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Gauge invariance is one of the fundamental symmetries in modern theoretical physics.
The gauge invariance was recognized in the 19th century as a mathematical non-
uniqueness of potentials that exists despite the uniqueness of observable electromagnetic
fields E and B. In the 20th century, physical significance of the gauge symmetry was
recognized very fundamental and played a role of guiding principle in the study of
physical fields such as Electromagnetism, Particle physics and Theory of Gravitation.

It took almost a century to recognize its fundamental physical significance, resulting
in, finally, successful formulation of the Gauge Principle. In particular, the gauge theory
played vital roles in the remarkable development of modern particle physics which
was revolutionary (e.g. Aitchison & Hey (2013), Utiyama (1956)). In fact, historical
development of the gauge theory took gradual and zigzag processes.

In the present paper, firstly, historical developments of gauge theory are reviewed
from its initial gauge transformation to later theory of gauge principle taking a zigzag
way from one physical field to another, and secondly, possible application of the gauge
theory is envisaged to fluid-flow field although the field of fluid-flow is not listed in the
literature reviewed.

What is now generally known as a gauge transformation of the electromagnetic
potentials was discovered in 19th century in the process of formulation of classical
electrodynamics from mathematical point of view (rather than physics) by its pioneers
(Faraday, Neumann, Weber, Kirchhoff, Maxwell, Lorenz, Helmholtz, Lorentz and others:
according to Jackson & Okun (2001)). It was, in fact, non-uniqueness of a vector
potential A in mathematical representation of electromagnetic field that exists despite
the uniqueness of the electric field E and magnetic field B. This is now referred to
as local gauge invariance of Maxwell’s equations. The law of electromagnetic induction
discovered by Faraday (1831) is represented mathematically by the first of the following
pair of Maxwell equations:
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a) Historical development of gauge transformations
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∂tB +∇×E = 0, ∇ ·B = 0. (1.1)

The second is an outcome of the fact that the magnetic field B is generated by electric
currents (Jackson (1999, Chap.5)), implying non-existence of magnetic monopoles. In
Maxwell’s electromagnetic theory (1856), the vector potential played an important role.
Introducing a 3-vector potential A = (A1, A2, A3) and a scalar potential Φem = −A0,
and defining E and B by

B = ∇×A, E = −c−1 ∂tA−∇Φem, (1.2)

the above pair of equations (1.1) are satisfied identically. This led to a finding that,
using an arbitrary differentiable scalar function Ψe, the following transformation of the
potentials A and Φem,

A → A+∇Ψe, Φem → Φem − ∂tΨ
e, (1.3)

revealed a significant property, what is now called the gauge transformation, of the
electromagnetic field. Maxwell (1873) noticed the invariance of B only by the first of
the transformation (1.3), but missed the second one because he relied on the gauge
condition ∇ ·A = 0. The simultaneous two transformations of (1.3) was established by
L. V. Lorenz (1867) on the basis of the following gauge condition,

∇ ·A+
1

c
∂tΦ

em = 0. (1.4)

It is remarkable that the observable fields E and B of (1.2) are invariant in spite of the
transformation (1.3). This was the invariance known in the electromagnetic theory of
the 19th century. In modern gauge theory, the gauge condition (1.4) is often referred
to as Lorentz condition, according to Dutch physicist H. A. Lorentz who was one of
the key figures in the final formulation of classical electrodynamics (1904) including the
condition (1.4), while the former Danish physicist L. V. Lorenz (1867) introduced first
the condition (1.4) (Jackson & Okun, 2001).

In the 19th-century classical electrodynamics, the transformation (1.3) was
understood as meaning simply non-uniqueness of the vector potential A and scalar
potential Φ in a mathematical sense. Its physical significance was not recognized until
the 20th-century physics was developed. In the relativity theory of Einstein (1905, 1915),
four dimensional (4d) spacetime xν = (x0, x1, x2, x3) with x0 = c t was introduced under
the Minkowski metric ηµν = diag(−1, 1, 1, 1) = ηµν .† The structure of electromagnetism
is most fitted to the 4d-spacetime. For example, the Lorenz condition (1.4) can be
represented compactly as ∂Aν/∂xν = 0 in the 4-d spacetime, where Aν = (Φ,A).
See (1.8) for the difference between the covariant (downstairs) vector Aµ and the
contravariant (upstairs) vector Aν . Scalar product in the Minkowski space is formed like
Aµ dx

µ = ηµνA
νdxµ by the pair of a covariant vector Aµ and a contravariant vector dxµ

((see 1.5)). [ Concerning the difference of transformation property between the covariant
and contravariant vectors, see the footnote to Appendix A.1. ]

Stimulated by Einstein’s relativity theory,
the same transformation (1.3) of electromagnetic 4-potentials Aν , but turned out to
be unsuccessful. The term gauge (actually the German term Eich) was used to this
transformation by Weyl (1918) first. He proposed to unify electromagnetism and gravity
geometrically by attaching a scale factor l of the form l ∝ exp[

∫
ϕk(x)dx

k] where its
variation is given by δl = lϕk δx

k. Although this received unfavorable response from
Einstein to be in disagreement with observation, after the advent of the quantum theory,
its interpretation was renewed by London (1927) that the Weyl’s proposal could be used
in quantum theory by changing the scale factor to a phase factor by attaching it to the
wave function (xν) of quantum mechanics in the form,

Weyl attempted in 1918 to reinterpret

𝜓𝜓



  
 

  
 

 
 

 

 
  

 
  

 
  

 
   

  
   
 

 
 

  

  
  
   
 

  
 

  
  

 

Ψ(xν) = exp
[
iγ

∫
Aµ(x)dx

µ
]
· (xν), (1.5)

where γ = e/ℏ with e a charge, and the function (xν) satisfies the Schrödinger equation:

iℏ ∂t = −(ℏ2/2m)∇2 + eV ψ, (1.6)

interpreted in and given by (2.29). Physical significance of the gauge invariance was
upheld later by H. Wyle in 1929, who proclaimed this invariance as a General Principle
and called it gauge-invariance (Eichinvarianz in German). The gauge invariance is a
symmetry rooted at the deepest level of physics, as interpreted next in

In quantum mechanics, the transformation (1.3) was understood as a phase
transformation of the wave function of Schrödinger’s equation. In the theory of
gravitation, on the other hand, the gauge transformation was generalized to such
transformations that the vectors or curvature tensors ‡ characterizing the gravitational
field as physical reality do not change (or satisfy associated transformation laws) in spite
of coordinate transformations, where the coordinate frames are taken arbitrarily by the

† Greek letters such as α, β, µ, ν, λ, · · · take the quartet (0, 1, 2, 3) to denote 4d-spacetime components,

whereas Latin letters such as i, j, k, · · · take the triplet (1, 2, 3) to denote 3-space components.
‡ In differential geometry, a vector (or a tensor) in an n-dimensional coordinate frame U is not a simple

n-tuple array (or a simple n × n matrix, respectively) of real numbers, but they must follow certain

transformation laws when mapped to another n-dimensional coordinate frame V .
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theory (its details are given in for weak gravitational field). In fluid
mechanics too, the convective derivative (following fluid motion) can be shown to satisfy
invariance with respect to generalized gauge-transformation, presented in

Historically, the gauge symmetry has been established through zigzag courses. Next
formulation may be a typical example. Observing the phase part of the extended wave
function Ψ(xν) of (1.5), the phase factor implies existence of the following one-form A
in the spacetime (xµ), defined by

A = Aµdx
µ = A0dx

0 + A1dx
1 + A2dx

2 + A3dx
3, (1.7)

Aµ = ηµνA
ν = (−Φem,A). Aν = (Φem,A). (1.8)

The extended wave function Ψ(xν) implies a certain geometrical structure in the
spacetime xµ, furnished with a field Aµ existing in the 4-d spacetime xν . The field
Aµ possesses an interesting property which is now presented.

The pair of fields E and B of (1.2) are derived from (1.7). In fact, taking exterior
differential d of A, we obtain the field strength two-form F :

F = dA =
∑ 1

2
Fνλ dx

ν ∧ dxλ, Fνλ = ∂νAλ − ∂λAν , (1.9)

F ⇔ (Fνλ ) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (1.10)

where E = (Ek) and B = (Bk) are defined by (1.2). The pair of equations (1.1) are
also obtained from (1.9) by taking, once more, exterior differential of F = dA, yielding

b) A hint of gauge principle with the argument reversed

𝜓𝜓
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Let us consider the gauge transformation concerning the one-form A, defined by

G : Aν ≡ A(old)
ν → A(new)

ν ≡ A′
ν = A(old)

ν − ∂νΘ , (1.11)

equivalent to (1.3), where Θ is an arbitrary differentiable function. Then, we have

A(new) = A
(new)
ν dxν = A

(old)
ν dxν − ∂νΘ dxν = A(old) − dΘ . From this, we find the

invariance F (new) = F (old) since d2Θ ≡ 0. Namely, the electromagnetic fields E and B
are invariant by this local gauge transformation. We will see in for QED that there
is local gauge invariance in quantum electrodynamics (QED) as well (e.g. Aitchison &
Hey (2013, Chap.2)). It is worth noting that the Maxwell equations are invariant under
the local gauge transformations (1.11). The details are given in the section

Suppose that we have a particular form of Aµ-field defined by Ãµ ≡ ∂µΘ with Θ

an arbitrary scalar function differentiable two times. Then the one-form Ã = Ãµdx
µ is

given by dΘ , and we have the expression Ψ = exp[iγΘ(xν)] · (xν), since
∫
Ãµdx

µ = Θ .

In addition, since Ã = dΘ , the field strength form F vanishes identically, because
F = dÃ = d2Θ ≡ 0. Namely, the observable fields E and B vanish identically, although
there exists non-vanishing one-form Ã in the background spacetime.

Quantum-mechanical probability density is given by |Ψ|2 = | |2. Namely the
probability of a quantum mechanical particle is unchanged formally by the existence
of Ãµ-field. It is well-known for the wave function = | | exp(iθ) that the current
conservation law ∂νj

ν
(q) = 0† is deduced from the equation (1.6):

∂νj
ν
(q) = 0, with j0(q) = ρ c, jk(q) = (ρ λ) ∂kθ (k = 1, 2, 3) (1.12)

where jν(q) = (j0(q), j
k
(q)) is a 4-current density with ρ ≡ | |2, λ ≡ ℏ/m and ∂0 = c−1∂t,

In the presence of Ãµ-field, the 3-current flux jk(q) is changed to ρ λ ∂k(θ + γΘ). Thus,

only effect of the extended phase factor is to change the 3-current jk(q) from θ to θ+γΘ .

In the gauge theory, global gauge transformation is defined by the following
transformation: Ãµ → Aµ = Ãµ + ϵµ for 4 arbitrary constants ϵµ. It is trivial to see
that the system is invariant with this global transformation, because the fields E and
B are given by derivatives of Aµ. Therefore, the present system is said to be invariant
globally. This is the first step of the gauge principle, examining whether the system
under consideration is equipped with desirable conditions. We will return to see what
is the desirable, after having seen the details of the local invariance given in

Essence of the gauge principle lies in requiring local gauge invariance. In the present
case, this is defined by Ãµ → Aµ = Ãµ+αµ(x

ν) for 4 arbitrary differentiable fields αµ(x
ν)

depending on spacetime coordinates xν . Since αµ is assumed to take a general form not
limited to the form ∂µΘ , the one-form A = Aµdx

µ does not necessarily take a form of
a total derivative dΘ . Hence, the field strength two-form F = dA does not vanish in
general. This means that we have non-vanishing observable fields of E and B, according
to (1.9) and (1.10). This changes drastically our battle field of study. Not only the
Maxwell equations (1.1) must be satisfied, but also the governing Schrödinger equation
should be reformed with partial derivatives ∂’s replaced by covariant derivatives ∇’s, as
given by (2.33) below. Thus, the so-called gauge-potential Aµ is taken into the equation
(2.32) to represent a new interaction force. In this way, a new force is introduced by
the local gauge invariance.

dF = d2A ≡ 0. Its detailed expressions are given in Thus, the definition
A = Aµdx

µ of (1.7) is sufficient for deriving the pair of Maxwell equations (1.1).

𝜓𝜓
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From the example just mentioned above, it is seen that there is a crucial difference
between global invariance and local invariance of physical fields. Each invariance in its
own right composes the significance of the principle.

To understand the distinction between the two is vital to capture the physics of the
fields. In a global invariance, the same transformation is carried out at all spacetime
points of the field where current conservation (such as the form of (1.12)) is satisfied,
while in a local invariance different transformations are carried out at different individual
spacetime points. In general, a theory that is globally invariant will not be invariant
under locally varying transformations. This is understood to mean that a new field
is required in order to satisfy the local invariance. To that end, the system under
investigation must have a potential capacity receptive to, i.e. able to receive a new field.
In fact, the field Ãµ = ∂µΘ in the previous section played a diagnostic field to test
whether the system is receptive to a new field αµ(x

ν). By introducing a new general
field αµ(x

ν) in such a receptive system that interacts with the original field and which
also transforms the system physically acceptable ways under the local transformations,
a local gauge invariance is established.

Reflecting the above analysis of the gauge principle, consider what is the desirable
factor playing the role of a game-changer from vanishing-field state to the state of non-
vanishing fields of E and B equipped with a new force (electromagnetic, in this case).

† This is equivalent to ∂t| |2 + ∂k(ψ∂k
∗ − ∗∂k ) = 0, derived from (1.6).

It is reasonable to identify that most important factor is a geometrical one. Namely, the
one-formA = Aµdx

µ = ηµν A
νdxµ of (1.7) is vested to the spacetime (xµ) which is a most

important geometrical structure. In fact, the present gauge principle sets as a premise
the existence of one-form A in the 4-d spacetime equipped with the metric ηµν . With
this reasoning, one understands that the gauge principle is rooted on the fundamental
level of Physics and that the gauge principle works, as proposed by Utiyama (1956), not
only in quantum electrodynamics, but also in particle physics and theory of gravitation,
because one can define one-form A = Aµdx

µ. Almost needless to say, the field of fluid
flows in the 4-d spacetime is not excluded, to be presented in the accompanying paper.

In the gauge theory of particle physics, current conservation law is considered to be a
must. It is interesting philosophically to investigate how such a current conservation law
working in the physics of discrete particles compromises with the physics of continuum,
such as in the theory of gravitation (dealing with spacetime continuum) or in the theory
of fluid flows (dealing with material continuum with continuous distribution of mass
density ρ). The paper accompanying the present paper is concerned with the last
problem of fluid-flow fields.

Considering the key role played by the gauge invariance in modern theoretical
physics, it would be reasonable and useful to review how it is working in the fundamental
fields. On the reviews of historical facts of the initial stage of gauge theory, one can
refer two important articles of O’Raifeartaigh (1997) and Jackson and Okun (2001),
both of which describe how the modern gauge theory developed in its early days. It
took almost a century to formulate the non-uniqueness of potentials in the context of
theoretical physics, existing despite the uniqueness of the electromagnetic fields E and
B. In regard to the gauge condition (1.4), Lorenz’s contribution is noted again. In
fact, Lorenz (1859) introduced the so-called retarded potentials and showed that those

c)

d)

e)

Gauge Principle: global invariance and local invariance

Desirable factor for the gauge theory

Historical reviews
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satisfied the relation: ∇ · A + c−2 ∂tΦ = 0 (Jackson & Okun, 2001), which is now
almost universally known as the Lorentz condition, but founded originally by Ludvig V.
Lorenz (a Danish physicist) who preceded the Dutch physicist Hendrik A. Lorentz. The
English word gauge, a translation of German eichen, was not used in English until 1929
(Weyl, 1929a) for the transformations such as (1.3).

Taking two fundamental physical fields, Electromagnetism and Quantum Electro-
dynamics, we review the gauge symmetries and see how the gauge symmetry has been
captured historically.

: Gauge Invariance and Charge Conservation

Electromagnetic fields are represented with a 4-vector potential Aµ in the 4d
spacetime xµ = (x0, x1, x2, x3) (where x0 ≡ ct and µ = 0, 1, 2, 3):

Aµ = (Φ,A), A = (A1, A2, A3).

Covariant version of Aµ is Aµ defined by

Aµ = ηµνA
ν = (−Φ,A), where ηµν = diag(−1, 1, 1, 1) = ηµν , (2.1)

ηµν being the Minkowski metric of the Special Relativity. To represent electro-magnetic
fields, we begin with a frame-independent formulation. To this end, according to the
mathematical formalism of differential forms, an electromagnetic one-form A is defined:

A = Aνdx
ν = −Φdx0 + A1dx

1 + A2dx
2 + A3dx

3 (x0 = ct).

