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. INTRODUCTION

Gauge invariance is one of the fundamental symmetries in modern theoretical physics.
The gauge invariance was recognized in the 19th century as a mathematical non-
uniqueness of potentials that exists despite the uniqueness of observable electromagnetic
fields E and B. In the 20th century, physical significance of the gauge symmetry was
recognized very fundamental and played a role of guiding principle in the study of
physical fields such as Electromagnetism, Particle physics and Theory of Gravitation.

It took almost a century to recognize its fundamental physical significance, resulting
in, finally, successful formulation of the Gauge Principle. In particular, the gauge theory
played vital roles in the remarkable development of modern particle physics which
was revolutionary (e.g. Aitchison & Hey (2013), Utiyama (1956)). In fact, historical
development of the gauge theory took gradual and zigzag processes.

In the present paper, firstly, historical developments of gauge theory are reviewed
from its initial gauge transformation to later theory of gauge principle taking a zigzag
way from one physical field to another, and secondly, possible application of the gauge
theory is envisaged to fluid-flow field although the field of fluid-flow is not listed in the
literature reviewed.

a) Historical development of gauge transformations

What is now generally known as a gauge transformation of the electromagnetic
potentials was discovered in 19th century in the process of formulation of classical
electrodynamics from mathematical point of view (rather than physics) by its pioneers
(Faraday, Neumann, Weber, Kirchhoff, Maxwell, Lorenz, Helmholtz, Lorentz and others:
according to Jackson & Okun (2001)). It was, in fact, non-uniqueness of a vector
potential A in mathematical representation of electromagnetic field that exists despite
the uniqueness of the electric field E and magnetic field B. This is now referred to
as local gauge invariance of Maxwell’s equations. The law of electromagnetic induction
discovered by Faraday (1831) is represented mathematically by the first of the following
pair of Maxwell equations:
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4B+VxE=0 V-B=0. (1.1)

The second is an outcome of the fact that the magnetic field B is generated by electric
currents (Jackson (1999, Chap.5)), implying non-existence of magnetic monopoles. In
Maxwell’s electromagnetic theory (1856), the vector potential played an important role.
Introducing a 3-vector potential A = (A;, Ay, A3) and a scalar potential ¢ = — Ay,
and defining E and B by

B=VxA, E=-c'9A-Vd, (1.2)

the above pair of equations (1.1) are satisfied identically. This led to a finding that,
using an arbitrary differentiable scalar function U, the following transformation of the
potentials A and $°™,

Ao A+VIY, DO M — 9,T°, (1.3)

revealed a significant property, what is now called the gauge transformation, of the
electromagnetic field. Maxwell (1873) noticed the invariance of B only by the first of
the transformation (1.3), but missed the second one because he relied on the gauge
condition V- A = 0. The simultaneous two transformations of (1.3) was established by
L. V. Lorenz (1867) on the basis of the following gauge condition,

1
V-A+ 097 =0. (1.4)

It is remarkable that the observable fields E and B of (1.2) are invariant in spite of the
transformation (1.3). This was the invariance known in the electromagnetic theory of
the 19th century. In modern gauge theory, the gauge condition (1.4) is often referred
to as Lorentz condition, according to Dutch physicist H. A. Lorentz who was one of
the key figures in the final formulation of classical electrodynamics (1904) including the
condition (1.4), while the former Danish physicist L. V. Lorenz (1867) introduced first
the condition (1.4) (Jackson & Okun, 2001).

In the 19th-century classical electrodynamics, the transformation (1.3) was
understood as meaning simply non-uniqueness of the vector potential A and scalar
potential ® in a mathematical sense. Its physical significance was not recognized until
the 20th-century physics was developed. In the relativity theory of Einstein (1905, 1915),
four dimensional (4d) spacetime z* = (2%, !, 22, 23) with 2° = ¢t was introduced under
the Minkowski metric 7, = diag(—1,1,1,1) = p**.1 The structure of electromagnetism
is most fitted to the 4d-spacetime. For example, the Lorenz condition (1.4) can be
represented compactly as 0AY/dz” = 0 in the 4-d spacetime, where A¥ = (®, A).
See (1.8) for the difference between the covariant (downstairs) vector A, and the
contravariant (upstairs) vector A”. Scalar product in the Minkowski space is formed like
A, dzt = n,, A”dz* by the pair of a covariant vector A, and a contravariant vector da*
((see 1.5)). [ Concerning the difference of transformation property between the covariant
and contravariant vectors, see the footnote to Appendix A.1.]

Stimulated by Einstein’s relativity theory, Weyl attempted in 1918 to reinterpret
the same transformation (1.3) of electromagnetic 4-potentials A”, but turned out to
be unsuccessful. The term gauge (actually the German term FEich) was used to this
transformation by Weyl (1918) first. He proposed to unify electromagnetism and gravity
geometrically by attaching a scale factor [ of the form I o exp|[ ¢ (x)dz*] where its
variation is given by 0l = l¢; éx*. Although this received unfavorable response from
Einstein to be in disagreement with observation, after the advent of the quantum theory,
its interpretation was renewed by London (1927) that the Weyl’s proposal could be used
in quantum theory by changing the scale factor to a phase factor by attaching it to the
wave function ¥ (2) of quantum mechanics in the form,
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U(z") = exp [iv/Au(w)dx“} P(z¥), (1.5)
where v = e/h with e a charge, and the function (z¥) satisfies the Schrodinger equation:

iho, Y= —(h?/2m) V2P + eV 1, (1.6)

interpreted in section II b) and given by (2.29). Physical significance of the gauge invariance was
upheld later by H. Wyle in 1929, who proclaimed this invariance as a General Principle
and called it gauge-invariance (Eichinvarianz in German). The gauge invariance is a
symmetry rooted at the deepest level of physics, as interpreted next in section I b).

In quantum mechanics, the transformation (1.3) was understood as a phase
transformation of the wave function of Schrodinger’s equation. In the theory of
gravitation, on the other hand, the gauge transformation was generalized to such
transformations that the vectors or curvature tensors I characterizing the gravitational
field as physical reality do not change (or satisfy associated transformation laws) in spite
of coordinate transformations, where the coordinate frames are taken arbitrarily by the
theory (its details are given in section IIIc) iii. and IIId) for weak gravitational field). In fluid
mechanics too, the convective derivative (following fluid motion) can be shown to satisfy
invariance with respect to generalized gauge-transformation, presented in section IV ¢).

b) A hint of gauge principle with the argument reversed

Historically, the gauge symmetry has been established through zigzag courses. Next
formulation may be a typical example. Observing the phase part of the extended wave
function W(z¥) of (1.5), the phase factor implies existence of the following one-form A
in the spacetime (z*), defined by

A=A, dr" = Apda® + Arda’ + Ayda® + Azda®, (1.7)

Ay =AY = (= A). AV = (3™ A). (1.8)

The extended wave function W(z”) implies a certain geometrical structure in the
spacetime z#, furnished with a field A, existing in the 4-d spacetime 2. The field
A, possesses an interesting property which is now presented.

The pair of fields E and B of (1.2) are derived from (1.7). In fact, taking exterior
differential d of A, we obtain the field strength two-form F:

1
F=dA=)_ 5 Foada? A da?, F,, = 0,Ay — hA,, (1.9)

0 —-E, —-E, —Ej
o E1 0 B3 _B2
Fel(Fa)=| 5 _p 0 5 | (1.10)

Es By, —B 0

where E = (E)) and B = (By) are defined by (1.2). The pair of equations (1.1) are
also obtained from (1.9) by taking, once more, exterior differential of F = dA, yielding

T Greek letters such as «, 3, 4, v, A, - - - take the quartet (0, 1,2, 3) to denote 4d-spacetime components,
whereas Latin letters such as 4, j, k, - - - take the triplet (1,2, 3) to denote 3-space components.

1 In differential geometry, a vector (or a tensor) in an n-dimensional coordinate frame U is not a simple
n-tuple array (or a simple n X n matrix, respectively) of real numbers, but they must follow certain
transformation laws when mapped to another n-dimensional coordinate frame V.
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dF =d%4 =0. Its detailed expressions are given in section IT a)i. Thus, the definition
A = A,dx" of (1.7) is sufficient for deriving the pair of Maxwell equations (1.1).

Let us consider the gauge transformation concerning the one-form A, defined by
G: A, =AW 5 glnew) = g7 — Al _ 5 o (1.11)

equivalent to (1.3), where @ is an arbitrary differentiable function. Then, we have
Alew) — plrew)qov o gD gov 0,0dz" = ALY _ dO. From this, we find the
invariance F"%) = Fld) gince 20 = 0. Namely, the electromagnetic fields E and B
are invariant by this local gauge transformation. We will see in section II b) for QED that there
is local gauge invariance in quantum electrodynamics (QED) as well (e.g. Aitchison &
Hey (2013, Chap.2)). It is worth noting that the Maxwell equations are invariant under
the local gauge transformations (1.11). The details are given in the section II.

Suppose that we have a particular form of A,-field defined by flu = 0,0 with 0
an arbitrary scalar function differentiable two times. Then the one-form A = flﬂdx“ is
given by d@, and we have the expression U = exp[iyO(z")] - (z"), since [ A,dz" = 6.
In addition, since A = d6, the field strength form F vanishes identically, because
F =dA = d?6 = 0. Namely, the observable fields E and B vanish identically, although
there exists non-vanishing one-form A in the background spacetime.

Quantum-mechanical probability density is given by |¥|*> = [P, Namely the
probability of a quantum mechanical particle is unchanged formally by the existence

of A,-field. Tt is well-known for the wave function ¥ = [p|exp(if) that the current
conservation law 9, = 0f is deduced from the equation (1.6):

Oujty =0, with joy =pye, iy = (pp)) 0 (k=1,2,3)  (1.12)

where jt = (40, Jfy) 15 a d-current density with p = [, A\ = h/m and 8y = c¢~'0},
In the presence of fl -field, the 3-current flux jé“q) is changed to pr Ox(0 +~v6). Thus,
only effect of the extended phase factor is to change the 3-current ] from 0 tod+~06.

In the gauge theory, global gauge transformation is deﬁned by the following
transformation: A, — A, = A, + ¢, for 4 arbitrary constants ¢,. It is trivial to see
that the system is invariant with this global transformation, because the fields E and
B are given by derivatives of A,. Therefore, the present system is said to be invariant
globally. This is the first step of the gauge principle, examining whether the system
under consideration is equipped with desirable conditions. We will return to see what
is the desirable, after having seen the details of the local invariance given in section I ¢).

Essence of the gauge principle lies in requiring local gauge invariance. In the present
case, this is defined by A, — A, = A,+a,(z") for 4 arbitrary differentiable fields o, (z")
depending on spacetime coordinates z”. Since «,, is assumed to take a general form not
limited to the form 9,6, the one-form A = A,dx" does not necessarily take a form of
a total derivative d@. Hence, the field strength two-form F = d.A does not vanish in
general. This means that we have non-vanishing observable fields of E and B, according

o (1.9) and (1.10). This changes drastically our battle field of study. Not only the
Maxwell equations (1.1) must be satisfied, but also the governing Schrédinger equation
should be reformed with partial derivatives 0’s replaced by covariant derivatives V'’s, as
given by (2.33) below. Thus, the so-called gauge-potential A, is taken into the equation
(2.32) to represent a new interaction force. In this way, a new force is introduced by
the local gauge invariance.

© 2021 Global Journals



¢) Gauge Principle: global invariance and local invariance

From the example just mentioned above, it is seen that there is a crucial difference
between global invariance and local invariance of physical fields. Each invariance in its
own right composes the significance of the principle.

To understand the distinction between the two is vital to capture the physics of the
fields. In a global invariance, the same transformation is carried out at all spacetime
points of the field where current conservation (such as the form of (1.12)) is satisfied,
while in a local invariance different transformations are carried out at different individual
spacetime points. In general, a theory that is globally invariant will not be invariant
under locally varying transformations. This is understood to mean that a new field
is required in order to satisfy the local invariance. To that end, the system under
investigation must have a potential capacity receptive to, i.e. able to receive a new field.
In fact, the field A, = 0,60 in the previous section played a diagnostic field to test
whether the system is receptive to a new field o, (2”). By introducing a new general
field oy, (2") in such a receptive system that interacts with the original field and which
also transforms the system physically acceptable ways under the local transformations,
a local gauge invariance 1s established.

d) Desirable factor for the gauge theory

Reflecting the above analysis of the gauge principle, consider what is the desirable
factor playing the role of a game-changer from vanishing-field state to the state of non-
vanishing fields of E and B equipped with a new force (electromagnetic, in this case).
It is reasonable to identify that most important factor is a geometrical one. Namely, the
one-form A = A, dz" = n,,, Adx" of (1.7) is vested to the spacetime (z*) which is a most
important geometrical structure. In fact, the present gauge principle sets as a premise
the existence of one-form A in the 4-d spacetime equipped with the metric 7,,. With
this reasoning, one understands that the gauge principle is rooted on the fundamental
level of Physics and that the gauge principle works, as proposed by Utiyama (1956), not
only in quantum electrodynamics, but also in particle physics and theory of gravitation,
because one can define one-form A = A,dx*. Almost needless to say, the field of fluid
flows in the 4-d spacetime is not excluded, to be presented in the accompanying paper.

In the gauge theory of particle physics, current conservation law is considered to be a
must. It is interesting philosophically to investigate how such a current conservation law
working in the physics of discrete particles compromises with the physics of continuum,
such as in the theory of gravitation (dealing with spacetime continuum) or in the theory
of fluid flows (dealing with material continuum with continuous distribution of mass

density p). The paper accompanying the present paper is concerned with the last
problem of fluid-flow fields.

e) Historical reviews

Considering the key role played by the gauge invariance in modern theoretical
physics, it would be reasonable and useful to review how it is working in the fundamental
fields. On the reviews of historical facts of the initial stage of gauge theory, one can
refer two important articles of O’Raifeartaigh (1997) and Jackson and Okun (2001),
both of which describe how the modern gauge theory developed in its early days. It
took almost a century to formulate the non-uniqueness of potentials in the context of
theoretical physics, existing despite the uniqueness of the electromagnetic fields E and
B. In regard to the gauge condition (1.4), Lorenz’s contribution is noted again. In

fact, Lorenz (1859) introduced the so-called retarded potentials and showed that those

T This is equivalent to 9 [Y|? + Ok (VORP* —Y*), ) = 0, derived from (1.6).
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satisfied the relation: V- A + ¢29,® = 0 (Jackson & Okun, 2001), which is now
almost universally known as the Lorentz condition, but founded originally by Ludvig V.
Lorenz (a Danish physicist) who preceded the Dutch physicist Hendrik A. Lorentz. The
English word gauge, a translation of German eichen, was not used in English until 1929
(Weyl, 1929a) for the transformations such as (1.3).

