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Abstract- Bounded growth processes can be modelled, approximately by different mathematical 
models. The challenge for statisticians and mathematicians is finding suitable models for these 
processes. In this paper we illustrate a non-parametric method, using the the theory of relative 
increment functions, of estimating density functions of these processes. For a long time, 
mathematicians attempted to describe the cumulative prevalence of caries with the assumption 
that there is a mathematical model that would describe the caries prevalence and may be used 
for predicting caries incidences. In 1960 Porter and Dudman [12] introduced The relative 
increment function and called it the relative increment of decay as they designed it to compare 
dental caries increments among children. Further studies of this led to the motivation that the 
best suitable model for describing the cumulative prevalence of caries should be chosen from a 
set of distributions that have relative increment functions with the same monotonic behaviour as 
the relative increment of decay [1]. We illustrate how relative increment functions may be used to 
estimate the unknown indefinitely smooth probability density function of unimodal populations.        
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Density estimation using non-parametric methods was first proposed by Fix and
Hodges in 1951 as a way of moving away from distributional assumptions which at
times restrict estimation. The methods proposed by Fix and Hodges were the His-
tograms, Naive estimator, Kernel estimator , Nearest neighbour estimator,Variable
Kernel estimator and many others. [14].

In 1989 [16] proposed the use of relative increment functions for density estima-
tion.

The relative increment function, h, of a distribution function, F , is defined as

hF (x)(x) =
F (x+ a)− F (x)

1− F (x)
where a = xk+1 − xk.

He defined the function

Ψ(x) =
(F (x)− 1).f ′(x)

f2(x)

and used the fact that if Ψ < 1(Ψ > 1), then the function h strictly increases
(strictly decreases) to classify some well known distribution functions according to
their monotonic behaviour. Szabo [20] developed an algorithm for finding the distri-
butions of unknown unimodal population by eliminating a large class of continuous
distributions whose behaviour of relative increments do not match the behaviour

Ref

Abstract- Bounded growth processes can be modelled, approximately by different 
mathematical models. The challenge for statisticians and mathematicians is finding suitable 
models for these processes. In this paper we illustrate a non-parametric method, using the 
the theory of relative increment functions, of estimating density functions of these processes. 
For a long time, mathematicians attempted to describe the cumulative prevalence of caries 
with the assumption that there is a mathematical model that would describe the caries
prevalence and may be used for predicting caries incidences. In 1960 Porter and Dudman 
[12] introduced The relative increment function and called it the relative increment of decay 
as they designed it to compare dental caries increments among children. Further studies of 
this led to the motivation that the best suitable model for describing the cumulative 
prevalence of caries should be chosen from a set of distributions that have relative increment 
functions with the same monotonic behaviour as the relative increment of decay [1]. We 
illustrate how relative increment functions may be used to estimate the unknown indefinitely 
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Estimating Distributions using the Theory of Relative Increment Functions

of the empirical relative increment functions of the population being investigated.
We illustrate this method by two numerical examples that showed that when the
distribution relative increments behaves the same way as the empirical relative
increments, the fit is superior to the ones with different monotonic behaviour of
relative increments.

In this section we explain how we use relative increment functions to estimate
density. Assume we have a large sample of a continuous random variable. We form
the empirical cumulative distribution function Femp at equidistant points xk. Our
aim is to find the smooth unimodal distribution which our sample belongs to. We
assume that the distribution is a indefinitely smooth unimodal distribution whose
probability density function has at most two points of inflection.

Suppose all the intervals Ik = [xk−1, xk] have the same length a, for k = 1, 2, ..., n.
Let vk be the frequency distribution defined as the number of sample values in Ik,
then we have relative frequency rk = vk

N and the cumulative relative frequency as

yk =
∑
j≤k

rj , for all k.

The empirical cumulative distribution function Femp whose points of
are at equidistant points, xk, is therefore given by yk, so

Femp(xk) = yk for k = 0, 1, ..., n

Define the relative increment function, h, for a distribution with cumulative
distribution function F (x) as

hF (x) =
F (x+ a)− F (x)

1− F (x)
where a = xk+1 − xk

and define the empirical relative increment function, hemp, for our population as

hemp(xk) =
yk+1 − yk

1− yk
for k = 0, 1, ..., n− 1

Assume we have a large sample of a continuous random variable. We form the
empirical cumulative distribution function Femp at equidistant points xk. Our aim
is to find the smooth unimodal distribution which our sample belongs to. We
assume that the distribution is a indefinitely smooth unimodal distribution whose
probability density function has at most two points of inflection.