The pair of electromagnetic fields E and B are given by

E ≡ −c−1 ∂tA−∇Φ B ≡ ∇×A . (2.2)

Taking external differential d of A, we obtain the field strength two-form F :

F = dA =
∑ 1

2
Fνλ dx

ν ∧ dxλ, Fνλ = ∂νAλ − ∂λAν (2.3)

Matrix representation of the tensor Fνλ is given by (1.10). Once again, taking exterior
differential of F = dA, we obtain the following identity equation:

dF = d2A ≡ 0, d
(
Fνλ dx

ν ∧ dxλ
)
= (∂µFνλ) dx

µ ∧ dxν ∧ dxλ, (2.4)

dF =
∑

F[νλ,µ] dx
µ ∧ dxν ∧ dxλ = 0. Fνλ,µ ≡ ∂µFνλ. (2.5)

See the footnote for F[νλ,µ].† This reduces to the equation expressed compactly:

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (2.6)

From this, we obtain a pair of Maxwell equations (cf. (1.1)):‡

∇ ·B = 0, ∂tB +∇×E = 0, (2.7)

II. Gauge in Variances in Two Fundamental Physical Fields — A Review

a) Electromagnetic Field

i. Maxwell equations
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By the definitions (2.2) of the electric field E and magnetic field B, the two equations
of (2.7) are satisfied identically. In other words, in stead of using the pair of equations
(2.7), it is sufficient that the 4-potential Aµ = (Φ,A) is used with the understanding
that the electromagnetic fields E and B are given by the definitions (2.2).

The second pair of Maxwell equations are given by

∇ ·E = 4π ρe, − 1

c
∂tE +∇×B =

4π

c
je, (2.8)

(cf. Jackson (1999, §11.9)). This pair of equations are derived from the principle of least
action. The action integral S(em) is expressed by a linear combination of two terms with

a part S
(em)
emA representing an electromagnetic field by the potential Aα and another S

(em)
int

representing interaction between the field and 4-current j νe :

S(em) = S
(em)
emA + S

(em)
int

S
(em)
emA = − 1

16πc

∫
Fαβ F

αβdΩ , S
(em)
int =

1

c2

∫
j αe Aα dΩ , (2.9)

where dΩ = d4xν . From the variation δAα of the field Aα where Fαβ = ∂αAβ − ∂βAα,
the following equation is deduced in the form of tensor equation (Appendix D: (D.4)):

∂βF
αβ =

4π

c
j αe , (2.10)

where j αe = (ρec, je) with je = ρev, and F
αβ is given by F αβ = ηαµ Fµν η

νβ. Practically,
the matrix F αβ is obtained from Fνλ of (1.10) with simply replacing E by −E.

† F[νλ,µ] ≡ 1
3!

(
∂µFνλ + ∂νFλµ + ∂λFµν − ∂µFλν − ∂νFµλ − ∂λFνµ

)
with Fλν = −Fνλ etc. .

‡ The first is obtained with (α, β, γ) = (1, 2, 3), while the second is derived when one of α, β and γ

takes the suffix number 0.

Conservation law of electric charge can be derived from (2.10) by taking 4-
divergence of both sides:

0 = ∂α∂βF
αβ =

4π

c
∂αj

α
e . (2.11)

The left-hand side vanishes identically because the differential operator ∂α∂β is
symmetric with respect to α and β, while F αβ is antisymmetric. Total sum with respect
to α and β (taking indices 0, 1, 2, 3) vanishes identically. Thus, we have the charge
conservation equation with j βe = (ρec, je):

∂αj
α
e = ∂tρe +∇ · je = 0. (2.12)

This conservation law is closely related to the gauge symmetry of the electromagnetic
field. Let us consider the gauge transformation concerning the one-form A, defined by

G : Aν ≡ A(old)
ν → A(new)

ν ≡ A′
ν = A(old)

ν − ∂νΘ , (2.13)

equivalent to (1.3), where Θ is an arbitrary differentiable function. Then, we have

A(new) = A(new)
ν dxν = A(old)

ν dxν − ∂νΘ dxν = A(old) − dΘ .

From this, we find the invariance F (new) = F (old) as follows:

F (new) = dA(new) = dA(old) + d2Θ = dA(old) = F (old), (2.14)

ii. Conservation of electric charge and Gauge invariance
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since d2Θ = 0 identically. Thus it is found that the two-form F defined by (2.3) is
invariant with respect to the transformation G, called the gauge transformation by the
historical reasons explained in the Introduction. Therefore, the electromagnetic fields
E and B are invariant, said as gauge-invariant.

The gauge invariance (2.14) and the charge conservation (2.12) are connected
closely. In fact, the connection is inseparable, which can be shown as follows. In the
expression of Sint given in (2.9), we replace the factor Aα by Aα−∂αΘ . Then the action
Sint has an additional term, ∫

j αe
∂Θ

∂xα
dΩ . (2.15)

Using (2.12) expressing the charge conservation, one can rewrite the integrand in a form
of 4-divergence ∂(Θ j αe )/∂x

α. Then the above integral is transformed into vanishing
boundary integrals by the conditions of the variational principle.

Thus the gauge transformation has no effect on the equation of motion, so long
as the equation of charge conservation (2.12) is valid (cf. Landau & Lifshitz (1975)
§29). Namely, the charge conservation law ensures the gauge invariance. Conversely,
the gauge invariance requires the charge conservation equation ∂j αe /∂x

α = 0, because
the expression (2.15) is transformed to −

∫
Θ ∂αj

α
e dΩ , which is required to vanish to

any scalar function Θ by the gauge invariance.

In the previous subsection (i), it is remarked below (2.7) that the 4-potential
Aα = (Φ,A) can be used instead of the pair of Maxwell equations (2.7). Now the set
of four Maxwell equations are reduced to two equations of (2.8) when the 4-potentials

∂βF
βα = −(4π/c) j αe , where

∂βF
βα = ∂β(∂

βAα − ∂αAβ) = ∂β∂
βAα − ∂α(∂βA

β), (2.16)

∂α ≡ ∂

∂xα
= (∂0,∇); ∂α = ηαβ∂β = (−∂0,∇), (2.17)

and ∂0 = ∂/∂(ct) and ∇ = (∂1, ∂2, ∂3). Therefore, the tensor equation (2.10) becomes

∂β∂
βAα − ∂α(∂βA

β) = −4π

c
j αe , (2.18)

where ∂β∂
β is the differential operator of wave equation and ∂βA

β 4-divergence of Aβ:

∂β∂
β = −∂ 2

0 +∇2 = ∇2 − c−2∂ 2
t , ∂βA

β = c−1∂tΦ +∇ ·A. (2.19)

In the last section (ii), it is shown that there is freedom in the potential Aα. This
freedom enables choosing a set of potentials Aα = (Φ,A) to satisfy

Lorenz condition: ∂αA
α = c−1∂tΦ +∇ ·A = 0. (2.20)

Then, the equation (2.18) reduces to the wave equation with the source term (4π/c) j αe :

Wave equation: (∇2 − c−2∂ 2
t )A

α = −4π

c
j αe . (2.21)

iii. Electromagnetic wave under Lorenz gauge

Aα are used as dependent variables and the equation (2.2) for the definition of E
and B. The two equations of (2.8) are given by the single tensor equation (2.10): 
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Substituting Aα = (Φ,A) and j αe = (ρec, je), this represents uncoupled wave equations,
one for Φ and one for A:

∇2Φ− c−2∂ 2
t Φ = − 4π ρe, (2.22)

∇2A− c−2∂ 2
t A = − 4π

c
je, (2.23)

The wave equation (2.21) and the Lorenz condition (2.20) form a set of equations
equivalent to the Maxwell equations in vacuum. In a later section, we will see,
surprisingly, an analogous set of equations for gravitational waves in generalized form.
This implies that a sort of gauge symmetry exists as well in the theory of gravitation.

What is now known as a gauge transformation of the electromagnetic potentials was
discovered in the formulation process of classical electrodynamics in the 19th century.
However, real recognition of its physical significance required two new fields to be
developed: the relativity theory for the structure of 4d-spacetime, like a 4-potential
Aα = (Φ,A) and a current 4-vector j ν = (ρc, j), and the quantum mechanics (say) for
the new dimension of a phase factor exp [iχ(xν)] (see next . In fact, the notion of
gauge symmetry did not appear in the context of classical electrodynamics, but required
the invention of quantum mechanics in particular, according to Jackson & Okun (2001).

As mentioned above, the gauge invariance and charge conservation are connected
closely. In fact, the connection is inseparable. O’Raifeartaigh L (1997) cites the original
paper of Weyl (1918), in which Hermann Weyl commented in the postscript (1955) as

· · · , gauge-invariance corresponds to the conservation of electric charge in
the same way that coordinate-invariance corresponds to the conservation of
energy and momentum. Later the quantum theory introduced the Schrödinger-
Dirac potential (wave function) of the electron-positron field; it carried with
it an experimentally-based principle of gauge-invariance which guaranteed the
conservation of charge, · · · · · · · · · . (See O’Raifeartaigh (1997, p.36))

In fact, Noether’s theorem shows ∂νj
ν = 0 for 4-current jν of relativistic quantum

systems such as those governed by Klein-Gordon equation or Dirac equation in
Minkowski space (Aitchison & Hey (2013, Chap.3); Frankel (l997, §20.2)).

In the context of quantum theory, the attempt of Weyl (1918) is worth mentioning
first. He proposed to unify electromagnetism and gravity geometrically by attaching a
scale factor of the form l ∝ exp[

∫
ϕk(x

ν) dxk] with its variation given by δl = lϕk δx
k.

This received unfavorable response to be in disagreement with observation.
However, after the advent of the quantum theory, it was revived by London (1927)

that Weyl’s proposal could be used in quantum theory by changing the scale factor
exp [χ] (χ : real) to a phase factor exp [iχ] and attaching it to the wave function
of quantum mechanics. Suppose that 0 describes the zero-field wave function. Then
by the transformation from 0 to = 0 exp[iγ

∫
Aµ(x

ν)dxµ], the wave function
describes the state interacting with the electromagnetic potential Aµ (where γ ≡ e/ℏ).

Earlier than this work, Fock (1926) proposed extension of the freedom of potential
Aµ in the classical electrodynamics to the quantum mechanics of a particle with a charge
e interacting with the field Aµ. With the transformation of the potential,

Aµ → A′
µ = Aµ + ∂µχ, (2.24)

b)

i.

Quantum Electro-Dynamics (QED): Gauge Principle and Covariance

Gauge transformation in QED

𝜓𝜓
𝜓𝜓 𝜓𝜓 𝜓𝜓

section II b)
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the wave functions is transformed correspondingly by a phase transformation:

→ ′ = exp[ iγχ]. (2.25)

What Fock discovered for the quantum mechanics was that, for the form of the quantum
equation to remain unchanged by these transformations, the wave function is required
to undergo the transformation,

0 → = 0(x
ν) exp[ iγ

∫
Aµ(x

ν) dxµ], (2.26)

whereby is multiplied by a local (space-time dependent) phase factor. Later, the
concept was declared a general principle by Hermann Weyl (1928, 1929a,1929b). The
invariance of a theory under combined transformations such as (2.24) and (2.25) is
known as a gauge symmetry or a gauge invariance and was a touchstone in developing
modern gauge theory. (Jackson & Okun)

A wave function of quantum mechanics evolves in time according to the equation
iℏ ∂t = Hψ, where ℏ is the Planck constant and H the Hamiltonian operator which is
defined, in the absence of the electromagnetic field, by

H(x, p) = p2/2m+ eV (x), (2.27)

where p is the canonical momentum, V the potential energy and e the charge of the
particle. In Schrödinger’s equation, the canonical momentum pk is represented by the
differential operator on the wave function expressed as

pk = −iℏ(∂/∂xk)ψ, (2.28)

while the potential V is a multiplicative operator on . From (2.27), Schrödinger’s
equation is given by

iℏ ∂t = −(ℏ2/2m)
∑
k

(∂/∂xk )2 + eV ψ. (2.29)

When there exists an external electromagnetic field and the particle has a charge e, the
Hamiltonian H of (2.27) should be replaced by

H(x,p) =
1

2m
(P − e

c
A)2 + eV + eΦ (2.30)

where the previous momentum p is replaced by an expression using the new canonical
momentum P = p + (e/c)A. Replacing Pk with −iℏ∂/∂xk, Schrödinger’s equation
becomes

iℏ ∂t =
1

2m

∑
k

(
− iℏ

∂

∂xk
− e

c
Ak

)2

+ eV ψ + eΦψ. (2.31)

This can be rewritten as　

iℏc∇0 = − ℏ2

2m

∑
k

∇k∇k + eV ψ, (2.32)

ii. SchrÖdinger’s equation and gauge principle in an electromagnetic field
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where ∇α = (∇0,∇k) are covariant derivatives (with x0 = ct) defined by

∇0 =
∂

∂x0
−

( ie
ℏc

)
A0, ∇k =

∂

∂xk
−
( ie
ℏc

)
Ak, (A0 = −Φ). (2.33)

The equation (2.32), equivalent to (2.31), is written compactly by using the covariant
derivatives ∇0 and ∇k to represent the effect of electromagnetic field Aµ.

Weyl’s principle of gauge invariance: If satisfied the Schrödinger’s equation (2.32)
involving the potential Aµ, then the transformed wave function,

′ = exp
[
iγ χ(xµ)

]
· (x) (2.34)

satisfies Schrödinger’s equation when A = Aνdx
ν is replaced by A+dχ. This is verified

if the wave function is represented as

(x) =
(
exp[ iγ

∫
Aµ(x) dx

µ]
)
· 0(x) (2.35)

In fact, with a transformation A → A+ dχ. Then the new function (new) is given by

(new)(x) = exp[ iγ

∫
(Aµ(x) + ∂µχ) dx

µ] · 0(x) = exp
[
iγ χ(xµ)

]
· (x).

Thus the form (2.34) is obtained. In the gauge symmetry of QED, the key elements are
summarized by the following set of covariant transformations (see the item (d) below):

Aµ → Aµ + ∂µχ, ψ → exp [ iγ χ ] · ψ. (2.36)

Here, the transformation of Aµ is equivalent to the pair of transformations A → A+∇χ
and Φ → Φ− ∂tχ, which keep the electromagnetic fields E and B invariant.‡

Thus, one can uphold the gauge principle to the following general guiding principle.

Global gauge invariance:
This is defined by invariance under a constant change in the phase of wave function

. Writing it explicitly, instead of the added phase factor exp[iγχ(xµ)] of (2.34)
depending on xµ, the global transformation is given by

(xµ) → ′(xµ) = exp[ i α ] (xµ), α = const , (2.37)

If this transformation does not cause any observable change, it is a global invariance.

Local gauge invariance:
This requires invariance with respect to the following local phase transformation:

(xµ) → ′(xµ) = exp[ i α(xµ) ] (xµ), α : dependent on xµ, (2.38)

If our system is not invariant under the local transformation, it is understood to mean
that a new field is required in order to satisfy the local invariance. By introducing
such a new field interacting with the original field and transforming the system under

‡ The covariant vector-potential (downstairs) is Aµ = (−Φ, Ak), while the upstairs vector-potential

Aν is (A0, Ak) = ηνµAµ where A0 = Φ, (Ak) = A and Ak = Ak. One-form A is defined by

A = ηµνA
νdxµ = Aµdx

µ = −Φdt + Akdx
k, where ηαβ = ηαβ = diag(−1, 1, 1, 1). Note that

∇0 = (∂/∂x0)− (ie/ℏc)A0.

iii. Generalized Gauge Principle

𝜓𝜓

𝜓𝜓

𝜓𝜓 𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Gauge Symmetries in Physical Fields (Review)

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

12

  
 

( A
)

V
er

sio
n

I

investigation according to the local transformation, it is expected that local invariance
is established. This is a general scenario to find a new physical field.

In fact, the previous item (ii) of Schrödinger’s equation is a typical example. For
the new field to be received to satisfy the local invariance, the system must be receptive,
i.e. must have a potential capacity receptive to the new field. Firstly, one can say an
elementary aspect of the complex function. Every complex function has a phase factor
which absorbs the electromagnetic 4-potenial Aµ within the integral symbol as in (2.35).

Moreover, in the
partial derivatives ∂’s was reformed and replaced by (2.32) represented with covariant
derivatives ∇’s which are defined with (2.33) by taking account of the new field Aµ.
Simultaneously the wave function was transformed by (2.34). Thus, local invariance
has been established.

In mathematical point of view, the global transformation → eiα appears to
be a trivial transformation. But it is an important step to confirm a capacity which
is receptive to the (harmless) phase modification. In the context of physics, however,
it is understood to express the fact that once phase choice of α has been made at one
spacetime point, the same change of phase must be adopted at all other spacetime
points. This is unnatural from the view-point of causality.

