show that the point-wise convergence topology is weaker than a topology induced by this metric in the space of monetary risk measures.

Keywords and phrases: compactum, metric, monetary risk measure.

GJSFR-F Classification: MSC 2010: 28C20, 52A30, 54C10
On a Metric on the Space of Monetary Risk Measures

A. A. Zaitov

Abstract: We introduce a metric on the space of monetary risk measures, which extends the given metric on the initial compactum. Then we show that the point-wise convergence topology is weaker than a topology induced by this metric in the space of monetary risk measures.

Keywords and phrases: compactum, metric, monetary risk measure.

I. Introduction

The financial market faces risks arising from many types of uncertain losses, including market risk, credit risk, liquidity risk, operational risk, etc. In 1988, the Basel Committee on Banking Supervision proposed measures to control credit risk in banking. A risk measure called the value-at-risk, acronym VaR, became, in the 1990s, a tool of risk assessment and management for banks, securities companies, investment funds, and other financial institutions in asset allocation and performance evaluation. The VaR associated with a given confidence level for a venture capital is the upper limit of possible losses in the next certain period. In 1996 the Basel Committee on Banking Supervision endorsed the VaR as one of the acceptable methods for the bank’s internal risk measure. However, due to the defects of VaR, a variety of new risk measures came into being. For an overview of the subject, we refer to [2]. The present paper focuses on the definition the distance between normed monetary risk measures.

Assume that all possible states and events that may occur at the terminal time are known. Namely, a measurable space \((X; F)\) is given. The financial position (here refers to the wealth deducted investment cost) is usually described by a measurable function \(\varphi\) on \((X; F)\). If we assume that a probability measure \(\mathbb{P}\) is given on measurable space\((X; F)\), the financial positions are usually described by random variables \(\varphi\) on \((X; F; \mathbb{P})\). To facilitate the notation and description, we use \(\varphi = -\bar{\varphi}\) to denote the potential loss at the terminal time of trading. Here the potential loss is relative to a reference point in terms. If \(\varphi\) is a negative value, it indicates a surplus.

A risk measure is a numerical value \(\mu(\varphi)\) to quantify the risk of a financial position (it may be a potential loss or a surplus as well) \(\varphi\). If we denote the set of all financial positions to be considered by \(G\), a risk measure \(\mu\) is a map from \(G\) to \(\mathbb{R}\). Usually, they take \(L^\infty(X; F; \mathbb{P})\) or \(L^\infty(X; F)\) as the set of all financial positions \(G\) or \(G(R)\), where the former is the set of all bounded \(F\)-measurable functions on \((X; F)\), endowed with the uniform norm \(\|\cdot\|_\infty\), and the latter is the set of equivalence classes of the...
former under probability P. In the former case, the states and the probabilities of the possible events are unknown or are not consensus in the market, and then the risk measure is called model-free. In the latter case, the risk measure is called model-dependent. In the model-dependent case, naturally, we always assume that the risk measure μ satisfies the following property: If $\varphi = \psi$ P-a.s., then $\mu(\varphi) = \mu(\psi)$.

Definition 1.1 A map μ from G to \mathbb{R} is called a monetary risk measure, abbreviated as risk measure, if it satisfies two conditions:

1) **Monotonicity:** For all $\varphi, \psi \in G$ satisfying $\varphi \leq \psi$, it holds that

$$\mu(\varphi) \leq \mu(\psi);$$

2) **Translation invariance:** For all $\varphi \in G$ and any real number α, it holds that

$$\mu(\varphi + \alpha) = \mu(\varphi + \alpha) + \alpha.$$

It is known that the algebra $L^\infty(X; B(X); P)$ is isomorphic to the algebra (X) of all continuous functions on a compact Hausdorff space X (to be more precise, X is so-called hyperstonean compact). Thus the above notion of financial position can be interpreted as an element of the algebra $C(X)$, while the monetary risk measure can be considered as a map from $C(X)$ to \mathbb{R}.

In the present paper, we consider the problem in a more general setting, where financial positions are interpreted as elements of the algebra $C(X)$, where X is a compact Hausdorff space. Then the algebra $C(X)$ plays a role of the set G of all financial positions.

A monetary risk measure $\mu: C(X) \to \mathbb{R}$ is called normed if

3) $\mu(1_X) = 1$.

In works [4] - [22] normed monetary risk measures are called as order-preserving functionals, and the set of such functionals is denoted by $O(X)$. The mentioned papers were devoted the study of $O(X)$. We consider $O(X)$ as a subspace of the Tychonoff product $\mathbb{R}^{C(X)}$. The base of the induced topology consists of the sets of the form

$$\langle \mu; \varphi_1; \ldots; \varphi_n; \varepsilon \rangle = \{ \nu \in O(X): |\mu(\varphi_i) - \mu(\varphi_i)| < \varepsilon; i = 1; \ldots; n \},$$

where $\mu \in O(X)$, $\varphi_i \in C(X)$, $i = 1, \ldots, n$, and $\varepsilon > 0$. Note that the induced topology and the point-wise convergence topology coincide. For every compact Hausdorff space X, the space $O(X)$ is also a compact Hausdorff space. $O(X)$ is a compact sublattice of $\mathbb{R}^{C(X)}$.

A closed subset A of $O(X)$ is called O-convex if for each $\mu \in O(X)$ with $\inf A \leq \mu \leq \sup A$ we have $\mu \in A$. It is known ([5], Lemma 3) that for each map $f: X \to Y$ and $\nu \in O(Y)$ the preimage $O(f)^{-1}(\nu)$ is an O-convex subset of $O(X)$.

Proposition 1.1: Let A_1, A_2 be O-convex subsets of $O(X)$. Then $A_1 \cap A_2$ is an O convex subset of $O(X)$.

Proof. The proof consists of directly checking.

Let X, Y be compact Hausdorff spaces, $f: X \to Y$ be a continuous map. Then a map $O(f): O(X) \to O(Y)$, defined as $O(f)(\mu)(\varphi) = \mu(\varphi \circ f)$, $\varphi \in C(Y)$, is

Ref

5. T. Ro zul, Topology of the space of order-preserving functionals. Bulletin of the

Continuous. So, the monetary risk measures \(\mu \) and \(O(f)(\mu) \) act the same rule. Let us denote \(\mu_X = \mu, \mu_Y = O(f)(\mu) \). Then the discussed situation is bring to light: \(\mu_X(\psi) = \mu(\psi), \psi \in \mathcal{C}(X) \), and \(\mu_Y(\varphi) = \mu(\varphi \circ f), \ \varphi \in \mathcal{C}(Y) \), i. e. \(\mu_X \) and \(\mu_Y \) both act by the rule \(\mu \).

Let \(\mu_i \in O(X), \ i = 1, 2 \). We say that \(\mu_1 = \mu_2 \) if \(\mu_1(\varphi) = \mu_2(\varphi) \) for all \(\varphi \in \mathcal{C}(X) \). The following statement is rather obvious.

Proposition 1.2: Let \(\mu_i \in O(X), \ i = 1, 2 \). Then \(\mu_1 = \mu_2 \) if and only if \(\text{supp} \mu_1 = \text{supp} \mu_2 \) and \(\mu_2 = O(h)(\mu_1) \), where \(h : \text{supp} \mu_1 \to \text{supp} \mu_2 \) is the identity map.

Note that if \(f \) is a surjective map, then \(O(f) \) is also a surjective map. If \(X \) is a closed subset of \(Y \) and \(f : X \to Y \) is an embedding, then \(O(f) : O(X) \to O(Y) \) is also an embedding.

