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Absiracl- Bounded growth processes can be modelled, approximately by different
mathematical models. The challenge for statisticians and mathematicians is finding suitable
models for these processes. In this paper we illustrate a non-parametric method, using the
the theory of relative increment functions, of estimating density functions of these processes.
For a long time, mathematicians attempted to describe the cumulative prevalence of caries
with the assumption that there is a mathematical model that would describe the caries
prevalence and may be used for predicting caries incidences. In 1960 Porter and Dudman
[12] introduced The relative increment function and called it the relative increment of decay
as they designed it to compare dental caries increments among children. Further studies of
this led to the motivation that the best suitable model for describing the cumulative
prevalence of caries should be chosen from a set of distributions that have relative increment
functions with the same monotonic behaviour as the relative increment of decay [1]. We
illustrate how relative increment functions may be used to estimate the unknown indefinitely
smooth probability density function of unimodal populations.

Keywords: relative increments, distribution, continuous. unimodal.

and Applied

Statistics

on
Probability, London: Chapman and Hall, 1986.

[. [NTRODUCTION

Density estimation using non-parametric methods was first proposed by Fix and
Hodges in 1951 as a way of moving away from distributional assumptions which at
times restrict estimation. The methods proposed by Fix and Hodges were the His-
tograms, Naive estimator, Kernel estimator , Nearest neighbour estimator, Variable
Kernel estimator and many others. [14].

Monographs

In 1989 [16] proposed the use of relative increment functions for density estima-
tion.

Pub.

The relative increment function, h, of a distribution function, F', is defined as

F(x+a)— F(x)
1—F(x)

hF(w)(z) = where a = Trt1 — Tk

analysis.

He defined the function

14. Silverman, B.W.: Density estimation for statistics and data

(F(z) = 1).f'(z)
[ ()

and used the fact that if ¥ < 1(¥ > 1), then the function h strictly increases
(strictly decreases) to classify some well known distribution functions according to
their monotonic behaviour. Szabo [20] developed an algorithm for finding the distri-
butions of unknown unimodal population by eliminating a large class of continuous
distributions whose behaviour of relative increments do not match the behaviour

U(z) =
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of the empirical relative increment functions of the population being investigated.
We illustrate this method by two numerical examples that showed that when the
distribution relative increments behaves the same way as the empirical relative
increments, the fit is superior to the ones with different monotonic behaviour of
relative increments.

In this section we explain how we use relative increment functions to estimate
density. Assume we have a large sample of a continuous random variable. We form
the empirical cumulative distribution function Ft,,, at equidistant points zj. Our
aim is to find the smooth unimodal distribution which our sample belongs to. We
assume that the distribution is a indefinitely smooth unimodal distribution whose
probability density function has at most two points of inflection.

Suppose all the intervals I, = [xx_1, xx] have the same length a, for k = 1,2, ..., n.
Let v be the frequency distribution defined as the number of sample values in Iy,

then we have relative frequency rp, = % and the cumulative relative frequency as

Yp = er, for all k.
i<k

The empirical cumulative distribution function Fe,,, whose points of discontinuity
are at equidistant points, xy, is therefore given by y, so

Femp(xk) = Yk for k=0,1,...,n

Define the relative increment function, h, for a distribution with cumulative
distribution function F'(x) as

F(zx+a)— F(x)

hel@) = = R

where a = zp 11 — zp,
and define the empirical relative increment function, heyyp, for our population as

hemp(xk) = ykf_l_i;kyk for k = O, 1, ey — 1

Assume we have a large sample of a continuous random variable. We form the
empirical cumulative distribution function Fi,,, at equidistant points z;. Our aim
is to find the smooth unimodal distribution which our sample belongs to. We
assume that the distribution is a indefinitely smooth unimodal distribution whose
probability density function has at most two points of inflection.

From this sample we calculate the empirical relative increment function hepmp (k).
If the monotonic behaviour of the empirical relative increment function hepmp (k) is
different from the monotonic behaviour of the theoretical relative increment func-
tion h(xy) of the cumulative distribution function F(x), then we drop the corre-
sponding smooth distribution F(x). If h(zx) and hemp(zx) have the same mono-
tonic behaviour, we keep the corresponding cumulative distribution function F'(z)
and put them in a class of possibilities, S.

From the set S a best fitting function is found by using the method of least
squares. A distribution function F(z) € S providing the best fit to the cumulative
n
relative frequency gy such that Z[F (zx) — yx]? is minimal
k=1
is selected or a distribution whose probability density function f(z) provides
n
the best fit to the relative frequencies rj such that Z[f(xk) —r4]? is minimal is
k=1
selected.