It would be better if one can find other physically reasonable transformation.
In §1.2, for electromagnetic 4-potential Aµ, we saw a particular Aµ-field defined by

Ãµ ≡ ∂µΘ with Θ an arbitrary scalar function. When the Aµ-field is introduced in the
field. the wave function is transformed as → exp[iγΘ(xν)] · instead of the uniform
phase shift eiα. Nevertheless, the observable fields E and B vanish identically, although
there exists non-vanishing one-form Ã in the background spacetime. This signifies that
the system is receptive. It has a potential capacity receptive to the new field.

In the flow fields of a perfect fluid to be studied in the last section 5.2, there exists
an analogous structure in the fluid-flow field. Hence, the global invariance of the flow
field is strengthened by this property.

Next, consider the transformation Aµ → A′
µ = Aµ + ∂µχ from a different angle of

mathematical viewpoint. Let us represent this operation as g◦ with the symbol ◦ and
an element g of a certain continuous differentiable group G (a Lie g), such that we write
it as A′

µ = g ◦ Aµ. Then the new wave function ′ ≡ (new) is written as ′ = g ◦ ,
where is given by (2.35). The operation g and ′ are given by (2.36). Namely,

′ = g ◦ (x) = exp[ iγχ] · (2.39)

Next, using the covariant derivative ∇µ defined by (2.33), the covariant derivative of
is given by

∇µ = (∂µ 0) · exp
[
iγ

∫
Aµ(x)dx

µ
]
.

Its g-transformation is

g ◦ ∇µ = (∂µ 0) · exp
[
iγ

∫
g ◦ Aµ(x)dxµ

]
= (∂µ 0) · exp

[
iγ

∫
(Aµ + ∂µχ)dx

µ
]

= exp[ iγχ] · ∇µ (2.40)

Comparing (2.39) and (2.40), it is seen that the ”g ◦” operations on and ∇µ take
the same form, that is, simple multiplication of the same phase factor exp[iγχ]. In other
words, the two functions and∇µ by the operation g, that
is by the gauge transformation A → A+dχ. The covariance property of transformation

iv. Covariance with respect to the gauge transformation
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it later too.

The invariance by the transformation (2.37) or (2.38) is said the gauge symmetry
of the type of U(1) group. Multiplication by a phase factor like exp[iα] corresponds to a
kind of rotation of the state vector = | | exp[iθ] in the polar representation (| |, θ) of
in the complex plane. The group U(1) is an abelian group corresponding to the circle

group, consisting of all complex numbers with absolute value 1 under multiplication.
Imagine doing two successive such transformations: → ′ → ′′ , where

′′ = exp[iβ] ′, and the original one was ′ = exp[iα] = Uα with Uα = exp[iα]. So
we have ′′ = exp[i(α+ β)] = exp[iδ] , where δ = α+ β. This is a transformation of
the same form as the original. The set of all such transformations forms a group, in this
case called U(1)-group, meaning the group of all unitary (|Uα| = 1) one-dimensional
matrices ( , a single complex number). The transformations Uα and a subsequent
transformation Uβ are commutative. Namely,

Uβ Uα = Uα+β = Uα Uβ.

Such a group U(1) is called an Abelian group in mathematics where different
transformations commute.

The Electro-Weak theory and Quantum Chromodynamics (QCD) are described by
non-Abelian gauge symmetries of SU(2)× SU(1) group and SU(3) group, respectively
(see e.g. Aitchison & Hey (2013)). All of these theories form what is called today the
Standard Model, which is the basis of the theoretical physics except for gravity.

As seen above, the gauge symmetry plays a fundamental role something like a
touchstone of the theory, testing whether the theory is trustworthy or not. Gauge
symmetry exists in other fields too. Geometrical theory of gravitation and Fluid
Mechanics are considered below.

In this section we consider the geometric theory of gravity and the gauge symmetry
existing within the theory. Amazingly, there are analogous structures between the
quantum electrodynamics (QED) and the theory of gravity.
initial times of the gravity theory. Most obvious similarity resides in the covariant
derivatives of both theories, the former QED including the connection term of the EM
potential Aµ and the latter the connection term (Christoffel symbol) associated with
the gravity field.

Concerning the theory of gravity at the classic times of Galileo and Newton in the
17th century, a flat Euclidean absolute 3d-space xk = (x1, x2, x3) and an absolute time t
are two distinct physical objects, which are unlinked. A physical object of a point-mass
in free motion in an inertial frame in the absence of gravity moves uniformly along a
straight line. In the presence of gravitational potential Φ, free motion of a particle takes
curved trajectories in flat space. In Einstein’s theory of gravitation, world lines of free
particles (described by the geodesic equation) are a probe of structure of spacetime.

In Einstein’s theory, gravitational field is represented as an object of four-
dimensional continuum with curvature (Misner, Thorne & Wheeler (2017, §17.7)). In
the equation of gravitation (Einstein, 1915), curvature-tensors are equated to tensors of
source-term arising from material motion (mostly motion of fluids or gases), satisfying
the conservation laws of energy and momentum of the source material. In this geometro-
dynamics, geometry tells matter how to move, such as a free particle taking a curved
trajectory, while the matter tells geometry how to curve. Suppose that the source
material is a fluid. Being the source of gravity, the fluid tells geometry how to curve

v.

shared by both of and ∇µ can be generalized to other transformations. We will see

III. Geometric Theory of Gravitation

Transformation Group U(1)

𝜓𝜓 𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓
𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓

𝜓𝜓

𝜓𝜓

It was known from the



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Gauge Symmetries in Physical Fields (Review)

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

14

  
 

( A
)

V
er

sio
n

I

in the Einstein’s theory. Time t and 3d-space (x1, x2, x3) are two aspects of a single
continuum entity, which is an inseparable object of curved spacetime xµ = (x0, x1, x2, x3)
with x0 = ct. The 4d-spacetime is not flat because of the presence of matter’s energy
and momentum of the fluid motion.

Squared interval between an event at xµ and a nearby one at xµ + dxµ is given by

ds2 = gµν(P ) dx
µ dxν , P = xµ = (x0, x1, x2, x3), µ, ν = 0, 1, 2, 3 . (3.1)

where gµν is the metric tensor. The curved spacetime geometry of physical world is
founded by the metric tensor gµν . A special flat space is described by the Minkowski
metric ηµν = diag(−1, 1, 1, 1). This is the space of Special Relativity which is a theory
invariant under the Lorentz transformation. An important invariant object under the
transformation is the proper time τ (the time of comoving frame) defined by

dτ 2 = −ηµν dxµ dxν = (c dt)2 − |dx|2 = c2 (1− β2) (dt)2 , β ≡ |v|/c . (3.2)

where dx = vdt with v being a particle velocity. The τ is the time of comoving frame

A free particle of mass m moves along a world line. Its trajectory is determined as
an extremal of the action S(m) = −mc

∫
ds. The action principle is given by

δS(m) = −mc δ
∫ b

a

ds = 0. (3.3)

In the flat space of Special Relativity (Appendix B), the free motion takes a straight
path, while in gravitational field it is curved. Let us consider a free motion taking a
curved trajectory according to Newtonian mechanics.

Motion of a free particle in the Earth’s gravity potential ΦE(x
k) is described by

d

dt
vk +

∂ΦE

∂xk
= 0, vk ≡

dxkp
dt

, k = 1, 2, 3 , (3.4)

yielding a curved trajectory for the particle path xkp(t). In the modern view to take the
space and time linked to form a 4d-continuum, the curved trajectory of a free particle
is described as a geodesic curve in the linked space-time.

Let us take an illustrative example according to Utiyama (1987, §2.3), and consider
a free-falling elevator in the Earth’s gravitational field ΦE(x

ν). The free-falling elevator
provides a particular inertial system of spacetime, in which free motion of a particle is
described by

d2Xµ/dτ 2 = 0, (3.5)

where Xµ is the particle coordinates in the frame Fel fixed to the free-falling elevator.
The gravity effect does not appear apparently because the acceleration owing to the
gravity acting on both of the elevator and the particle are the same and cancel out in
the free-falling frame Fel. Thus, the particle takes a straight path Xµ = aµτ + bµ with
respect to Fel with a

µ and bµ being constants.
Let us observe the same motion from another general frame, and as an example

take the frame FE fixed to the Earth surface, where the coordinates are given by xµ.
The squared interval ds2 in the frame FE is given as (3.1). In the particular frame Fel,
the metric is given by the Minkowski metric ηµν = diag(−1, 1, 1, 1). Suppose that the
transformation between the two frames is connected according to Xµ = Xµ(xν). Under

a) An illustrative example: Free motion of a sigle particle and Equivalence Principle

with the particle (where is zero, hence  ),  while the time t is the time 

observed from other frame, which are related by d . Appendix C 
supplemts certain aspects of mathematics of this section c 
Theory of Gravitation.

v

τ = c
√
1− β2dt

dt c dt=

for the GeometriIII

− −
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this transformation from Xµ to xν , the equation of free motion d2Xµ/dτ 2 = 0 in the
frame Fel is transformed to that of the frame FE as follows,

d

dτ

dXµ

dτ
=

d

dτ

[∂Xµ

∂xν
dxν

dτ

]
= Aµν

[d2xν

dτ 2
+ Γναβ

dxα

dτ

dxβ

dτ

]
= 0

Using the inverse A−1 ofAµ
ν and multiplying by (A−1)λµ ≡ ∂xλ/∂Xµ, this becomes

d2xλ

dτ 2
+ Γλαβ

dxα

dτ

dxβ

dτ
= 0, where Γλαβ =

∂xλ

∂Xσ

∂Xσ

∂xα ∂xβ
= Γλβα. (3.6)

This states that the particle trajectory is curved in general when Γλαβ ̸= 0.
The 4-velocity uν ≡ dxν/dτ of the particle is defined by

uν =
dxν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), x0 ≡ ct, v = (vk) = (dxk/dt). (3.7)

In the non-relativistic limit as β ≪ 1 for the particle velocity |v| is much less than the
light velocity c, this leads to uν = dxν/dτ → (1,v/c) in the limit. In this case, the
equation (3.6) becomes

d

dt
vλ + c2 Γλαβ v

α vβ = 0, in particular
d

dt
vk + c2 Γk00 · 1 · 1 = 0, (3.8)

where the second equation is given for λ = k = 1, 2, 3, (α, β) = (0, 0), and the factors
Γλαβ other than Γk00 are set to zero. Compare this with (3.4). By assuming the following
relation of equality,

c2 Γk00 = ∂ΦE/∂x
k , (3.9)

the second equation of (3.8) becomes equivalent to the equation (3.4). This implies an
interesting relation between the gravitational potential ΦE and the symbol Γλαβ (called
the Christoffel symbol). the same
symbol Γ and expresses the geodesic equation of a free particle in curved spacetime. By
replacing the proper time τ with an equivalent parameter λ, the equation (3.6) reduces
to (3.11). We will come back to this point at the item (ii) given below.

In fact, the above simplified example illustrates the conceptual aspects of the
geometrical theory of gravitation in three respects. (i) Any curved spacetime has a
flat space (the freely-falling elevator in the above case) at any point (locally tangent to
it). This is assured by a mathematical theorem, i.e. the local flatness theorem (Schutz,
1985, §6.2). One can always construct such a local inertial frame at any event.

(ii) Gravitational potential Φg is related to the metric tensor gµν . In fact, Einstein
had a view that there is a similarity between the gravitational field and Riemannian
geometry. This is based on the particular feature of the gravity which is distinguished
from other forces such as the electromagnetic force (say) and characterized by the fact
that all bodies are given same acceleration. The potential Φg is related to the tensor
gµν , and covariant derivatives depending on gµν are defined in the curved spacetime.

In the above example of a free particle moving in a weak gravitational field of
potential Φg, the squared interval ds2 defined by (3.1) is given by

ds2 = −(1 + 2Φg/c
2)(c dt)2 + (1 + 2Φg/c

2)−1 (dx2 + dy2 + dz2) , (3.10)

as a leading order representation (Misner et al. , 2017, §16.2), where only diagonal
elements gµν |µ=ν are non-vanishing. Noting x0 = c dt, the metric tensor g00 is given by
−1−2Φg/c

2. In the theory of weak gravitational field (Φg/c
2 ≪ 1), the metric tensor gµν

is set as gµν = ηµν+hµν by using the Minkowski metric ηµν on the assumption |hµν | ≪ 1.

Xµ
ν=

part b)The equation (3.11) of the next includes
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In the Earth’s gravitational field, the potential Φg is replaced by ΦE = −G0M/r and
h00 = −2ΦE/c

2, where M is the Earth’s mass and r the radial distance from its center.
Returning the equation (3.9): Γk00 = c−2 ∂ΦE/∂x

k again, the definition of the
Christoffel symbol Γ is given by (3.12) of the next section, leading to Γk00 = gkµΓµ00 ≈
ηkµΓµ00 = Γk00 = −1

2 ∂kh00 = c−2 ∂kΦE. Thus, the the equation (3.9) was confirmed by
the squared interval ds2 of (3.10).

(iii) Cornerstone of the Einstein’s theory is the Principle of equivalence between
gravity and acceleration. Consider a uniformly accelerating rocket moving in empty
space free of gravity (Schutz, 1985, §5.1). Viewed from an observer inside, it appears
that there is a gravitational field within the rocket. All objects released from the
observer are subjected to uniformly accelerating motion, just as in gravity field. A
frame falling freely within the ship is an inertial frame. It can be seen from this that
frames accelerating uniformly in empty space are equivalent to uniform gravitational
fields. This is a conceptual aspect of the equivalence principle.

Its technical aspect is stated as follows. Transition from the equation (3.5) in flat
space-time to the equation (3.6) in a curved spacetime is enabled by the Equivalence
Principle. The equation (3.5) can be written as duµ/dτ = uµ,τ = 0 where uµ ≡ dXµ/dτ ,
while the equation (3.6) can be written as ∇̂τu

µ ≡ duµ/dτ+Γµαβ u
α uβ ≡ uµ;τ = 0. Hence,

for the transition from flat spacetime to curved one, the comma of uµ,τ is replaced by a
semicolon like uµ;τ (§3.2(c). This is the technical aspect of the Equivlence Principle.

The metric gµν describing the geometry of space-time is a symmetric tensor having

The gravitational field considered in this paper is assumed to be weak so that the
formulation can be compared with the electromagnetic field presented in the previous
section and the fluid-flow field to be considered next in this paper.

Einstein’s theory of gravitation (Einstein 1915) is founded on the Riemannian
Geometry. Appendix A describes some of its basics.

In a gravitational field, its 4d-spacetime Kg is curved, and the line element ds is
represented in terms of the metric tensor gµν(x

α) of (3.1). A free particle in such a space
moves along a geodesic line xα(λ), governed by the following geodesic equation:

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0. (3.11)

where λ is an affine parameter defined as λ = aτ + b with τ the particle’s proper time
and a, b constants. The factors Γ’s are the Christoffel symbol, defined by

Γαβγ = gαµΓµβγ , Γµβγ =
1
2

(∂gµβ
∂xγ

+
∂gµγ
∂xβ

− ∂gβγ
∂xµ

)
. (3.12)

In such a curved space Kg, a covariant derivative of a vector field vα(xµ) along a curve
P (λ) with its tangent uβ = dxβ/dλ is defined by

(∇̂uv)
α ≡ d

dλ
vα + Γαβγ v

βuγ ≡ ∇̂λ. (3.13)

where ∇̂ denotes the nabla-operator in the 4-d spacetime. Using this definition, the
geodesic equation (3.11) can be written simply as

b)

i.

Review of Einstein’s Theory

Geodesics and Covariant derivative

ten independent components ) in 4-dimesional spacetime, functions of a 
world point P. Einstein’s geometrodynamics is governed by ten tensor equations of 
the form: . Among the ten equations, only six are effective. Its 
account is given in 3.2(e).

gµν(P

Gµν= 8πk Tµν detailed
§
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According to the differential geometry (Misner et al. 2017, Chap.8), this states that the
geodesic is a curve P (λ) which parallel-transports its tangent uα = dxα(P )/dλ. In the
flat space of special relativity where gµν is given by the metric ηµν = diag(−1, 1, 1, 1),
the geodesic takes a straight path d2xα/dλ2 = 0, since Γµβγ = 0 by (3.12).

Rα
βγδ

Equation of the geodesic deviation, that is now going to be presented, has a special
term which represents the gravitation with curvature tensors mathematically. Consider
a family of geodesics parameterized by λ, so that world points are expressed as xα(λ, n),
with each geodesic curve discriminated by a second parameter n.