From this sample we calculate the empirical relative increment function hemp(xk).
If the monotonic behaviour of the empirical relative increment function hemp(xk) is
different from the monotonic behaviour of the theoretical relative increment func-
tion h(xk) of the cumulative distribution function F (x), then we drop the corre-
sponding smooth distribution F (x). If h(xk) and hemp(xk) have the same mono-
tonic behaviour, we keep the corresponding cumulative distribution function F (x)
and put them in a class of possibilities, S.

From the set S a best fitting function is found by using the method of least
squares. A distribution function F (x) ∈ S providing the best fit to the cumulative

relative frequency yk such that
n∑
k=1

[F (xk)− yk]2 is minimal

© 2021 Global Journals
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is selected or a distribution whose probability density function f(x) provides

the best fit to the relative frequencies rk such that

n∑
k=1

[f(xk)− rk]2 is minimal is

selected.

discontinuity

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Estimating Distributions using the Theory of Relative Increment Functions

This method can also be used to model bounded growth processes. Let gk be a
sequence of values measured at some equidistant points xk. An upper bound B for
gk has to be determined such that B is greater than any value of gk). To model
the growth process of (xk, gk) we consider the transformed data

yk =
gk
B

(< 1)

as the values of of the empirical cumulative distribution function Femp at the points
xk. The upper bound B is determined by building a parameter,B, into the distri-
bution functions we want to fit, so instead of fitting F (x), we fit B ∗ F (x). The
estimated value of B gives the upper bound.

To use this method, we need to know the monotonic behaviour of relative in-
crement functions h of distributions. A great number of classical smooth unimodal
distributions has been investigated and classified according to the behaviour of their
relative increments. These are listed in the following section.

Here is a summary of distributions grouped according to the monotonic be-
haviour of their relative increment functions investigated by Szabo Z.[20] and my-
self.

2.1. The following probability distributions have increasing RIFs:

1. F (x) = 1− (−x)k where I = (−1, 0), k ∈ N
2. F (x) = sinx where I = (0, π2 )

3. F (x) = 1 + tanx where I = (−π4 , 0)

4. F (x) = 1 + sinhx where I = (ln(
√

2− 1), 0)

5. F (x) = 2− coshx where I = (ln(2−
√

3), 0)

6. F (x) = 1− x2 where I = (−1, 0)

7. F (x) = lnx where I = (1, e)

8. Uniform Distribution

9. F (x) = (1− exp(−λx))k where I = (0,∞), λ > 0, k > 1

10. F (x) = 1− exp(−λ.ex) where I = (−∞,∞), λ > 0

11. F (x) = (1 + e−x)−k where I = (−∞,∞), k > 0

12. F (x) = 2−
k
.(1− tanh(x))

k
where I = (−∞,∞), k > 0

13. Logistic Distribution

F (x) = (1 + e−λx)−1 where I = (−∞,∞), λ > 0

14. Fisher Distribution (or z-distribution)

F (x) = C.

∫ x

−∞
ent.(1 + k.e2t)−αdt, where I = (−∞,∞), n, n′ ∈ N k = n

n′ ,

α = n+n′

2 , C = 2.k
n
2 .Γ(α).

[
Γ(n2 ).Γ(n

′

2 )
]−1

15. Weibull Distribution when α > 1

F (x) = 1− exp(−λxα) where I = (0,∞), λ > 0

16. Extreme value Distribution
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II. Summary of Investigated Distributions
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Estimating Distributions using the Theory of Relative Increment Functions

F (x) =

∫ x

−∞
exp(−t− e−t)dt where I = (−∞,∞)

17. F (x) = 1− 2[c.(1 + ex)k − c+ 2]−1 where I = (−∞,∞), c > 0, k = 1, 2

18. Normal Distribution

F (x) = K.

∫ x

−∞
exp(− 1

2 .σ
−2.(t−m)2)dt, where I = (−∞,∞), σ > 0, K = 1

σ
√

2π

19. Special Gamma Distribution

F (x) = K.