Notes



Notes

This method can also be used to model bounded growth processes. Let gi be a
sequence of values measured at some equidistant points z;. An upper bound B for
gr has to be determined such that B is greater than any value of g;). To model
the growth process of (zy, gr) we consider the transformed data

Yr = ”Cg(< 1)

as the values of of the empirical cumulative distribution function Fe,,, at the points
2. The upper bound B is determined by building a parameter,B, into the distri-
bution functions we want to fit, so instead of fitting F(z), we fit B « F(z). The
estimated value of B gives the upper bound.

To use this method, we need to know the monotonic behaviour of relative in-
crement functions A of distributions. A great number of classical smooth unimodal
distributions has been investigated and classified according to the behaviour of their
relative increments. These are listed in the following section.

[I.  SUMMARY OF INVESTIGATED DISTRIBUTIONS

Here is a summary of distributions grouped according to the monotonic be-
haviour of their relative increment functions investigated by Szabo Z.[20] and my-
self.

2.1. The following probability distributions have increasing RIFs:
1. F(z) =1— (—2)* where I = (-1,0),k € N

2. F(x) = sinxz where I = (0, §)

3. F(xr) =1+ tanx where I = (—7,0)

4. F(x) =1+ sinhx where I = (ln(\/i 1),0)

5. F(z) = 2 — coshz where I = (In(2 — v/3),0)

6. F(z)=1— 22 where I = (—1,0)

7. F(x) =Inx where I = (1,¢)

8. Uniform Distribution

9. F(x) = (1 — exp(=Az))¥ where I = (0,00),A >0, k> 1

10. F(z) =1 —exp(—A.e”) where I = (—00,00), A >0

11. F(z) = (14 e *)7% where I = (—00,00), k>0

12. F(z) = 2_k.(1 - tanh(x))k where I = (—o00,00), k>0
13. Logistic Distribution

F(x) = (14 ¢ )71 where I = (—00,00), A >0

14. Fisher Distribution (or z-distribution)

C/ L(1+ k.e*)?dt, where [ = (—00,00), n,n’ €Nk= =2

’ n ’ -1
a=15 0 =2k2.T(a). [r(g).r(%)}
15. Weibull Distribution when o > 1

F(z) =1— exp(—A\z®) where I = (0,00), A >0

16. Extreme value Distribution
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F(z) = /I exp(—t — e~ ")dt where I = (—o0, 00)

17. F(z) =1 —2[c.(1+¢*)* —c+2]7! where I = (—00,00), ¢ >0,k =1,2

18. Normal Distribution

F(z) = K/ exp(—%.a_z.(t —m)?)dt, where I = (—o00,00), 0 >0, K = —%
—oo ver Notes

19. Special Gamma Distribution

F(z) = K/ t* L exp(—Mt)dt where I = (0,00), a >1, A >0, K = F?‘;)
0

20. Beta Distribution of the first kind

F(x) :C./ t°(1 — )7dt where I = (0,1), o, 8> —1, C' = piet 22
0

21. F(z) =C. [ (1—5)"dt where I = (=s,s), s >0, C = [s.8(3,n+1)]""

where n is a positive integer.

22. Maxwell Boltzmann distribution
flx) = \/%ﬁxz exp (%’;) where I = (0,00), 0 >0

23. f(x) = 2xe (1) where T = (0,00)

= —I—Q n = (— :71
24. f(x) = c¢(1 — %&5)" where I = (—a,a), a >0, n€ Nand c a.B(%,n-s-l)

25. Rayleigh Distribution f(z) = %5 exp (;TIZZ) where I = (0,00), 0 >0

26. = ——2£— where I = (0,1)

f(x)—ﬁ

w2

27. f(z) = kz“'e” 2 where I = (0,00), ¢ > 1, and k>0

28. Reciprocal distribution

Global Journal of Science Frontier Research (F) Volume XXI Issue Il Version I E Year 2021

f(z) = 2e=ma where I = [a,b], a,b€ER, 0<a<b, and § <e
29. f(z) = c.exp (arctan (x)) where ¢ = m, and I = (0,a), a >
0
30. F(z) =1 —2? where I = (—1,0)
] 312. F(x) =Inz where I = (1,¢)
32. Nakagami distribution
f(z) = #{;}"w%_l exp (tz?) where I = (0,00) n > 3, and Q > 0

© 2021 Global Journals



2.2. The following probability distributions have decreasing RIFs:

1.
2. F(z) =1— (Inz)~?, where I = (e,00), and A > 0
3.
4

Notes

10.

11.