Let us introduce the separation vector ηα defined by ηα = ∂xα/∂n, measuring the
separation (deviation) ∆xα = ηα∆n between the geodesic n and the nearby geodesic
n + ∆n at the same value of λ. In curved spaces, parallel lines when extended do not
necessarily remain parallel, which is formulated in terms of the Riemannian tensors.

To that end, we will make mathematical expressions more general than those of
the previous section and define a general derivative form D for a general vector field
v = vαeα where v is expanded in terms of unit basis vectors eα. Then the exterior
derivative of the vector v is given one-form expression as

Dv = (Dvα) eα + vα (Deα), (3.15)

where Dvα = (∂βv
α) dxβ is a one-form, and the term Deα is a vector-valued one-form

which is expanded by using the connection coefficient (Christoffel symbol) in the form,

D eα = eν Γ
ν

αµ dx
µ.

Thus, we have the expansion of D v represented as

Dv = eν

(∂vν
∂xβ

+ Γναβv
α
)
dxβ , = eν

(dvν
dλ

+ Γναβ v
αuβ

)
dλ. (3.16)

With these notations, we define

Dηα ≡
(∂ηα
∂λ

+ Γαβγη
βuγ

)
dλ,

D

dλ
ηα ≡ ∂ηα

∂λ
+ Γαβγ η

βuγ.

It is seen that the operator D is one-form expression of the covariant derivative ∇. Then,
the separation vector ηα is governed by the following equation of geodesic deviation:

D

dλ

D

dλ
ηα = Rα

βγδ u
β uγ ηδ, (3.17)

where ηα = ∂xα(λ, n)/∂n is the separation vector and uβ = ∂xβ/∂λ the tangent vector.
The covariant derivative of v with respect to the coordinate xµ is given by

(∇̂µv)
ν
(
=

Dvν

∂xµ

)
= ∂µv

ν + Γναµv
α ≡ ∇̂µv

ν , vν;µ = vν,µ + Γναµv
α. (3.18)

(See next (c) for the notations of the second equation). The equation (3.17) serves as a
definition of the Riemann curvature tensors Rα

βγδ, which are defined by

Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓανγΓ
ν
βδ − ΓανδΓ

ν
βγ . (3.19)

This can be represented in terms of the metric tensors gαβ and their derivatives (see
(C.7)). According to (3.17), geodesics in flat space where Rα

βγδ = 0 maintain their
separation, while those in curved spaces where Rα

βγδ ̸= 0 do not. This is said in the
beginning that geometry tells matter how to move.

Geodesic deviation and Riemann curvature tensorsii.

∇̂uu = 0, or ∇̂λu = 0, where uα ≡ dxα(P )/dλ. (3.14)
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How the matter influences the geometry for curving is the subject of subsequent
sections. In the present theory of geometro-dynamics, the matter is a perfect fluid.
Relativistic expressions of the stress-energy tensor of a perfect fluid are to be given in
the section by (4.25) and (4.26):

Tαβ = (ρ c2 + ρ ϵ(ρ) + p) uαuβ + p ηαβ, (3.20)

where uµ and ηµν are defined in (3.7) and (4.21) respectively.§
Conservation law of energy-momentum given by (4.24) is cited here,

∂βT
αβ = T αβ,β = 0. (3.21)

where the comma notation ’, β’ denotes the partial derivative with respect to xβ. This is
an expression in global Lorentz (Minkowski) frame of flat spacetime. For the transition
(to be considered next) from flat to curved spacetime, the comma is replaced by a

semicolon such as T αβ;β , i.e. the covariant derivative of T αβ.
From the equivalence principle explained in the same equation

is given in local Lorentz frame (Lf in short) of curved spacetime as well by

T αβ,β = 0 at origin of local Lorentz frame. (3.22)

In such a frame of local Lf, free particles are viewed to move along straight lines at least
locally. This means that the term Γαβγ of (3.11) must vanish at the origin in the local
Lf. Namely, all the laws of physics must take their forms known in the special relativity.
This is the Principle of Equivalence.

Because the Christoffel symbols Γ′s vanish at the origin of local Lf, the equation
(3.22) can be rewritten as

T αβ;β = 0 at origin of local Lorentz frame.

Thus the conservation law given by the form T αβ,β = 0 at origin of local Lorentz frame

is extended to curved spacetime of the form T αβ;β = 0 in any reference frame owing to
the definitive character of tensor. Thus, we have

T αβ;β = 0 : extended to any reference frame of curved spacetime. (3.23)

Equations of the gravitational field are obtained from the principle of least action
δ(Sg+Sm) = 0, where Sg and Sm are the actions of the gravitational field and matter field
respectively. Accordintg to the variational formulation of Appendix C.2, the variation
of Sg with respect to the metric field gαβ is

δSg = −Ag
∫ (

Rαβ − 1
2 gαβR̂

)
δgαβ

√
−g dΩ , Ag ≡

c3

16πG0

, (3.24)

where dΩ = dx0dx1dx2dx3 and
√
−g dΩ is the proper volume [dΩ ]prop in a local Lorentz

frame with g = det(gµν), and Rαβ is the Ricci curvature tensor (C.11), and R̂ ≡ gανRαν

is the scalar curvature, and G0 is the gravitational constant.

§ The expression of stress-energy tensor Tαβ given here is equivalent to the expression of (a) the

equation (133.2) of §133 of ”LL (1987)” and that of (b) Box 5.1 of §5.1 of ”Gravitation (2017)”, under

the understanding that ρ (m1c
2 + ϵ) + p (where m1 = 1) is equivalent to w = ρ e + p of (a) where

e = m1c
2 + ϵ, and to ρ + p of (b) where ρ is defined by ρ (1 + ϵ) since m1c

2 = 1 by the assumption

c = 1 of the text (b). Note that the present Minkowski metric ηαβ is equal to −gαβ of (a). Thus, all

the stress-energy tensors Tαβ of the three texts are equivalent under the above understanding.

Equivalence Principle: Transition from flat spacetime to curved one

Einstein field equations

iii.

iv.

IV, d)

the section III, a), (iii)
as (3.21)
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On the other hand, the variation of the action Sm of the matter field is

δSm =
1

2c

∫
Tαβ δg

αβ
√
−g dΩ . (3.25)

where Tαβ is the stress-energy tensor of the matter (i.e. the fluid in the present case).
Note that variation of the coordinates from xν to x′ν = xν + ξν results in variation of
the metric δgαβ ∥

From the action principle δSg + δSm = 0, we find the Einstein field equation:

Gαβ = 8πk Tαβ , k = G0/c
4, (3.26)

in view of the arbitrariness of the δgαβ. (See Appendix C.2 for its derivation). The
tensor Gαβ is defined by

Gαβ = Rαβ − 1
2 gαβR̂, (3.27)

called the Einstein curvature tensor, while Tαβ is the stress-energy tensor.

Einstein’s geometro-dynamics is governed by ten tensor equations (3.26): Gαβ =
8πk Tαβ. Among the ten equations, only six are effective. How can the ten equations
be in reality only six ? This is because, owing to the four Bianchi identities Gµν

;ν = 0,
the equations Gµν = 8π Tµν place four local conservation laws T µν;ν = 0 of energy and
momentum of the source fluid. Instead, four conditions become free, which enable four
coordinates chosen arbitrarily. Hence the geometry is constrained by the six independent
equations from (3.26).

It is worth emphasizing the ingenious composition of the theory by repeating the
concept with other words. The ten equations of Gαβ = 8πk Tαβ place four constraints
on the source motion in the form of the four conservation equations T µν;ν = 0, owing to
the four Bianchi identities Gµν

;ν = 0. This is exactly the meaning given in the beginning
as ”the geometry tells the matter how to move”. The four conditions, instead, enable
four coordinate frames chosen freely. Remaining six constraints from Gµν = 8π Tµν are
those meant by ”the matter tells geometry how to curve”.

The geometro-dynamics in vacuum space requires special attention. Because no
matter exists in the vacuum, the six constraints to be imposed by matters mentioned
above must be replaced by conditions of vacuum-space own. Here is the place where
the Lorentz gauge condition comes into play. This is presented next.

There exist various similarities between the gravity field of the present section and
field of quantum electrodynamics (QED) considered in Those are reviewed with
comparing corresponding mathematical expressions from three aspects here.

Covariant derivatives
The similarity is clearly seen in the form of the covariant derivatives of both fields.

In the gravity, the covariant derivative of v = vνeν with respect to xµ is given by (3.18):

(∇̂µv)
ν = ∂µv

ν + Γναµv
α. (3.28)

In QED, according to (2.33) of , corresponding form of its covariant
of wave function is given as

∇µ = ∂µ − iγAµ ψ, γ = e/ℏc. (3.29)

∥ δgαβ = −ξν∂νgαβ + gαν∂νξ
β + gβν∂νξ

α. See LL (1975) §94.

c) Similarity between Gravity Theory and QED

v. Degree of freedom of geometro-dynamics

i.

𝜓𝜓 𝜓𝜓

the
the section II.

the section II, b), (ii)
derivative
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The coefficients of second connection term of each covariant derivative are directly
connected to the source field of each case. The former Γναµ are given by derivatives
of metric tensors gµν including the gravity potential Φg (see (3.12) and (3.10)). The
latter γAµ is obvious since Aµ is the electromagnetic (EM) potential.

The covariant derivative ∇̂µv denotes the derivative in curved spacetime, leading
to curved geodesic lines. Analogously, the latter derivative ∇µ signifies curved motion
of microscopic particles because the term pk = −iℏ∂k of (2.28) denotes rectilinear
momentum in the absence of the EM field Aµ.

Equations of the gravitational field are obtained from the principle of least action
with total action defined by Stotal = Sg + Sm, where Sg and Sm are the actions of
gravitational field and matter field respectively. Variations of both actions δSg and δSm
are given in Appendix C.2. From the action principle δ(Sg + Sm) = 0, we obtain

δSg + δSm = −Ag
∫ (

Gαβ − 8πk Tαβ

)
δgαβ

√
−g dΩ = 0, (3.30)

where Gαβ is the Einstein’s curvature tensor defined by (C.19), Ag = c3/(16πG0) and
k = G0/c

4 with G0 the gravitational constant. The action principle requires invariance
of Sg+Sm, namely vanishing of δ(Sg+Sm ) for arbitrary variations of the metric tensor
δgαβ. Thus, we obtain the Einstein equation,

Gαβ = 8πk Tαβ , k = G0/c
4. (3.31)

The action principle, i.e. the invariant variation described above, yields the Einstein
field equation (3.31).

On the other hand, corresponding part of EM (electromagnetism) is the second
pair of Maxwell equations presented in derived from the electromagnetic

composed of two components S
(em)
emA and S

(em)
int defined in Hence,

principle δ(S
(em)
emA + S

(em)
int ) = 0, we obtain

δS(em) ≡ δ
(
S
(em)
emA + S

(em)
int

)
=

∫ (1
c

− 1

4π

∂F νλ

∂xλ

)
δAν dΩ = 0. (3.32)

The action principle requires invariance of S(em) ≡ S
(em)
emA + S

(em)
int , namely vanishing of

δS(em) for arbitrary variations of the potential δAν . Thus, we obtain

∂λF
νλ = (4π/c) j νe . (3.33)

This invariant variation yields the second pair of Maxwell equations (2.8).
Similarity between the gravity and the electromagnetism is seen not only in the form

of the action principle by comparing (3.30) and (3.32), but also remarkable similarity
is observed in the derived equations (3.31) and (3.33). Left-hand side of (3.31), Gαβ,
denotes the spacetime structure of gravity, while that of (3.33), ∂λF

νλ, denotes the
structure of electromagnetic field. Those are generated by the sources on the right-hand
side: Tαβ of (3.31) being the stress-energy tensor of the source perfect fluid, and j νe of
(3.33) being the source current flux.

In , we have seen electromagnetic waves governed by the wave
(2.21) for the electromagnetic 4-potential Aα. In vacuum space, this reduces to

(∇2 − c−2∂ 2
t )A

ν = 0. (3.34)

ii. Invariant variations

iii. Waves in vacuum space and gauge conditions

𝜓𝜓
𝜓𝜓 𝜓𝜓

the section II a) (i).

the action

action

from

the section II a) (i).

equation
the section II a) (iii)

j νe
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This can be derived from (3.33), which becomes, on substituting F νλ = ∂νAλ − ∂λAν ,

−∂λ∂λAν + ∂ν(∂λA
λ) = (4π/c) j νe (3.35)

Imposing the Lorenz gauge condition (2.20),

∂λA
λ = 0, (3.36)

setting j νe = 0 in the vacuum space, and noting −∂λ∂λ = c−2∂ 2
t − ∇2, the equation

(3.35) reduces to (3.34).
Similar structure is found in the gravitational waves as well to be presented in

the next In weak gravitational field, the metric tensor is represented as
gαβ = ηαβ+hαβ under the condition |hαβ| ≪ 1. Linearizing the Einstein equation (3.31),
the wave equation (3.47) is derived under the gauge condition (3.46), both of which are
cited here in advance for comparison purpose:

(∇2 − c−2∂ 2
t )h

µν
= − 16πk T µν , (3.37)

∂ν h
µν

= 0 , (3.38)

where h
µν

= hµν − 1
2 η

µν (hαα). One can recognize similar structures between EM and
Gravity, although there is an obvious difference
and tensorial fields of the latter Gravity. Inspite of such difference, their similarity is
remarkable.

and apply the divergence operator ∂ν on it,
then we obtain

(∇2 − c−2∂ 2
t )(∂νA

ν) = −(4π/c) (∂νj
ν
e ).

Hence, the gauge condition (3.36) requires the current conservation ∂νj
ν
e = 0.

Next, consider the gravitational wave equation (3.37) and apply the divergence
operator ∂ν on it, then we obtain

(∇2 − c−2∂ 2
t ) (∂νh

µν
) = −16πk (∂νT

µν) ,

It is consistent with the formulation of the theory that the gauge condition (3.38)
requires the conservation of stress-energy of dynamical motion of the source material
(fluid) ∂νT

µν = 0.
In vacuum space where both of the current flux j νe and the stress-energy of material

motion are absent. the gauge freedom resulting from the absence of materials is filled
up by the gauge conditions ∂νA

ν = 0 or ∂νh
µν

= 0. It is understood that the gauge
conditions play the role of filling in the blanks of degrees of freedom.

The spacetime is flat in the absence of gravity, and presence of a weak gravitational
field is one in which spacetime is curved but close to flat. In the spacetime continuum
object (manifold in mathematics), the metric components are represented as

gαβ = ηαβ + hαβ, (3.39)

where

|hαβ| ≪ 1 , ηαβ = diag(−1, 1, 1, 1), (3.40)

assuming small ripples in flat spacetime. Such spacetime is called nearly-Lorentz system
and studied by a linearized theory. Merits of linearized theory lie not only in its
manageability of analytic handling, but also in the fact that one can apply a gauge
transformation to the weak gravitational field as well.

d) Gravitational waves (weak gravitational field)

d).section

vectorial fields of the former EM field,

Consider the EM wave equation (2.21)  
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In fact, the weak field has a remarkable analogy with the electromagnetic field, as
seen in the previous , evidenced by the similarity of corresponding wave equations
(3.34) and (3.37). However, the difference is clearly recognized in the source terms on
the right-hand sides of the two wave equations. In the former field, the source is the
current density 4-vector jµe . while in the latter, it is the stress-energy tensor T µν of
fluid motion. Namely, the vector jµe and tensor T µν symbolize the difference of both
fields. However it is more important to have an insight (and recognize) that they share
a common physical mechanism for generation of each field despite their difference.

From the metric form (3.39) under the condition (3.40), one obtains a resulting
form of the Christoffel symbol Γαβγ from the definition (3.12), in which all three terms

are linear without approximation: Γαβγ =
1
2 (h

α
β,γ + hαγ,β − h ,α

βγ ). A linearized form of
Riemann tensor is

Rαµβν =
1
2

(
hαν,µβ + hµβ.να − hµν,αβ − hαβ,µν

)
, (3.41)

and the Ricci tensor is given by Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα from (C.12). Then, the

linearized field equation is derived from the Einstein equation (3.26): Gµν = 8πk Tµν as

−h α

µν,α − ηµν h
αβ

αβ, + h
α

µα, ν + h
α

να, µ = 16πk Tµν , (3.42)

(Misner et al. (2017), Chap.18), where

hµν ≡ hµν − 1
2 ηµν h, h = hαα = ηαβhαβ. (3.43)

We are now in an important stage where one can conceive a gravitational gauge
transformation, which is quite analogous to the electromagnetic one. Let us consider
an infinitesimal transformation of the coordinates of a spacetime point P from old ones
(xµ) to new ones (x′µ), expressed as

x′µ(P) = xµ(P) + ξµ(P), (3.44)

where xµ(P) and x′µ(P) represent the same spacetime point P , and only their reference
frames are changed. Metric perturbations in the new (x′µ) and old (xµ) coordinate
frames are related to first order in small quantities by¶

hnewµν = holdµν − ξµ,ν − ξν,µ . (3.45)

This is regarded as a gravitational gauge transformation since the Riemannian tensors
are left unchanged by the transformation (3.45). This can be immediately verified by
substituting the expression of hnewµν into (3.41), finding Rnew

αµβν = Rold
αµβν . This is reasonable

because the change of reference frame only should not influence the physical world. Since
the the curvature tensor Rαµβν is unchanged, the Ricci tensor Rαβ, scalar curvature R̂,
Einstein tensor Gαβ are all unchanged. This is the gravitational gauge invariance, and
the geometrical tensors are essentially the same whether calculated in an orthonormal
frame ηµν , in the old frame goldµν , or in the new frame gnewµν .