∫ x

0

tα−1 exp(−λt)dt where I = (0,∞), α > 1, λ > 0, K = λα

Γ(α)

20. Beta Distribution of the first kind

F (x) = C.

∫ x

0

tα(1− t)βdt where I = (0, 1), α, β > −1, C = Γ(α+β+2)
Γ(α+1)Γ(β+1)

21. F (x) = C.

∫ x

−s
(1− t2

s2 )ndt where I = (−s, s), s > 0, C =
[
s.β( 1

2 , n+ 1)
]−1

where n is a positive integer.

22. Maxwell Boltzmann distribution

f(x) =
√

2
π

1
σ3x

2 exp
(
−x2

2σ2

)
where I = (0,∞), σ > 0

23. f(x) = 2λe−λx(1−e−λx) where I = (0,∞)

24. f(x) = c(1− x2

a2 )n where I = (−a, a), a > 0, n ∈ N and c = 1

a.B
(

1
2 ,n+1

)
25. Rayleigh Distribution f(x) = x

σ2 exp
(
−x2

2σ2

)
where I = (0,∞), σ > 0

26. f(x) = x√
1−x2

where I = (0, 1)

27. f(x) = kxc−1e−
x2

2 where I = (0,∞), c > 1, and k > 0

28. Reciprocal distribution

f(x) = ln x−ln a
ln b−ln a where I = [a, b], a, b ∈ R, 0 < a < b, and a

b < e

29. f(x) = c. exp (arctan (x)) where c = 1∫ a
0

exp (arctan x)dx
, and I = (0, a), a >

0

30. F (x) = 1− x2 where I = (−1, 0)

312. F (x) = lnx where I = (1, e)

32. Nakagami distribution

f(x) = 2nn

Γ(n)Ωnx
2n−1 exp (−nΩ x2) where I = (0,∞) n > 1

2 , and Ω > 0

© 2021 Global Journals
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2.2. The following probability distributions have decreasing RIFs:

1. F (x) = 1− x−λ, where I = (1,∞), and λ > 0

2. F (x) = 1− (lnx)−λ, where I = (e,∞), and λ > 0

3. F (x) = 1− (ln(lnx))−λ, where I = (ee,∞), and λ > 0

4. Weibull Distribution when 0 < α < 1

F (x) = 1− exp(−λ.xα), where I = (0,∞), and λ > 0

5. F (x) = 1− a exp(−b.x)− c. exp(−d.x), where I = (0,∞), and a, b, c, d > 0, a+ c = 1

6. F (x) = 1−

N∑
j=1

aj exp(−bj .x), where I = (0,∞), and aj , bj > 0,

N∑
j=1

aj = 1

7. Pareto Distribution of the third kind

F (x) = 1− k. exp(−b.x).x−a, where I = (k,∞), and a, b, k > 0

8. Special Chi-Square Distribution

F (x) = K.

∫ x

0

t
−1
2 . exp(−t2 )dt, where I = (0,∞), and K = 1√

2Γ(
1
2 )

9. Pareto Distribution of the second kind

F (x) = 1− x−k, where I = (1,∞), and k > 0

10. Special Gamma Distribution

F (x) = K.

∫ x

0

tα−1. exp(−λt)dt, where I = (0,∞), K = λα

Γ(α) , λ > 0, α < 1

11. f(x) = λx−1(lnx)−λ−1 where I = (exp,∞), and λ > 0

2.3. The Exponential Distribution Function

F (x) = 1− exp[−λ(x− a)], where I = (a,∞), and λ > 0

has a constant relative increment function.

2.4. The following probability distributions have RIFs that increase first and, hav-
ing culminated, they decrease:

1. Cauchy Distribution

F (x) = 1
2 + 1

π tan−1 x, where I = (−∞,∞)

2. Inverse Gaussian Distribution

F (x) =

∫ x

0

( 2πt3

λ )
−1
2 . exp(−λ. (t−m)2

(2m2.t) )dt, where I = (0,∞), λ > 0,m > 0

3. Lognormal Distribution

F (x) =

∫ x

0

1
tσ
√

2π
exp{− (ln t−µ)2

2σ2 }dt, where I = (0,∞), , σ > 0,−∞ <

µ <∞

Estimating Distributions using the Theory of Relative Increment Functions
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Estimating Distributions using the Theory of Relative Increment Functions

4. Beta type II distribution

f(x) = C xp

(1+x)p+q where I = (0,∞), p, q > 0, and C > 0

5. Burr type XII distribution

f(x) = ck xc−1

(1+xc)k+1 where I = (0,∞) c > 0, and k > 0

6. f(x) = k
1+x4 where I = R and k > 0

7. f(x) = cx−n exp (−kx ) where I = (0,∞) and c, k > 0

8. Frechet Distribution F (x) = exp
(
−(x−nt )−a

)
where I = (n,∞), a, t ∈ (0,∞), and n =

t
(

a
a+1

) 1
a
.