[I. GAUGE IN VARIANCES IN TwO FUNDAMENTAL PHYSICAL FIELDS — A REVIEW

Taking two fundamental physical fields, Flectromagnetism and Quantum FElectro-
dynamics, we review the gauge symmetries and see how the gauge symmetry has been
captured historically.

a) Flectromagnetic Field: Gauge Invariance and Charge Conservation
i. Maxwell equations
Electromagnetic fields are represented with a 4-vector potential A* in the 4d
spacetime x# = (29, 2!, 22, 23) (where 2° = ¢t and =0, 1,2,3):
At = (D, A), A = (Ay, As, A3).
Covariant version of A* is A, defined by
A, =, A" =(—D,A), where 17, =diag(—1,1,1,1) =", (2.1)
N being the Minkowski metric of the Special Relativity. To represent electro-magnetic

fields, we begin with a frame-independent formulation. To this end, according to the
mathematical formalism of differential forms, an electromagnetic one-form A is defined:

A=A dr’ = —®dz® + Aydzt + Aydx? + Asda® (2% = ct).
The pair of electromagnetic fields E and B are given by
= '9A-V®d B=VxA. (2.2)

Taking external differential d of A, we obtain the field strength two-form F:
1
F=dA=) 5 Foada” A dz*,  F,\ = 0,4\ — 0\A, (2.3)

Matrix representation of the tensor F,, is given by (1.10). Once again, taking exterior
differential of F = d.A, we obtain the following identity equation:

dF =d?A=0, d (F,,A da” A d:cA> = (B, F,) da* Ada? Adz,  (24)
dF =) Fyay da Ada? Ada? =0, Foy, = 0,F. (2.5)

See the footnote for Fj, 4.7 This reduces to the equation expressed compactly:
OuFo\ + 0, Fy\, + O\F,, = 0. (2.6)

From this, we obtain a pair of Mazwell equations (cf. (1.1)):1

V-B=0, 9B+VxE=0, (2.7)
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By the definitions (2.2) of the electric field E' and magnetic field B, the two equations
of (2.7) are satisfied identically. In other words, in stead of using the pair of equations
(2.7), it is sufficient that the 4-potential A* = (¥, A) is used with the understanding
that the electromagnetic fields E and B are given by the definitions (2.2).

The second pair of Mazwell equations are given by

4
V. E =d4rp., ——8tE+V><B_—7Tj€, (2.8)

(cf. Jackson (1999, §11.9)). This pair of equations are derived from the principle of least
action. The action integral S(™ is expressed by a linear combination of two terms with

a part glem omA representlng an electromagnetic field by the potentlal A, and another Slr?tm )
representing interaction between the field and 4-current j:

S(em) = emA + Su?ifn

1
sem) = — / Flo5 FO%d0 = / A, d0, 2.9
emA 167c B ) 1nt ( )
where d2 = d*z¥. From the variation A, of the field A, where Fop = 0,43 — 03A,,
the following equation is deduced in the form of tensor equation (Appendix D: (D.4)):

dr
OgFP = —J (2.10)

e ?

where j& = (pec, j.) with j, = p.v, and F* is given by F*# = n°* F,,, n*?. Practically,
the matrix F*% is obtained from F, of (1.10) with simply replacing E by —E.

ii. Conservation of electric charge and Gauge invariance
Conservation law of electric charge can be derived from (2.10) by taking 4-
divergence of both sides:

4 .
0= 0,05F*" = — il (2.11)

The left-hand side vanishes identically because the differential operator 0,0z is

symmetric with respect to o and 3, while F*? is antisymmetric. Total sum with respect
to « and [ (taking indices 0,1,2,3) vanishes identically. Thus, we have the charge

conservation equation with j# = (p.c, 7.):

Onjl = Ope +V -5, =0. (2.12)

This conservation law is closely related to the gauge symmetry of the electromagnetic
field. Let us consider the gauge transformation concerning the one-form A, defined by

G: A, = AL _ plrew) = A1 — plld) _ 5 9 (2.13)
equivalent to (1.3), where @ is an arbitrary differentiable function. Then, we have
Ale) = ATe)dg” = AP dg” — 0,0 dr” = A — d6.

From this, we find the invariance F (new) — Flld) 55 follows:

f(new) — dA(new) — dA(Old) + d2@ — dA(Old) — ‘F(old)’ (214)

T F[V)\’H] = %((%AF,,)\ + (9,,F)\M + 8)\Fw, — aMF)\V — 8,,FM — 8,\Fl,u) with Fy, = —F, etc. .
1 The first is obtained with («, 8, v) = (1,2, 3), while the second is derived when one of «, 8 and
takes the suffix number 0.

© 2021 Global Journals

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version I H Year 2021



Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ n Year 2021

since d*@ = 0 identically. Thus it is found that the two-form F defined by (2.3) is
invariant with respect to the transformation G, called the gauge transformation by the
historical reasons explained in the Introduction. Therefore, the electromagnetic fields
FE and B are invariant, said as gauge-invariant.

The gauge invariance (2.14) and the charge conservation (2.12) are connected
closely. In fact, the connection is inseparable, which can be shown as follows. In the
expression of Sy given in (2.9), we replace the factor A, by A, — 0, 6. Then the action
Sint has an additional term,

/ jo %d!). (2.15)

Using (2.12) expressing the charge conservation, one can rewrite the integrand in a form
of 4-divergence 0(6 j&)/0z*. Then the above integral is transformed into vanishing
boundary integrals by the conditions of the variational principle.

Thus the gauge transformation has no effect on the equation of motion, so long
as the equation of charge conservation (2.12) is valid (¢f. Landau & Lifshitz (1975)
§29). Namely, the charge conservation law ensures the gauge invariance. Conversely,
the gauge invariance requires the charge conservation equation 0j%/0z® = 0, because
the expression (2.15) is transformed to — [ 6 9,5~ df2, which is required to vanish to
any scalar function © by the gauge invariance.

iii. FElectromagnetic wave under Lorenz gauge
In the previous subsection (i), it is remarked below (2.7) that the 4-potential
A* = (P, A) can be used instead of the pair of Maxwell equations (2.7). Now the set
of four Maxwell equations are reduced to two equations of (2.8) when the 4-potentials
A are used as dependent variables and the equation (2.2) for the definition of £
and B. The two equations of (2.8) are given by the single tensor equation (2.10):
OgFP* = —(4m/c) j &, where

D5 FP = 95(0° A — 97 AP) = 930° A* — 9°(95A), (2.16)
0 a af
8a = o = (80,V); 0% = n 8/5 = <_60a V), (217>

and 0y = 0/0(ct) and V = (0y, 0y, 03). Therefore, the tensor equation (2.10) becomes

dm
030" A" = 0*(95A%) = —— 5, (2.18)

where 930” is the differential operator of wave equation and 9z A? 4-divergence of A”:
030° = —0F + V2 =V? — ¢ 2972, A% = 10,0+ V - A. (2.19)

In the last section (i7), it is shown that there is freedom in the potential A®. This
freedom enables choosing a set of potentials A* = (®, A) to satisfy

Lorenz condition: 0, A =c19,0 +V-A=0. (2.20)

Then, the equation (2.18) reduces to the wave equation with the source term (47 /c) j

4
Wave equation: (V? —c202)A> = ——Wjeo‘. (2.21)
c
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Substituting A* = (¢, A) and j& = (pec, J.), this represents uncoupled wave equations,
one for ® and one for A:

V20 — ¢ 2020 = — 47 p,, (2.22)
2 —292 A
VA —-c 0 A= ——7j., (2.23)
C

The wave equation (2.21) and the Lorenz condition (2.20) form a set of equations
equivalent to the Maxwell equations in vacuum. In a later section, we will see,
surprisingly, an analogous set of equations for gravitational waves in generalized form.
This implies that a sort of gauge symmetry exists as well in the theory of gravitation.
What is now known as a gauge transformation of the electromagnetic potentials was
discovered in the formulation process of classical electrodynamics in the 19th century.
However, real recognition of its physical significance required two new fields to be
developed: the relativity theory for the structure of 4d-spacetime, like a 4-potential
A%* = (®, A) and a current 4-vector j” = (pc, j), and the quantum mechanics (say) for
the new dimension of a phase factor exp [ix(z")] (see next section II b). In fact, the notion of
gauge symmetry did not appear in the context of classical electrodynamics, but required
the invention of quantum mechanics in particular, according to Jackson & Okun (2001).
As mentioned above, the gauge invariance and charge conservation are connected
closely. In fact, the connection is inseparable. O’Raifeartaigh L (1997) cites the original
paper of Weyl (1918), in which Hermann Weyl commented in the postscript (1955) as

-, gauge-invariance corresponds to the conservation of electric charge in
the same way that coordinate-invariance corresponds to the conservation of
energy and momentum. Later the quantum theory introduced the Schréodinger-
Dirac potential — (wave function) of the electron-positron field; it carried with
it an experimentally-based principle of gauge-invariance which guaranteed the
conservation of charge, ----«---- . (See O’Raifeartaigh (1997, p.36))

In fact, Noether’s theorem shows 0,7” = 0 for 4-current j” of relativistic quantum
systems such as those governed by Klein-Gordon equation or Dirac equation in
Minkowski space (Aitchison & Hey (2013, Chap.3); Frankel (1997, §20.2)).

b) Quantum Electro-Dynamics (QED): Gauge Principle and Covariance

1. Gauge transformation in QED

In the context of quantum theory, the attempt of Weyl (1918) is worth mentioning
first. He proposed to unify electromagnetism and gravity geometrically by attaching a
scale factor of the form I oc exp[[ ¢y (z”) dz*] with its variation given by 8l = Iy dx*.
This received unfavorable response to be in disagreement with observation.

However, after the advent of the quantum theory, it was revived by London (1927)
that Weyl’s proposal could be used in quantum theory by changing the scale factor
exp [x] (x : real) to a phase factor exp [ix] and attaching it to the wave function
of quantum mechanics. Suppose that ¥, describes the zero-field wave function. Then
by the transformation from g to 1 = o expliy [ A, (z¥)dz*], the wave function
describes the state interacting with the electromagnetic potential A, (where v =e/h).

Earlier than this work, Fock (1926) proposed extension of the freedom of potential
A, in the classical electrodynamics to the quantum mechanics of a particle with a charge
e interacting with the field A,. With the transformation of the potential,

Ay — Al = Ay + 0., (2.24)
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the wave functions ¥ is transformed correspondingly by a phase transformation:
Y=Y = P explivy]. (2.25)

What Fock discovered for the quantum mechanics was that, for the form of the quantum
equation to remain unchanged by these transformations, the wave function is required
to undergo the transformation,

Yo — P =1o(z”) exp[m/Au(:r”) dat], (2.26)

whereby ¥ is multiplied by a local (space-time dependent) phase factor. Later, the
concept was declared a general principle by Hermann Weyl (1928, 1929a,1929b). The
invariance of a theory under combined transformations such as (2.24) and (2.25) is
known as a gauge symmetry or a gauge invariance and was a touchstone in developing
modern gauge theory. (Jackson & Okun)

ii. Schrodinger's equation and gauge principle in an electromagnetic field
A wave function i of quantum mechanics evolves in time according to the equation
1th 0y = H1, where h is the Planck constant and H the Hamiltonian operator which is

defined, in the absence of the electromagnetic field, by
H(zx,p) = p*/2m + eV (z), (2.27)

where p is the canonical momentum, V' the potential energy and e the charge of the
particle. In Schrodinger’s equation, the canonical momentum py, is represented by the
differential operator on the wave function ¥ expressed as

prp = —ih(0/0z") 1, (2.28)

while the potential V' is a multiplicative operator on ¥. From (2.27), Schrédinger’s
equation is given by

iho = —(0*/2m) Y "(0/02" > P+ eV ¢, (2.29)

k

When there exists an external electromagnetic field and the particle has a charge e, the
Hamiltonian H of (2.27) should be replaced by

1
H(x,p) = %(P - EA)2 +eV +ed (2.30)

where the previous momentum p is replaced by an expression using the new canonical
momentum P = p + (e/c)A. Replacing P, with —ihd/0x*, Schrodinger’s equation
becomes

. 1 L0 e 2
@haﬂpz% E (-Zhw—gz‘lk) Y +eVy+edi. (2.31)
k

This can be rewritten as

h2
k
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where V,, = (Vy, V},) are covariant derivatives (with z° = ct) defined by

Vo i—(

= 920

0

) Ag, Vi= o - (%) Aw (Ag=—0). (2.33)

e
he
The equation (2.32), equivalent to (2.31), is written compactly by using the covariant

derivatives V( and V, to represent the effect of electromagnetic field A,.

Weyl’s principle of gauge invariance: If 1 satisfied the Schrodinger’s equation (2.32)
involving the potential A,, then the transformed wave function,

¥ = exp |7 x(@") | (@) (2.34)

satisfies Schrodinger’s equation when A = A, dx" is replaced by A+ dy. This is verified
if the wave function v is represented as

Y(x) = ( exp[iy/Au(x) dx“]) “Po(x) (2.35)
In fact, with a transformation A — A + dy. Then the new function ¥ (™) is given by

W (new) () = exp[m/(z‘l#(@ + Oux) dz*] - o(z) = exp [W X(QC”)} Y ().

Thus the form (2.34) is obtained. In the gauge symmetry of QED, the key elements are
summarized by the following set of covariant transformations (see the item (d) below):

A, — A, +0.x, W — exp iy x] - . (2.36)

Here, the transformation of A, is equivalent to the pair of transformations A — A+Vy
and ® — ® — 0,x, which keep the electromagnetic fields E and B invariant.}
Thus, one can uphold the gauge principle to the following general guiding principle.

iii. Generalized Gauge Principle

Global gauge invariance:

This is defined by invariance under a constant change in the phase of wave function
Y. Writing it explicitly, instead of the added phase factor exp[iyx(a*)] of (2.34)
depending on z*, the global transformation is given by

Y(a") = P'(a*) = explia] P (zH), « = const (2.37)

If this transformation does not cause any observable change, it is a global invariance.

Local gauge invariance:
This requires invariance with respect to the following local phase transformation:

Y(a!) = P'(a") = explia(a")] P(a"), « : dependent on z*, (2.38)

If our system is not invariant under the local transformation, it is understood to mean
that a new field is required in order to satisfy the local invariance. By introducing
such a new field interacting with the original field and transforming the system under

I The covariant vector-potential (downstairs) is A, = (—®, Ax), while the upstairs vector-potential
Av is (A A%) = npr A, where A° = &, (A*) = A and A, = A*. One-form A is defined by
A = n, AVdet = Apdat = —0dt + Apda®, where 1,5 = n*¥ = diag(—1,1,1,1). Note that
Vo = (9/92°) — (ie/he) Ao.

© 2021 Global Journals

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version I H Year 2021



Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ E Year 2021

investigation according to the local transformation, it is expected that local invariance
is established. This is a general scenario to find a new physical field.

In fact, the previous item (7) of Schrodinger’s equation is a typical example. For
the new field to be received to satisfy the local invariance, the system must be receptive,
i.e. must have a potential capacity receptive to the new field. Firstly, one can say an
elementary aspect of the complex function. Every complex function has a phase factor
which absorbs the electromagnetic 4-potenial A, within the integral symbol as in (2.35).