Let \(X \) be a compact Hausdorff space and \(\mu \) be a monetary risk measure. \(\mu \) is centered on a closed subset \(A \) of \(X \) if \(\mu \in O(A) \). Note that (Lemma 4, [4]) for a closed subset \(A \subset X \) a monetary risk measure \(\mu \in O(X) \) is supported on \(A \) if and only if for every pair \(\varphi, \psi \in \mathcal{C}(X) \) such that \(\varphi|_A = \psi|_A \) one has \(\mu(\varphi) = \mu(\psi) \). The smallest (concerning inclusion) closed subset \(\text{supp} \mu \) of \(X \) on which \(\mu \) is centered is said to be a support of a monetary risk measure \(\mu \). Evidently,

\[
\text{supp} \mu = \bigcap \{ A : A \text{ is a closed set in } X \text{ and } \mu \in O(A) \}.
\]

For a point \(x \in X \) the Dirac measure \(\delta_x \), defined by \(\delta_x(\varphi) = \varphi(x) \), \(\varphi \in \mathcal{C}(X) \), is a monetary risk measure, centered at the singleton \(\{ x \} \), i. e. \(\text{supp} \delta_x = \{ x \} \).

A subset \(L \subset \mathcal{C}(X) \) is called an \(A \)-subspace if \(0_X \in L \) and for every \(\varphi \in L \) and every \(c \in \mathbb{R} \) we have \(\varphi + c \chi \in L \). According to the analog of the Hahn-Banach theorem (see, [4], [14]) for every normed monetary risk measure \(\mu : L \to \mathbb{R} \), there exists a normed monetary risk measure \(\bar{\mu} : \mathcal{C}(X) \to \mathbb{R} \) such that \(\bar{\mu}|_L = \mu \).

The space \(O(X) \) of monetary risk measure does not embed into any linear space with finite algebraic dimension if \(X \) consists of more than one point.

Example 1.1 [22]. Let \(X = \{ 0; 1 \} \) be a discrete two-point space. Then \(\mathcal{C}(X) = \mathbb{R}^2 \). Each functional \(\mu : \mathcal{C}(X) \to \mathbb{R} \) defined by the equality

\[
\mu(\varphi) = \alpha_1 \varphi(0) + \alpha_2 \varphi(1) + \alpha_3 \max\{ \varphi(0) + \lambda_1, \varphi(1) + \lambda_2 \} + \\
+ \alpha_4 \min\{ \varphi(0) + \lambda_3, \varphi(1) + \lambda_4 \} + \alpha(\varphi)f(\varphi(1) - \varphi(0))
\]

is a normed monetary risk measure. Here \(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 1 \) with \(\alpha_i \geq 0, \ i = 1, 2, 3, 4; \lambda_1, \lambda_2 \in [-\infty, 0] \) with max\(\{ \lambda_1, \lambda_2 \} = 0; \lambda_3, \lambda_4 \in [0, +\infty] \), with min\(\{ \lambda_3, \lambda_4 \} = 0; \)

\[
\alpha(\varphi) = \begin{cases}
\min\{ \alpha_1, \alpha_2 \}, & \text{if } \alpha_3 = \alpha_4 = 0, \\
\min\{ \alpha_1 + \alpha_3 + \alpha_4, \alpha_2 \}, & \text{if } \varphi(0) + \lambda_1 \geq \varphi(1) + \lambda_2 \text{ and } \varphi(0) + \lambda_3 \leq \varphi(1) + \lambda_4, \\
\min\{ \alpha_1 + \alpha_3, \alpha_2 + \alpha_4 \}, & \text{if } \varphi(0) + \lambda_1 \geq \varphi(1) + \lambda_2 \text{ and } \varphi(0) + \lambda_3 > \varphi(1) + \lambda_4, \\
\min\{ \alpha_1 + \alpha_4, \alpha_2 + \alpha_3 \}, & \text{if } \varphi(0) + \lambda_1 < \varphi(1) + \lambda_2 \text{ and } \varphi(0) + \lambda_3 \leq \varphi(1) + \lambda_4, \\
\min\{ \alpha_1, \alpha_2 + \alpha_3 + \alpha_4 \}, & \text{if } \varphi(0) + \lambda_1 < \varphi(1) + \lambda_2 \text{ and } \varphi(0) + \lambda_3 > \varphi(1) + \lambda_4,
\end{cases}
\]

and, finally, \(f : \mathbb{R} \to \mathbb{R} \) is a continuous non-decreasing function such that
(1*) \(f(0) = 0, \)
(2*) \(t \leq f(t) \leq 0 \) and concave at \(t \leq 0, \)
(3*) \(0 \leq f(t) \leq t \) and convex at \(t \geq 0. \)

Since the set of functions \(f \) considered in (1) and satisfying conditions (1*)–(3*), is uncountable, from here it follows that the space \(O(X) \) of normed monetary risk measure cannot be embedded in any space with finite (even countable) algebraic dimension if the compact \(X \) contains more than one point.

Example 1.1 shows that there exist extremely many monetary risk measures in practice. Further, a question arises whether one can evaluate the difference between distinct monetary risk measures. In other words, \textit{is it possible to specify a distance between monetary risk measures?}

It is known [4] that for a compact Hausdorff space \(X \) the equality \(w(X) = w(O(X)) \) holds, where \(w \) is the weight (i.e. the smallest cardinal number, which is the cardinality of an open base) of a topological space. From here follows that if \(X \) is a compactum then \(O(X) \) is a compactum, i.e. the space of normed monetary risk measures is metrizable compact space. Though for a metrizable compact space \(X \) the space \(O(X) \) is metrizable, the rule of definition distance between monetary measures still was not known. In the present paper for a given compact metric space \((X; \rho) \) we introduce a metric \(\rho_0 \) on the space \(O(X) \) of normed monetary risk measure. Besides, \(\rho_0 \) is an extension of the metric \(\rho \) over all \(O(X) \). Then we show that the metric \(\rho_0 \) generates a topology on the space \(O(X) \) stronger than the point-wise convergence topology on it.

II. Basic Constructions

For a compact Hausdorff space \(X \) we put

\[
X_1 = X_2 = X_3 = X, \quad X_{123} = X^3 = X_1 \times X_2 \times X_3, \quad X_{ij} = X^2 = X_1 \times X_2,
\]

and let

\[
\pi_{ij}^{123} : X_{123} \to X_{ij}, \quad \pi_{ij}^k : X_{ij} \to X_k, \quad 1 \leq i < j \leq 3, \quad k \in \{i, j\},
\]

be the corresponding projections. It is easy to see that

\[
O(\pi_{ij}^i)\cap O(\pi_{ij}^j) = O(X_{ij}), 1 \leq i < j \leq 3,
\]

\[
\bigcap_{1 \leq i < j \leq 3} O(\pi_{ij}^{123}) = O(X_{123}).
\]

\textbf{Theorem 2.1:} For every pair \((\mu_1; \mu_2) \in O(X_1) \times O(X_2)\) we have

\[
O(\pi_1^{12})\cap O(\pi_2^{12}) = \emptyset.
\]

\textbf{Proof:} At first we consider a particular case: let \(\mu_1 = \delta_x \) and \(\mu = \delta_y \), where \(x \in X_1, \quad y \in X_2 \). The spaces \(O(X_1 \times \{y\}) \) and \(O(X_1 \times \{\delta_y\}) \) are homeomorphic. Indeed, one may determine the homeomorphism as the correspondence \(O(X_1 \times \{y\}) \ni \lambda_y \mapsto (\lambda, \delta_y) \in O(X_1) \times \{\delta_y\} \), where \(\text{supp} \lambda_y = \{(x, y) : x \in \text{supp} \lambda \} \), and monetary risk measures \(\lambda_y \) and...
λ act the same rule, i.e. \(\lambda_y(\varphi) = \lambda(\varphi \circ \pi_1^{12}) \), \(\varphi \in C(X_1 \times X_2) \). Consequently, \(O(\pi_1^{12})^{-1}(\delta_y) = O(X_1 \times \{y\}) \). Similarly, \(O(\pi_1^{12})^{-1}(\delta_x) = O(\{x\} \times X_2) \). It is easy to see that \(\delta_{(x, y)} \) is a unique monetary risk measure such that \(\delta_{(x, y)} \in O(\{x\} \times X_2) \times O(X_1 \times \{y\}) \). Thus, \(O(\pi_1^{12})^{-1}(\delta_x) \cap O(\pi_1^{12})^{-1}(\delta_y) = \emptyset \).