9. Gumbel Distribution F (x) = e−bx
−a

where I = (0,∞) and a, b ∈ R+ and m = a

√
ab
a+1

2.5. The following probability distributions have RIFs that decrease first and, hav-
ing reached their minima, they increase:

1. F (x) = 1 + 2
π arcsinx, where I = (−1, 0)

2. F (x) =
√
x, where I = (0, 1)

3. F (x) = (1− x2)
1
2 where I = (−1, 0)

4. Reciprocal distribution

f(x) = ln x−ln a
ln b−ln a where I = [a, b], a, b > 0, and a

b > e

In this section, we illustrate the method described in section 2 by two examples.

1. The distribution of the the population of Botswana.

2. The distribution of people living with HIV globally.

Below is a table of
the population of Botswana from 1960 to 2012 in 5 year periods. This data was
obtained from the World data bank.

xk(Time) gk(Population)
5 579729

10 671416
15 793164
20 960807
25 1146205
30 1343440
35 1544865
40 1724924
45 1854739
50 1951715

We wish to find the probability distribution function of this sample.

III. Numerical Examples

Numerical Example 1: Botswana Population Growth. 

Notes

© 2021 Global Journals
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Table 6.1: Botswana Population
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Figure 6.1 shows the empirical relative increment function of the distribution of
the population. We see that the relative increments increase and then decrease.
The distribution functions of section 2.4 display the same monotonic behaviour
of first increasing and then decreasing. For these models, the values of B ranged
between 24, 900, 000 and 28, 600, 000. We therefore picked 3, 000, 000 as a reasonable
estimate of the upper bound for all the models. Below is the table of time in years
and the adjusted values of the population.

xk(Time) yk(Adjusted Population)
5 0.193243
10 0.223805
15 0.264388
20 0.320269
25 0.382068
30 0.447813
35 0.514955
40 0.574975
45 0.618246
50 0.650572

The adjusted population values were fitted to the distributions in section 6.3.4
as they exhibit the same monotonic behaviour of relative increment functions as
that of our data. Table 6.2 shows the fitted values of the distributions.

Figure 6.1: Graph of empirical relative increments

Notes
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Table 6.2: Adjusted Population



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Estimating Distributions using the Theory of Relative Increment Functions

Distribution function Fit Results Fitted Curve
   

Cauchy Distribution

 
1

2
+

1

𝜋
∗ tan−1 (

𝑥 − 𝛼

𝛽
)

Coefficients (with 
95% confidence 
bounds):
        𝑝1 =      35.06   
       𝑝2 =  23.53  

𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑡:
  𝑆𝑆𝐸: 0.002344

Inverse Gaussian Distribution
General

 
model:

     

  1/2   (1 + 𝑒𝑟𝑓(√(𝜆/2𝑥) (𝑥/𝜇 − 1)))
+ 1/2  𝑒^(2𝜆/𝜇) (1

− 𝑒𝑟𝑓(√(𝜆/2𝑥) (𝑥/𝜇
+ 1)))              

Coefficients (with 
95% confidence 
bounds):
       a =      0.3371
       b =      0.1622

Goodness of fit:
  SSE: 1.012

Lognormal Distribution

    
1

2
∗ 𝑒𝑟𝑓𝑐 (−

ln(𝑥) − 𝜇

𝜎√2
)

Where
𝑒𝑟𝑓𝑐 is the complementary

Coefficients (with 
95% confidence 
bounds):

      𝜎 =         2.95  
      𝜇 =        3.494  

Goodness of fit:
  𝑆𝑆𝐸: 0.01796

Beta type II Distrribution
  

𝐼 𝑥
1+𝑥

(𝛼, 𝛽)

Where 
𝐼𝑥(𝛼, 𝛽) is the incomplete 

Coefficients (with 
95% confidence 
bounds):

      𝛼 =        9.512  
       𝛽 =       0.5614  

Goodness of fit:
  𝑆𝑆𝐸: 0.02997

Burr type XII Distribution 

     1 − (1 + 𝑥𝑐)−𝑘

Where 
𝑐, 𝑘 > 0

Coefficients (with 
95% confidence 
bounds):
       𝑐 =        7.823  

       𝑘 =      0. 02311  
Goodness of fit:

  𝑆𝑆𝐸: 0.09004
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error function.

beta function.