In general, one can impose the following gauge condition:

h
µα

,α = 0, (3.46)

¶ Defining matrix element of transformation by Λα
β

≡ ∂xα/∂x′β = δαβ − ξα,β , neglecting higher

order terms of smallness, transformation of the metric tensor is given by gnewαβ = Λµ
αΛ

ν
β
goldµν =

Λµ
αΛ

ν
β
ηµν + Λµ

αΛ
ν
β
hµν = (ηµν − ξµ,ν − ξν,µ) + hµν .

i. Linearized theory and gravitational gauge transformation

part c
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called the Lorentz gauge for gravitational waves. Under this Lorentz gauge condition,
the linearized field equation (3.42) reduces to

−h α

µν,α = 16πk Tµν , or equivalently ∂α∂
α hµν = −16πk Tµν , (3.47)

since the second, third and forth terms on the left-hand side of (3.42) vanish, as follows:

h
αβ

αβ, = ηαµηβνh
µν,αβ

= h
µν

,µν = (h
µν

,ν)µ = 0, by (3.46),

h
α

µα, ν = ηµλh
λβ

,βν = ηµλ(h
λβ

,β)ν = 0, h
α

να, µ = ηνλh
λβ

,βµ = 0.

The equation (3.47) represents gravitational wave-generation by the source term on the
right-hand side, since the operator ∂α∂

α is nothing but that of wave equation:

∂α∂
α = −∂ 2

0 +∇2 = □, ∂α = (∂0,∇), ∂α = ηαλ∂λ = (−∂0,∇).

Thus, we have found the gauge condition (3.46) and wave equation (3.47) for
gravitational waves, which are equivalent to the equations (3.37) and (3.38) presented
already in §3.3(c). Note that the indices of hµν and Tµν are raised with the Minkowski

metrics ηαµ ηβν multiplied on both sides of (3.47), obtaining h
αβ

and T αβ. Since the
factors ηαµ ηβν are constant, they enter through the diffrential operators.

Suppose that the tensors hµν satisfy the equation (3.42), but do not satisfy the

condition (3.46). Then, one can apply a gauge transformation (3.45) to obtain (h
new

)µν

from (h
old
)µν , and demand that (h

new
)µν satisfies the gauge condition:

(h
new

)µα,α = 0 = (h
old
)µα,α − ∂α∂

α ξµ − ∂µ(∂αξ
α). (3.48)

Under the condition ∂αξ
α = 0 (compatible with the transversality of the waves), one

can find the perturbation ξµ satisfying the wave equation,

∂α∂
α ξµ

[
= (−c−2∂ 2

t +∇2)ξµ
]
= (h

old
)µα,α ( ̸= 0, assumed).

The new field (h
new

)µν satisfies the Lorentz condition (3.48), (h
new

)µα,α = 0 and the
wave equation (3.47).

Even the new metric (h
new

)µν satisfy the condition (3.48), there is arbitrariness.
To fix it, consider a restricted gauge transformation (h

new
)µν → (h

new
)′ µν :

(h
new

)′ µν = (h
new

)µν − ξµ,ν − ξν,µ + ηµνξ
α
α, (3.49)

derived from the form (3.43) and (3.45). Provided that ξµ satisfies the following wave
equation,

∂α∂
α ξµ = (−c−2∂ 2

t +∇2) ξµ = 0 [Restricting condition], (3.50)

the Lorentz condition (h
new

)′ µα,α = 0 is satisfied according to an equation equivalent
to (3.48). Namely, the restricted gauge transformation preserves the Lorentz gauge
condition. Therefore the Lorentz gauge is really a class of gauges.

Just as wavy deformations over sea surface propagate across the ocean, so small
ripples of the gravitational metric tensor propagate across spacetime. Propagation of
the latter gravitational wave in vacuum space (where Tµν = 0) is given by the wave
equation (3.47) under the gauge condition (3.46):

∂α∂
α hµν = (∇2 − c−2∂ 2

t )hµν = 0, (3.51)

iii. Gravitational waves in vacuum

ii. Justification of Lorentz gauge



 
 

 
 

 
 
 
 
 
 
 
 
 
 

∂α h
µα

= 0, (where ∂α h
µα

= ηµν ∂α hνα). (3.52)

Plane Wave: For simplicity reason, let us consider a plane wave, described by the
following monochromatic wave:

hµν = Aµν exp[i kαx
α],

(
k0 = −ω/c, k = (k1, k2, k3),

)
(3.53)

where xα = (ct, x1, x2, x3). Substituting this to the equation (3.51), one obtains

i2 kα k
α = k20 − |k|2 = 0, ∴ |k|2 = ω2/c2, (3.54)

which is referred to as the dispersion relation of the wave and kα is called the null vector.
The equation of gauge condition (3.52) requires the four (orthogonality) conditions:

kαA
µα = 0. (3.55)

Let us consider the degree of freedom of gravitational waves in vacuum space. Its
degree of freedom is found to be Two. The reason is as follows. The metric perturbation
hµν of a plane wave is given by (3.53), which is a solution to the field equation (3.51)
in the form of wave equation. Its wave amplitude Aµν has ten independent components
in general. The field equation (originally of the form Gαβ = 8πk Tαβ) is controlled by
four constraints due to the four Bianchi identities Gµν

;ν= 0, as mentioned at
The four conditions, instead, enable four frames of coordinate chosen freely. Those are

provided by the orthogonality gauge-conditions (3.55): kαA
µα = 0. Thus, the degree of

freedom of A
µν

is reduced to six.

Wave propagation in vacuum space requires special attention. Because of absence
of matters in the vacuum, the six constraints to be imposed by matters (if they existed)
must be replaced by conditions of vacuum-space own. Here is the place where another
gauge conditions come into play. However, even when the gauge condition (3.46) is
satisfied, there is arbitrariness. Namely without violating the gauge condition (3.55),
one can introduce the restricted gauge condition (3.50).

Let us express a solution to the restricted gauge condition (3.50) by another plane
wave:

ξα = Bα exp[i kµx
µ], (3.56)

where Bα is a constant and kµ is given by (3.54). Consequent change in hαβ is given

according to (3.49) as (h
new

)′αβ = (h
new

)αβ − ξµ,ν − ξν,µ + ηµνξ
α
α. From (3.56), this

gives

A
′(new)
αβ = A

(new)
αβ − iBαkβ − iBβkα + i ηαβB

µkµ, (3.57)

by removing the exponential factor. One can show (Schutz 1985, Chap.9) that Bα can

be chosen to impose two further restrictions on A
′(new)
αβ :

Aαα = 0 (traceless), (3.58)

Aαβ u
β = 0 (transverse), (3.59)

where uβ is any constant timelike unit vector.
Note that the condition (3.59) gives only three because kαAαβ u

β = 0 is valid
identically for any Bα. Hence, the constraints (3.55), (3.58) and (3.59) together give
the eight conditions, which are called the transverse-traceless (TT) gauge conditions.
The remaining two must be physically significant. Namely, the degree of freedom of the
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iv. Degree of freedom of gravitational waves

section III b)
(v)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

wave is found to be Two. The gravitational wave has two dynamic degrees of freedom,
which is analogous to the electromagnetic waves propagating in vacuum space.

The TT-gauge is based on the vector uβ. Let us take the frame of background
vacuum Minkowski spacetime (through which the wave is propagating) defined by the

time basis set along the vector uβ = δβ0. Then, the condition (3.59) implies Aα0 = 0
for all α. In this frame, we take the spatial x3-axis parallel to the direction of wave
propagation. Then we have kα = (−k, 0, 0, k) from (3.54), and the equation (3.55)
implies Aα0 + Aα3 = 0. Hence we have Aα3 = −Aα0 = 0 for all α.

Thus, using the symmetry of Aαβ and the traceless condition A11 + A22 = 0, we
can write the coefficient matrix Aαβ in the TT-gauge (transverse-traceless gauge) as

ATTαβ =


0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0

 . (3.60)

In Fluid-Mechanics of a perfect fluid, the fluid medium is assumed as a continuum (i.e.
a continuous distribution of mass) in the spacetime xν = (t,x) = (ct, x1, x2, x3). Flow
variables such as the mass density ρ, pressure p or flow velocity v are represented
by continuously differentiable functions of xν . Dynamical motion of fluid flows is
characterized by the presence of convective derivative in the equation of motion. It
is a derivative following the fluid motion, also called sometimes the advective derivative,
Lagrange derivative or material derivative, but most importantly it is gauge-invariant
covariant derivative under local gauge transformations. A fluid flow is a smooth
sequence of diffeomophisms of particle configuration, which is a continuous sequence
of transformations from one time to another, and two different sequences are not
commutative. This is contrasted with the commutative U(1) gauge transformations
of QED, seen in §2.2.

To capture dynamical motion of fluids, we have two distinct kinds of specification:
Eulerian type and Lagrangian type. With respect to each specification, one finds a
gauge symmetry associated with the fluid mass in motion. In the first Eulerian type of
specification, the mass density, pressure or flow velocity are represented by differentiable
field variables of ρ(t,x), p(t,x) or v(t,x) respectively. Fluid motions are governed by
two kinds of equations, the continuity equation and Euler’s equation of motion:

∂tρ+∇ · (ρv) = 0, (4.1)

∂tv + (v · ∇)v = −1

ρ
∇ p, (4.2)

In the second Lagrangian type of specification, as in particle mechanics, flow variables
such as mass-density ρ or velocity v are defined by functions of three parameters
a = (a1, a2, a3) identifying each fluid particle (a piece of material element of fluid) and
time ta, like ρ(ta, a

1, a2, a3) or v(ta, a
1, a2, a3). In this specification, the quartet members

(ta, a
1, a2, a3) play as independent variables x0, x1, x2, x3)

of the Eulerian type. For example, the spatial position of a fluid particle at a time ta
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iv. Fluid Mechanics: Smooth Sequence of Non-Commutative

Diffeomorphisms

a) Euler’s equation of motion

the spacetime coordinates (replacing
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specified by the parameter a = (a1, a2, a3) is described by Xa(ta, a
1, a2, a3) = Xa(ta,a).

However, to denote a point in Euclidian 3-space, we keep the symbols (xk) = (x1, x2, x3).
In the case of Lagrangian type of specification, local gauge transformation (LGT)

is considered with respect to the specification of position coordinate of a fluid particle
identified with the Lagrange-parameter a. To describe the particle motion, a convective
derivative Dt is defined by

Dt ≡ ∂t + (v · ∇) , (4.3)

in addition to partial derivatives such as ∂t ≡ ∂/∂t or ∂k ≡ ∂/∂xk.
The convective derivative Dt is a generalization of the time derivative ∂t having a

remarkable property of invariance with respect to an LGT transformation defined below.
This property is investigated in the section as another kind of gauge invariance,
and also investigated as a covariant derivative in curved space-time. In fact, using Dt,
the above Euler’s equation of motion (4.2) can be rewritten as

Dtv + ρ−1 ∇ p = 0. (4.4)

This is viewed as a generalization of Newton’s equation of motion to a continuous matter
of a perfect fluid, because the term Dtv is regarded as an acceleration of a fluid particle
of a unit mass identified with a fixed parameter a.

A fluid flow is a smooth sequence of diffeomorphisms of particle configuration
on a spacetime manifold M4 with a point x = (xν) = (t,x) ∈ M4 (x = (xk) with
k = 1, 2, 3). Suppose that a vector field U(x) = U ν eν = ∂t + Uk∂k is given at every
point x ∈ M4 (with U0 = 1) as a vector operator U . With such a vector field, one
can associate a particular flow, i.e. one-parameter sub-group of diffeomorphisms ξt with
ξ0 = I (identity). This is a transformation of the particle configuration at the initial
moment ξ0(x) = Ix = (0,X0) to the particle configuration ξt(x) = (t,X t) at time t.
The initial velocity field at t = 0 is given by (d/dt) ξt(x)|t=0 = Uξt(x)|t=0 = U ν eν =
∂t + Uk∂k. where U is an operator on ξ0(x). In this flow, the initial material point
X0 = σ ≡ (σ1, σ2, σ3) in 3-space is transformed to a 3-space pointX t(σ) at t (> 0). The
transformation ξt is, as it were, an infinite-dimensional diffeomorphisms from X0 = σ
to X t(σ). (See, e.g. Kambe (2010) Chap.1 and its Appendix C).

On such a group (a Lie group) of diffeomorphisms, one-parameter subgroup with a
tangent vector U at the origin I is represented by

ξt = I + tU +
1

2!
t2U2 +O(t3). (4.5)

With a second vector field V (x) = V k ek, a second flow of one-parameter subgroup
ηs(x) is generated analogously by V with η0 = I. Noting that the composition ηsξt(x)
is understood as ηs(ξt(x)), we have

ηs ξt − ξt ηs = st [U, V ] +O(st2, s2t), (4.6)

[U, V ] ≡
(
Uk∂kV

i − V k∂kU
i
)
∂i (4.7)

The commutator [U, V ] signifies the degree of non-commutativity of the two flows
of diffeomorphisms represented by ξt and ηs. This non-commutativity signifies the
spacetime being curved.

b) Fluid flow: Sequence of non-commutative diffeomorphisms
i. One-parameter sub-group of diffeomorphisms

IVc)
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With respect to a flow ξ(t), consider a trajectory Xµ(t) of a fluid particle on a
Riemannian manifold M4 with its tangent vector defined by T (xµ) = dξ/dt. The curve
is said to be a geodesic if its tangent is displaced parallel along the curve ξ(t), i.e. if

∇T T = 0 . (4.8)

See (A.17) of Appendix A, where general interpretation of geodesic equation and
covariant derivative are given (cf. Kambe (2010) Chap.3, say). In local coordinates,
we have T ≡ dξ/dt = T αeα = (dXα/dt) eα.

Same geodesic equation ∇T T = 0 is also given by the action principle, i.e. by
the equation deduced from the extremum of an action integral (cf. Appendix A.6).
Relativistic form of the action integral of a perfect fluid is given as

S(pf) = −c
∫

ρ dV
∫ (

1 + c−2 ϵ(ρ)
)
dτ (4.9)

This is an extended form of the relativistic action integral of a single particle of mass m,
S(m) = −cm

∫
dτ , to the perfect fluid, where the overlined value ϵ denote proper value

of the internal energy ϵ of the perfect fluid (the value in the rest frame, i.e. comoving
frame where the fluid is at rest). Comparison of S(pf) with S(m) and considering

∫
ρ dV

equivalent to m of S(m), one can see that the term c−2 ϵ is a small correction term to
the fluid medium in non-relativistic case.

From the variation analysis, the geodesic equation of a perfect fluid is given as

Dtv
k + ρ−1 ∂kp = 0, (4.10)

for non-relativistic limit of ordinary fluid flows (Kambe 2020, §2). This coincides with
the Euler’s equation of motion (4.4) of ordinary fluid mechanics.