Now we consider the general case. We construct a set

\[
B = \{ \varphi \circ \pi_1^{12} + c_{X_1 \times X_2} : \varphi \in X, c \in \mathbb{R}, i = 1, 2 \}.
\]

Then \(B \) is an \(A \)-subspace in \(C(X_1 \times X_2) \). Define a functional \(\bar{\mu}_{12} : B \rightarrow \mathbb{R} \) as following

\[
\bar{\mu}_{12}(\varphi \circ \pi_1^{12} + c_{X_1 \times X_2}) = \mu_i(\varphi) + c, \quad i = 1, 2.
\]

It is easy to see that \(\bar{\mu}_{12} \) is translation invariance and normed.

We will show \(\bar{\mu}_{12} \) has monotonicity property. Taking \(\varphi \circ \pi_1^{12}, \psi \circ \pi_1^{12} \in B \) with \(\varphi \circ \pi_1^{12} \leq \psi \circ \pi_1^{12} \), we obtain \(\varphi \leq \psi \), and thence

\[
\bar{\mu}_{12}(\varphi \circ \pi_1^{12}) = \mu_i(\varphi) \leq \mu_i(\psi) = \bar{\mu}_{12}(\psi \circ \pi_1^{12}), \quad i = 1, 2.
\]

Take now \(\varphi \circ \pi_1^{12}, \psi \circ \pi_2^{12} \in B \) such, say, that \(\varphi \circ \pi_1^{12} \leq \psi \circ \pi_2^{12} \). Then

\[
\max\{\varphi(x) : x \in X\} \leq \min\{\psi(x) : x \in X\}.
\]

Choosing any \(a \in [\max\{\varphi(x) : x \in X\}, \min\{\psi(x) : x \in X\}] \), we see

\[
\bar{\mu}_{12}(\varphi \circ \pi_1^{12}) = \mu_1(\varphi) \leq a \leq \mu_2(\psi) = \bar{\mu}_{12}(\psi \circ \pi_2^{12}).
\]

One similarly can establish the monotonicity of \(\bar{\mu}_{12} \) in the case when \(\varphi \circ \pi_1^{12} \geq \psi \circ \pi_2^{12} \). Thus, \(\bar{\mu}_{12} \) is a normed monetary risk measure on the \(A \)-subspace \(B \).

By the analog of the Hahn-Banach theorem (see Page 3 of the present paper) \(\bar{\mu}_{12} \) has an extension \(\mu_{12} \) all over \(C(X_1 \times X_2) \), which is a normed monetary risk measure. We have

\[
O(\pi_1^{12})(\mu_{12})(\varphi) = \mu_{12}(\varphi \circ \pi_1^{12}) = \bar{\mu}_{12}(\varphi \circ \pi_1^{12}) = \mu_i(\varphi), i = 1, 2, \varphi \in C(X).
\]

Consequently, \(\mu_{12} \in O(\pi_1^{12})^{-1}(\mu_1) \cap O(\pi_2^{12})^{-1}(\mu_2) \). Theorem 2.1 is proved.

Denote \(\Lambda(\mu_1, \mu_2) = O(\pi_1^{12})^{-1}(\mu_1) \cap O(\pi_2^{12})^{-1}(\mu_2) \). An element \(\xi \in \Lambda(\mu_1, \mu_2) \) we call a \((\mu_1, \mu_2) \)-admissible monetary risk measure.

Theorem 2.1 yields the following statement.

Corollary 2.1: For normed monetary risk measures

\[
\mu_2 \in O(X_2); \quad \mu_{12} \in O(X_{12}); \quad \mu_{23} \in O(X_{23})
\]

such that

\[
O(\pi_1^{12})(\mu_{12}) = \mu_2 = O(\pi_2^{23})(\mu_{23}),
\]

there exists a \(\mu_{123} \in O(X_{123}) \) satisfying the equalities

\[
O(\pi_1^{123})(\mu_{123}) = \mu_{12} \quad \text{and} \quad O(\pi_2^{23})(\mu_{23}) = \mu_{23}.
\]

To adopt this statement, it is sufficient to note that

\[
O(\pi_2^{123})^{-1}(\mu_{12}) \cap O(\pi_2^{123})^{-1}(\mu_{23}) \neq \emptyset.
\]

In this case, we construct an \(A \)-subspace.
\[B = \{ \varphi \circ \pi_1^{123} + c_{x_1 \times x_2 \times x_3} : \varphi \in C(X^2), \quad c \in \mathbb{R}, \quad i = 1, 2 \} \]

in \(C(X^3) \) and repeat the analogous procedure as in the proof of Theorem 2.1.

Proposition 2.1 Let \(X \) be a compactum and a sequence \(\{ \mu_n \} \subset O(X) \) converges to \(\mu_0 \in O(X) \) concerning the point-wise convergence topology. Then for every open neighborhood \(U \) of the diagonal \(D(X) = \{ (x, x) : x \in X \} \) of \(X \) there exists a positive integer \(n \) and for each \(n' \geq n \) there exists a \((\mu_0, \mu_{n'}) \)-admissible monetary risk measure \(\mu_{0n'} \in O(X^2) \) such that \(\text{supp} \mu_{0n'} \subset U \).

Proof. The condition gives a sequence \(\{ \text{supp} \mu_n \} \) of closed subsets of \(X \). It is well known that for a compact Hausdorff space \(X \), its hyperspace \(\exp X \) also is a compact Hausdorff space as well. Where \(\exp X \) is the set of all nonempty closed subsets of \(X \), and \(\exp X \) is equipped with the Vietoris topology. So, the sequence \(\{ \text{supp} \mu_n \} \) has a limit. Let \(A = \lim_{n \to \infty} \text{supp} \mu_n \). Suppose \(A \neq \text{supp} \mu_0 \). Then Proposition 1.2 implies that \(\mu_0 \neq \lim_{n \to \infty} \mu_n \). The got contradiction shows that \(\lim_{n \to \infty} \text{supp} \mu_n = \text{supp} \mu_0 \).

Consider open neighborhood \(V_x \) of each point \(x \in \text{supp} \mu_0 \) such that \(V_x \times V_x \subset U \). Since \(\text{supp} \mu_0 \) is a compact set, its open cover \(\{ V_x : x \in \text{supp} \mu_0 \} \) has a finite subcover \(\{ V_k : k = 1, \ldots, l \} \), where \(V_k = V_{x_k} \). Owing to convergence \(\text{supp} \mu_n \to \text{supp} \mu_0 \) there exists a positive integer \(n \) such that \(\text{supp} \mu_n \subset (V_1, \ldots, V_l) \) for every \(n' \geq n \). Here

\[\langle V_1, \ldots, V_l \rangle = \left\{ F \in \exp X : F \subset \bigcup_{k=1}^{l} V_k \text{ and } F \cap V_k \neq \emptyset \text{ for each } k = 1, \ldots, l \right\} \]

is a basic open neighborhood of \(\text{supp} \mu_0 \) with respect to the Vietoris topology in \(\exp X \).