Moreover, in the QED case, Schrédinger equation (2.29) represented with
partial derivatives J’s was reformed and replaced by (2.32) represented with covariant
derivatives V’s which are defined with (2.33) by taking account of the new field A,.
Simultaneously the wave function ¥ was transformed by (2.34). Thus, local invariance
has been established.

In mathematical point of view, the global transformation ¥ — ey appears to
be a trivial transformation. But it is an important step to confirm a capacity which
is receptive to the (harmless) phase modification. In the context of physics, however,
it is understood to express the fact that once phase choice of a has been made at one
spacetime point, the same change of phase must be adopted at all other spacetime
points. This is unnatural from the view-point of causality.

It would be better if one can find other physically reasonable transformation.
In §1.2, for electromagnetic 4-potential A,, we saw a particular A,-field defined by
A, = 0,0 with © an arbitrary scalar function. When the A,-field is introduced in the
field. the wave function is transformed as ¥ — exp[iy©(z")] - ¥ instead of the uniform
phase shift e’®. Nevertheless, the observable fields E' and B vanish identically, although
there exists non-vanishing one-form A in the background spacetime. This signifies that
the system is receptive. It has a potential capacity receptive to the new field.

In the flow fields of a perfect fluid to be studied in the last section 5.2, there exists
an analogous structure in the fluid-flow field. Hence, the global invariance of the flow
field is strengthened by this property.

iv. Covariance with respect to the gauge transformation
Next, consider the transformation A, — A) = A, + d,x from a different angle of
mathematical viewpoint. Let us represent this operation as go with the symbol o and
an element g of a certain continuous differentiable group G (a Lie g), such that we write
it as A}, = go A,. Then the new wave function ¥’ = ¥ *) is written as ¥’ = g o 9,
where ¥ is given by (2.35). The operation g and ¥’ are given by (2.36). Namely,

V' = goy(x) = explivx] - ¥ (2.39)

Next, using the covariant derivative V,, defined by (2.33), the covariant derivative of
is given by

V.= (0,%0) - exp [W /Au(x)dx“].

Its g-transformation is
goV, Y= (0.40) - exp [i’y /g o Au(x)dx“} = (0,o) - exp [z"y /(Au + aux)dx“]

= explivx] -V, ¥ (2.40)

Comparing (2.39) and (2.40), it is seen that the ”go” operations on ¥ and V,¥ take
the same form, that is, simple multiplication of the same phase factor exp[iyx]. In other
words, the two functions ¢ and V¢ are transformed covariantly by the operation g, that
is by the gauge transformation A — A-+dy. The covariance property of transformation
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shared by both of ¥ and V3 can be generalized to other transformations. We will see
it later too.

v. Transformation Group U(1)
The invariance by the transformation (2.37) or (2.38) is said the gauge symmetry

of the type of U(1) group. Multiplication by a phase factor like exp[ica] corresponds to a
kind of rotation of the state vector i = |¢| exp[if] in the polar representation (||, €) of
¥ in the complex plane. The group U(1) is an abelian group corresponding to the circle
group, consisting of all complex numbers with absolute value 1 under multiplication.

Imagine doing two successive such transformations: ¢ — ¥’ — Y’ where
V" = exp[if] ¥, and the original one was ¥’ = exp[ia]yp = U, ¢ with U, = exp[ia]. So
we have ¥ = expli(a + B)] ¢ = expl[id] , where 6 = a + 3. This is a transformation of
the same form as the original. The set of all such transformations forms a group, in this
case called U(1)-group, meaning the group of all unitary (|U,| = 1) one-dimensional
matrices (¥, a single complex number). The transformations U, and a subsequent
transformation Ug are commutative. Namely,

Us Uy = Unip = Uy Us.

Such a group U(1l) is called an Abelian group in mathematics where different
transformations commute.

The Electro-Weak theory and Quantum Chromodynamics (QCD) are described by
non-Abelian gauge symmetries of SU(2) x SU(1) group and SU(3) group, respectively
(see e.g. Aitchison & Hey (2013)). All of these theories form what is called today the
Standard Model, which is the basis of the theoretical physics except for gravity.

As seen above, the gauge symmetry plays a fundamental role something like a
touchstone of the theory, testing whether the theory is trustworthy or not. Gauge
symmetry exists in other fields too. Geometrical theory of gravitation and Fluid
Mechanics are considered below.

[II.  GEOMETRIC THEORY OF GRAVITATION

In this section we consider the geometric theory of gravity and the gauge symmetry
existing within the theory. Amazingly, there are analogous structures between the
quantum electrodynamics (QED) and the theory of gravity. It was known from the
initial times of the gravity theory. Most obvious similarity resides in the covariant
derivatives of both theories, the former QED including the connection term of the EM
potential A, and the latter the connection term (Christoffel symbol) associated with
the gravity field.

Concerning the theory of gravity at the classic times of Galileo and Newton in the
17th century, a flat Euclidean absolute 3d-space 2% = (2!, 22, %) and an absolute time ¢
are two distinct physical objects, which are unlinked. A physical object of a point-mass
in free motion in an inertial frame in the absence of gravity moves uniformly along a
straight line. In the presence of gravitational potential ®, free motion of a particle takes
curved trajectories in flat space. In Einstein’s theory of gravitation, world lines of free
particles (described by the geodesic equation) are a probe of structure of spacetime.

In Einstein’s theory, gravitational field is represented as an object of four-
dimensional continuum with curvature (Misner, Thorne & Wheeler (2017, §17.7)). In
the equation of gravitation (Einstein, 1915), curvature-tensors are equated to tensors of
source-term arising from material motion (mostly motion of fluids or gases), satisfying
the conservation laws of energy and momentum of the source material. In this geometro-
dynamics, geometry tells matter how to move, such as a free particle taking a curved
trajectory, while the matter tells geometry how to curve. Suppose that the source
material is a fluid. Being the source of gravity, the fluid tells geometry how to curve
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in the Einstein’s theory. Time ¢ and 3d-space (z!,2? 23) are two aspects of a single
continuum entity, which is an inseparable object of curved spacetime z* = (z2°, ', 2% 23)
with 2° = ct. The 4d-spacetime is not flat because of the presence of matter’s energy
and momentum of the fluid motion.

Squared interval between an event at x* and a nearby one at x* 4 dx* is given by

ds®> = g, (P)dat d2”, P =a"=(2%2" 2% 2%, puv=0,1,23. (3.1)

where g, is the metric tensor. The curved spacetime geometry of physical world is
founded by the metric tensor g,,. A special flat space is described by the Minkowski
metric 7, = diag(—1,1,1,1). This is the space of Special Relativity which is a theory
invariant under the Lorentz transformation. An important invariant object under the
transformation is the proper time 7 (the time of comoving frame) defined by

dr? = —n,, dz# dz” = (cdt)® — |[dz|* = 2 (1 — 8%) (dt)*, B=]|v|/ec. (3.2)

where de = vdt with v being a particle velocity. The 7 is the time of comoving frame
with the particle (where |v| is zero, hence dt = cdt), while the time t is the time
observed from other frame, which are related by dr = c¢y/1 — f2dt . Appendix C
supplemts certain aspects of mathematics of this section III for the Geometric
Theory of Gravitation.

a) An illustrative example: Free motion of a sigle particle and Equivalence Principle

A free particle of mass m moves along a world line. Its trajectory is determined as
an extremal of the action S™) = —mec [ ds. The action principle is given by

b
6™ = —me § / ds = 0. (3.3)

In the flat space of Special Relativity (Appendix B), the free motion takes a straight
path, while in gravitational field it is curved. Let us consider a free motion taking a
curved trajectory according to Newtonian mechanics.

Motion of a free particle in the Earth’s gravity potential ® z(2*) is described by
ivk+%:07 UkEd_x];7
dt Oxk dt

yielding a curved trajectory for the particle path x’; (t). In the modern view to take the
space and time linked to form a 4d-continuum, the curved trajectory of a free particle
is described as a geodesic curve in the linked space-time.

Let us take an illustrative example according to Utiyama (1987, §2.3), and consider

a free-falling elevator in the Earth’s gravitational field ® g(z"). The free-falling elevator
provides a particular inertial system of spacetime, in which free motion of a particle is
described by

k=1,2,3, (3.4)

d*X*/dr* =0, (3.5)

where X* is the particle coordinates in the frame F,; fixed to the free-falling elevator.
The gravity effect does not appear apparently because the acceleration owing to the
gravity acting on both of the elevator and the particle are the same and cancel out in
the free-falling frame F,;. Thus, the particle takes a straight path X* = a7 + b* with
respect to F,; with a* and 0" being constants.

Let us observe the same motion from another general frame, and as an example
take the frame Fg fixed to the Earth surface, where the coordinates are given by x*.
The squared interval ds? in the frame Ff is given as (3.1). In the particular frame F,
the metric is given by the Minkowski metric 7, = diag(—1,1,1,1). Suppose that the
transformation between the two frames is connected according to X# = X*(z"). Under
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this transformation from X* to x¥, the equation of free motion d*X*/dr? = 0 in the
frame F,; is transformed to that of the frame Fg as follows,

L Aoy e ey
dr dr  drloxv dr ]  “Vldr2 fdr drl
Using the inverse A~ of A# =X/ and multiplying by (A~")} = dx*/0X*, this becomes
d?a? , dz®da? ox*  0X°
dr? T las dr dr  WREE a8 T HX0 9re 928 “ (3.6)

This states that the particle trajectory is curved in general when I') 5 7# 0.
The 4-velocity u” = dx” /dr of the particle is defined by

dz” 1 v .

= :(\/1—B2jc\/1—ﬁ2)7 ' =ct, v=(" = (daF/dt). (3.7

In the non-relativistic limit as 8 < 1 for the particle velocity |v| is much less than the
light velocity ¢, this leads to v = dz*/dr — (1,v/c) in the limit. In this case, the
equation (3.6) becomes

u’ =

d d
o v+ Thzv*v” =0,  in particular e o+ ATE -1-1=0, (3.8)
where the second equation is given for A = k = 1,23, (a, ) = (0,0), and the factors
Fgﬁ other than Tk are set to zero. Compare this with (3.4). By assuming the following

relation of equality,
ATh = 0®p/0x" (3.9)

the second equation of (3.8) becomes equivalent to the equation (3.4). This implies an
interesting relation between the gravitational potential ®z and the symbol Féﬁ (called
the Christoffel symbol). The equation (3.11) of the next part b) includes the same
symbol I" and expresses the geodesic equation of a free particle in curved spacetime. By
replacing the proper time 7 with an equivalent parameter A, the equation (3.6) reduces
to (3.11). We will come back to this point at the item (i7) given below.

In fact, the above simplified example illustrates the conceptual aspects of the
geometrical theory of gravitation in three respects. (i) Any curved spacetime has a
flat space (the freely-falling elevator in the above case) at any point (locally tangent to
it). This is assured by a mathematical theorem, i.e. the local flatness theorem (Schutz,
1985, §6.2). One can always construct such a local inertial frame at any event.

(#7) Gravitational potential @, is related to the metric tensor g,,. In fact, Einstein
had a view that there is a similarity between the gravitational field and Riemannian
geometry. This is based on the particular feature of the gravity which is distinguished
from other forces such as the electromagnetic force (say) and characterized by the fact
that all bodies are given same acceleration. The potential ®, is related to the tensor
9uv, and covariant derivatives depending on g, are defined in the curved spacetime.

In the above example of a free particle moving in a weak gravitational field of
potential ®,, the squared interval ds? defined by (3.1) is given by

ds? = —(1+20,/c*)(cdt)® + (1 +2®,/c*) 7" (da® + dy® + d2?),  (3.10)

as a leading order representation (Misner et al. , 2017, §16.2), where only diagonal
elements g,,|,—, are non-vanishing. Noting 2° = cdt, the metric tensor g is given by
—1—2d,/c*. In the theory of weak gravitational field (®,/c* < 1), the metric tensor g,,
is set as gy, = N + "y, by using the Minkowski metric 77, on the assumption |h,,| < 1.
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In the Earth’s gravitational field, the potential ®, is replaced by ®r = —GoM/r and
hoo = —2®p/c?, where M is the Earth’s mass and r the radial distance from its center.

Returning the equation (3.9): Tk, = ¢ 20®p/0x* again, the definition of the
Christoffel symbol I is given by (3.12) of the next section, leading to 't = ¢TI 00 =
T 0 = [Fyg = —3 Ophoo = ¢ 2 0y Pp. Thus, the the equation (3.9) was confirmed by
the squared interval ds? of (3.10).

(1ii) Cornerstone of the Einstein’s theory is the Principle of equivalence between
gravity and acceleration. Consider a uniformly accelerating rocket moving in empty
space free of gravity (Schutz, 1985, §5.1). Viewed from an observer inside, it appears
that there is a gravitational field within the rocket. All objects released from the
observer are subjected to uniformly accelerating motion, just as in gravity field. A
frame falling freely within the ship is an inertial frame. It can be seen from this that
frames accelerating uniformly in empty space are equivalent to uniform gravitational
fields. This is a conceptual aspect of the equivalence principle.

Its technical aspect is stated as follows. Transition from the equation (3.5) in flat
space-time to the equation (3.6) in a curved spacetime is enabled by the Equivalence
Principle. The equation (3.5) can be written as du*/dr = u*; = 0 where v* = dX*/dr,
while the equation (3.6) can be written as V,u# = du®/dr+T%h, u®uf = u# = 0. Hence,
for the transition from flat spacetime to curved one, the comma of v is replaced by a
semicolon like u*, (§3.2(c). This is the technical aspect of the Equlvlence Principle.

The metric g, describing the geometry of space-time is a symmetric tensor having
ten independent components g, (P) in 4-dimesional spacetime, functions of a
world point P. Einstein's geometrodynamics is governed by ten tensor equations of
the form: G, = 87k T},,. Among the ten equations, only six are effective. Its detailed
account is given in §3.2(e).

The gravitational field considered in this paper is assumed to be weak so that the
formulation can be compared with the electromagnetic field presented in the previous
section and the fluid-flow field to be considered next in this paper.

b) Review of Einstein's Theory
Einstein’s theory of gravitation (Einstein 1915) is founded on the Riemannian
Geometry. Appendix A describes some of its basics.

1. Geodesics and Covariant derivative
In a gravitational field, its 4d-spacetime K, is curved, and the line element ds is

represented in terms of the metric tensor g,, (z*) of (3.1). A free particle in such a space
moves along a geodesic line z*(\), governed by the following geodesic equation:

d?z> da? da”

r<, — —=0. 3.11

Dz eIy D (3:11)
where A is an affine parameter defined as A = a7 + b with 7 the particle’s proper time
and a, b constants. The factors I"’s are the Christoffel symbol, defined by

Jg Jg Jg
a L ap 1 wB wy Y98y
D%, = 6" Tuss Dy = 3 (o2 + S22 — 2, (3.12)

In such a curved space K, a covariant derivative of a vector field v*(z*) along a curve
P()\) with its tangent u” = dx”/d\ is defined by

d N
(Vu)* = v + %, v"u) = V. (3.13)

where V denotes the nabla-operator in the 4-d spacetime. Using this definition, the
geodesic equation (3.11) can be written simply as
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Vau =0, or Vyu=0, where u®= dz®(P)/dA\. (3.14)
According to the differential geometry (Misner et al. 2017, Chap.8), this states that the
geodesic is a curve P(A) which parallel-transports its tangent u®* = dz®(P)/d\. In the
flat space of special relativity where g, is given by the metric 7, = diag(—1,1,1,1),
the geodesic takes a straight path d®z®/dA\? = 0, since '3, = 0 by (3.12).