The convective derivative Dt = ∂t + (v · ∇) has a special property which is
invariant with respect to a group of transformations like the gauge invariance of the
electromagnetic fields E and B. Hence the following transformation may be a fluid
version of the gauge transformation. The derivative Dt is also regarded as the covariant

Suppose that we have two coordinate frames F and F ′ which are overlapping and
each fluid particle is identified by the Lagrange-parameter α. Let us denote the position
of the same particle α with the coordinate Xa in the frame F and X ′

a in the frame F ′.
Relaltive motion of the two frames is not assumed to be time-independent. Hence the
frames are not necessarily inertial. We consider the relation between the two coordinates
to be a transformation between Xa(t,α) and X ′

a(t
′,α), which is given by the following

local gauge transformation (dependent on α) at t′ = t:

LGT : X ′
α(t

′,α) = Xα(t,α) + ξ(t,x)|x=Xα
, t′ = t, (4.11)

This is rewritten in the form of transformation acted by an element g of the group G
defined by G = LGT :

X ′
α|t′=t = g(t,α) ◦Xα, g ∈ G. (4.12)

This LGT is considered as a local transformation between two coordinates (of the same
particle identified by α) specified in the two non-inertial reference frames F and F ′. In
fact, the same particle α has a spatial position coordinate Xα(t,α) in the frame F and
another one X ′

α = Xα + ξ(t,α) in the frame F ′. Therefore, its velocity at x ∈ F ,

(b) Geodesic equation of a fluid-flow

i. Local gauge transformation

c) Convective derivative Dt and its Gauge invariance

derivative analogously with the electromagnetic case. The operator D is also 
invariant with respect to the Lorent z transformation, i. e. a relativistic invariant  
(see Sec. I, d) of Kambe T (2021), Fluid Gauge Theory, GJSFR, vol. 21, iss.4).

t
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is transformed to the velocity at x′ = X ′
α ∈ F ′ and t′ = t:

v′(t′,x′)|α = ∂tX
′
α(t,α) = v(t,Xα) + (d/dt)ξα, (4.14)

ξα = ξ(t,Xα), (d/dt)ξα = ∂tξ + (v · ∇)ξ|x=Xα
. (4.15)

One may rewrite the equation (4.14) in a form analogous to (4.12) as

v′
α(X

′
α) = g(t,α) ◦ vα(Xα). (4.16)

This is a transformation of motion of the same particle between two different reference
frames F and F ′. Physically speaking, two vectors Xα andX ′

α denote the same material
point, represented by the common Lagrange parameter α. Namely, we are considering
a gauge transformation between two reference frames.

According to the transformation (4.11), the time derivative ∂t and space derivative
∂k = ∂/∂xk in the frame F are related to the derivatives ∂′t and ∂

′
k = ∂/∂x′k of F ′ as

follows:

∂t = ∂t′ + (∂tξ) · ∇′, ∇′ = (∂′k), (4.17)

∂k = ∂′k + (∂kξl) ∂
′
l, ∂′k = ∂/∂x′k . (4.18)

Gauge invariance of the convective derivative D t

The convective derivative Dt ≡ ∂t + (v · ∇) is invariant with respect to LGT: i.e.
Dt = D′

t. In fact from (4.14) and (4.18), we have

v · ∇ = v · ∇′ + (v · ∇ξ) · ∇′ = v′(x′) · ∇′ + (− (dξ/dt) + v · ∇ξ) · ∇′,

where v = v′ − dξ/dt is used. The last term is rewritten as

(− (dξ/dt) + v · ∇ξ) · ∇′ = −∂tξ · ∇′ = ∂t′ − ∂t, (4.19)

by using (4.15) and (4.17). Hence, we have

Dt = ∂t + v · ∇ = ∂t′ + v′ · ∇′ = D′
t. (4.20)

This means that the operator Dt satisfies the invariance with respect to LGT.
In addition, it can be shown that the operator Dt is a covariant derivative in

the sense of gauge theory. As shown in (a), under the transformation by g ∈ G, the
expression (4.12) gives Xα → X ′

α = g ◦ Xα = Xa + ξ, and its derivative (velocity)
v(Xa) = DtXa is transformed as

v′(X ′
a) = D′

tX
′
a = Dt(Xa + ξ) = v(Xa) + Dtξ = gv = g ◦DtXa,

where the equality v+Dtξ ≡ gv is consistent with (4.13) and (4.14). The above sequence
of equalities states that DtXa is transformed to g ◦ DtXa in the same way as Xa is
transformed to g ◦Xα. Therefore, the operator Dt has the covariance property and is
reasonably called Covariant Derivative.

One can see that the equation of motion (4.4) of a perfect fluid is expressed in
terms of the time derivative Dt. The fact that the covariant derivative Dt plays a role
of time derivative in place of the partial time derivative ∂t implies that the free motion
according to (4.4) is like a motion in curved space. Rewriting it as Dtv = −ρ−1 ∇ p, the
equation has a pressure force −ρ−1∇p, which is not an external force, but an internal
force. In fact, each fluid particle does not take a straight trajectory but a curved one,
in general, owing to the internal pressure force.

v(t,x)|α = ∂tXα, (4.13)

ii.
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Let us investigate how the fluid mechanics of a perfect fluid is formulated according to
the theory of special relativity, which is based on the Minkowski space equipped with

Minkowski metric : ηαβ = diag(−1, 1, 1, 1). (4.21)

In the space, a world element ds and an element of proper time dτ/c are defined by

ds2 ≡ − dτ 2 = dxµdx
µ = ηµνdx

µxν = −(1− β2) c2dt2,

c−1 dτ =
√

1− β2 dt, β ≡ v/c, v = |v|, (4.22)

where dx0 = c dt, and c the light speed, and v = (vk) is the particle velocity, with its
3-space displacement dXk = vkdt (k = 1, 2, 3). Relativistic 4-velocity uν is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), X0 ≡ ct, v = (vk) = (dXk/dt). (4.23)

Relativistic form of the action integral of a perfect fluid is already given by (4.9).
Relativistic equations of conservation of energy-momentum are expressed in the form,

∂

∂xν
T µν = 0 (µ, ν = 0, 1, 2, 3), (4.24)

where the stress-energy tensor T µν is given by Kambe (2020) for a perfect fluid+ as

T µν ≡ H uµuν + p ηµν . H ≡ ρ ε+ p = ρ c2 + ρ ϵ+ p, (4.25)

ε ≡ c2 + ϵ(ρ), H ≡ ρ c2 + ρ h, h ≡ ϵ(ρ) + p/ρ, (4.26)

(cf. Landau & Lifshitz (1987) calling T µν as energy-momentum tensor), where ε ≡
m1c

2+ϵ = c2+ϵ (with m1 = 1) is the relativistic internal energy per unit mass including
the mass energy m1c

2. The thermodynamic variables like ϵ(ρ) (internal energy) denote
the proper value (i.e. the value in the comoving frame where the fluid is at rest).† The
term ρ c2 in H denotes the relativistic energy of rest-mass ρ per unit volume.

The above stress-energy tensor T µν of (4.25) was derived from the Lagrangian
density L ≡ −c (ρ dV) (1 + c−2 ϵ(ρ)) in the action S(pf) of (4.9) under the mass
conservation condition ρ dV = const (see Kambe 2020, §2.2). Present study to be
carried out below (and the accompanying paper) does not assume the mass conservation
a priori (from the outset), but it is deduced from the formulation under a pertinent
symmetry. Therefore, the stress-energy tensor T µν should be derived with taking a
different way, which is given in Landau & Lifshitz (1987, §133) and presented here now.

The derivation is as follows. The momentum flux through a surface element dσk is
just the force acting on the element. Hence T ikdσk is the i-th component of the force
acting on the surface element (i, k = 1, 2, 3). Let us take a certain volume element
within the fluid in which it is at rest (the local rest frame). In this frame, Pascal’s law
is valid, that is, the pressure force exerts independently of the direction of the surface
element dσk and is everywhere perpendicular to the surface on which it acts. Therefore,
one can write T ikdσk = p δik dσi, whence T

ik = p δik.

+ Note: There is no energy dissipation in the present case of perfect fluid, hence no entropy change.

Assuming the entropy is uniform throughout the fluid, the internal energy ϵ depends only on ρ.
† Some textbooks such as Misner et al. (2017), etc. use the definition Tµν ≡ (ρ+ p)uµuν + pηµν where

ρ is understood to denote ρε = ρ(c2 + ϵ) including the internal energy ρϵ with c = 1 in their unit.

d) Relativistic formulation of a perfect fluid
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In the local rest frame, then, the energy-momentum tensor has the form

T µνrest =


ρε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (4.27)

where ε is the relativistic internal energy per unit mass including the mass energy m1c
2,

hence ρε denotes the energy per unit volume. In order to find the expression of the tensor
T µν in arbitrary reference system, we introduce the 4-velocity uν defined by (4.23) for
the motion of the fluid. In the rest frame of the particular fluid particle, we have vk = 0
and uν = (1, 0, 0, 0). The expression to be sought for T µν must be such a form that it
takes the form (4.27) when transformed to this rest frame. Such a second-rank tensor
T µν must be

T µν = (ρε+ p) uµuν + p ηµν . (4.28)

for the 4-velocity uµ of (4.23) and the metric ηµν of (4.21). This can be shown as follows,
by using the Appendix B.

In the current unprimed frame xµ, the particles are in motion with the velocity
of (4.23). Lorentz transformation from this unprimed frame xµ to the primed frame
x′α comoving with the particle P (i.e. β = |v|/c ) is carried out by the transformation
matrix Λα

′
µ defined with (B.6) and (B.7). By this transformation, the second rank tensor

T µν in the unprimed frame xµ is transformed to that in primed frame as follows:

T µν ⇒ T α
′β′

rest = Λα
′

µ Λ
β′

ν T
µν = (ρε+ p) (Λα

′

µ u
µ) (Λβ

′

νu
ν) + p (Λα

′

µ Λ
β′

ν) η
µν

= diag(ρε+ p, 0, 0, 0) + diag(−p, p, p, p). (4.29)

by using the transformation u′α = Λα
′
ν u

ν and (B.9) of Appendix B. The last expression
(4.29) reduces to the matrix of (4.27).

This is a wonderful derivation of T µν of (4.28) for a perfect fluid by Landau &
Lifshitz (1987). From the point of view of the present study, however, there exists a
crucial aspect to be remarked now. In regard to the momentum flux, the isotropic
expression p δik (Pascal’s law) is taken at the rest frame and Lorentz-trandformed to
arbitrary inertial systems of reference, i.e. from the rest frame to frames of arbitrary
high velocity, even turbulent, or close to the light velocity. If the medium is solid, then it
may be one of choices. However, the fluid is receptive of diffeomorphic transformations
among constituent fluid particles in infinitely different ways. Its degree of freedom is
infinte (say). It is very likely that tensor form of momentum flux may be quite complex.
The paper accompanying the present study, Fluid Gauge Theory, intends to present one
of possible structures of a perfect fluid.

A symmetry implies a conservation law (Noether’s theorem). However it is shown
below that, from a single relativistic energy equation of fluid motion, two conservation
equations are obtained in the non-relativistic limit according to the current formulation
of fluid mechanics: one is the mass conservation and the other is the traditional form
of energy equation. This is a riddle. We are concerned particularly with the mass
conservation equation and investigate what symmetry implies the mass conservation,
and conversely what symmetry the mass conservation implies. A key to resolve this
Riddle is hinted by the general representation of rotational flows of an ideal compressible
fluid satisfying the Euler’s equation, derived by Kambe (2013). This gives us a hint

v. Motivations for Fluid Gauge Theory
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of existence of a set of gauge fields, suggesting that our physical system should be a
combined system consisting of a fluid flow field and a set of background gauge fields.
The gauge symmetry of the latter ensures the law of mass conservation. Conversely as
far as the mass conservation law is valid, the gauge invariance is ensured for the action
representing interaction between the two components of the combined fields.

It is well-known that the energy conservation is associated with the symmetry
to

state motivation by raising a question of what physical symmetry implies the mass
conservation law. This query is raised in regard to the relativistic equation of energy
conservation of fluid flows when its non-relativistic limit is taken. In the ordinary fluid-
mechanics valid in non-relativistic limit, the mass conservation law is given as valid a
priori. However, let us see what happens in relativistic mechanics.
the relativistic energy-momentum tensor has been given in the previous section

The equation (4.24) represents four conservation equations. The space components
of the equation (4.24) are given by ∂νT

kν = 0 with µ = k = 1, 2, 3, representing the
momentum conservation of the k-th component.

On the other hand, its time component (∂νT
0ν = 0) is the equation of energy

conservation. In order to see its explicit representation in terms of flow variables in the
non-relativistic limit (β ≡ v/c → 0), the stress-energy tensors T µν are now written by
leading-order terms of expansion with respect to small β in a matrix form:

Tαβ =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 ,

T 00 = ρc2 + 1
2 ρv

2 + ρϵ + · · · ,
T 0k = cρvk + c−1ρvk(12 v

2 + h) + · · · ,
T k0 = cρvk + c−1ρvk(12 v

2 + h) + · · · ,
T ik = ρvivk + p δik + · · · = T ki

h ≡ ϵ+ p/ρ.

(5.1)

where matrix elements are given together with flow variables on the right-hand part
of the expression (5.1). The term T 00 is the energy density, while T 0k (k = 1, 2, 3) is
the energy flux density. The underlined terms ρc2 in T 00 and cρvk in T 0k came from
the rest-mass energy part of the tensor T αβ, which do not appear in the ordinary fluid
mechanics. There exists the symmetry of T 0k = T k0 in the relativistic expression of
(5.1). This symmetry is lost in the non-relativistic ordinary fluid mechanics when the
underlined terms are removed.

The equation ∂νT
0ν = 0 of energy conservation can be written down now as,

c−1∂tT
00
+ ∂kT

0k
= c

(
∂tρ+ ∂k(ρv

k)
)
+

1

c

(
∂t(ρÊ) + ∂k(ρv

kĤ)
)
+O(β3) = 0, (5.2)

Ê =
1

2
v2 + ϵ, Ĥ =

1

2
v2 + h. (5.3)

(see (2.17) for ∂ν). In the non-relativistic limit as β → 0, we obtain the mass
conservation equation from the first term,

∂tρ+ ∂k(ρv
k) = 0. (5.4)

Then, deleting it, the remaining expression reduces to the energy equation of ordinary
fluid mechanics in the non-relativistic limit. Thus, we obtain the energy conservation
equation of fluid flow (Landau & Lifshitz (1987), Eq.(6.1)):

∂t(ρÊ) + ∂k(ρv
kĤ) = 0. (5.5)

a) A riddle: By what symmetry the mass conservation law is implied?

Main object ofof time translation of mechanical systems. isthis section

It is reminded that
IV, d).
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Here we have obtained two conservation equations (5.4) and (5.5) from the single energy
equation ∂νT

0ν = 0. However, the Noether’s theorem (Noether 1918) of theoretical
physics states ’A symmetry implies a conservation law’, as noted in §1 (Introduction).
Therefore, we must ask a question whether the above analysis is satisfactory, and we

A hint to resolve the Riddlementioned in the previous section is found in the general
representation of rotational flows given by by Kambe (2013) for an ideal compressible
flow solution satisfying the Euler’s equation. Its expression in details is cited in Kambe
(2020, §3). This solution was derived from the action principle with the action

S(Eul−rot) = S(nR) + S(Ga−inv) =

∫
ρ dV

[ ∫
ΛnR dt+

∫
ΛGi dt

]
, (5.6)

ΛnR = 1
2 v

2 − ϵ, ΛGi = −Dt −Dt⟨U , Z⟩ (5.7)

∇ · (ρZ) = 0, ∇ · U = 0, (5.8)

L[Z] ≡ ∂tZ + (v · ∇)Z − (Z · ∇)v = 0, (5.9)

for non-relativistic flow fields, where ΛnR is nothing but the ordinary non-relativistic
Lagrangian density, while ΛGi is a gauge-invariant Lagrangian newly introduced in the
study of Kambe (2013). Actually, this study had double aims. One was an attempt
to obtain general representation of rotational flow field with non-zero helicity (Kambe
2012). Second aim was more fundamental, striving to establish equivalence between
two formulations of Eulerian and Lagrangian specifications under the action principle.
Each term of the Lagrangian densities ΛnR and ΛGi satisfies local gauge invariance with
respect to translation and rotation, hence it is consistent with the gauge theory.

As discussed in details in Kambe (2020, §1 and 3.1), this new formulation introduced
four independent fields. In fact, regarding the 3-vector potentials U and Z, each
has three components. Those six fields have two invariance conditions of (5.8),
i.e. divergence-free condition in 3-space. In addition, from (5.9) and the equation,
(L∗

t [U ])i ≡ ∂tUi+ vk∂kUi+Uk∂iv
k = 0 obtained from the variational analysis of Kambe

(2013), we have the third invariance condition:

Dt⟨U , Z⟩(t,x) ≡ ⟨L∗[U ], Z⟩+ ⟨U , L[Z]⟩ = 0. (5.10)

Hence, the value of scalar product ⟨U , Z⟩ is invariant along the particle path x =
Xp(t,x), keeping its initial value along each trajectory. This is the third invariance
imposed on the potentials U and Z. Therefore we have only three independent fields
remaining among the six components of U and Z. Furthermore, if we add the scalar
field which is also unconstrained, we have four independent fields in this solution.