It is easy to see that \(\text{supp} \mu_{n'} \subset \langle V_1, \ldots, V_l \rangle \) if and only if

\[
\text{supp} \mu_{n'} \subset \bigcup_{k=1}^{l} V_k \text{ and for every } x \in \text{supp} \mu_0 \text{ there exists } y \in \text{supp} \mu_{n'} \text{ such that } (x, y) \in V_k \times V_k \text{ for some } k \in \{1, \ldots, l\} \tag{3}
\]

It remains to show that for every \(n' \geq n \) there exists \(\mu_{0n'} \in \Lambda(\mu_0, \mu_{n'}) \) such that \(\text{supp} \mu_{0n'} \subset \bigcup_{k=1}^{l} V_k \times V_k \). Suppose, that for some \(n' \geq n \) and every \(\xi \in \Lambda(\mu_0, \mu_{n'}) \) the intersection \(\text{supp} \xi \cap (X^2 \setminus U) \) is nonempty. Let \((x, y) \in \text{supp} \xi \cap (X^2 \setminus U) \). Then \((x, y) \in V_k \times V_k \) for all \(k = 1, \ldots, l \), which contradicts (3). The received contradiction finished the proof. Proposition 2.1 is proved.

III. ON A METRIC ON THE SPACE OF MONETARY RISK MEASURES

Let \((X, \rho)\) be a metric compact space. We suggest a distance function \(\rho_0 : O(X) \times O(X) \to \mathbb{R} \) as the following

\[
\rho_0(\mu_1, \mu_2) = \inf \{ \max \{ \rho(x, y) : (x, y) \in \text{supp} \xi \} : \xi \in \Lambda(\mu_1, \mu_2) \} \tag{4}
\]

The proof of the following statement leans on Proposition 1.1 and Lemma 3 [5] (see Page 3 of the present paper).
Proposition 3.1 For every pair \(\mu_1, \mu_2 \) of monetary risk measures there exists a \((\mu_1, \mu_2)\)-admissible monetary risk measure \(\mu_{12} \in \mathcal{O}(X^2) \) such that

\[
\rho_0(\mu_1, \mu_2) = \max \{ \rho(x, y) : (x, y) \in \text{supp}\, \mu_{12} \}.
\]

Theorem 3.1 The function \(\rho_0 \) is a metric on the space \(\mathcal{O}(X) \) of monetary risk measures, which is an extension of the metric \(\rho \) on \(X \).

Proof. Since each \(\xi \in \mathcal{O}(X^2) \) is monotone, then the inequality \(\rho \geq 0 \) immediately implies \(\rho_0 \geq 0 \). So, \(\rho_0 \) is nonnegative. It is clear that \(\rho_0 \) is symmetric.

Let \(\mu_1 = \mu_2 = \mu \). There exists a monetary risk measure \(\mu_{12} \in \mathcal{O}(\Delta(X)) \) such that \(\mu_{12} \in \mathcal{O}(\pi_1^{12})^{-1}(\mu_1) \cap \mathcal{O}(\pi_2^{12})^{-1}(\mu_2) \). Then

\[
\rho_0(\mu_1, \mu_2) \leq \max \{ \rho(x, x) : (x, x) \in \text{supp}\, \mu_{12} \} = 0.
\]

Inversely, let \(\rho_0(\mu_1, \mu_2) = 0 \). Then there exists \(\mu_{12} \in \mathcal{O}(\pi_1^{12})^{-1}(\mu_1) \cap \mathcal{O}(\pi_2^{12})^{-1}(\mu_2) \) such that \(\rho(x, y) = 0 \) for all \((x, y) \in \text{supp}\, \mu_{12} \). Consequently, \(\text{supp}\, \mu_{12} \) must lie in the diagonal \(\Delta(X) \). We have

\[
(\phi \circ \pi_1^{12})|_{\Delta(X)} = (\phi \circ \pi_2^{12})|_{\Delta(X)}, \quad \phi \in C(X).
\]

From here, with respect to Lemma 4 [4] (see Page 3 of the present paper) we get

\[
\mu_1(\phi) = \mu_{12}(\phi \circ \pi_1^{12}) = \mu_{12}(\phi \circ \pi_2^{12}) = \mu_2(\phi), \quad \phi \in C(X),
\]

i.e. \(\mu_1 = \mu_2 \).

Let us show that the triangle inequality is true as well. Take an arbitrary triple \(\mu_i \in \mathcal{O}(X), \ i = 1, 2, 3 \). Let \(\mu_{12}, \mu_{13} \in \mathcal{O}(X^2) \) be \((\mu_1, \mu_2)\)- and \((\mu_2, \mu_3)\)-admissible monetary risk measures such that

\[
\rho_0(\mu_1, \mu_2) = \max \{ \rho(x, y) : (x, y) \in \text{supp}\, \mu_{12} \} \quad \text{and} \quad \rho_0(\mu_2, \mu_3) = \max \{ \rho(x, y) : (x, y) \in \text{supp}\, \mu_{23} \},
\]

respectively. Using Corollary 2.1 one can point out a \(\mu_{123} \in \mathcal{O}(X_{123}) \) which satisfies the equalities

\[
\mathcal{O}(\pi_1^{123}),(\mu_{123}) = \mu_{12} \quad \text{and} \quad \mathcal{O}(\pi_2^{123}),(\mu_{123}) = \mu_{23}.
\]

We assume that \(\mu_{13} = \mathcal{O}(\pi_1^{123}),(\mu_{123}) \). Then \(\mu_{13} \) is a \((\mu_1, \mu_3)\)-admissible monetary risk measure. We have

\[
\rho_0(\mu_1, \mu_2) + \rho_0(\mu_2, \mu_3) = \max_{(x_1, x_2) \in \text{supp}\, \mu_{12}} \rho(x_1, x_2) + \max_{(x_2, x_3) \in \text{supp}\, \mu_{23}} \rho(x_2, x_3) = \max_{(x_1, x_2, x_3) \in \text{supp}\, \mu_{123}} \rho(x_1, x_2) + \max_{(x_1, x_2, x_3) \in \text{supp}\, \mu_{123}} \rho(x_2, x_3) \geq \max_{(x_1, x_2, x_3) \in \text{supp}\, \mu_{123}} \{ \rho(x_1, x_2) + \rho(x_2, x_3) \} \geq \max_{(x_1, x_2, x_3) \in \text{supp}\, \mu_{123}} \rho(x_1, x_3) = \max_{(x_1, x_2, x_3) \in \text{supp}\, \mu_{123}} \rho(x_1, x_3) = \max_{(x_1, x_3) \in \text{supp}\, \mu_{13}} \rho(x_1, x_3) \geq \rho_0(\mu_1, \mu_3),
\]

i.e. \(\rho_0(\mu_1, \mu_3) \leq \rho_0(\mu_1, \mu_2) + \rho_0(\mu_2, \mu_3) \).