1. Geodesic deviation and Riemann curvature tensors Rj s

Equation of the geodesic deviation, that is now going to be presented, has a special
term which represents the gravitation with curvature tensors mathematically. Consider
a family of geodesics parameterized by A, so that world points are expressed as x%(\, n),
with each geodesic curve discriminated by a second parameter n.

Let us introduce the separation vector n® defined by n* = dx®/0n, measuring the
separation (deviation) Az® = n®An between the geodesic n and the nearby geodesic
n + An at the same value of A. In curved spaces, parallel lines when extended do not
necessarily remain parallel, which is formulated in terms of the Riemannian tensors.

To that end, we will make mathematical expressions more general than those of
the previous section and define a general derivative form D for a general vector field
v = v¥e, where v is expanded in terms of unit basis vectors e,. Then the exterior
derivative of the vector v is given one-form expression as

Dv = (Dv%) e, + v* (De,), (3.15)

where Dv® = (95v*) dz” is a one-form, and the term De,, is a vector-valued one-form
which is expanded by using the connection coefficient (Christoffel symbol) in the form,

14

De,=e,I',, dz"

Thus, we have the expansion of D v represented as

oY dov”
Dv=e, (8—1}6 + F”aﬁva> dz?, =e, ( dv)\ + 175 vo‘u5> dA. (3.16)
r
With these notations, we define
a_ (97 | ta D ._0n" ..
D’I] = (a —+ r IB,YT]BU’Y) d)\, ﬁ n = ﬁ + r By nﬂu'y.

It is seen that the operator D is one-form expression of the covariant derivative V. Then,
the separation vector n® is governed by the following equation of geodesic deviation:
DD ,
— —n*=RY% su’
dxdx po

where n® = 9x%(\,n)/0On is the separation vector and u” = 92° /O the tangent vector.
The covariant derivative of v with respect to the coordinate x* is given by
- 12 DUV v v (6% - v v v v (03
(V,v) ( = 8x“> =" + 17, 0" =V, v, =00, + 1Y, 0% (3.18)

2

u n’, (3.17)

(See next (c¢) for the notations of the second equation). The equation (3.17) serves as a
definition of the Riemann curvature tensors R%_ s, which are defined by

oz 0z
This can be represented in terms of the metric tensors g,z and their derivatives (see
(C.7)). According to (3.17), geodesics in flat space where R% ; = 0 maintain their
separation, while those in curved spaces where R% ; # 0 do not. This is said in the
beginning that geometry tells matter how to move.

Raﬂ76 — + ]_"Oclﬂy Vﬂ(S o Faydryﬂfy. (319)
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iii. Fquivalence Principle: Transition from flat spacetime to curved one
How the matter influences the geometry for curving is the subject of subsequent
sections. In the present theory of geometro-dynamics, the matter is a perfect fluid.
Relativistic expressions of the stress-energy tensor of a perfect fluid are to be given in
the section IV, d) by (4.25) and (4.26):

Tos = (p® + pe(p) + p) uatip + P1ag, (3.20)

where u* and n* are defined in (3.7) and (4.21) respectively.§
Conservation law of energy-momentum given by (4.24) is cited here,

9T =T, = 0. (3.21)

where the comma notation ’, 3" denotes the partial derivative with respect to 2?. This is
an expression in global Lorentz (Minkowski) frame of flat spacetime. For the transition
(to be considered next) from flat to curved spacetime, the comma is replaced by a
semicolon such as To‘? 5 » i-c. the covariant derivative of T8,

From the equivalence principle explained in the section III, a), (iii) the same equation
as (3.21)is given in local Lorentz frame (Lf in short) of curved spacetime as well by

Ta? 5 =0 at origin of local Lorentz frame. (3.22)

In such a frame of local Lf, free particles are viewed to move along straight lines at least
locally. This means that the term I'g of (3.11) must vanish at the origin in the local
Lf. Namely, all the laws of physics must take their forms known in the special relativity.
This is the Principle of Equivalence.

Because the Christoffel symbols s vanish at the origin of local Lf, the equation
(3.22) can be rewritten as

Ta% = (0 at origin of local Lorentz frame.

Thus the conservation law given by the form T, =0 at origin of local Lorentz frame

is extended to curved spacetime of the form 7%, = 0 in any reference frame owing to
the definitive character of tensor. Thus, we have

TO‘? 5=20 : extended to any reference frame of curved spacetime. (3.23)

iv. FEinstein field equations
Equations of the gravitational field are obtained from the principle of least action
d(Sy+Sm) = 0, where S, and S, are the actions of the gravitational field and matter field
respectively. Accordintg to the variational formulation of Appendix C.2, the variation

of S, with respect to the metric field g is
0.5y = _Ag/ (Raﬂ - %gaﬁR> 0g°” /=g dR2, Ay

C3

= — .24
167TG07 (3 )

where d? = d2%dz'dz?da® and /=g d 2 is the proper volume [d2],,,, in a local Lorentz

frame with g = det(g,,), and R,p is the Ricci curvature tensor (C.11), and R = g¢™R,,
is the scalar curvature, and G is the gravitational constant.

§ The expression of stress-energy tensor T,s given here is equivalent to the expression of (a) the
equation (133.2) of §133 of "LL (1987)” and that of (b) Box 5.1 of §5.1 of ” Gravitation (2017)”, under
the understanding that p(mic? + €) + p (where m; = 1) is equivalent to w = pe + p of (a) where
e = mic? + ¢ and to p+ p of (b) where p is defined by p (1 + €) since myc? = 1 by the assumption
¢ =1 of the text (b). Note that the present Minkowski metric 1,4 is equal to —gap of (a). Thus, all
the stress-energy tensors T, of the three texts are equivalent under the above understanding.
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On the other hand, the variation of the action .5, of the matter field is

1
08m = o / Top 89" /=g ds2. (3.25)

where T,z is the stress-energy tensor of the matter (i.e. the fluid in the present case).
Note that variation of the coordinates from z* to =’ = z¥ + £” results in variation of
the metric 6g*° ||

From the action principle 65, + 0.5, = 0, we find the Einstein field equation:

Gop = 87k Ty, k= Gy/c*, (3.26)

in view of the arbitrariness of the dg®?. (See Appendix C.2 for its derivation). The
tensor G,p is defined by

Gag = Raﬂ — %gagR, (327)
called the Einstein curvature tensor, while 7,3 is the stress-energy tensor.

v. Degree of freedom of geometro-dynamics

Einstein’s geometro-dynamics is governed by ten tensor equations (3.26): G.p =
87k T,s. Among the ten equations, only six are effective. How can the ten equations
be in reality only six 7 This is because, owing to the four Bianchi identities G, = 0,
the equations G, = 87T}, place four local conservation laws 7", = 0 of energy and
momentum of the source fluid. Instead, four conditions become free which enable four
coordinates chosen arbitrarily. Hence the geometry is constrained by the six independent
equations from (3.26).

It is worth emphasizing the ingenious composition of the theory by repeating the
concept with other words. The ten equations of Gp = 87k T, 3 place four constraints
on the source motion in the form of the four conservation equations 7", = 0, owing to
the four Bianchi identities G**,, = 0. This is exactly the meaning given in the beginning

"the geometry tells the matter how to move”. The four conditions, instead, enable
four coordinate frames chosen freely. Remalmng six constraints from G, = 87T, are
those meant by ”the matter tells geometry how to curve”.

The geometro-dynamics in vacuum space requires special attention. Because no
matter exists in the vacuum, the six constraints to be imposed by matters mentioned
above must be replaced by conditions of vacuum-space own. Here is the place where
the Lorentz gauge condition comes into play. This is presented next.

c¢) Similarity between Gravity Theory and QED
There exist various similarities between the gravity field of the present section and the

field of quantum electrodynamics (QED) considered in the section II. Those are reviewed with
comparing corresponding mathematical expressions from three aspects here.

i. Covariant deriwatives
The similarity is clearly seen in the form of the covariant derivatives of both fields.
In the gravity, the covariant derivative of v = v”e, with respect to * is given by (3.18):

(@Mv)” = gv” + 1", 0" (3.28)

In QED, according to (2.33) of the section II, b), (ii)7 corresponding form of its covariant
derivative of wave function is given as

V=0 —ivA, v, v =e/he. (3.29)

| 0g%F = —£v0,9%% + g*v0,£P + ¢Pv9,£%. See LL (1975) §94.
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The coefficients of second connection term of each covariant derivative are directly
connected to the source field of each case. The former I'V,  are given by derivatives
of metric tensors g,, including the gravity potential ®, (see (3.12) and (3.10)). The
latter vA,, is obvious since A, is the electromagnetic (EM) potential.

The covariant derivative V,v denotes the derivative in curved spacetime, leading
to curved geodesic lines. Analogously, the latter derivative V ¥ signifies curved motion
of microscopic particles because the term pyy = —ihdp¥ of (2.28) denotes rectilinear
momentum in the absence of the EM field A,,.

ii. Invariant variations

Equations of the gravitational field are obtained from the principle of least action
with total action defined by Sipta = Sy + Spm, where S; and S, are the actions of
gravitational field and matter field respectively. Variations of both actions 65, and 4.5,
are given in Appendix C.2. From the action principle 6(S, + S,,) = 0, we obtain

58, + 05, = —A, / (Gaﬁ — 8k Taﬁ) 598 /=g d 0 = 0, (3.30)

where G,z is the Einstein’s curvature tensor defined by (C.19), A, = ¢*/(167Gy) and
k = Go/c* with Gy the gravitational constant. The action principle requires invariance
of S, + Sy, namely vanishing of 6( Sy + S, ) for arbitrary variations of the metric tensor

5g°#. Thus, we obtain the Einstein equation,

Gop =87k Tog, k= Go/c". (3.31)
The action principle, i.e. the invariant variation described above, yields the Einstein
field equation (3.31).

On the other hand, corresponding part of EM (electromagnetism) is the second
pair of Maxwell equations presented in the section II a) (i). derived from the electromagnetic
action composed of two components 5™ and 5™ defined in the section IT a) (i). Hence,

int

from the action principle §( S + S™) = 0, we obtain
1 1 OFA
65 = (S + S ) = / (i - =55 )i de=o. 3.32
The action principle requires invariance of S = éff/lg + Si(ftm ), namely vanishing of
55 for arbitrary variations of the potential §A,. Thus, we obtain
ONF"™ = (41 /c) 57 . (3.33)

This invariant variation yields the second pair of Maxwell equations (2.8).

Similarity between the gravity and the electromagnetism is seen not only in the form
of the action principle by comparing (3.30) and (3.32), but also remarkable similarity
is observed in the derived equations (3.31) and (3.33). Left-hand side of (3.31), Gag,
denotes the spacetime structure of gravity, while that of (3.33), O\F"*, denotes the
structure of electromagnetic field. Those are generated by the sources on the right-hand
side: T, of (3.31) being the stress-energy tensor of the source perfect fluid, and j of
(3.33) being the source current flux.

iii. Waves in vacuum space and gauge conditions
In the section I a) (iil), we have seen electromagnetic waves governed by the wave
equation (2.21) for the electromagnetic 4-potential A%. In vacuum space, this reduces to

(V2 —c 201 A” = 0. (3.34)
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This can be derived from (3.33), which becomes, on substituting F** = 9vA* — 9*A?,
—ONOMAY 4 07 (O\AN) = (4T/c) 57 (3.35)
Imposing the Lorenz gauge condition (2.20),
HA =0, (3.36)

setting j* = 0 in the vacuum space, and noting —9,0* = ¢ 292 — V2, the equation
(3.35) reduces to (3.34).

Similar structure is found in the gravitational waves as well to be presented in
the next section d). In weak gravitational field, the metric tensor is represented as
Gap = Nap+hap under the condition |h,p| < 1. Linearizing the Einstein equation (3.31),
the wave equation (3.47) is derived under the gauge condition (3.46), both of which are
cited here in advance for comparison purpose:

(V2 —c20H) " = —16mkT™ | (3.37)
o, 0" =0, (3.38)

where B = b — 2 (h®,). One can recognize similar structures between EM and
Gravity, although there is an obvious difference, vectorial fields of the former EM field
and tensorial fields of the latter Gravity. Inspite of such difference, their similarity is
remarkable.

Consider the EM wave equation (2.21) and apply the divergence operator 9, on it,
then we obtain

(V* = ¢7207)(9,A%) = —(47/c) (0,5 )-

Hence, the gauge condition (3.36) requires the current conservation 9,5 = 0.
Next, consider the gravitational wave equation (3.37) and apply the divergence
operator d, on it, then we obtain

(V2 —c292) (9,h"") = =167k (9,T),

It is consistent with the formulation of the theory that the gauge condition (3.38)
requires the conservation of stress-energy of dynamical motion of the source material
(fluid) 9, T* = 0.

In vacuum space where both of the current flux j2 and the stress-energy of material
motion are absent. the gauge freedom resulting from the absence of materials is filled
up by the gauge conditions 9,4 = 0 or 9,2 = 0. It is understood that the gauge
conditions play the role of filling in the blanks of degrees of freedom.

d) Gravitational waves (weak gravitational field)

The spacetime is flat in the absence of gravity, and presence of a weak gravitational
field is one in which spacetime is curved but close to flat. In the spacetime continuum
object (manifold in mathematics), the metric components are represented as

Gap = Tap + haﬂ; (339)
where

hasl <1, nag = diag(—1,1,1,1), (3.40)

assuming small ripples in flat spacetime. Such spacetime is called nearly-Lorentz system
and studied by a linearized theory. Merits of linearized theory lie not only in its
manageability of analytic handling, but also in the fact that one can apply a gauge
transformation to the weak gravitational field as well.