Table 6.3: Fitted Models (Botswana Population)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Estimating Distributions using the Theory of Relative Increment Functions

Number 6

1

8
𝑘√2 (ln −

𝑥2 + 𝑥
√

2 + 1

−𝑥2 + 𝑥√2 − 1
)

+ 2 tan−1(𝑥√2 + 1)

+ 2 tan−1(𝑥√2 − 1))

Coefficients (with 
95% confidence 
bounds):

  𝑘 =        0.6022
Goodness of fit:
 𝑆𝑆𝐸: 0.3504

Number 7

Where 𝐸𝑖 is the exponential Integral

Coefficients (with 
95% confidence 
bounds):
    𝑐 =      0.03116  
   𝑘 =         −3.3     
   𝑛 =       0.1954  

Goodness of fit:
 𝑆𝑆𝐸:  0.006749

Frechet

𝑒
−(

𝑥−𝑚
𝑠

)
−𝑎

Where
𝑎 is the shape parameter
𝑠 is the scale parameter 
𝑚 is the location parameter

Coefficients (with 
95% confidence 
bounds):
       𝑎 =        2.002  
       𝑠 =        78.36  

Goodness of fit:
 𝑆𝑆𝐸: 0.007987

Gumbel

𝑒−𝑏𝑥−𝑎

where 𝑎 is real and 𝑏
is the shape parameter

Coefficients (with 
95% confidence 
bounds):
       𝑎 =       0.6644  

     𝑏 =         7.06  

Goodness of fit:
 𝑆𝑆𝐸: 0.02744
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Amongst these, the Cauchy distribution function,

F (x) = 1
2 + 1

π tan−1
(
x−35.06959

23.5291

)
provided the best least squares fit

10∑
k=1

[F (xk − yk]2 ≈ 0.002341.

Notes
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(xk, yk)

Figure 6.2 shows the fitted curve of the Cauchy model.
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In the 1990s almost 3.5 million people were diagnosed with HIV every year.
In 1997 the number declined and was reduced to 2.1 million in 2015. This table,
obtained from UNAIDS data, shows the number of people living with HIV/AIDS
from 1990 to 2015 in millions. The estimated value of B, which we adjust gk by,
gives the upper bound. For our models in section 2.4 the estimated values of B
ranged between 36.82 and 39.77, we therefore picked 40 as a reasonable estimate of
the upper bound for all the models.

xk(Time) gk(in Millions)(People living with HIV)
5 9

10 19.3
15 28.6
20 32.5
25 34.4
30 36.7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6

Chart Title

As we can see, the empirical relative increments increase up to a certain point and
then decrease. Below is the table of distributions with the same behavior of relative
Increments, the distributions in section6.3.4. The table shows the fitted values of
the distributions.

Figure 6.2: Graph of F and 

Numerical  Example 2:  Number of people living with HIV/AIDS (1990 to
2015):

Table 6.4

Figure 6.3: Graph of empirical relative increments

Notes
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xk(Time) gk(in Millions)(People living with HIV) yk (Adjusted gk)
5 9 0.225
10 19.3 0.4825
15 28.6 0.715
20 32.5 0.8125
25 34.4 0.86
30 36.7 0.9175
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Distribution function Fit Results Fitted Curve
   

Cauchy Distribution

 
1

2
+

1

𝜋
∗ tan−1 (

𝑥 − 𝛼

𝛽
)

Coefficients (with 
95% confidence 
bounds):
       𝛼 =        10.61  

𝛽 =        5.623  

Goodness of fit:
  𝑆𝑆𝐸: 0.001816

Inverse Gaussian Distribution
General model:
     