For every pair of the Dirac measures \(\delta_x, \delta_y, x, y \in X \), the uniqueness of \((\delta_x, \delta_y)\)-admissible monetary risk measure \(\delta_{(x,y)} \in \mathcal{O}(X^2) \) implies that
\[
\rho_0(\delta_x, \delta_y) = \max\{\rho(x, y): (x, y) \in \text{supp} \delta_{(x,y)}\} = \rho(x, y).
\]

From here, we get that \(\rho_0\) is an extension of \(\rho\). Theorem 3.1 is proved.

The following affirmation states one of the remarkable properties of the introduced metric \(\rho_0\).

Proposition 3.2 \(\text{diam}(O(X), \rho_0) = \text{diam}(X, \rho)\).

Proof. The proof is clear.

Note that the point-wise convergence topology in the space \(O(X)\) weaker than a topology generated by the metric \(\rho_0\) in it.

Example 3.1 Consider a two-point set \(X = \{a, b\}\) with the metric \(\rho: X \times X \to \mathbb{R}\) defined as \(\rho(a, a) = \rho(b, b) = 0, \rho(a, b) = \rho(b, a) = 1\). Then the metric \(\rho_0\) generates the discrete topology in \(O(X)\).

Problem 3.1 For a given compactum \((X, \rho)\) construct a metric \(\rho_0\) on the space \(O(X)\) of monetary risk measures such that: the metric \(\rho_0\) extends the initial metric \(\rho\) on \(X\), and the metric \(\rho_0\) generates point-wise convergence topology on \(O(X)\).

REFERENCES

This page is intentionally left blank
Elliptic Blending with One-Equation Model

By M. M. Rahman, Xiaoqing Tian, Huachen Pan & A. K. M. Sadrul Islam

Hangzhou Dianzi University

Abstract- A wall-distance-free modification to Wray-Agarwal (WA) one-equation turbulence model is convoked using an elliptic relaxation approach to accurately accounting for non-local characteristics of near-wall turbulence. Model coefficients/functions are parameterized with the elliptic relaxation function to preserve the combined effects of near-wall turbulence and nonequilibrium. The characteristic length scale associated with the elliptic relaxation equation is formulated in terms of viscous and turbulent length scales in conjunction with the invariant of strain-rate tensor. Consequently, non-local effects are explicitly influenced by the mean flow and turbulent variables. A near-wall damping function is introduced to relax the viscous length-scale coefficient adhering to the elliptic relaxation model. Comparisons indicate that the new model improves the accuracy of flow simulations compared to the widely used Spalart-Allmaras model and remains competitive with the SST k-ω model. A good correlation is obtained between the current model and DNS/experimental data.

Keywords: damping function; wall-distance-free; elliptic blending; non-equilibrium flow.

GJSFR-F Classification: MSC 2010: 11G05

Strictly as per the compliance and regulations of:
Elliptic Blending with One-Equation Model

M. M. Rahman, Xiaoqing Tian, Huachen Pan & A. K. M. Sadrul Islam

Abstract - A wall-distance-free modification to Wray-Agarwal (WA) one-equation turbulence model is convoked using an elliptic relaxation approach to accurately accounting for non-local characteristics of near-wall turbulence. Model coefficients/functions are parameterized with the elliptic relaxation function to preserve the combined effects of near-wall turbulence and nonequilibrium. The characteristic length scale associated with the elliptic relaxation equation is formulated in terms of viscous and turbulent length scales in conjunction with the invariant of strain-rate tensor. Consequently, non-local effects are explicitly influenced by the mean flow and turbulent variables. A near-wall damping function is introduced to relax the viscous length-scale coefficient adhering to the elliptic relaxation model. Comparisons indicate that the new model improves the accuracy of flow simulations compared to the widely used Spalart-Allmaras model and remains competitive with the SST k-ω model. A good correlation is obtained between the current model and DNS/experimental data.

Keywords: damping function; wall-distance-free; elliptic blending; non-equilibrium flow.

I. Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>model closure coefficient</td>
</tr>
<tr>
<td>C_b</td>
<td>model closure coefficient</td>
</tr>
<tr>
<td>C_w</td>
<td>model closure coefficient</td>
</tr>
<tr>
<td>C_f</td>
<td>skin-friction coefficient</td>
</tr>
<tr>
<td>$C_{1k\epsilon}$</td>
<td>closure coefficients</td>
</tr>
<tr>
<td>$C_{2k\omega}$</td>
<td>closure coefficients</td>
</tr>
<tr>
<td>d</td>
<td>distance to the nearest wall</td>
</tr>
<tr>
<td>f_μ</td>
<td>eddy-viscosity damping function</td>
</tr>
<tr>
<td>f_1</td>
<td>blending function</td>
</tr>
<tr>
<td>f_R</td>
<td>elliptic blending function</td>
</tr>
<tr>
<td>h</td>
<td>channel height</td>
</tr>
<tr>
<td>k</td>
<td>turbulent kinetic energy</td>
</tr>
<tr>
<td>R</td>
<td>undamped eddy-viscosity; k/ω</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>S</td>
<td>mean strain-rate invariant</td>
</tr>
<tr>
<td>χ</td>
<td>undamped turbulent-to-laminar viscosity ratio</td>
</tr>
<tr>
<td>ω</td>
<td>specific turbulent dissipation rate</td>
</tr>
<tr>
<td>μ, μ_T</td>
<td>laminar and turbulent eddy viscstosities</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity</td>
</tr>
<tr>
<td>ρ</td>
<td>density</td>
</tr>
<tr>
<td>σ</td>
<td>Schmidt number</td>
</tr>
</tbody>
</table>

II. Introduction

One-equation turbulence models solve directly for the eddy-viscosity (μ_T) without computing the full range of turbulent time and length scales. This form of transport equation is attrac-
Elliptic Blending with One-Equation Model

tive due to its simplicity of implementation and less demanding computational requirements, compared with the standard two-equation k-ϵ and k-ω models. However, several one-equation eddy-viscosity (μ_T) turbulence models are unable to accurately predict non-equilibrium flows, e.g., wall-bounded flows in adverse pressure gradient with separation and reattachment. This can be largely attributed to the overestimation of μ_T by the model. Thus, the inclusion of an elliptic blending in the μ_T-transport equation may improve the prediction capability of one-equation model.

In particular, many turbulence models usually include the distance to the wall as an explicit parameter which hinders them from simulating complex flows involving multiple surfaces; the wall distance in this case becomes cumbersome to be defined accurately. The elliptic relaxation method is an excellent way to avoid the use of wall-distance in an eddy-viscosity turbulence model [1-10]. The wall blocking is governed by an elliptic partial differential equation (i.e., the Helmholtz-type equation) which accounts for non-local near-wall effects. Durbin et al. [7], Rahman et al. [8, 9] and Elkhoury [10] have employed a Helmholtz-type relaxation equation along with a one-equation model to account for the wall-blocking effect.

Recently, a new one-equation model, the Wray-Agarwal (WA) model based on $R = k/\omega$ [11, 12] has been proposed which has shown promise for accurately predicting many wall-bounded mildly separated flows. However, the model contains explicitly the distance from the wall. This paper proposes wall-distance-free (wdf) modifications to the WA model with an elliptic blending function. Nevertheless, the damping function is retained to relax the viscous length-scale coefficient embedded with the elliptic relaxation equation. The elliptic WA (EWA) model is applied to compute the fully-developed turbulent flow in a channel, the turbulent flow in an asymmetric planar diffuser and the flow over an Onera-M6 wing. Computations show that the EWA model improves the predictions compared to the original WA (OWA) model.