© 2021 Global Journals

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version I E Year 2021



Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ E Year 2021

In fact, the weak field has a remarkable analogy with the electromagnetic field, as
seen in the previous part ¢, evidenced by the similarity of corresponding wave equations
(3.34) and (3.37). However, the difference is clearly recognized in the source terms on
the right-hand sides of the two wave equations. In the former field, the source is the
current density 4-vector j¥. while in the latter, it is the stress-energy tensor 7" of
fluid motion. Namely, the vector j* and tensor 7" symbolize the difference of both
fields. However it is more important to have an insight (and recognize) that they share
a common physical mechanism for generation of each field despite their difference.

i. Linearized theory and gravitational gauge transformation
From the metric form (3.39) under the condition (3.40), one obtains a resulting
form of the Christoffel symbol ' from the definition (3.12), in which all three terms
are linear Withou.t approximation: I'%; = i (h%, +h 5 —h 67’0‘). A linearized form of
Riemann tensor is

Rauﬁr/ = % <ho¢y,u5 + huﬁ.ua - huu,a,@ - hoeﬁ,uu>7 (341)
and the Ricci tensor is given by R, = R%,,, = 9.1}, — 0,15, from (C.12). Then, the
linearized field equation is derived from the Einstein equation (3.26): G, =87k T,, as

- a — af - «@ - «

_h’,uzz,a = N haﬁ, + h,uoz7 v + hua, o = 167k T/W ) (342>

(Misner et al. (2017), Chap.18), where

Py = Py — 200 B, h=h"=n1"%hgs. (3.43)

We are now in an important stage where one can conceive a gravitational gauge
transformation, which is quite analogous to the electromagnetic one. Let us consider
an infinitesimal transformation of the coordinates of a spacetime point P from old ones
(x*) to new ones (z*), expressed as

2"(P) = 2"(P) + &*(P), (3.44)

where z#(P) and 2'#(P) represent the same spacetime point P, and only their reference
frames are changed. Metric perturbations in the new (z*) and old (z*) coordinate
frames are related to first order in small quantities by q

hZIEJW = h;oil;i - 5#,1/ - gu,u . (345)

This is regarded as a gravitational gauge transformation since the Riemannian tensors
are left unchanged by the transformation (3.45). This can be immediately verified by
substituting the expression of Aje" into (3.41), finding R2%Y, = Ro<s,. This is reasonable
because the change of reference frame only should not influence the physical world. Since
the the curvature tensor R,,s, is unchanged, the Ricci tensor R,g, scalar curvature R,
Einstein tensor G4 are all unchanged. This is the gravitational gauge invariance, and
the geometrical tensors are essentially the same whether calculated in an orthonormal
frame 7, in the old frame gzlyd , or in the new frame g;7".

In general, one can impose the following gauge condition:

— o

W, =0, (3.46)
q Defining matrix element of transformation by A“E = 02%/02'8 = 0% — £%5, neglecting higher
order terms of smallness, transformation of the metric tensor is given by g3 = A”a/ll’g gf},? =

A#EAVE Nuv + AMaAVE h,uv = (n,uu - f,u,u - gu,u) + h,uw
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called the Lorentz gauge for gravitational waves. Under this Lorentz gauge condition,
the linearized field equation (3.42) reduces to

—h. = 167kT

nv,o Y

or equivalently  0,0% hy, = —167k T}, , (3.47)

since the second, third and forth terms on the left-hand side of (3.42) vanish, as follows:

- af —uv,af3 —uv —uy
hos, = naunﬁyh“ =i = (h“ D=0, by (3.46),

)

- —A\B B 7 ¢ 7B
hua, v = nu/\h By — nlﬁ)\(h 7B)I/ = 07 h‘mx, w 77V)\h B =0.

The equation (3.47) represents gravitational wave-generation by the source term on the
right-hand side, since the operator 9,0 is nothing but that of wave equation:

0,0 = =0, + V* =0, 00 = (00, V), 0% =00y = (=0, V).

Thus, we have found the gauge condition (3.46) and wave equation (3.47) for
gravitational waves, which are equivalent to the equations (3.37) and (3.38) presented
already in §3.3(c). Note that the indices of h,, and T}, are raised with the Minkowski
metrics n** n®” multiplied on both sides of (3.47), obtaining 2 and T°%. Since the
factors n™* 0" are constant, they enter through the diffrential operators.
ii. Justification of Lorentz gauge

Suppose that the tensors h,, satisfy the equation (3.42), but do not satisfy the

condition (3.46). Then, one can apply a gauge transformation (3.45) to obtain (A" ) v

from (EOld) > and demand that (A" ), satisfies the gauge condition:

(Enew)uCv 0 — (EOld)qua . aaaa fu _ 8#(8{15@)‘ (348)

Ne’

Under the condition 0,£* = 0 (compatible with the transversality of the waves), one
can find the perturbation £* satisfying the wave equation,

0.0° € [ = (=202 + V] = (A7), (#0, assued).

J-new

The new field (A" )" satisfies the Lorentz condition (3.48), (h )#¢, = 0 and the
wave equation (3.47).

Even the new metric (A" )" satisfy the condition (3.48), there is arbitrariness.
To fix it, consider a restricted gauge transformation (h" ), — (B ) o

(R" Y 1 = (") = s — o+ 0%, (3.49)

derived from the form (3.43) and (3.45). Provided that £* satisfies the following wave
equation,

0a0% &' = (—=c720,> + V) &" =0 [Restricting condition), (3.50)

the Lorentz condition (Enew)’ re , = 0 is satisfied according to an equation equivalent

to (3.48). Namely, the restricted gauge transformation preserves the Lorentz gauge
condition. Therefore the Lorentz gauge is really a class of gauges.

iii. Gravitational waves in vacuum

Just as wavy deformations over sea surface propagate across the ocean, so small
ripples of the gravitational metric tensor propagate across spacetime. Propagation of
the latter gravitational wave in vacuum space (where T}, = 0) is given by the wave
equation (3.47) under the gauge condition (3.46):

000" hyy = (V? = ¢20,*) by, = 0, (3.51)
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o W' =0, (where 9, B = 0" 0% hyq). (3.52)

Plane Wave: For simplicity reason, let us consider a plane wave, described by the
following monochromatic wave:

T = Ay explikaa®), (ko= —w/e, k= (ki ko, ks), ) (3.53)
where 2 = (ct, z', 2, ). Substituting this to the equation (3.51), one obtains
P2 ka k= k2 — k| =0, o kP =w? e, (3.54)

which is referred to as the dispersion relation of the wave and k¢ is called the null vector.
The equation of gauge condition (3.52) requires the four (orthogonality) conditions:

oo AP = 0. (3.55)

iv. Degree of freedom of gravitational waves

Let us consider the degree of freedom of gravitational waves in vacuum space. Its
degree of freedom is found to be Two. The reason is as follows. The metric perturbation
h, of a plane wave is given by (3.53), which is a solution to the field equation (3.51)
in the form of wave equation. Its wave amplitude A,, has ten independent components
in general. The field equation (originally of the form G,z = 87k T,s) is controlled by
four constraints due to the four Bianchi identities G**,,= 0, as mentioned at section I1I b)
(v) The four conditions, instead, enable four frames of coordlnate chosen freely. Those are
provided by the orthogonahty gauge-conditions (3.55): ko A** = 0. Thus, the degree of
freedom of AW is reduced to six.

Wave propagation in vacuum space requires special attention. Because of absence
of matters in the vacuum, the six constraints to be imposed by matters (if they existed)
must be replaced by conditions of vacuum-space own. Here is the place where another
gauge conditions come into play. However, even when the gauge condition (3.46) is
satisfied, there is arbitrariness. Namely without violating the gauge condition (3.55),
one can introduce the restricted gauge condition (3.50).

Let us express a solution to the restricted gauge condition (3.50) by another plane
wave:

o = Ba expli k,a''], (3.56)

where B, is a constant and k, is given by (3.54). Consequent change in h,gs is given
according to (3.49) as (Enew)’aﬁ = (B ap — Euw — Evp + M€, From (3.56), this
gives

A(neW) A (mew) — iBoks — iBgka + i 143 B"ky,

af af (357)

by removing the exponential factor. One can show (Schutz 1985, Chap.9) that B, can

be chosen to impose two further restrictions on A new)

A% =0 (traceless), (3.58)
A’ =0 (transverse), (3.59)

where u” is any constant timelike unit vector.

Note that the condition (3.59) gives only three because k®A,zu® = 0 is valid
identically for any B,. Hence, the constraints (3.55), (3.58) and (3.59) together give
the eight conditions, which are called the transverse-traceless (TT) gauge conditions.
The remaining two must be physically significant. Namely, the degree of freedom of the
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wave is found to be Two. The gravitational wave has two dynamic degrees of freedom,
which is analogous to the electromagnetic waves propagating in vacuum space.

The TT-gauge is based on the vector u”. Let us take the frame of background
vacuum Minkowski spacetime (through which the wave is propagating) defined by the
time basis set along the vector u? = 6. Then, the condition (3.59) implies Agy = 0
for all a. In this frame, we take the spatial z3-axis parallel to the direction of wave
propagation. Then we have k, = (—k,0,0,k) from (3.54), and the equation (3.55)
implies A,o + Aoz = 0. Hence we have A,3 = —A,o = 0 for all a.

Thus, using the symmetry of A,s and the traceless condition Ay; + Ag = 0, we
can write the coefficient matrix A,p in the TT-gauge (transverse-traceless gauge) as

0 0 0 0
0 A A 0
ATT _ 11 12 )
op 0 A —Ay 0 (360)
0 0 0 0

[V. FLUID MECHANICS: SMOOTH SEQUENCE OF NON-COMMUTATIVE
DIFFEOMORPHISMS

In Fluid-Mechanics of a perfect fluid, the fluid medium is assumed as a continuum (i.e.
a continuous distribution of mass) in the spacetime z¥ = (t,z) = (ct, 2!, 2% 23). Flow
variables such as the mass density p, pressure p or flow velocity v are represented
by continuously differentiable functions of z”. Dynamical motion of fluid flows is
characterized by the presence of convective derivative in the equation of motion. It
is a derivative following the fluid motion, also called sometimes the advective derivative,
Lagrange derivative or material derivative, but most importantly it is gauge-invariant
covariant derivative under local gauge transformations. A fluid flow is a smooth
sequence of diffeomophisms of particle configuration, which is a continuous sequence
of transformations from one time to another, and two different sequences are not
commutative. This is contrasted with the commutative U(1) gauge transformations
of QED, seen in §2.2.

a) FEulers equation of motion

To capture dynamical motion of fluids, we have two distinct kinds of specification:
FEulerian type and Lagrangian type. With respect to each specification, one finds a
gauge symmetry associated with the fluid mass in motion. In the first Eulerian type of
specification, the mass density, pressure or flow velocity are represented by differentiable
field variables of p(t,x), p(t,x) or v(t,x) respectively. Fluid motions are governed by
two kinds of equations, the continuity equation and Euler’s equation of motion:

Op+V-(pv) =0, (4.1)
1
0w+ (v-V)v = - Vp, (4.2)

In the second Lagrangian type of specification, as in particle mechanics, flow variables
such as mass-density p or velocity v are defined by functions of three parameters
a = (a',a? a®) identifying each fluid particle (a piece of material element of fluid) and
time t,, like p(tq,a', a?,a®) or v(t,,a',a? a®). In this specification, the quartet members
(tq,a', a? a®) play as independent variables replacing the spacetime coordinates (2%, z!, 22, 23)

of the Eulerian type. For example, the spatial position of a fluid particle at a time t,
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specified by the parameter a = (a', a?, a®) is described by X, (t4, a',a? a®) = X, (ta, a).
However, to denote a point in Euclidian 3-space, we keep the symbols (z*) = (2!, 22, 23).

In the case of Lagrangian type of specification, local gauge transformation (LGT)
is considered with respect to the specification of position coordinate of a fluid particle
identified with the Lagrange-parameter a. To describe the particle motion, a convective

derivative Dy is defined by
D;=0i+ (v-V), (4.3)

in addition to partial derivatives such as 8; = 9/9t or 9}, = 0/0z*.

The convective derivative D, is a generalization of the time derivative 0; having a
remarkable property of invariance with respect to an LGT transformation defined below.
This property is investigated in the section IV c) as another kind of gauge invariance,
and also investigated as a covariant derivative in curved space-time. In fact, using Dy,
the above Euler’s equation of motion (4.2) can be rewritten as

Diw+p ' Vp=0. (4.4)

This is viewed as a generalization of Newton’s equation of motion to a continuous matter
of a perfect fluid, because the term D,v is regarded as an acceleration of a fluid particle
of a unit mass identified with a fixed parameter a.

b) Fluid flow: Sequence of non-commutative diffeomorphisms
i. One-parameter sub-group of diffeomorphisms
A fluid flow is a smooth sequence of diffeomorphisms of particle configuration
on a spacetime manifold M* with a point x = (z*) = (t,z) € M* (z = (2F) with
k = 1,2,3). Suppose that a vector field U(x) = U"e, = 0; + U*9, is given at every
point x € M* (with U° = 1) as a vector operator U. With such a vector field, one
can associate a particular flow, i.e. one-parameter sub-group of diffeomorphisms &; with
& = I (identity). This is a transformation of the particle configuration at the initial
moment &y(z) = Iz = (0, X)) to the particle configuration &(x) = (¢, X;) at time t.
The initial velocity field at ¢ = 0 is given by (d/dt) & (x)|i=0 = U&(x)|i=0 = U e, =
Or + U*dy. where U is an operator on &(z). In this flow, the initial material point
Xy =0 = (0',0% 0%) in 3-space is transformed to a 3-space point X (o) at ¢ (> 0). The
transformation &; is, as it were, an infinite-dimensional diffeomorphisms from X, = o
to X (o). (See, e.g. Kambe (2010) Chap.1 and its Appendix C).
On such a group (a Lie group) of diffeomorphisms, one-parameter subgroup with a
tangent vector U at the origin [ is represented by

1
&=1+1tU+ 51t2U2 + O(t%). (4.5)

With a second vector field V(z) = V¥e;, a second flow of one-parameter subgroup
ns(z) is generated analogously by V with ny = I. Noting that the composition 7, ()
is understood as ns(&:(x)), we have

s §t - §t Ns = st [U7 V] + O(St27 S2t)7 (46)

U, V] = (U’fakvi - vkakUi) ) (4.7)

The commutator [U, V| signifies the degree of non-commutativity of the two flows
of diffeomorphisms represented by & and 7. This non-commutativity signifies the
spacetime being curved.
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(b) Geodesic equation of a fluid-flow

With respect to a flow £(t), consider a trajectory X*(t) of a fluid particle on a
Riemannian manifold M* with its tangent vector defined by T'(x#) = d¢/dt. The curve
is said to be a geodesic if its tangent is displaced parallel along the curve £(t), i.e. if

VrT =0. (4.8)

See (A.17) of Appendix A, where general interpretation of geodesic equation and
covariant derivative are given (c¢f. Kambe (2010) Chap.3, say). In local coordinates,
we have T'= d¢/dt = T, = (dX/dt) e,.

Same geodesic equation V7T = 0 is also given by the action principle, .e. by
the equation deduced from the extremum of an action integral (cf. Appendix A.6).
Relativistic form of the action integral of a perfect fluid is given as

SPH — —c/ pdV / (1 +c7? E(p)) dr (4.9)

This is an extended form of the relativistic action integral of a single particle of mass m,
St = _cm [ dr, to the perfect fluid, where the overlined value € denote proper value
of the internal energy e of the perfect fluid (the value in the rest frame, i.e. comoving
frame where the fluid is at rest). Comparison of S®") with S®™ and considering [ pdy

equivalent to m of S(™) one can see that the term ¢ 2€ is a small correction term to
the fluid medium in non-relativistic case.
From the variation analysis, the geodesic equation of a perfect fluid is given as

Dyw* + p7t Op = 0, (4.10)

for non-relativistic limit of ordinary fluid flows (Kambe 2020, §2). This coincides with
the Euler’s equation of motion (4.4) of ordinary fluid mechanics.