  1/2   (1 + 𝑒𝑟𝑓(√(𝜆/2𝑥) (𝑥/𝜇 − 1)))
+ 1/2  𝑒^(2𝜆/𝜇) (1

− 𝑒𝑟𝑓(√(𝜆/2𝑥) (𝑥/𝜇
+ 1)))              

Coefficients (with 
95% confidence 
bounds):
       a =      0.3371
       b =      0.1622

Goodness of fit:
  SSE: 1.012

Lognormal Distribution

    
1

2
∗ 𝑒𝑟𝑓𝑐 (−

ln(𝑥) − 𝜇

𝜎√2
)

Where
𝑒𝑟𝑓𝑐 is the complementary 

Coefficients (with 
95% confidence 
bounds):

       𝜎 =      1.667  
       𝜇 =        2.28  

Goodness of fit:
  𝑆𝑆𝐸: 0.001625

Beta type II Distrribution
  

𝐼 𝑥
1+𝑥

(𝛼, 𝛽)

Where 
𝐼𝑥(𝛼, 𝛽) is the incomplete beta function.

Coefficients (with 
95% confidence 
bounds):

 𝛼  =     16.06       
 𝛽 =        1.986  

Goodness of fit:
  𝑆𝑆𝐸: 0.003733

error function.

Table 6.5

Notes
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Burr type XII Distribution 

     

1 − (1 + 𝑥𝑐)−𝑘

Where 
𝑐, 𝑘 > 0

Coefficients (with 
95% confidence 
bounds):
  𝑐 =    7.078        
 𝑘 =      0.05934  

Goodness of fit:
  𝑆𝑆𝐸: 0.1386
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Number 6

1

8
𝑘√2 (ln −

𝑥2 + 𝑥√2 + 1

−𝑥2 + 𝑥√2 − 1
)

+ 2 tan−1(𝑥√2 + 1)

+ 2 tan−1(𝑥√2 − 1))

Coefficients (with 
95% confidence 
bounds):

  𝑘 =        0.6022
Goodness of fit:
 𝑆𝑆𝐸: 0.3504

Number 7

Where 𝐸𝑖 is the exponential Integral

Coefficients (with 
95% confidence 
bounds):
       𝑎 =        0.218  
       𝑘 =         2.24  

       𝑛 =       0.5929  

Goodness of fit:
  𝑆𝑆𝐸: 0.00472

Frechet

𝑒
−(

𝑥−𝑚
𝑠

)
−𝑎

Where
𝑎 is the shape parameter
𝑠 is the scale parameter 
𝑚 is the location parameter

Coefficients (with 
95% confidence 
bounds):
𝑎 =        3.506        
𝑚 =       −15.01  

𝑠 =        22.53  

Goodness of fit:
  𝑆𝑆𝐸: 0.001123

Gumbel

𝑒−𝑏𝑥−𝑎

where 𝑎 is real and 𝑏
is the shape parameter

Coefficients (with 
95% confidence 
bounds):
       𝑎 =         1.44  
       𝑏 =        16.85  

Goodness of fit:
  𝑆𝑆𝐸: 0.006365

(xk, yk)Figure 6.4: Graph of F and 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Amongst these distributions , the Lognormal distribution function,

F (x) = K.

∫ x

0

exp
(− 1

2 .σ
2.(ln t)2)

t dt

provided the best least squares fit

6∑
k=1

[F (xk − yk]2 ≈ 0.001625

(xk, yk)

According to our model, the number of people with HIV/AIDS will not reach
40, 000, 000.

This method is different from the classical methods of density estimation and
kernel estimation because some of these methods do not provide indefinitely smooth
models and some provide some twice differentiable models with much more than
two points of inflection. In addition our model will give us tools to estimate the
behaviour of the considered (natural, social and others) phenomena in the future if
the environment and other conditions or circumstances do not change.This method
cam only be used for relative increment functions with at most two phases. Further
analysis of the algorithm to accommodate sample whose relative increment func-
tions are more than two phased may prove useful to our work of finding continuous
distributions. Results from this study sheds light on the use of relative increment
functions in determining distributions which would be very helpful in forecasting
and estimating percentiles of growth processes. By using indefinitely smooth model
of growth processes, one can predict how the process in question will behave in the
future.

Estimating Distributions using the Theory of Relative Increment Functions

Figure 6.4: Graph of F and 

IV. Discussions
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