F(z)=1—a2, where I = (1,00), and A >0

F(z) =1— (In(Inz))~*, where I = (¢%,00), and A > 0

. Weibull Distribution when 0 < o < 1

F(z) =1—exp(—A.z®), where I = (0,00), and A >0

. F(x) =1—aexp(—b.x) — c.exp(—d.z), where I = (0,00), and a,b,¢,d > 0,a+c=1
N

N

. FP)=1- Zaj exp(—b;.x), where I = (0,00), and a;,b; > O,Zaj =1

j=1 j=1

. Pareto Distribution of the third kind

F(z) =1—k.exp(=b.x).xz™*, where I = (k,0), and a,b,k >0

. Special Chi-Square Distribution

¢ _q
F(x) :K./ t2 .exp(5t)dt, where I = (0,00), and K = fl
0

. Pareto Distribution of the second kind

F(z) =1—27%, where I = (1,00), and k > 0
Special Gamma Distribution

F(z) = K/ t*~ 1 exp(=At)dt, where I = (0,00), K = %, A>0,a<1
0

flz) = )\x_l(lnm)_k_l where I = (exp,00), and A >0

2.3. The Exponential Distribution Function

F(z) =1—exp[—A(z — a)], where I = (a,00), and A >0

has a constant relative increment function.

2.4. The following probability distributions have RIFs that increase first and, hav-
ing culminated, they decrease:

1.

Cauchy Distribution

F(x) = % + %tan_1 x, where I = (—00,00)

2. Inverse Gaussian Distribution

@ -1
F(z) = / (@)T.exp(f)\.%)dt, where I = (0,00), A >0,m >0
0

3. Lognormal Distribution

xr nt_ 2
F(x) :/0 tml/ﬂ exp{—(1 Qtog“) tdt, where I = (0,00), , 0 > 0,—00 <
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4. Beta type II distribution

f(SL’) = Cﬁ where I = (0,00), p,q> Oa and C >0
5. Burr type XII distribution

f(x) = ch e where I = (0,00) ¢> 0, and k > 0
6. f(ac):H%whereI:Randk>0

7. f(z) = cx™"exp (=£) where I = (0,00) and ¢,k > 0

8. Frechet Distribution F(z) = exp (—(£32)~*) where I = (n,00), a,t € (0,00), and n =

t

a
t(#l) .

9. Gumbel Distribution F(z) = e™*® * where I = (0,00) and a,b € RT and m = {/-%

2.5. The following probability distributions have RIFs that decrease first and, hav-
ing reached their minima, they increase:

1. F(z) =1+ 2 arcsinz, where I = (—1,0)
2. F(z) = v/z, where I = (0,1)

1
3. F(z) = (1 —2%)2 where I = (—1,0)

4. Reciprocal distribution

f(z) = R2e=na where I = [a,b], a,b>0, and $ > e

Inb—Ina

[II. NUMERICAL EXAMPLES

In this section, we illustrate the method described in section 2 by two examples.
1. The distribution of the the population of Botswana.
2. The distribution of people living with HIV globally.

Numerical Example 1: Botswana Population Growth. Below is a table of
the population of Botswana from 1960 to 2012 in 5 year periods. This data was
obtained from the World data bank.

Table 0.1: Botswana Population

xp(Time) | gi(Population)
5 979729
10 671416
15 793164
20 960807
25 1146205
30 1343440
35 1544865
40 1724924
45 1854739
50 1951715

We wish to find the probability distribution function of this sample.

© 2021 Global Journals
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Relative Increments

Figure 6.1: Graph of empirical relative increments

Figure 6.1 shows the empirical relative increment function of the distribution of
the population. We see that the relative increments increase and then decrease.
The distribution functions of section 2.4 display the same monotonic behaviour
of first increasing and then decreasing. For these models, the values of B ranged
between 24,900, 000 and 28, 600, 000. We therefore picked 3, 000, 000 as a reasonable
estimate of the upper bound for all the models. Below is the table of time in years
and the adjusted values of the population.

Table 6.2: Adjusted Population

xi(Time) | yr(Adjusted Population)
) 0.193243
10 0.223805
15 0.264388
20 0.320269
25 0.382068
30 0.447813
35 0.514955
40 0.574975
45 0.618246
50 0.650572

The adjusted population values were fitted to the distributions in section 6.3.4
as they exhibit the same monotonic behaviour of relative increment functions as
that of our data. Table 6.2 shows the fitted values of the distributions.
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Table 6.3: Fitted Models (Botswana Population)

Global Journal of Science Frontier Research (F) Volume XXI Issue Il Version I E Year 2021