¢) Convective derivative D, and its Gauge invariance

The convective derivative D, = J; + (v - V) has a special property which is
invariant with respect to a group of transformations like the gauge invariance of the
electromagnetic fields E and B. Hence the following transformation may be a fluid
version of the gauge transformation. The derivative D; is also regarded as the covariant
derivative analogously with the electromagnetic case. The operator D; is also
invariant with respect to the Lorentz transformation, i.e. a relativistic invariant
(see Sec. I, d) of Kambe T (2021), Fluid Gauge Theory, GJSFR, vol. 21, iss.4).

i. Local gauge transformation

Suppose that we have two coordinate frames F' and F’ which are overlapping and
each fluid particle is identified by the Lagrange-parameter c. Let us denote the position
of the same particle e with the coordinate X, in the frame F and X/, in the frame F’.
Relaltive motion of the two frames is not assumed to be time-independent. Hence the
frames are not necessarily inertial. We consider the relation between the two coordinates
to be a transformation between X, (¢, &) and X/ (¢, ), which is given by the following
local gauge transformation (dependent on «) at t' = t:

LGT: X, (tha)=Xu(t,a) + &t x)|p_x t'=t, (4.11)

This is rewritten in the form of transformation acted by an element g of the group G
defined by G = LGT:

X, |p= =glt,a)o Xa, g€G. (4.12)

This LGT is considered as a local transformation between two coordinates (of the same
particle identified by ) specified in the two non-inertial reference frames F' and F’. In
fact, the same particle a has a spatial position coordinate X (¢, &) in the frame F' and
another one X! = X, + £(¢, @) in the frame F’. Therefore, its velocity at @ € F,
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v(t,w)|a = at Xaa (413)

is transformed to the velocity at @’ = X/, € F' and ' = t:

V()| =0 X, (t,a) =v(t, X,) + (d/dt)E,, (4.14)
£o =8t X0a), (d/dB)E, =&+ (v- V)€l x - (4.15)

One may rewrite the equation (4.14) in a form analogous to (4.12) as
v (X)) = g(t, @) o v (X,). (4.16)

This is a transformation of motion of the same particle between two different reference
frames F' and F’. Physically speaking, two vectors X, and X/ denote the same material
point, represented by the common Lagrange parameter . Namely, we are considering
a gauge transformation between two reference frames.

According to the transformation (4.11), the time derivative 0; and space derivative
O = 0/0z* in the frame F are related to the derivatives 9] and 9}, = 9/92™" of F' as
follows:

8t = 6,5/ + (@E) : V', V’ - (6%), (417)
O = 0 + (&) 9l o =0/0x;,. (4.18)

ii. Gauge invariance of the convective derivative D,
The convective derivative D; = 0; 4+ (v - V) is invariant with respect to LGT: i.e.
D; = D;. In fact from (4.14) and (4.18), we have

v-V=v -V + -V -V =0v(z) V' +(—(d¢/dt) + v-VE) -V,
where v = v/ — d§/dt is used. The last term is rewritten as
(—(dg/dt) +v-VE)- V' = —0,&-V' =0y — 0, (4.19)
by using (4.15) and (4.17). Hence, we have
D =0+v- V=0 +v -V =D, (4.20)

This means that the operator D; satisfies the invariance with respect to LGT.

In addition, it can be shown that the operator D; is a covariant derivative in
the sense of gauge theory. As shown in (a), under the transformation by g € G, the
expression (4.12) gives X, — X! = go X, = X, + £, and its derivative (velocity)
v(X,) = DX, is transformed as

UI(X;) = D;Xil = Dt(Xa +£) = v<Xa) + Dt€ =guv=go DtXaa

where the equality v+D;& = gv is consistent with (4.13) and (4.14). The above sequence
of equalities states that D, X, is transformed to g o D, X, in the same way as X, is
transformed to g o X,. Therefore, the operator D; has the covariance property and is
reasonably called Covariant Derivative.

Omne can see that the equation of motion (4.4) of a perfect fluid is expressed in
terms of the time derivative D;. The fact that the covariant derivative D; plays a role
of time derivative in place of the partial time derivative d;, implies that the free motion
according to (4.4) is like a motion in curved space. Rewriting it as Dyv = —p~! V p, the
equation has a pressure force —p~!Vp, which is not an external force, but an internal
force. In fact, each fluid particle does not take a straight trajectory but a curved one,
in general, owing to the internal pressure force.
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d) Relativistic formulation of a perfect fluid

Let us investigate how the fluid mechanics of a perfect fluid is formulated according to
the theory of special relativity, which is based on the Minkowski space equipped with

Minkowski metric : 7,5 = diag(—1,1,1, 1). (4.21)
In the space, a world element ds and an element of proper time d7/c are defined by

ds* = —dr? =dz,da" =, dat2s” = —(1 — §%) Adt?,

cldr = /1 - p2dt, g=v/c, v=|v (4.22)

where dz® = cdt, and ¢ the light speed, and v = (v*) is the particle velocity, with its
3-space displacement dX* = v*dt (k = 1,2, 3). Relativistic 4-velocity u” is defined by

dXx” 1 v 0 _ _ _
- :<¢1—/32’c\/l—62)’ X°=ct, v= (") =(dX"/dt). (4.23)

Relativistic form of the action integral of a perfect fluid is already given by (4.9).
Relativistic equations of conservation of energy-momentum are expressed in the form,

0

u’ =

™ =0 =0,1,2,3 4.24

axu (/“L7 v ) Ly &y )7 ( )
where the stress-energy tensor T is given by Kambe (2020) for a perfect fluidt as

T = Hufu” +pn™. H=pe+p=pc+pe+p, (4.25)

e=c+elp), H=p+ph, h=elp)+p/p, (4.26)

(c¢f. Landau & Lifshitz (1987) calling 7" as energy-momentum tensor), where ¢ =
myc®+e = c®+e (with m; = 1) is the relativistic internal energy per unit mass including
the mass energy m;c®. The thermodynamic variables like ¢(p) (internal energy) denote
the proper value (i.e. the value in the comoving frame where the fluid is at rest).t The
term pc? in H denotes the relativistic energy of rest-mass p per unit volume.

The above stress-energy tensor T of (4.25) was derived from the Lagrangian
density L = —c(pdV) (1 + ¢ 2€(p)) in the action S®D of (4.9) under the mass
conservation condition pdV = const (see Kambe 2020, §2.2). Present study to be
carried out below (and the accompanying paper) does not assume the mass conservation
a priori (from the outset), but it is deduced from the formulation under a pertinent
symmetry. Therefore, the stress-energy tensor 17" should be derived with taking a
different way, which is given in Landau & Lifshitz (1987, §133) and presented here now.

The derivation is as follows. The momentum flux through a surface element doy, is
just the force acting on the element. Hence T%doy, is the i-th component of the force
acting on the surface element (i,k = 1,2,3). Let us take a certain volume element
within the fluid in which it is at rest (the local rest frame). In this frame, Pascal’s law
is valid, that is, the pressure force exerts independently of the direction of the surface
element doy and is everywhere perpendicular to the surface on which it acts. Therefore,
one can write T%do;, = p 6% do;, whence T = p §'*,

T Note: There is no energy dissipation in the present case of perfect fluid, hence no entropy change.
Assuming the entropy is uniform throughout the fluid, the internal energy e depends only on p.

T Some textbooks such as Misner et al. (2017), etc. use the definition T = (p + p) v u” + pn** where
p is understood to denote pe = p(c? + ¢) including the internal energy pe with ¢ = 1 in their unit.
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In the local rest frame, then, the energy-momentum tensor has the form

(O

p

T/W —

0
= 4.27
rest O ( )
0

ocooB O

o o o
RN o O o

where ¢ is the relativistic internal energy per unit mass including the mass energy m;c?,
hence pe denotes the energy per unit volume. In order to find the expression of the tensor
T in arbitrary reference system, we introduce the 4-velocity u” defined by (4.23) for
the motion of the fluid. In the rest frame of the particular fluid particle, we have v* = 0
and u” = (1,0,0,0). The expression to be sought for 7" must be such a form that it
takes the form (4.27) when transformed to this rest frame. Such a second-rank tensor
T* must be

T" = (pe + p) u'u” + pn™”. (4.28)

for the 4-velocity u* of (4.23) and the metric n* of (4.21). This can be shown as follows,
by using the Appendix B.

In the current unprimed frame x*, the particles are in motion with the velocity
of (4.23). Lorentz transformation from this unprimed frame z* to the primed frame
x'® comoving with the particle P (i.e. § = |v|/c) is carried out by the transformation
matrix /1‘“;; defined with (B.6) and (B.7). By this transformation, the second rank tensor
TH* in the unprimed frame x* is transformed to that in primed frame as follows:

T = T = A% A% T = (pe +p) (A% ) (A%u”) + p (A%, A7) 0™

rest

by using the transformation u'® = A% u” and (B.9) of Appendix B. The last expression
(4.29) reduces to the matrix of (4.27).

This is a wonderful derivation of T of (4.28) for a perfect fluid by Landau &
Lifshitz (1987). From the point of view of the present study, however, there exists a
crucial aspect to be remarked now. In regard to the momentum flux, the isotropic
expression p o (Pascal’s law) is taken at the rest frame and Lorentz-trandformed to
arbitrary inertial systems of reference, i.e. from the rest frame to frames of arbitrary
high velocity, even turbulent, or close to the light velocity. If the medium is solid, then it
may be one of choices. However, the fluid is receptive of diffeomorphic transformations
among constituent fluid particles in infinitely different ways. Its degree of freedom is
infinte (say). It is very likely that tensor form of momentum flux may be quite complex.
The paper accompanying the present study, Fluid Gauge Theory, intends to present one
of possible structures of a perfect fluid.

V. MOTIVATIONS FOR FLuiD GAUGE THEORY

A symmetry implies a conservation law (Noether’s theorem). However it is shown
below that, from a single relativistic energy equation of fluid motion, two conservation
equations are obtained in the non-relativistic limit according to the current formulation
of fluid mechanics: one is the mass conservation and the other is the traditional form
of energy equation. This is a riddle. We are concerned particularly with the mass
conservation equation and investigate what symmetry implies the mass conservation,
and conversely what symmetry the mass conservation implies. A key to resolve this
Riddle is hinted by the general representation of rotational flows of an ideal compressible
fluid satisfying the Euler’s equation, derived by Kambe (2013). This gives us a hint
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of existence of a set of gauge fields, suggesting that our physical system should be a
combined system consisting of a fluid flow field and a set of background gauge fields.
The gauge symmetry of the latter ensures the law of mass conservation. Conversely as
far as the mass conservation law is valid, the gauge invariance is ensured for the action
representing interaction between the two components of the combined fields.

a) A riddle: By what symmetry the mass conservation law is implied?

It is well-known that the energy conservation is associated with the symmetry
of time translation of mechanical systems. Main object of this section is to
state motivation by raising a question of what physical symmetry implies the mass
conservation law. This query is raised in regard to the relativistic equation of energy
conservation of fluid flows when its non-relativistic limit is taken. In the ordinary fluid-
mechanics valid in non-relativistic limit, the mass conservation law is given as valid a
priori. However, let us see what happens in relativistic mechanics. It is reminded that
the relativistic energy-momentum tensor has been given in the previous section IV, d).

The equation (4.24) represents four conservation equations. The space components
of the equation (4.24) are given by 9,7 = 0 with u = k = 1,2, 3, representing the
momentum conservation of the k-th component.

On the other hand, its time component (9, 7% = 0) is the equation of energy
conservation. In order to see its explicit representation in terms of flow variables in the
non-relativistic limit (8 = v/c — 0), the stress-energy tensors 7" are now written by
leading-order terms of expansion with respect to small 3 in a matrix form:

T = p+Lip?+pe +---,

Tk cpof + e pok (302 +h) +-o,

T cpo® + R (302 + h) 4
h=e+p/p.

TOO TOl T02 TOS
TlO Tl 1 T12 T13
T20 T21 T22 T23 ’
T30 31 32 33

Taﬂ — (51)

where matrix elements are given together with flow variables on the right-hand part
of the expression (5.1). The term 7% is the energy density, while T% (k = 1,2,3) is
the energy flux density. The underlined terms pc? in T% and cpv® in T came from
the rest-mass energy part of the tensor 7%, which do not appear in the ordinary fluid
mechanics. There exists the symmetry of 7% = T*0 in the relativistic expression of
(5.1). This symmetry is lost in the non-relativistic ordinary fluid mechanics when the
underlined terms are removed.
The equation 9,7% = 0 of energy conservation can be written down now as,

L . 1 “ N
T +aT" = ¢ (0 + 0u(pr")) + = (ApE) + (oo™ H) ) + O(F) = 0, (5.2)

. 1 . 1
E = §'U2 + €, H = §'U2 + h. (53)

(see (2.17) for 9,). In the non-relativistic limit as § — 0, we obtain the mass
conservation equation from the first term,

Oip + O (pv™) = 0. (5.4)

Then, deleting it, the remaining expression reduces to the energy equation of ordinary
fluid mechanics in the non-relativistic limit. Thus, we obtain the energy conservation
equation of fluid flow (Landau & Lifshitz (1987), Eq.(6.1)):

Oy (pE) + Op(pv"H) = 0. (5.5)
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Here we have obtained two conservation equations (5.4) and (5.5) from the single energy
equation 9,7% = 0. However, the Noether’s theorem (Noether 1918) of theoretical
physics states A symmetry implies a conservation law’, as noted in §1 (Introduction).
Therefore, we must ask a question whether the above analysis is satisfactory, and we
propose a resolution to this query in a separate paper. (Kambe 2021, “Fluid Gauge
Theory” ,GJSFR).

b) Hint to resolve the riddle: General solution of Euler's equation with helicity

A hint to resolve the Riddle mentioned in the previous section is found in the general
representation of rotational flows given by by Kambe (2013) for an ideal compressible
flow solution satisfying the Euler’s equation. Its expression in details is cited in Kambe
(2020, §3). This solution was derived from the action principle with the action

S(Eulfrot) — S(“R) 4 S(Ga—inv) — /pdV [/ Aur dt—i—/ Ag dt ]7 (5.6)
Aur = 107 —¢, Agi=-D; — DU, Z) (5.7)

V- (pZ) =0, V.U =0, (5.8)

LIZ|=0Z+ (v-V)Z—(Z -V)v=0, (5.9)

for non-relativistic flow fields, where A,g is nothing but the ordinary non-relativistic
Lagrangian density, while Ag; is a gauge-invariant Lagrangian newly introduced in the
study of Kambe (2013). Actually, this study had double aims. One was an attempt
to obtain general representation of rotational flow field with non-zero helicity (Kambe
2012). Second aim was more fundamental, striving to establish equivalence between
two formulations of Eulerian and Lagrangian specifications under the action principle.
Each term of the Lagrangian densities A,g and Ag; satisfies local gauge invariance with
respect to translation and rotation, hence it is consistent with the gauge theory.