![Figure 1: Blending function distributions for turbulent channel flow](image)

III. Original WA(OWA) Model

The OWA model determines the undamped eddy-viscosity $R = k/\omega$ by the following transport equation [11, 12]:

$$Re_\tau = 395$$

$$f_1$$

$$f_R$$

$$y^+$$
\[
\frac{\partial \rho R}{\partial t} + \frac{\partial \rho U_j R}{\partial x_j} = \frac{\partial}{\partial x_j} \left[(\mu + \sigma R \mu_T) \frac{\partial R}{\partial x_j} \right] + C_1 \rho RS + \rho f_1 C_{2k} \frac{R}{S} \frac{\partial R}{\partial x_j} \frac{\partial S}{\partial x_j}
\]
\[- \rho (1 - f_1) \left[C_{2k} \left(\frac{R}{S} \right)^2 \frac{\partial S}{\partial x_j} \frac{\partial S}{\partial x_j} \right] \]

(1)

where the eddy viscosity \(\mu_T = f_\mu \rho R \) and other variables are evaluated as:

\[
f_1 = \tanh(\arg_1^d), \quad \arg_1 = C_b \nu + R \frac{\nu}{S \kappa^2 d^2}
\]

\[
f_\mu = \frac{\chi^3}{\chi^3 + C_w^3}, \quad \chi = \frac{R}{\nu}
\]

\[
C_1 = f_1 (C_{1kw} - C_{1ke}) + C_{1ke}, \quad \sigma_R = f_1 (\sigma_{kw} - \sigma_{ke}) + \sigma_{ke}
\]

where \(d \) is the normal distance from the wall and \(\nu \) represents the kinematic viscosity. The associated constants are [12]: \(C_{1kw} = 0.0833, C_{1ke} = 0.16, C_{2kw} = 1.22, C_{2ke} = 1.95, \sigma_{kw} = 0.72, \sigma_{ke} = 1.0, C_b = 1.66, C_w = 8.54 \) and \(\kappa = 0.41 \). The in-variants of mean strain–rate and vorticity tensors are given by \(S = \sqrt{2S_{ij}S_{ij}} \) and \(W = \sqrt{2W_{ij}W_{ij}} \) (required afterwards), respectively. The strain–rate \(S_{ij} \) and the vorticity \(W_{ij} \) tensors are defined as

\[
S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad W_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)
\]

(3)

Figure 2: Channel flow predictions compared with DNS results

A plot of blending function related to the OWA model in Eq. (2) for a fully-developed channel flow with \(Re_\tau = 395 \) is shown in Fig. 1. As can be seen, for the OWA model \(f_1 = 1.0 \) in the viscous sub-layer and in the logarithmic overlap region; finally approaches 0 far away from the wall.
IV. Elliptic WA (EWA) Model

To assess the impact of elliptic relaxation function to account for non-local wall effects and flow in-homogeneity solely through the model coefficients, the OWA model is designed as:

$$\frac{\partial \rho R}{\partial t} + \frac{\partial \rho U_j R}{\partial x_j} = \frac{\partial}{\partial x_j} \left[(\mu + \sigma_R \mu_T) \frac{\partial R}{\partial x_j} \right] + C_1 \rho R S + \rho C_2 k \omega R \frac{R}{S} \frac{\partial R}{\partial x_j} \frac{\partial S}{\partial x_j}$$

$$- \rho C_{2e} \min \left[\left(\frac{R}{S} \right)^2 \frac{\partial S}{\partial x_j} \frac{\partial S}{\partial x_j} \frac{C_l S R^2}{\nu} \right]$$

where \(C_l \) is defined subsequently and the eddy-viscosity \(\mu_T = f_\mu R \).

The physical relevance of elliptic-relaxation blending is to reinforce wall-effect, thereby suppressing the production of eddy-viscosity near a surface. To revive this phenomenon in the current model, the elliptic relaxation equation of Elkhoury [10] is invoked herein with the source term replaced by 1.0:

$$-L_R^2 \nabla^2 f_R + f_R = 1.0$$

\(\frac{L_R^2}{\nu} \) can be used for the viscous scaling, serving as a lower bound on the turbulent length scale:

$$L_R^2 = \max \left(\frac{C_l R}{3}, \frac{C_l \nu}{\nu} \right) / S \approx C_l \nu \sqrt{1 + \frac{\chi^2}{9}} / S$$

where \(C_l = 4 + \sqrt{\chi} \) and coefficients associated with the length scale \(L_R \) are determined from fully-developed turbulent channel and complex (i.e., flow with separation and reattachment) flow simulations. The virtue of Eq. (6) is that unlike the Poisson equation, it requires no special numerical treatment (i.e., the Laplace operator is relatively easy to treat and is particularly easy
with the modification $-L_R^2 \nabla^2 + 1$). It can be easily solved in parallel with the R-equation with an initial guess $0 \leq f_R \leq 1$ everywhere except on the wall boundaries where $f_R = 0$. It should be noted that the damping function f_μ is introduced to relax the viscous length-scale coefficient C_l. In other words, f_μ avoids the use of a larger value of C_l in the viscous sub-layer and the wall-blocking effect is partially shared by the damping function.

It is worth mentioning that the inverse viscous scaling S/ν is used in Eq. (4) with the C_{2k_ϵ}-destruction term to avoid singularity when $\frac{1}{S^2} \frac{\partial S}{\partial x_j} \frac{\partial S}{\partial x_j} \sim \infty$ (i.e., strain-rate S reaches very small values). However, the limiter used in this work is:

$$\frac{C_l S R^2}{\nu} \gg \frac{R^2}{S^2} \frac{\partial S}{\partial x_j} \frac{\partial S}{\partial x_j}$$

and the original formulation is eventually recovered. In addition, several numerical computations dictate that the constant coefficients given by the OWA model are too cumbersome to be implemented due to the introduction of elliptic blending. Therefore, the following parametric relations are set to the EWA model:

$$f_\mu = \frac{\chi^3}{\chi^3 + C_w^3}, \quad C_1 = f_R - 1.0 + C_{1k_\epsilon}$$

$$C_{2k_\omega} = 10C_{1k_\epsilon} (1.0 - f_R), \quad C_{2k_\epsilon} = 2.0 - f_R + \min (A_{k_\omega}; C_{1k_\epsilon}) \tag{7}$$

$$A_{k_\omega} = \sqrt{\frac{|S - W|}{\max (S; W)}}, \quad C_w = C_l$$

The revised constants are: $C_{1k_\epsilon} = 0.12$ and $\sigma_R = 0.769$. To this end, it can be stressed that the parameter A_{k_ω} is activated when $S \neq W$ (i.e., non-equilibrium flows). A plot of f_R based on Eq. (5) for a developed channel flow is shown in Fig. 1. As can be seen, the relaxation function $f_R \sim 1.0$ after the viscous sub-layer. Note that referring to the OWA model, the C_{2k_ω}-cross-diffusion term in the EWA model is limited to be employed near solid walls to minimize the free-stream sensitivity of turbulence model.