Thus, four independent background fields are newly introduced in this solution.
Those must be either given externally or determined internally within the framework of
theory. In this paper, we take the latter approach, and the general solution given here is
understood to predict existence of a new field, which is to be introduced according to the
fluid gauge theory proposed in
partial success, because we are lead to unavoidable circumstances which take us to a new
step in two respects. First, owing to the existence of four components of background
field, a set of new gauge fields must be introduced in the 4-spacetime according to the
gauge-theoretic scenario. Second, it is understood that the newly introduced action
S(Ga−inv) ≡ S(int) of (5.12) given below represents interaction of the flow field with
unknown background fields. Amazingly this action is analogous to the interaction form

b) Hint to resolve the riddle: General solution of Euler’s equation with helicity

propose a resolution to this query in a separate paper. (Kambe 2021, “Fluid Gauge 
Theory",GJSFR).

Hence, the present section describes aKamle (2021).

𝜓𝜓
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What is the hint to resolve the riddle mentioned in ? It is as follows. We
rewrite the part of action S(Ga−inv) of gauge-invariant terms of (5.6) as S(int), since this
term is considered to describe interaction between the flow-current jν and background
vector-potentials U and Z, and . In addition to S(int), we denote the scalar product
⟨U , Z⟩ by W , and define a 4-current jν as follows:

S(int) =

∫
ρ dV

∫
ΛGidt, jν ≡ (ρ c, ρv), W ≡ ⟨U , Z⟩. (5.11)

Then the interaction part of action is expressed by

S(int) = −
∫ ∫ (

ρDt + ρDtW
)
dV dt =

∫ ∫
jν ãν dV dt. (5.12)

where ãν = −∂ν( +W ) and ∂ν is the same as ∂α of (2.17).
Note that the field ãν = −∂ν( +W ) is analogous to the particular field Ãν = ∂νΘ

considered in where all the fieldsE and B vanish identically, In other words, those
fields are potentially existing, but vanish in this particular potential form of Ãν = ∂νΘ .
Same can be said that new potential field ãν can exist. But with the particular form
ãν = −∂ν( +W ), the potentially existing new field does not show in observable world.

Based on this observation, new Fluid Gauge Theory is developed in the
accompanying paper

Gauge invariance is one of the fundamental symmetries in modern theoretical
physics. In this paper, the gauge symmetry is reviewed to see how it is working
in fundamental physical fields: Electromagnetism, Quantum ElectroDynamics and
Geometric Theory of Gravity. In the 19th century, the gauge invariance was recognized
as a mathematicl non-uniqueness of the electromagnetic potentials, existing despite
the uniqueness of observable electromagnetic fields E and B. In the 20th century,
physical significance of the gauge symmetry was recognized but in zigzag ways. Real
recognition of its physical significance required two new fields: the relativity theory for
recognizing the structure of linked 4d-spacetime xµ = (ct,x) together with, say, a 4-
potential Aν = (Φ,A) and a current 4-vector j ν = (ρc, j), and the quantum mechanics
for the new dimension of a phase factor exp [iχ(xν)] (§2.2). Finally the gauge symmetry
was understood to be very fundamental, and the gauge invariance played a role of
guiding principle in the study of physical fields such as Quantum Electrodynamics,
Particle Physics and Theory of Gravitation.

There exist similarities in mathematical formulation of physical fields between
the quantum electrodynamics (QED, and the gravity theory Those

consequences of gauge-invariance property of each field more or less. For example, the
covariant derivative of wave function is ∇µ = ∂µ − iγAµ , while in the gravity
the covariant derivative of a vector v = vνeν is represented as (∇µv)

ν = ∂µv
ν +Γναµv

α.
Second terms in each expression represent the effects from the electromagnetic potential
Aµ in the former and from the gravity through the factor Γναµ in the latter.

Fundamental governing equations of both fields are derived from the action principle
(i.e. the action should be invariant for arbitrary variations). A (second) pair of Maxwell
equations (3.33) is the one for the electromagnetic field, while the Einstein equation
(3.31) is the corresponding equation for the gravitational field, which are, respectively,

∂λF
νλ = (4π/c) j νe . (6.1)

Gαβ = 8πk T αβ . (6.2)

VI. Summary

𝜓𝜓

𝜓𝜓
𝜓𝜓

𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓

Section II, b)
are

section III, c)

(Kambe 2021).

Section I, b)

Sem(int)of (2.9) in the case of Electromagnetism This implies a possible approach,
by the formulation analogous to that of Electromagnetism.

section II, a).

section V, a)
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The terms on the right hand side are the sources of each field. Taking 4-divergence ∂ν
of the first equation, the left hand side vanishes identically: ∂ν∂λF

νλ ≡ 0, ensuring the
current conservation: ∂νj

ν
e = 0. This is an outcome of the gauge symmetry of the field

strength tensor F νλ, which is anti-symmetric: F νλ = −F λν . On the other hand, taking
4-divergence ∂α of the second equation, the right hand side vanishes : ∂αT

αβ = 0 which
is the conservation laws of stress-energy deduced as the Noether’s theorem from the
invariance of the action integral with respect to variations of 4-spacetime coordinates.
Corresponding left hand side vanishes by the Bianchi identity of the gravitational field
(Misner et al. (2017, Chap. 15)).

Waves in vacuum space and gauge conditions (there) are also seen to be similar
between the two fields. Electromagnetic waves propagating in vacuum space are
governed by the wave equation (3.34) for the potential Aν under the gauge condition:

(∇2 − c−2∂ 2
t )A

ν = 0. ∂νA
ν = 0. (6.3)

In weak gravitational field, a linearized theory gives the wave equation (3.37) for the
modified metric h

µν
under the gauge condition (3.38). In vacuum space, we have

(∇2 − c−2∂ 2
t )h

µν
= 0 , ∂ν h

µν
= 0 , (6.4)

In vacuum space where both of the current flux j νe and the stress-energy tensor T αβ are
absent. the gauge freedom resulting from the absence of materials is filled up by the
gauge conditions ∂νA

ν = 0 or ∂νh
µν

= 0. Namely, the gauge conditions play the role of
filling in the blanks of degrees of freedom.

The section describes why the gravitational waves propagating in vacuum
space have only two dynamic degrees of freedom, analogous to the electromagnetic
waves, although in general, the metric perturbation h

µν
has ten independent

components.
Present review on the gauge symmetry is motivated from the previous study of

Kambe (2020) having arrived at the conclusion that there exists a new gauge field within
flow fields of a perfect fluid, and that the new field ensures the mass conservation. The
gauge field is not recognized so far in the framework of mechanics of a perfect fluid.

This was an endeavor to resolve a riddle, which is presented in as follows.
A symmetry implies a conservation law (Noether 1918). However it can be shown that,
from a single relativistic energy equation of fluid motion, two conservation equations
are obtained in the non-relativistic limit according to the current formulation of fluid
mechanics: one is the mass conservation and the other is the traditional form of
energy equation. We are concerned particularly with the mass conservation equation
and investigate what symmetry implies the mass conservation, and conversely what
symmetry the mass conservation implies. A key to resolve this Riddle is hinted by the
general representation of rotational flows (Kambe 2012, 2013) of an ideal compressible
fluid satisfying the Euler’s equation, described in This gives us a hint of existence
of a set of gauge fields, suggesting that our physical system should be a combined system
consisting of a fluid flow field and a set of new gauge fields (Kambe 2017). From the
gauge symmetry of the latter field, the law of mass conservation is deduced, rather
than given a priori. As far as the mass conservation law is satisfied conversely, gauge
invariance is ensured for the action representing interaction between the two components
of the combined field.

For writing the present review paper motivated from the previous study (Kambe 2020),
the author is grateful to Professor Yasuhide Fukumoto (Kyushu University) who is not
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only interested in the subject itself, but encouraged to contemplate on writing a review
paper covering the gauge symmetry lying in the background of Physics.

Gauge theory of physics is formulated on the basis of Riemannian geometry. To help
the formulations in the main text, basics of Riemannian geometry are summarized here.

Appendix A.1. Tangent vectors and inner product

We consider the inner geometry of a Riemannian manifold M which is not a part of
an Euclidean space. If a manifold M under consideration were a part of an Euclidean
n-dimensional space En, it would inherit a local Euclidean geometry (such as the length)
from the enveloping Euclidean space, as is the case of a 2-d surface in E3. The manifold
Mn under consideration is not a part of an Euclidean space, so the existence of a local
geometry must be postulated. Let Mn be an n-dimensional manifold. The problem is
how to define a tangent vector X when we are constrained to the manifold Mn. Let us
introduce a local coordinate frame (x1, · · · , xn), and define a tangent vector X ∈ TxM

n

at each point x of Mn by

X = X i ∂

∂xi
= X i ∂i ,

where ∂i = [∂/∂x1, · · · , ∂/∂xn] is a natural frame associated with the coordinate system.
Furthermore, we define a vector-valued one-form by ω = ∂i ⊗ dxi, where ∂i and dxi

are bases of vector and covectors.† From the calculus of differential forms, we have
ω[X] = ∂i ⊗ dxi[X] = X i∂i = X where dxi(X) = X i. By eating a vector X, the 1-form
ω yields the same vector X, i.e. vector-valued one-form.

We consider intrinsic geometry of the manifold Mn. It is supposed that an inner
product ⟨· , ·⟩ is given in the tangent space TxM

n. If X and Y are two smooth tangent
vector fields of the tangent bundle TxM

n, then ⟨X, Y ⟩ is a smooth real function on Mn.

On a Riemannian manifold Mn, an inner product ⟨· , ·⟩ is defined on the tangent space
TxM

n at x ∈M and assumed to be differentiable. For two tangent fields X = X i(x)∂i,
Y = Y j(x)∂j ∈ TxM

n (tangent bundle), the Riemannian metric is given by‡

⟨X, Y ⟩(x) = gij X
i(x)Y j(x) ,

where the metric tensor, gij(x) = ⟨∂i, ∂j⟩ = gji(x), is symmetric and differentiable
with respect to xi. This bilinear quadratic form is called the first fundamental form.
In terms of differential 1-forms dxi, this is equivalent to I ≡ gij dx

i ⊗ dxj. Eating two
vectors X = X i(x)∂i and Y = Y j(x)∂j, this yields

I (X,Y ) = gij dx
i(X) dxj(Y ) = gij X

iY j . (A.1)

The inner product is said to be non-degenerate,

if ⟨X, Y ⟩ = 0, ∀Y ∈ TMn, only when X = 0 . (A.2)

† These define symbols independent of local coordinate frames. If u1, · · · , un is another frame, then we

have transformation from ∂i to ∂/∂u
i = (∂xl/∂ui)(∂/∂xl) and from dxi to dui = (∂ui/∂xk)dxk, Then,

their combination is (∂/∂ui)⊗dui = (∂xl/∂ui)(∂/∂xl)⊗(∂ui/∂xk)(dxk) = δlk (∂/∂x
l)⊗dxk = ∂k⊗dxk.

Also, inner product is independent of frames: UiU
i = (∂xl/∂ui)Xl (∂u

i/∂xk)Xk = δlkXlX
k = XkX

k.
‡ If the inner product is only non-degenerate rather than positive definite, the resulting structure on

Mn is called a pseudo-Riemannian.

Appendix A.2. Riemannian metric

Appendix A. Riemannian Geometry
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As an example, consider a manifold of one-sphere S1 of continuous interval of real
numbers, S1 ≡ M∞

[0,2π] : [0, 2π]. Its dimension is infinite, because the real number

x ∈ M∞
[0,2π] distributes continuously within the section [0, 2π]. Suppose that two fields

X = u(x) ∂x and Y = v(x) ∂x are given in the tangent space TxM
∞
[0,2π] at a point x ∈ S1.

Their inner product is defined by

⟨X, Y ⟩ ≡
∫ 2π

0

u(x) v(x) dx .

This kind of metric is used for electromagnetic fields or flow fields of a fluid.

We introduce an additional structure to the manifold Mn that allows to form a
covariant derivative. In mathematics, general definition is given to a covariant derivative
(called a connection) on a Riemannian curved manifold Mn. Let two vector fields X, Y
defined in the neighborhood of a point p ∈ Mn and two vectors U and V defined at
p. A covariant derivative (or connection) is an operator ∇. The operator ∇ assigns a
vector ∇U X at p to each pair (U, X) and satisfies the following relations:

( i ) ∇U (aX + bY ) = a∇UX + b∇UY ,

( ii ) ∇aU+bV X = a∇UX + b∇VX ,

(iii ) ∇U(f(x)X) = (Uf)X + f(x)∇UX ,

 (A.3)

for a smooth function f(x) and a, b ∈ R, where U = U j∂j and Uf = U j∂jf ≡ df [U ].
Using the representations, X = X i ∂i and Y = Y j ∂j, and applying the above properties
(i)∼(iii), we obtain

∇XY = ∇Xi∂i(Y
j∂j) = X i∇∂i(Y

j∂j)

= (X i∂iY
k)∂k +X iY j Γkij ∂k = (∇XY )k ∂k , (A.4)

∇∂i∂j := Γkij∂k , (A.5)

where Γkij is called the Christoffel symbol. The i-th component of ∇XY is

(∇XY )i = Xj ∂Y
i

∂xj
+ ΓijkX

jY k = dY i(X) + (ΓijkY
k) dxj(X) := ∇Y i(X), (A.6)

∇Y i = dY i + Γijk Y
k dxj , ∇jY

i = ∂jY
i + ΓijkY

k, (A.7)

where ∇Y i is called a connection one-form. On a manifold Mn, a coordinate frame
consists of n vector fields ek = ∂k (k = 1, · · · , n), which are linearly independent and
furnish a basis of the tangent space at each point p. Writing (A.5) and (A.6) in the form
of vector-valued one-forms, we have ∇ej = ek Γ

k
ijdx

i, and∇Y = (dY k) ek+Y
j Γkijdx

i ek.
The operator ∇ is called the affine connection, and we have the following representation,

∇Y (X ) =∇XY . (A.8)

There is one connection that is of special significance, having the property that
parallel displacement preserves inner products, and the connection is symmetric.

Definition: There is a unique connection ∇ on a Riemannian manifold M called the
Riemannian connection or Levi-Civita connection that satisfies

(i) Z ⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X, ∇ZY ⟩ (A.9)

(ii) ∇XY −∇YX = [X, Y ] (torsion free), (A.10)

Appendix A.4. Riemannian connection

Appendix A.3. Covariant derivative (Connection)
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for vector fields X, Y, Z ∈ TM , where Z ⟨·, ·⟩ = Zj∂j ⟨·, ·⟩. The property (i) is a
compatibility condition with the metric. The torsion-free property (ii) requires the
following symmetry, Γkij = Γkji, with respect to i and j. In fact, writing as X = X i ∂i
and Y = Y j ∂j, the definitive expression (A.4) leads to

(∇XY −∇YX)k = (XY − Y X)k + (Γkij − Γkji)X
iY j . (A.11)

Christoffel symbol :
The Christoffel symbol Γkij can be represented in terms of the metric tensor g = (gij)

by the following formula:

Γkij = gkαΓij,α, Γij,α = 1
2 (∂i gjα + ∂j gαi − ∂α gij) , (A.12)

where gkα denotes the inverse g−1, gkα = (g−1)kα, satisfying gkαgαl = glαg
αk = δkl . The

symmetry Γkij = Γkji follows immediately from (A.12) and gij = gji.

Consider a curve x(t) on Mn passing through a point p whose tangent at p is given by

T = T k ∂k =
dx

dt
= ẋ = ẋk ∂k ,

and let Y be a tangent vector field defined along the curve x(t). According to (A.4) or
(A.6), the covariant derivative ∇TY is given by

∇TY :=
∇Y
dt

=
[
dY i(T ) + Γikj T

kY j
]
∂i =

[
d

dt
Y i + Γikj ẋ

kY j

]
∂i , (A.13)

since T k = ẋk. When Y i is a function of xk(t), then (d/dt)Y i = ẋk(∂Y i/∂xk). The
expression ∇Y/dt emphasizes the derivative along the curve x(t) parameterized with t.