As discussed in details in Kambe (2020, §1 and 3.1), this new formulation introduced
four independent fields. In fact, regarding the 3-vector potentials U and Z, each
has three components. Those six fields have two invariance conditions of (5.8),
i.e. divergence-free condition in 3-space. In addition, from (5.9) and the equation,
(L U])s = 0,U; + v*0,U; + UpOv* = 0 obtained from the variational analysis of Kambe
(2013), we have the third invariance condition:

DU, Z)(t,x) = (L.|U], Z) + (U, £]2]) = 0. (5.10)

Hence, the value of scalar product (U, Z) is invariant along the particle path = =
X, (t,x), keeping its initial value along each trajectory. This is the third invariance
imposed on the potentials U and Z. Therefore we have only three independent fields
remaining among the six components of U and Z. Furthermore, if we add the scalar
field ¥ which is also unconstrained, we have four independent fields in this solution.
Thus, four independent background fields are newly introduced in this solution.
Those must be either given externally or determined internally within the framework of
theory. In this paper, we take the latter approach, and the general solution given here is
understood to predict existence of a new field, which is to be introduced according to the
fluid gauge theory proposed in Kamle (2021). Hence, the present section describes a
partial success, because we are lead to unavoidable circumstances which take us to a new
step in two respects. First, owing to the existence of four components of background
field, a set of new gauge fields must be introduced in the 4-spacetime according to the
gauge-theoretic scenario. Second, it is understood that the newly introduced action
S(Ga=inv) = Q(nt) of (5.12) given below represents interaction of the flow field with
unknown background fields. Amazingly this action is analogous to the interaction form
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(int) of (2.9) in the case of Electromagnetism section II, a). This implies a possible approach,

by the formulation analogous to that of Electromagnetism.

What is the hint to resolve the riddle mentioned in section V,a)? It is as follows. We
rewrite the part of action S(G2=™) of gauge-invariant terms of (5.6) as S since this
term is considered to describe interaction between the flow-current j* and background
vector-potentials U and Z, and ¥. In addition to S we denote the scalar product
(U, Z) by W, and define a 4-current j* as follows:

G int) :/pdV/AGidt; J" = (pc, pv), W= (U, Z). (5.11)

Then the interaction part of action is expressed by

glint) _ // pD, +pD, W dth //j a, dydt. (5.12)

where @, = —0,(¥ + W) and 0, is the same as 0, of (2.17).

Note that the field a, = —3, (¥ + W) is analogous to the particular field A, = 0,60
considered in Section I, b) where all the fields E and B vanish identically, In other words, those
fields are potentially existing, but vanish in this particular potential form of A, = 0, 6.
Same can be said that new potential field a, can exist. But with the particular form
a, = —0,(Y + W), the potentially existing new field does not show in observable world.

Based on this observation, new Fluid Gauge Theory is developed in the

accompanying paper (Kambe 2021).
VI.  SUMMARY

Gauge invariance is one of the fundamental symmetries in modern theoretical
physics. In this paper, the gauge symmetry is reviewed to see how it is working
in fundamental physical fields: FElectromagnetism, Quantum FElectroDynamics and
Geometric Theory of Gravity. In the 19th century, the gauge invariance was recognized
as a mathematicl non-uniqueness of the electromagnetic potentials, existing despite
the uniqueness of observable electromagnetic fields E and B. In the 20th century,
physical significance of the gauge symmetry was recognized but in zigzag ways. Real
recognition of its physical significance required two new fields: the relativity theory for
recognizing the structure of linked 4d-spacetime z* = (ct,x) together with, say, a 4-
potential A” = (¥, A) and a current 4-vector j” = (pc, J), and the quantum mechanics
for the new dimension of a phase factor exp [ix(z")] (§2.2). Finally the gauge symmetry
was understood to be very fundamental, and the gauge invariance played a role of
guiding principle in the study of physical fields such as Quantum Electrodynamics,
Particle Physics and Theory of Gravitation.

There exist similarities in mathematical formulation of physical fields between
the quantum electrodynamics (QED, Section II, b)and the gravity theory section IIT,c) Those
are consequences of gauge-invariance property of each field more or less. For example, the
covariant derivative of wave function ¢ is V, ¢ = 0,¢ — ivA,p, while in the gravity
the covariant derivative of a vector v = v”e, is represented as (V,v)" = J,v” + 1", v®.
Second terms in each expression represent the effects from the electromagnetic potential
A, in the former and from the gravity through the factor I'V, , in the latter.

Fundamental governing equations of both fields are derived from the action principle
(i.e. the action should be invariant for arbitrary variations). A (second) pair of Maxwell
equations (3.33) is the one for the electromagnetic field, while the Einstein equation
(3.31) is the corresponding equation for the gravitational field, which are, respectively,

O = (47 /c) 52 . (6.1)
GP =8k TP (6.2)
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The terms on the right hand side are the sources of each field. Taking 4-divergence 0,
of the first equation, the left hand side vanishes identically: 9,0,\F"* = 0, ensuring the
current conservation: 0,5 = 0. This is an outcome of the gauge symmetry of the field
strength tensor F**, which is anti-symmetric: F**» = —F*. On the other hand, taking
4-divergence 0, of the second equation, the right hand side vanishes : 9,7*® = 0 which
is the conservation laws of stress-energy deduced as the Noether’s theorem from the
invariance of the action integral with respect to variations of 4-spacetime coordinates.
Corresponding left hand side vanishes by the Bianchi identity of the gravitational field
(Misner et al. (2017, Chap. 15)).

Waves in vacuum space and gauge conditions (there) are also seen to be similar
between the two fields. Electromagnetic waves propagating in vacuum space are
governed by the wave equation (3.34) for the potential A” under the gauge condition:

(V2 —c20)A" =0.  0,A” =0. (6.3)

In weak gravitational field, a linearized theory gives the wave equation (3.37) for the
modified metric A" under the gauge condition (3.38). In vacuum space, we have

(V- c 200" =0, o,n" =0, (6.4)

In vacuum space where both of the current flux j” and the stress-energy tensor T are
absent. the gauge freedom resulting from the absence of materials is filled up by the
gauge conditions d,A” =0 or a,n" =0. Namely, the gauge conditions play the role of
filling in the blanks of degrees of freedom.

The section IIT, d), (iv) describes why the gravitational waves propagating in vacuum
space have only two dynamic degrees of freedom, analogous to the electromagnetic
waves, although in general, the metric perturbation 2" has ten independent
components.

Present review on the gauge symmetry is motivated from the previous study of
Kambe (2020) having arrived at the conclusion that there exists a new gauge field within
flow fields of a perfect fluid, and that the new field ensures the mass conservation. The
gauge field is not recognized so far in the framework of mechanics of a perfect fluid.

This was an endeavor to resolve a riddle, which is presented in the section'V a) as follows.
A symmetry implies a conservation law (Noether 1918). However it can be shown that,
from a single relativistic energy equation of fluid motion, two conservation equations
are obtained in the non-relativistic limit according to the current formulation of fluid
mechanics: one is the mass conservation and the other is the traditional form of
energy equation. We are concerned particularly with the mass conservation equation
and investigate what symmetry implies the mass conservation, and conversely what
symmetry the mass conservation implies. A key to resolve this Riddle is hinted by the
general representation of rotational flows (Kambe 2012, 2013) of an ideal compressible
fluid satisfying the Euler’s equation, described in the section'V b). This gives us a hint of existence
of a set of gauge fields, suggesting that our physical system should be a combined system
consisting of a fluid flow field and a set of new gauge fields (Kambe 2017). From the
gauge symmetry of the latter field, the law of mass conservation is deduced, rather
than given a priori. As far as the mass conservation law is satisfied conversely, gauge
invariance is ensured for the action representing interaction between the two components
of the combined field.
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APPENDIX A. RIEMANNIAN GEOMETRY

Gauge theory of physics is formulated on the basis of Riemannian geometry. To help
the formulations in the main text, basics of Riemannian geometry are summarized here.

Appendiz A.1. Tangent vectors and inner product

We consider the inner geometry of a Riemannian manifold M which is not a part of
an Euclidean space. If a manifold M under consideration were a part of an Euclidean
n-dimensional space E™, it would inherit a local Euclidean geometry (such as the length)
from the enveloping Euclidean space, as is the case of a 2-d surface in E2. The manifold
M™ under consideration is not a part of an Euclidean space, so the existence of a local
geometry must be postulated. Let M"™ be an n-dimensional manifold. The problem is
how to define a tangent vector X when we are constrained to the manifold M". Let us
introduce a local coordinate frame (z!, - - 2™), and define a tangent vector X € T, M™
at each point x of M™ by

X=X'"—=X"'0;,
oz’
where 0; = [0/dz",---,0/dz"] is a natural frame associated with the coordinate system.

Furthermore, we define a vector-valued one-form by w = 9; ® da’, where 9; and da*
are bases of vector and covectors.f From the calculus of differential forms, we have
w[X] = 0; ® dz'[X] = X'0; = X where dz'(X) = X'. By eating a vector X, the 1-form
w yields the same vector X, i.e. vector-valued one-form.

We consider intrinsic geometry of the manifold M"™. It is supposed that an inner
product (-,-) is given in the tangent space T, M". If X and Y are two smooth tangent
vector fields of the tangent bundle T, M", then (X, Y) is a smooth real function on M™.

Appendix A.2. Riemannian metric

On a Riemannian manifold M", an inner product (-,-) is defined on the tangent space
T,M™ at x € M and assumed to be differentiable. For two tangent fields X = X*(x)0;,
Y =Y/(x)0; € T,M" (tangent bundle), the Riemannian metric is given byf

(X, Y)(z) = gy X'(2)Y(2),

where the metric tensor, g;;(z) = (0;, 0;) = g;i(x), is symmetric and differentiable
with respect to z’. This bilinear quadratic form is called the first fundamental form.
In terms of differential 1-forms da*, this is equivalent to I = g;; dz* ® da’. Eating two
vectors X = X'(x)0; and Y = Y7(z)9;, this yields

The inner product is said to be non-degenerate,

if (X,Y)=0, "YeTM", onlywhen X =0. (A.2)

+ These define symbols independent of local coordinate frames. If u!,-- -, u™ is another frame, then we
have transformation from 9; to 9/0u? = (9z'/0u*)(0/0z') and from dz’ to du’ = (Ou?/dz*)dx*, Then,
their combination is (9/0u®) @du’ = (9 /0u)(0/0x") @ (Ou’/0z*)(dx*) = 6 (0/0x") @dx* = O @da”.
Also, inner product is independent of frames: U;U? = (9z!/0u’) X; (9u/02*) Xk = 6t X, X* = X\, X*.
1 If the inner product is only non-degenerate rather than positive definite, the resulting structure on
M™ is called a pseudo-Riemannian.
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As an example, consider a manifold of one-sphere S' of continuous interval of real
numbers, S' = M[%o%] : 10,27]. Tts dimension is infinite, because the real number
x € Mg, distributes continuously within the section [0, 27]. Suppose that two fields

o0

X =u(z) 0, and Y = v(z) 0, are given in the tangent space T, Mg, at a point z € St
Their inner product is defined by

(X,Y) = /0 ' u(x)v(zx) dr.

This kind of metric is used for electromagnetic fields or flow fields of a fluid.

Appendix A.3. Covariant derivative (Connection)

We introduce an additional structure to the manifold M" that allows to form a
covariant derivative. In mathematics, general definition is given to a covariant derivative
(called a connection) on a Riemannian curved manifold M"™. Let two vector fields X, Y
defined in the neighborhood of a point p € M™ and two vectors U and V' defined at
p. A covariant derivative (or connection) is an operator V. The operator V assigns a
vector Vi X at p to each pair (U, X) and satisfies the following relations:

(i) Vu ((IX + bY) = aVyX +bVyY,
(11 ) VGUH,V X = aVUX + bVVX , (A3)
(iif) Vo(f(@)X) = (UHX + f(2)VuX,

for a smooth function f(x) and a, b € R, where U = U?9; and Uf = U709, f = d f|U].
Using the representations, X = X*9; and Y = Y7 9;, and applying the above properties
(i)~(iii), we obtain

VXy - VXiai(Yjaj) - X’Val(Yj@)

= (X'0,Y")0) + X'YITE 0, = (VxY)F 0, (A.4)

Vaﬁj = ankn (A5)
where Ffj is called the Christoffel symbol. The i-th component of VY is
i Y i v i i j i

(VxY)' = X’ 57 T I X0V = dy*'(X) + (I, Y") da? (X) := VY'(X),  (A.6)

VY ' =dY' + % Yrda!, V;Y' =0,y +T%,.Y", (A7)

where VY is called a connection one-form. On a manifold M™, a coordinate frame

consists of n vector fields e, = Oy (k = 1,---,n), which are linearly independent and

furnish a basis of the tangent space at each point p. Writing (A.5) and (A.6) in the form
of vector-valued one-forms, we have Ve; = e, I'};dz’, and VY = (dY*) e, +Y7 T'};da" ey
The operator V is called the affine connection, and we have the following representation,

VY (X)=VyY. (A.8)

Appendix A.4. Riemannian connection
There is one connection that is of special significance, having the property that
parallel displacement preserves inner products, and the connection is symmetric.

Definition: There is a unique connection V on a Riemannian manifold M called the
Riemannian connection or Levi-Civita connection that satisfies

(i) Z(X,Y) =(VzX,Y)+ (X, VzY) (A.9)
(i) VyxY -VyX=[X,Y] (torsion free), (A.10)
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for vector fields X, Y, Z € TM, where Z (-, -) = Z70; (-, -). The property (i) is a
compatibility condition with the metric. The torsion-free property (ii) requires the
following symmetry, Ffj = F?i, with respect to i and j. In fact, writing as X = X0
and Y = Y7 9;, the definitive expression (A.4) leads to

(VxY = VyX)F = (XY - YX)F + (T}, - Th) XY (A.11)

Christoffel symbol:
The Christoffel symbol Ffj can be represented in terms of the metric tensor g = (g;5)

by the following formula:
FZ‘ = gkarij,aa Fz’j,a = % (@' Gja + 83' Gai — Oa gij) ) (A-12)

where gF® denotes the inverse g1, g** = (g71)**, satisfying ¢*“ga; = g1ag®* = 6F. The

symmetry I'}; = ' follows immediately from (A.12) and g;; = g;:.

Appendix A.5. Covariant derivative along a curve
Consider a curve x(t) on M™ passing through a point p whose tangent at p is given by
dx

T:Tkak:E:jc:fckak,

and let Y be a tangent vector field defined along the curve z(t). According to (A.4) or
(A.6), the covariant derivative V7Y is given by

dt dt

since T% = @*. When Y' is a function of z*(¢), then (d/dt)Y? = i*(0Y?/02%). The
expression VY/dt emphasizes the derivative along the curve x(t) parameterized with ¢.