Figure 4: Skin-friction coefficient of diffuser flow along straight top wall

$$f_\mu = \frac{\chi^3}{\chi^3 + C_w^3}, \quad C_1 = f_R - 1.0 + C_{1k_\epsilon}$$

$$C_{2k_\omega} = 10C_{1k_\epsilon} (1.0 - f_R), \quad C_{2k_\epsilon} = 2.0 - f_R + \min (A_{k_\omega}; C_{1k_\epsilon}) \tag{7}$$

$$A_{k_\omega} = \sqrt{\frac{|S - W|}{\max (S; W)}}, \quad C_w = C_l$$

The revised constants are: $C_{1k_\epsilon} = 0.12$ and $\sigma_R = 0.769$. To this end, it can be stressed that the parameter A_{k_ω} is activated when $S \neq W$ (i.e., non-equilibrium flows). A plot of f_R based on Eq. (5) for a developed channel flow is shown in Fig. 1. As can be seen, the relaxation function $f_R \sim 1.0$ after the viscous sub-layer. Note that referring to the OWA model, the C_{2k_ω}-cross-diffusion term in the EWA model is limited to be employed near solid walls to minimize the free-stream sensitivity of turbulence model.
Remarkably, with the elliptic blending strategy, the net production \((f_R - 1 + C_{1k}) RS\) has been negative at near-wall (e.g., viscous) regions; however, quickly becomes positive away from the solid wall as is evidenced from Fig.1. This tendency is due to an appropriate choice of length scale associated with the relaxation equation. As mentioned earlier, the wall-blocking effect is partially shared by \(f_R\) signifies that a further reduction in the production term by the elliptic relaxation is suppressed. This is an advantage of integrating both viscous (low-Reynolds number) and blocking (i.e., non-local) effects in a turbulence model, having positive implications. In all computations, \(R\) has been non-negative and the proposal for elliptic blending can be thought of as an interpolation method, existing inside the wall-vicinity with the interpolation coefficient provided by a non-local model.

Figure 5: Mean velocity profiles at selected locations for diffuser flow

V. **Numerical Computations**

To evaluate the accuracy of proposed modifications to the OWA model, a fully developed turbulent channel flow, an asymmetric plane diffuser flow and the flow over an Onera–M6 wing are computed. To evaluate the model reliability, the current model predictions are compared with those from the widely-used SA model [13] and Menter SST (shear-stress transport) \(k-\omega\) [14] model. A cell-centered finite-volume scheme combined with an artificial compressibility approach [15-18] is employed to solve the governing equations.

a) **Fully-Developed Turbulent Channel Flow**

The computation is carried out for a fully developed turbulent channel flow at \(Re_T = 395\) for which turbulence quantities are available from the DNS data [19]. The computations are conducted in the half-width \(h\) of a channel, using the one-dimensional RANS solver. To ensure the accurate resolution of viscous sub-layer, the first grid node near the wall is placed at \(y^+ \approx 0.3\). A \(1 \times 64\) nonuniform grid is used across the channel half-width which is sufficient to ensure a grid-independent numerical solution. Comparisons are made by plotting the results in wall units. The results for the velocity profile shown in Fig. 2 indicate that the EWA model prediction is qualitatively good relative to the OWA model.
b) Turbulent Flow in an Asymmetric Plane Diffuser Flow

To further evaluate the performance, the models are applied to simulate the flow in a plane asymmetric diffuser with an opening angle of 10°, for which measurements are available [20]. The expansion ratio of 4.7 is sufficient to produce a separation bubble on the deflected wall. This configuration provides a test case for adverse pressure driven wall-bounded separated flow. The entrance to the diffuser consists of a plane channel to invoke fully developed turbulent flow with $Re = 20000$ based on the center-line velocity and the channel height.

Computations with a 120×72 nonuniform grid resolution are found to be accurate to obtain the grid-independent solution. The length of the computational domain is $76h$, where h is the inlet channel height. The thickness of the first cell remains below one in y^+ unit on both deflected and flat walls. Figures 3 and 4 show the predicted skin-friction coefficients C_f for all models. The proposed elliptic modification to OWA model shows improved predictions. The relatively poor prediction from the OWA model can be attributable to its wall-distance dependent blending function. Significant improvements are also observed in the mean velocity and shear profiles as shown in Figs. 5 and 6, respectively.

c) Onera-M6Wing

The onera-M6 wing is a widely used three-dimensional test case to validate numerical methods and turbulence models for transonic flows. The flow-field is computed at a free-stream Mach number of 0.8395, an angle of attack of 3.06° and the free-stream Reynolds number of 11.71×10^6. A structured grid used in the simulation consists of four blocks with 1,572,864 cells and the minimum normalized grid spacing to the wall is 2×10^{-5}. The main feature of this test case is recognized as the interactions of shock-wave and boundary-layer, and the separation induced by the strong shock (i.e., shock induced boundary-layer separation). However, the current study focuses on the validation of turbulence models based on only available experimental data for pressure coefficients [21].

The pressure coefficient results are compared over the wing sections located at $y/b = 20, 44, 65, 80, 90$ and 95% half-span in Fig. 7. It is observed that all models match the experiments very well. Slight over-predictions appear near the leading edge on the upper wing surface, but they are very minor. In addition, the pressures on the lower side of the wing as well as those at
the trailing edge are well predicted and the overall profiles are captured very well by all models. The difference in the pressure distributions between the SA and other models is not distinct. Nevertheless, other computations differ slightly from those of the SA model, especially on the upper wing surface.

VI. Conclusion

The one-equation Wray-Agarwal (WA) model is modified to replace the blending function f_1 (containing the wall-distance) by an elliptic relaxation method that accounts for the non-local characteristics of near-wall turbulence. The parameterized coefficients with the elliptic function are optimized for several simple and complex flows, three of which are presented herein. It is shown that the elliptic blending function f_R improves the predictions of wall-bounded flows with small regions of separation. Comparing the predicted results with DNS and experimental data demonstrates that the EWA model offers improvements over the OWA and SA models and remains competitive with the SST k-ω model. In addition, the EWA model is wall-distance-free (wdf) and can be easily applied to arbitrary complex computational domains with structured/unstructured grids; the wdf-feature makes it advantageous over OWA, SA and SST models.

References Références Referencias

Figure 7: Wall–pressure coefficients at selected cross sections of Onera–M6 wing.
MEMBERSHIPS
FELLOWS/ASSOCIATES OF SCIENCE FRONTIER RESEARCH COUNCIL
FSFRC/ASFRC MEMBERSHIPS

INTRODUCTION

FSFRC/ASFRC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FSFRC/ASFRC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals’ mission to advance technology for humanity and the profession.

FSFRC
FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.

© Copyright by Global Journals | Guidelines Handbook
Benefit

To the institution
Get letter of appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive network
Get access to a closed network
A FSFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate
Receive a printed copy of a certificate
Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Designation
Get honored title of membership
Fellows can use the honored title of membership. The “FSFRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., FSFRC or William Walldroff, M.S., FSFRC.

Recognition on the platform
Better visibility and citation
All the Fellow members of FSFRC get a badge of “Leading Member of Global Journals” on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.
Future Work

Get discounts on the future publications
Fellows receive discounts on future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ Internal Account

Unlimited forward of Emails
Fellows get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

Premium Tools

Access to all the premium tools
To take future researches to the zenith, fellows and associates receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

Conferences & Events

Organize seminar/conference
Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

Early Invitations

Early invitations to all the symposiums, seminars, conferences
All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

© Copyright by Global Journals | Guidelines Handbook
PUBLISHING ARTICLES & BOOKS

EARN 60% OF SALES PROCEEDS
Fellows can publish articles (limited) without any fees. Also, they can earn up to 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FSFRC member can decide its price and we can help in making the right decision.

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES
Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

ACCESS TO EDITORIAL BOARD

BECOME A MEMBER OF THE EDITORIAL BOARD
Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other members for Editorial Board.

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE
All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.
ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL is the membership of Global Journals awarded to individuals that the Open Association of Research Society judges to have made a substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.
Benefit

To the Institution

Get Letter of Appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive Network

Get Access to a Closed Network
A ASFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate

Receive a Printed Copy of a Certificate
Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member’s university.

Designation

Get Honored Title of Membership
Associates can use the honored title of membership. The “ASFRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., ASFRC or William Walldroff, M.S., ASFRC.