Parallel translation :
On the manifold Mn, one can define parallel displacement of a tangent vector

Y = Y i∂i along a parameterized curve x(t). Parallel displacement is given by (A.15)
below. Mathematically, this is defined by

∇Y
dt

= ∇TY = 0 ; namely, ẋk(∂Y i/∂xk) + Γikjẋ
kY j = 0 . (A.14)

For two vector fields X and Y translated parallel along the curve, we obtain

⟨X, Y ⟩ = constant (under parallel translation), (A.15)

because the scalar product is invariant by (A.9) and (A.14):

T ⟨X, Y ⟩ = ⟨∇TX, Y ⟩+ ⟨X, ∇TY ⟩ = 0 . (A.16)

One curve of special significance in a curved space is the geodesic curve. A curve
γ(t) on a Riemannian manifold Mn is said to be geodesic if its tangent T = dγ/dt is
displaced parallel along the curve γ(t), i.e. if

∇T T =
∇
dt

(
dγ

dt

)
= 0 . (A.17)

In local coordinates γ(t) = (xi(t)), we have dγ/dt = T = T i∂i = (dxi/dt)∂i. By setting
Y = T in (A.13), we obtain

Appendix A.6. Geodesic equation

Appendix A.5. Covariant derivative along a curve



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Thus the geodesic equation ∇T T = 0 is expressed by local coordinates as

dT i

dt
+ Γijk T

j T k = 0, or
d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0. (A.19)

Parallel translation again : Parallel translation of a tangent vector X along a geodesic
γ(s) with unit tangent T is defined by (A.14) as ∇TX = 0. By setting Y = Z = T in
the second property (A.9) of the Riemannian connection, we obtain

d

ds
⟨X, T ⟩ = T ⟨X, T ⟩ = ⟨∇TX, T ⟩ , (A.20)

since ∇TT = 0 by the definition of a geodesic. Hence, the inner product ⟨X, T ⟩ is kept
constant by the parallel translation.

: A geodesic curve denotes a path of shortest distance
connecting two nearby points, or globally of an extremum for all variations with fixed
end points. Let C0 : γ0(s) be a geodesic curve with a length parameter s ∈ [0, L]. A
varied curve is denoted by Cα : γ(s, α) with γ(s, 0) = γ0(s), where α ∈ (−ε,+ε) is a
variation parameter and s the arc length for γ0(s). The arc length of the curve Cα is

L(α) =

∫ L

0

∥∥∥∂γ(s, α)
∂s

∥∥∥ ds = ∫ L

0

⟨T (s, α), T (s, α) ⟩1/2 ds, T =
∂γ

∂s
.

Its variation is given by L′(α) =
∫ L
0
∂α < ∂sγ, ∂sγ >

1/2 ds. In case that the variation
vanishes at both ends of s = 0 and L, the first variation L′(0) at α = 0 is given by

L′(0) = −
∫ L

0

⟨J, ∇TT ⟩ ds, ⟨J, ∇TT ⟩ = 0 for 0 < s < L , (A.21)

where J = ∂αγ((s, 0) is the variation vector. Thus, the geodesic curve ∇TT = 0 takes
the extremum of arc length among nearby curves having common endpoints, in particular
characterized by a path of the shortest distance if endpoints are sufficiently near.

Suppose that a material particle or fluid particles are moving with high velocities in
an inertial frame K: (c t, x1, x2, x3) with c the light velocity. In a time interval dt, the
position of a particle changes with time and its displacement is given by a 4-vector:

dxµ = (c dt, dX1, dX2, dX3), dXk = vk dt (k = 1, 2, 3), (B.1)

where µ = 0, 1, 2, 3, and the upper-case notation dXk denotes material displacement
with vk being components of 3-velocity v. In the relativity theory, an infinitesimal
interval ds is defined by its squared form, ds2 = dxµdx

µ, which is a scalar
product of a line-element 4-vector dxµ with its covariant version dxµ = ηµνdx

ν =
(−c dt, dX1, dX2, dX3), where ηµν is the Minkowski metric, sometimes called the
Lorentz metric, defined by

ηµν = ηµν = diag(−1, 1, 1, 1) (B.2)

Hence, we have ds2 = dxµdx
µ = ηµν dx

µdxν = −c2dt2 + |dX|2.†

† Note that the metric gµν used by Landau & Lifshitz (1975) is defined by gµν = diag(1,−1,−1,−1) =

−ηµν . Hence, dτ2 [present] = −ηµν dxµdxν = gµν dx
µdxν = ds2 [Landau & Lifshitz] = −ds2 [present].
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∇T T =

[
dT i

dt
+ Γijk T

j T k
]
∂i = 0 , where T i =

dxi

dt
. (A.18)

Appendix B. Basics of Special Relativity

Extremum  of  arc  length



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The interval ds is a relativistic invariant, i.e. invariant under the Lorentz
transformation now defined. Suppose that the coordinate transformation is expressed
by xµ → x′α = Λα

′
µ x

µ with Λα
′
µ a matrix of Lorentz transformation. Then we have

ds′ 2 = ηα′β′ dx′α dx′β = ηα′β′ Λα
′

µΛ
β′

ν dx
µ dxν = ηµν dx

µ dxν = ds2 ,

where Λα
′

βΛ
β
γ′ = δα

′

γ′ is required for the Lorentz transformation. The equalities,

ηµν = ηα′β′ Λα
′

µΛ
β′

ν = (ΛT) α′

µ ηα′β′ Λβ
′

ν = (ΛT η′Λ )µν ,

define the Lorentz invariance, or relativistic invariance.
Another relativistic invariant is the proper time τ . Its increment dτ is defined by

the time increment (multiplied by c) in the instantaneously rest frame where v = 0.
Squared interval of the proper time is defined by dτ 2 = −dxνdx

ν = −ds2. From this,
noting dXk = vk dt, we obtain

dτ = c dt
√

1− β2 , β ≡ v/c , v =
√
vkvk. (B.3)

Using the displacement dXν of a fluid particle P , its relativistic 4-velocity is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), v = (vk) = (dXk/dt). (B.4)

This fluid particle P is moving with the 4-velocity uν relative to the frame xµ.
Consider the following useful transformation defined by the matrix components Λα

′
µ:

v1/c = β n1, v2/c = β n2, v3/c = β n3, γ ≡ 1/
√
1− β2, (B.5)

Λ0′

0 = γ, Λ0′

j = Λj
′

0 = −β γ nj, (B.6)

Λj
′

k = Λk
′

j = (γ − 1)nj nk + δjk, (B.7)

where the condition of unit 3-vector (n1)2 + (n2)2 + (n3)2 = 1 defines β2 = |v|2/c2.
With the matrix Λα

′
µ of (B.6) and (B.7), the unprimed frame xµ is transformed to

the primed frame x′α by the coordinate transformation law: x′α = Λα
′
µ x

µ at the instant
when the origins of both frames coincide instantaneously. However, the primed frame
x′α is moving with the velocity vk/c = β nk as seen in the unprimed frame xµ.

It is remarkable that the 4-velocity uν is transformed by the same law: u′α = Λα
′
ν u

ν .
Suppose that the particle P is comoving with the unprimed frame, hence its 4-velocity
being uν = (1, 0, 0, 0), and that the primed frame x′α is moving with the velocity
vk=−|v|nk as seen in the unprimed frame xµ (i.e. β = |v|/c ). It is not difficult to

show that the 4-velocity u′α = Λα
′
ν u

ν in the primed frame coincides with (B.4). Thus,

uν = (1, 0, 0, 0) ⇒ u′α = γ
(
1, |β|nj

)
=

( 1√
1− β2

,
v

c
√
1− β2

)
, (B.8)

Conversely, suppose that the particle P is moving in the unprimed frame with the 4-
velocity uν of (B.4), and that the primed frame x′α is comoving with the particle P (i.e.
β = +|v|/c ), hence moving with the velocity vk = |v|nk relative to the unprimed frame
xµ. Under the Lorentz transformation of (B.6) and (B.7), the 4-velocity u′α = Λα

′
ν u

ν

transformed from the uν of (B.4) is found as
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Appendix C.1. Useful formulae of gravity theory
• Covariant derivatives:

F : scalar : F ;γ = F ,γ , (C.1)

V α: vector : V α
;γ = V α

,γ + ΓαµγV
µ, (C.2)

Uα: 1-form : Uα ;γ = Uα ,γ − ΓµαγUµ, (C.3)

T αβ : tensor : T αβ ;γ = T αβ ,γ + ΓαµγT
µ
β − ΓµβγT

α
µ (C.4)

• Curvature tensors and symmetry properties:

Riemann tensor : Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓανγΓ
ν
βδ − ΓανδΓ

ν
βγ , (C.5)

Rαβγδ = gανR
ν
βγδ (C.6)

Rαβγδ =
1
2 (∂α∂δ gβγ + ∂β∂γ gαδ − ∂α∂γ gβδ − ∂β∂δ gαγ)

+ gµν(Γ
µ
βγΓ

ν
αδ − ΓµβδΓ

ν
αγ), (C.7)

Rαβγδ = −Rβαγδ = −Rαβδγ (C.8)

Rαβγδ = Rγδαβ (C.9)

Rαβγδ +Rαδβγ +Rαγδβ = 0. (C.10)

Ricci tensor : Rµν ≡ Rα
µαν (C.11)

= ∂αΓ
α
µν − ∂νΓ

α
µα + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα, (C.12)

Scalar curvature : Rsc ≡ gανRαν

(C.13)

Appendix C.2. Variational formulation
Equations of the gravitational field are obtained from the principle of least action

δ(Sg + Sm) = 0, where Sg and Sm are the actions of the gravitational field and matter
field respectively. The action for the gravitational field is defined by

Sg = − Ag

∫
gαβRαβ

√
−g dΩ , g ≡

c3

16πG0

dΩ = dx0dx1dx2dx3, (C.14)

where
√
−g dΩ is the proper volume [dΩ ]prop in a local Lorentz frame with g = det(gµν),

and Rαβ is the Ricci curvature tensor (C.11), and gαβRαβ = Rα
α ≡ Rsc is the scalar

curvature. The variation of Sg with respect to the metric field gαβ is given by

δSg = −Ag
∫ (

Rαβ − 1
2 gαβR

ν
ν

)
δgαβ

√
−g dΩ . (C.15)
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uν = γ
(
1, β nj

)
⇒ u′α = Λα

′

ν u
ν = (1, 0, 0, 0), (B.9)

where γ ≡ 1/
√

1− β2, β ≡ |v|/c and j = 1, 2, 3.

Appendix C. Supplements to the Gravity Theory of Main Text

A ,



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(Landau & Lifshitz (1975) Eq.(94.5)), where Tαβ is the stress-energy tensor defined by

1
2

√
−g Tαβ =

∂
√
−g Λ
∂q

− ∂

∂xν
∂
√
−g Λ

∂(∂νq)
, q ≡ gαβ. (C.18)

From the action principle δ(Sg + Sm) = 0, we find

−Ag
∫ (

Rαβ − 1
2 gαβRsc − 8πk Tαβ

)
δgαβ

√
−g dΩ = 0,

where k = G0/c
4. In view of the arbitrariness of the δgαβ, we obtain the Einstein field

equation:

Gαβ = 8πk Tαβ , k = G0/c
4, Gαβ ≡ Rαβ − 1

2 gαβR
ν
ν . (C.19)

where Gαβ is the Einstein curvature tensor.

Appendix C.3. Bianchi identity

The Bianchi identity is deeply rooted in geometrical structure of physical fields. But
superficially, it is just expressed by a linear combination of three terms, each of which
is given by covariant-derivative of a component of Riemann curvature tensor:

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0. (C.20)

This can be easily verified in the local Lorentz frame by using the representation obtained
from (C.7) with all Γ’s (but not derivatives) set to 0. The equation thus obtained is
the identity like (C.20) but the ”;”-operator replaced by ”,”. Namely, the equation is
verified only for the local Lorentz frame. Finally, transition to any frame of curved
spacetime can be done just by replacing ”comma” by ”semicolon”.

Physical significance of the Bianchi identity
From the viewpoint of physics, the set of curvature tensors Rαβµν has a remarkable

geometrical property, and surprisingly shows a striking analogy to the electromagnetic
field. First we spotlight the relevant part of Electromagnetic field

In terms of the electromagnetic four-potentials Aµ, one-form A = Aµdx
µ was

defined (see §2.1 (a)). Out of this one-form, a two-form F = dA is derived by taking its
exterior differentiation dA. The two-form field F satisfies the identity dF ≡ 0, because
d2A ≡ 0, i.e. ∂ ∂ = 0 by the language of differential geometry, in other words by the
principle ”boundary of a boundary is zero”. This yields the identity equation (2.5):
∂αFβγ +∂βFγα+∂γFαβ = 0, giving rise to a pair of Maxwell equations of (2.7). The last
can be rewritten as
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On the other hand, the action Sm of the matter field is

Sm =
1

c

∫
Λm

(
q,
∂q

∂xν

)√
−g dΩ . (C.16)

where the Lagrangian density Λm contains only the tensors q = gαβ and their first
derivatives ∂νq = ∂νgαβ. Noting that variation of the coordinate from xν to xν + ξν

results in variation of the metric δgαβ, we obtain the variation of action Sm given after
some analyses as

δSm =
1

2c

∫
Tαβ δg

αβ
√
−g dΩ , (C.17)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(Misner et al. (2017), §14.5, eq.(14.17)), where Rµ
ν is the curvature 2-form defined by

Rα
β ≡ d(Γαβνdx

ν) + Γαλµ Γ
λ
βν dx

µ ∧ dxν (C.25)

= Rα
βµν dx

µ ∧ dxν (µ < ν).

where the summation of the last line is taken over µ, ν with µ < ν, and Rα
βµν is the

Riemann curvature tensor of (C.5).
In order to take our last step, we consider the curvature two-form Rα

β in the local
Lorentz frame where the second term of (C.25) drops as is done in the proof of Bianchi-
id. Then we have Rα

β = d(Γαβνdx
ν). Taking exterior differentiation again, we obtain

0 = dRα
β = d2(Γαβνdx

ν) = Rα
βµν,λ dx

λ ∧ dxµ ∧ dxν ,

because d2 = 0. From this we find, with cyclic permutation of (λ, µ, ν):

Rα
βµν,λ +Rα

βλµ,ν +Rα
βνλ,µ = 0.

in the local Lorentz frame. Final transition to any frame of curved spacetime can be
done by replacing ”comma” by ”semicolon”, obtaining the Bianchi identity (C.20).

Second pair of Maxwell equations (2.8) for the fields E and B can be derived from

the action principle. The total action S(em) is expressed as S(em) = S
(em)
emA + S

(em)
int , where

S
(em)
emA is represented with a free-field Lagrangian of Lorentz-invariant quadrutic form of

the field strength tensor, Fµν = ∂µAν − ∂νAµ, and S
(em)
int represents interaction between

the field and 4-current j νe , defined by

S
(em)
emA = − 1

16πc

∫
Fµν F

µνdΩ , S
(em)
int =

1

c2

∫
j νe Aν dΩ , (D.1)

with dΩ = c dt dV , and F µν = ηµαηνβFαβ. We vary only the Aν (serving as the
coordinates) with the material 4-current j νe assumed given (Landau & Lifshitz, 1975).
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Using the exterior derivative D defined by (3.16), the vector-valued one-form Dv is

Dv = eµ

(Dvµ
dxβ

+ Γµαβv
α
)
dxβ . (C.23)

Now differentiate this once again to get D2v:

D2v = eµRµ
ν v

ν , (C.24)

Fαβ ,γ + Fβγ ,α + Fγα ,β = 0, in short F[αβ,γ] = 0. (C.21)

The symbol [αβ, γ] denotes cyclic permutation of the parameters of three anti-symmetric
pairs [αβ], [βγ] and [γα]. It is amazing to find that the equation (C.20) can be written
analogously as

Rαβ[µν;λ] = 0. (C.22)

This is a startling coincidence. In fact, there exists a common structure in their
backgrounds, which is now highlighted.

Appendix D. Second Pair of Maxwell Equations



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Since the variation δAν is arbitrary, the coefficient of δAν must vanish:

∂F νλ

∂xλ
=

4π

c
jν , (D.4)

where j ν = (ρec, je) with je = ρev, The field strength tensor Fνλ is defined by (1.9),
and its matrix representation by (1.10), while F νλ is defined by gνα Fαβ g

βλ.
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We interchange the indices ν and λ in the middle term. Using the antisymmetry of the
matrix F λν , one can replace the factor F λν by −F νλ. Then we obtain

δS =
1

c

∫ (1
c
jν δAν +

1

4π
F νλ ∂

∂xλ
δAν

)
dΩ ,

To the second term, we perform integration by parts. Since the surface integral thus
obtained vanishes by the imposed boundary conditions. Thus, the principle of least
action leads to ∫ (1

c
jν − 1

4π

∂F νλ

∂xλ

)
δAν dΩ = 0. (D.3)

Thus, we have the action variation caused by the variation of Aν :

δS(em) =
1

c

∫ (1
c
jν δAν −

1

8π
F νλ δFνλ

)
dΩ = 0, (D.2)

where we used the equality Fνλ δF
νλ = F νλ δFνλ. In S

(em)
int , we must not vary jν which

is a material current, not the field. Substituting Fνλ = ∂Aλ/∂x
ν − ∂Aν/∂x

λ, we have

δS =
1

c

∫ (1
c
jν δAν −

1

8π
F νλ ∂

∂xν
δAλ +

1

8π
F νλ ∂

∂xλ
δAν

)
dΩ ,
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