VrY = — = [dY/(T) + I}, T"Y] 0; = PW + I}, x'ij] 0;, (A.13)

Parallel translation :

On the manifold M", one can define parallel displacement of a tangent vector
Y = Y'0; along a parameterized curve z(t). Parallel displacement is given by (A.15)
below. Mathematically, this is defined by

VY 4 . 4
7 = VoY =0; namely, i*(0Y"/0a") + T},;3"Y7 = 0. (A.14)

For two vector fields X and Y translated parallel along the curve, we obtain
(X,Y )= constant (under parallel translation), (A.15)
because the scalar product is invariant by (A.9) and (A.14):
T(X,YV)=(VrX,Y)+ (X, V7Y)=0. (A.16)

Appendix A.6. Geodesic equation

One curve of special significance in a curved space is the geodesic curve. A curve
~(t) on a Riemannian manifold M™ is said to be geodesic if its tangent 7" = dv/dt is
displaced parallel along the curve (t), i.e. if

VT = — (—) =0. (A.17)

In local coordinates v(t) = (z'(t)), we have dy/dt = T = T'0; = (dz'/dt)0;. By setting
Y =T in (A.13), we obtain
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dr" ; . dat
VT = [ & +ijT] Tk] 0; =0, where T'= T (A.18)
Thus the geodesic equation V7T = 0 is expressed by local coordinates as
are . d®x _, dad da”
— + T TITF =0 — 4+ T —— =0. A.19
a ’ R TR T (A.19)

Parallel translation again: Parallel translation of a tangent vector X along a geodesic
v(s) with unit tangent T is defined by (A.14) as V7 X = 0. By setting Y = Z =T in
the second property (A.9) of the Riemannian connection, we obtain
d
ds
since V7T = 0 by the definition of a geodesic. Hence, the inner product (X, T') is kept
constant by the parallel translation.

(X, T)=T(X,T) = (VrX, T), (A.20)

FExtremum of arc length : A geodesic curve denotes a path of shortest distance
connecting two nearby points, or globally of an extremum for all variations with fixed
end points. Let Cp : 70(s) be a geodesic curve with a length parameter s € [0, L]. A
varied curve is denoted by C, : v(s,«) with v(s,0) = 70(s), where a € (—¢,+¢) is a
variation parameter and s the arc length for 4o(s). The arc length of the curve C, is

L(a):/O H%SO‘ | as —/OL<T(3,a),T(s,a))l/2 ds, T:%.

Its variation is given by L'(«a fo Oa < 047, 05y >/? ds. In case that the variation
vanishes at both ends of s = 0 and L, the first variation L'(0) at a = 0 is given by

L
L(0) = —/ (J, VT ds,  (JVeT)=0 for 0<s<L,  (A21)
0

where J = 0,7((s,0) is the variation vector. Thus, the geodesic curve VT = 0 takes
the extremum of arc length among nearby curves having common endpoints, in particular
characterized by a path of the shortest distance if endpoints are sufficiently near.

APPENDIX B. BASICS OF SPECIAL RELATIVITY

Suppose that a material particle or fluid particles are moving with high velocities in
an inertial frame K: (ct,x!, 22, 23) with ¢ the light velocity. In a time interval d¢, the
position of a particle changes with time and its displacement is given by a 4-vector:

do* = (cdt,dX', dX? dX?), dXF =oFdt (k=1,2,3), (B.1)

where = 0,1,2,3, and the upper-case notation dX* denotes material displacement
with ©v* being components of 3-velocity v. In the relativity theory, an infinitesimal
interval ds is defined by its squared form, ds* = dz,dz*, which is a scalar
product of a line-element 4-vector dz* with its covariant version dz, = n,dz" =
(—cdt,dX*',dX? dX?), where 7, is the Minkowski metric, sometimes called the
Lorentz metric, defined by

nwj — /)7“'/ = d]ag( 1, 17 ]_7 1) (BQ)
Hence, we have ds* = dz,dz* = 1, detda” = —c2dt? + |[d X |%.1

T Note that the metric g,,, used by Landau & Lifshitz (1975) is defined by g,,,, = diag(1,—-1,—-1,—-1) =
—1uw. Hence, d7? [present] = —n,,, dztdz” = g, dz*dz” = ds? [Landau & Lifshitz] = —ds? [present].
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The interval ds is a relativistic invariant, ¢.e. invariant under the Lorentz
transformation now defined. Suppose that the coordinate transformation is expressed
by zt — 2'* = /10‘,; x# with /10‘}; a matrix of Lorentz transformation. Then we have

ds'? = nug da’® da’’ = neg A%,AP, dz* da” = ny, d2* dz” = ds®
where /1%/1’8 Y= 50‘;, is required for the Lorentz transformation. The equalities,
N = Mo/ g! Aau/lﬁu = (AT)ua N g Aﬂu = (AT n'A )

define the Lorentz invariance, or relativistic invariance.

Another relativistic invariant is the proper time 7. Its increment dr is defined by
the time increment (multiplied by ¢) in the instantaneously rest frame where v = 0.
Squared interval of the proper time is defined by d7? = —dz,dz” = —ds?. From this,
noting dX* = v* dt, we obtain

dr = cdt /1 — 2, B=v/c, v= k. (B.3)
Using the displacement d X" of a fluid particle P, its relativistic 4-velocity is defined by
dxv ( 1 v )
dr V1-=p52 /1 =527

This fluid particle P is moving with the 4-velocity u” relative to the frame z*.
Consider the following useful transformation defined by the matrix components /la;:

vle=@nl, we=gn? ve=pfnd, v=1/y/1- P, (B.5)
Wy, A= b= g, (B6)

J

u’ =

v = (V") = (dX*/dt). (B.4)

W= 0 = (= Dyt + 5 ®7

where the condition of unit 3-vector (n')? 4+ (n?)* + (n)? = 1 defines 8* = |v|?/c>.

With the matrix /1"‘/; of (B.6) and (B.7), the unprimed frame x* is transformed to
the primed frame 2’ by the coordinate transformation law: z'¢ = /10‘; x* at the instant
when the origins of both frames coincide instantaneously. However, the primed frame
7' is moving with the velocity v*/c = fn* as seen in the unprimed frame z*.

It is remarkable that the 4-velocity u” is transformed by the same law: u/® = A%, u".
Suppose that the particle P is comoving with the unprimed frame, hence its 4-velocity
being u¥ = (1,0,0,0), and that the primed frame x’® is moving with the velocity
— P =—|v|n* as seen in the unprimed frame z* (i.e. 3 = |v|/c). It is not difficult to

show that the 4-velocity «'® = A% u” in the primed frame coincides with (B.4). Thus,

(B.8)

W’ =(1,0,0,0) = u’a:7<1, |ﬁ\nj) _

(= =)
V1-52 ey1-p52/
Conversely, suppose that the particle P is moving in the unprimed frame with the 4-
velocity u” of (B.4), and that the primed frame x’® is comoving with the particle P (i.e.
B = +|v|/c), hence moving with the velocity v* = |v| n* relative to the unprimed frame
2*. Under the Lorentz transformation of (B.6) and (B.7), the 4-velocity u/'® = A% u”
transformed from the u” of (B.4) is found as
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u”:'y(l,ﬁnj> = =A% =(1,0,0,0), (B.9)

where y=1/4/1 - 52, = |v|/cand j =1,2,3.
APPENDIX C. SUPPLEMENTS TO THE GRAVITY THEORY OF MAIN TEXT

Appendiz C.1. Useful formulae of gravity theory
e Covariant derivatives:

F: scalar : F.,=F,, (C.1)

Ve vector : Ve, =V +19,VH (C.2)

U,: 1-form : Usy = Us y = T, U, (C.3)

T tensor : 7%, =T%, +1°, T —T" T (C4)

e Curvature tensors and symmetry properties:
. o (‘91“5 org a 7w a 7w

Riemann tensor : R% ; = a—li — (‘9;; + 10, s — TG, (C.5)
Raﬂ'yé = gauRE»yJ (C6)

Raﬁ’y& = % (aocad 9sy + aﬁa’y Gas — aoaa'y gps — 8,386 ga'y)

+ 9 (U, s — Tasles), (C.7)

Ragys = = Rpans = —Rapsy (C.8)

Ropys = Rysap (C.9)

Ragys + Raspy + Rayss = 0. (C.10)

Ricci tensor : R, =R",, (C.11)
= 0,1, — 0,10, + 5,10, — T4, (C.12)

(C.13)

Scalar curvature : Rs. = ¢ R,

Appendiz C.2. Variational formulation

Equations of the gravitational field are obtained from the principle of least action
§(Sy + Sm) =0, where S, and S, are the actions of the gravitational field and matter
field respectively. The action for the gravitational field is defined by

3

= — A, [ ¢ Rasv/=gd, A, =——
Sg g/g Raﬂ g ) g ].67TG()’

df? = dz°dz'da?dz?®, (C.14)

where \/—g d{? is the proper volume [d{2],,., in a local Lorentz frame with g = det(g,.,),
and R,z is the Ricci curvature tensor (C.11), and gO‘BRag = RS = R, is the scalar
curvature. The variation of S, with respect to the metric field g*® is given by

5S, = —A, / (Raﬁ ! gagRZ)(Sgaﬁ V=gdQ. (C.15)
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On the other hand, the action .S, of the matter field is
1 dq
Sm =~ / A, <q, @> J=gdQ. (C.16)

where the Lagrangian density A,, contains only the tensors ¢ = gns and their first
derivatives 0,q = 0,9,3. Noting that variation of the coordinate from z” to " + &
results in variation of the metric 6g*’, we obtain the variation of action S,, given after
some analyses as

58 = % / Top 6g°° \/—g d 12, (C.17)

andau 1shitz q-(94.90)), where 1,3 1s the stress-energy tensor defined by
Landau & Lifshi 1975) Eq.(94.5 here T;3 is th defined b

Oy/=gA & 0y=gA
1= Tos = — = g*°. 1
2V I ap g oz 0(8,q) 0 179 (C.18)

From the action principle 6(S, + S,,,) = 0, we find

—Ag/ (Rag - %gaBRsc — 87k Ta5> (Sgaﬁ vV —g df? = O,

where k = Gy/c*. In view of the arbitrariness of the dg®?, we obtain the Einstein field
equation:

Gop = 8Tk Tos, k=Goy/ct, Gop = Rop — % gup R, (C.19)

where G,p is the Einstein curvature tensor.

Appendiz C.3. Bianchi identity

The Bianchi identity is deeply rooted in geometrical structure of physical fields. But
superficially, it is just expressed by a linear combination of three terms, each of which
is given by covariant-derivative of a component of Riemann curvature tensor:

Ra[o’ul/;)\ + Ra,@’)\u;u + Raﬁu)\;u =0. (CQO)

This can be easily verified in the local Lorentz frame by using the representation obtained
from (C.7) with all I'’s (but not derivatives) set to 0. The equation thus obtained is
the identity like (C.20) but the ”;”-operator replaced by ”,”. Namely, the equation is
verified only for the local Lorentz frame. Finally, transition to any frame of curved
spacetime can be done just by replacing ”comma” by ”semicolon”.

Physical significance of the Bianchi identity
From the viewpoint of physics, the set of curvature tensors R,g,, has a remarkable
geometrical property, and surprisingly shows a striking analogy to the electromagnetic
field. First we spotlight the relevant part of Electromagnetic field
In terms of the electromagnetic four-potentials A,, one-form A4 = A,dz* was
defined (see §2.1 (a)). Out of this one-form, a two-form F = d.A is derived by taking its
exterior differentiation dA. The two-form field F satisfies the identity dF = 0, because
d?A =0, i.e. 90 = 0 by the language of differential geometry, in other words by the
principle ”boundary of a boundary is zero”. This yields the identity equation (2.5):
OaFpy+ 0sFy0 + 0, F,p = 0, giving rise to a pair of Maxwell equations of (2.7). The last
can be rewritten as
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FQBW + F/g%a + Fn/a B = 0, in short F[Oégy,y] =0. (0.21)

The symbol [af3, ] denotes cyclic permutation of the parameters of three anti-symmetric
pairs [af], [B7] and [ya]. It is amazing to find that the equation (C.20) can be written
analogously as

Roppun = 0. (C.22)

This is a startling coincidence. In fact, there exists a common structure in their
backgrounds, which is now highlighted.

Using the exterior derivative D defined by (3.16), the vector-valued one-form Dw is
Dv H B
Dov = (dﬁ+r >dx . (C.23)

Now differentiate this once again to get D?wv:
D*v = e, R" 0", (C.24)
(Misner et al. (2017), §14.5, eq.(14.17)), where R*, is the curvature 2-form defined by
R% = d(I%,dz") + ', T, da# A da” (C.25)

= R%,, dz" Nd2”  (p<v).

where the summation of the last line is taken over u, v with u < v, and R%, is the

Riemann curvature tensor of (C.5).
In order to take our last step, we consider the curvature two-form R in the local

Lorentz frame where the second term of (C.25) drops as is done in the proof of Bianchi-
id. Then we have R% = d(I'%;,dz"). Taking exterior differentiation again, we obtain

0 =dR* = d*( % dr’) = R%,, \ dz* A dat A da”,
because d* = 0. From this we find, with cyclic permutation of (\, , v):

R puA+R/3AuV+R,8VAM 0.

in the local Lorentz frame. Final transition to any frame of curved spacetime can be
done by replacing ”comma” by ”semicolon”, obtaining the Bianchi identity (C.20).

APPENDIX D. SECOND PAIR OF MAXWELL EQUATIONS

Second pair of Maxwell equations (2.8) for the fields E and B can be derived from
the action principle. The total action S©™ is expressed as S(™) = glem A ) 4 Smt where

em

S (eﬁ is represented with a free-field Lagrangian of Lorentz invariant quadrutic form of

the field strength tensor, F,, = 9d,A, — 0, A,, and Smt represents interaction between
the field and 4-current j”, defined by

1 1
glem) _ /FW g, glem) /.]e A, dQ, (D.1)

emA 167c int

with d2 = cdtdV, and F* = npton“PE,5. We vary only the A, (serving as the
coordinates) with the material 4-current j assumed given (Landau & Lifshitz, 1975).
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Thus, we have the action variation caused by the variation of A,:

1 1 1
5S(em) _ E / (E jl/ 5/41/ . gFW\ 5FI/)\> dn = 0’ (D2)

where we used the equality F,y dF** = F**§F,y. In S e must not vary j¥ which

nt

is a material current, not the field. Substituting F,, = 9A,/0x” — 0A, /dz*, we have

o 1 1 v 1 v 0 1 VA 9
55_5/(23 54, — P Ay + P 264, )

We interchange the indices v and A in the middle term. Using the antisymmetry of the
matrix F*, one can replace the factor F** by —F"*. Then we obtain

=1 / (% PV OA, + iam) an,

c 47 ox?

To the second term, we perform integration by parts. Since the surface integral thus
obtained vanishes by the imposed boundary conditions. Thus, the principle of least
action leads to

1 1 OF"
- — — ——0A, df2 =0. D.3
/ (c J 4 Ox? ) (D-3)
Since the variation 0 A, is arbitrary, the coefficient of § A, must vanish:
OF"  Am
O = ?J ) (D.4)

where j¥ = (pec,J.) with j, = p.v, The field strength tensor F,, is defined by (1.9),
and its matrix representation by (1.10), while F** is defined by ¢"® F,5 g**.
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