Recognition on the Platform

Better Visibility and Citation
All the Associate members of ASFRC get a badge of “Leading Member of Global Journals” on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All associates get a dedicated page on the website with their biography.
FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Associates receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS
Associates get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS
To take future researches to the zenith, fellows receive access to almost all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE
Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES
All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.
PUBLISHING ARTICLES & BOOKS

EARN 30-40% OF SALES PROCEEDS

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

REVIEWS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.
<table>
<thead>
<tr>
<th>ASSOCIATE</th>
<th>FELLOW</th>
<th>RESEARCH GROUP</th>
<th>BASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4800</td>
<td>$6800</td>
<td>$12500.00</td>
<td>APC</td>
</tr>
<tr>
<td>lifetime designation</td>
<td>lifetime designation</td>
<td>organizational</td>
<td>per article</td>
</tr>
<tr>
<td>Certificate, LoR and Momento 2 discounted publishing/year</td>
<td>Certificate, LoR and Momento</td>
<td>Certificates, LoRs and Momentos Unlimited free publishing/year</td>
<td>GJ Community Access</td>
</tr>
<tr>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
</tr>
<tr>
<td>10 research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td>Unlimited research contacts/day</td>
</tr>
<tr>
<td>1 GB Cloud Storage</td>
<td>5 GB Cloud Storage</td>
<td>Unlimited Cloud Storage</td>
<td>Unlimited Cloud Storage</td>
</tr>
</tbody>
</table>

© Copyright by Global Journals | Guidelines Handbook
We accept the manuscript submissions in any standard (generic) format. We typeset manuscripts using advanced typesetting tools like Adobe InDesign, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from https://globaljournals.org/Template.zip

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

BEFORE AND DURING SUBMISSION

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and agree to Global Journals’ ethics and code of conduct, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author’s email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s’) names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted must not have been submitted or published elsewhere and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

POLICY ON PLAGIARISM

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors’ institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures
Authorship Policies

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors’ research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board’s decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.

Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

Preparing your Manuscript

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.
Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27” x 11”, left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word “Abstract” in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references).

A research paper must include:

a) A title which should be relevant to the theme of the paper.

b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.

c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus.

d) An introduction, giving fundamental background objectives.

e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.

f) Results which should be presented concisely by well-designed tables and figures.

g) Suitable statistical data should also be given.

h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.

j) There should be brief acknowledgments.

k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.
Format Structure

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a research paper?” Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.
Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

Preparation of Electronic Figures for Publication

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

Tips for Writing a Good Quality Science Frontier Research Paper

1. Choosing the topic: In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. Think like evaluators: If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. Ask your guides: If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can’t clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. Use of computer is recommended: As you are doing research in the field of science frontier then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. Use the internet for help: An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.
6. **Bookmarks are useful:** When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. **Revise what you wrote:** When you write anything, always read it, summarize it, and then finalize it.

8. **Make every effort:** Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. **Produce good diagrams of your own:** Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. **Use proper verb tense:** Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. **Pick a good study spot:** Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. **Know what you know:** Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. **Use good grammar:** Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice.

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. **Arrangement of information:** Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. **Never start at the last minute:** Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. **Multitasking in research is not good:** Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. **Never copy others’ work:** Never copy others’ work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. **Go to seminars:** Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. **Refresh your mind after intervals:** Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.
20. **Think technically:** Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

21. **Adding unnecessary information:** Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunts readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. **Report concluded results:** Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. **Upon conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium through which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

Informal Guidelines of Research Paper Writing

Key points to remember:
- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section:

This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.
Mistakes to avoid:

- Insertion of a title at the foot of a page with subsequent text on the next page.
- Separating a table, chart, or figure—confine each to a single page.
- Submitting a manuscript with pages out of sequence.
- In every section of your document, use standard writing style, including articles ("a" and "the").
- Keep paying attention to the topic of the paper.
- Use paragraphs to split each significant point (excluding the abstract).
- Align the primary line of each section.
- Present your points in sound order.
- Use present tense to report well-accepted matters.
- Use past tense to describe specific results.
- Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives.
- Avoid use of extra pictures—include only those figures essential to presenting results.

Title page:

Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract:

This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.

- Fundamental goal.
- To-the-point depiction of the research.
- Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:

- Single section and succinct.
- An outline of the job done is always written in past tense.
- Concentrate on shortening results—limit background information to a verdict or two.
- Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.

© Copyright by Global Journals | Guidelines Handbook

XVII
The following approach can create a valuable beginning:

- Explain the value (significance) of the study.
- Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
- Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
- Briefly explain the study's tentative purpose and how it meets the declared objectives.

Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer’s interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.
Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.

Content:

- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:

- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

Approach:

As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:

If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.

- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

The Administration Rules

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.
CRITERION FOR GRADING A RESEARCH PAPER (COMPILATION)
BY GLOBAL JOURNALS

Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after decision of Paper. This report will be the property of Global Journals.

<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with</td>
</tr>
<tr>
<td></td>
<td>appropriate content, Correct</td>
</tr>
<tr>
<td></td>
<td>format. 200 words or below</td>
</tr>
<tr>
<td></td>
<td>Above 200 words</td>
</tr>
<tr>
<td>Introduction</td>
<td>Containing all background</td>
</tr>
<tr>
<td></td>
<td>details with clear goal and</td>
</tr>
<tr>
<td></td>
<td>appropriate details, flow</td>
</tr>
<tr>
<td></td>
<td>specification, no grammar</td>
</tr>
<tr>
<td></td>
<td>and spelling mistake, well</td>
</tr>
<tr>
<td></td>
<td>organized sentence and</td>
</tr>
<tr>
<td></td>
<td>paragraph, reference cited</td>
</tr>
<tr>
<td>Methods and</td>
<td>Clear and to the point with</td>
</tr>
<tr>
<td>Procedures</td>
<td>well arranged paragraph,</td>
</tr>
<tr>
<td></td>
<td>precision and accuracy of</td>
</tr>
<tr>
<td></td>
<td>facts and figures, well</td>
</tr>
<tr>
<td></td>
<td>organized subheads</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, Clear and</td>
</tr>
<tr>
<td></td>
<td>specific, Correct units with</td>
</tr>
<tr>
<td></td>
<td>precision, correct data,</td>
</tr>
<tr>
<td></td>
<td>well structuring of paragraph,</td>
</tr>
<tr>
<td></td>
<td>no grammar and spelling</td>
</tr>
<tr>
<td></td>
<td>mistake</td>
</tr>
<tr>
<td>Discussion</td>
<td>Well organized, meaningful</td>
</tr>
<tr>
<td></td>
<td>specification, sound</td>
</tr>
<tr>
<td></td>
<td>conclusion, logical and</td>
</tr>
<tr>
<td></td>
<td>concise explanation, highly</td>
</tr>
<tr>
<td></td>
<td>structured paragraph</td>
</tr>
<tr>
<td></td>
<td>reference cited</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format,</td>
</tr>
<tr>
<td></td>
<td>well organized</td>
</tr>
</tbody>
</table>

© Copyright by Global Journals | Guidelines Handbook

XXI
INDEX

C

Compactness · 56, 103, 105
Conundrum · 69
Cryptology · 67, 76, 77
Cumbersome · 109, 114

D

Disruptions · 81

E

Elliptic · 100, 101, 108, 118, 119
Eratosthenes · 67
Erroneous · 83

O

Octillion · 76

P

Proviso · 73

Q

Quintillion · 76

S

Summed · 67, 68

V

Vietoris · 96

Z

Zillion · 76