Distribution function Fit Results Fitted Curve
Coefficients (with
95% confidence
Cauchy Distribution bounds): C
pl = 3506 | &
X—a 2 = 23. g
—+—*tan‘1( ) p 3:53 Notes
2 7 B
Goodness of fit: L L
SSE: 0002344 5 10 15 20 25 30 35 40 45 50
Time
Inverse Gaussian Distribution Coefficients (with .
General model: 95% confidence o8
bounds): 07
1/2 (1 +erf(V(A/2x) (x/u—1)))] a= 03371 |-
+1/2 er(22/w) (1 b= 01622 |
—erf(V(A/2x) (x/u 0
+ 1))) Goodness of fit: 02 = - = p’ = =
SSE: 1.012
Lognormal Distribution Coefficients (with
95% confidence oo T
1 In(x) — i\ | bounds): cos = R
E* eTfC - 0-\/2 o = 2.95 ;éw
Where u= 3.494| .
erfc is the complementary . 02—
error function. Goodness of fit: N
SSE: 0.01796
Beta type Il Distrribution Coefficients (with
95% confidence 0 —
I x (a,f) bounds): o5 T
1+x — .'f_é /
Where a _ 09.5561124 o
L.(a, B) is the incomplete B = ' o
beta function. Goodness of fit: -
SSE:-0.02997 5 0 15 20 25 30 35 40 45 50
Time
Burr type Xl Distribution Coefficients (with
95% confidence o
1—(1+x%)7k bounds): 5 P ———
= 7.823 Bos
Where ¢ € |
k>0 k = 0.02311 03
Goodness of fit: oz /s
SSE: 0.09004 5 10 15 20 ZSTImSBD 35 40 45 50

© 2021 Global Journals



Number 6 Coefficients (with

o
@
a

A 95% confidence 0s
1 7 x’+x 2+1 bounds): e
P ey k= 06022] 1,0

Population
o
=

Goodness of fit:
+2tan™ (V2 +1) | gop. 03504

+2tan"(xV2 - 1))

!
N Otes 5 10 15 20 25 30 35 40 45 50

Coefficients (with

o
©
&

o
w

o
N
&

o
N

Number 7 95% confidence 05
bounds): e —

kEi(1,£] k c = 003116 fus

ex x| - ——X 2 4 ¥ k = -3.3 B o4

X n = 0.1954 o

Where Ei is the exponential Integral | Goodness of fit: ‘
SSE: 0.006749 Time

Frechet Coefficients (with ‘ 7
95% confidence 06
bounds): £ 05
(™ a= 2002| %, |
Where 5= 78.36 &03 A
is the shape parameter //
a '|s th Ip P Goodness of fit: 2y
S |§ the scale Parameter SSE: 0.007987 e
m is the location parameter
Gumbel Coefficients (with
95% confidence 08 —
/
—px~ bOUﬂdS)Z c 05 ]
e 2 1
a = 06644 ¢
b = 7.06 | ¢
where a is real and b /
is the shape parameter Goodness of fit: 02—y
SSE: 0.02744 5 10 15 20 25Time30 35 40 45 50

Amongst these, the Cauchy distribution function,

1,1 —1 (2—35.06959
F(z) =3+ 7 tan (r 23.5201 )

provided the best least squares fit
10

Z[F(ask — )% ~ 0.002341.
k=1
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Figure 6.2: Graph of F and (zk, yx)

Figure 6.2 shows the fitted curve of the Cauchy model.

Numerical Example 2: Number of people living with HIV/AIDS (1990 to
2015): In the 1990s almost 3.5 million people were diagnosed with HIV every year.
In 1997 the number declined and was reduced to 2.1 million in 2015. This table,
obtained from UNAIDS data, shows the number of people living with HIV/AIDS
from 1990 to 2015 in millions. The estimated value of B, which we adjust gy by,
gives the upper bound. For our models in section 2.4 the estimated values of B
ranged between 36.82 and 39.77, we therefore picked 40 as a reasonable estimate of
the upper bound for all the models.

Table 6.4
xi(Time) | gx(in Millions)(People living with HIV)
) 9
10 19.3
15 28.6
20 32.5
25 34.4
30 36.7
Chart Title

Figure 6.3 Graph of empirical relative increments

As we can see, the empirical relative increments increase up to a certain point and
then decrease. Below is the table of distributions with the same behavior of relative
Increments, the distributions in section6.3.4. The table shows the fitted values of
the distributions.

Notes



Notes

Table 6.5

xk(Time) | gx(in Millions)(People living with HIV) | y; (Adjusted gy)
5 9 0.225
10 19.3 0.4825
15 28.6 0.715
20 32.5 0.8125
25 34.4 0.86
30 36.7 0.9175

Distribution function

Fit Results

Fitted Curve

Coefficients (with

95% confidence | " — |
Cauchy Distribution bounds): Z:j L
@ = 10612,
l+l*tan_1 (x— a) = 5623 éos
2 s ﬂ 20.4
Goodness of fit: | %3
SSE:0.001816 022 - - p” " -
Time
Inverse Gaussian Distribution Coefficients (with |
General model: 95% confidence o8
bounds): 07
1/2 (1 +erf(V(A/2x) (x/u—1))) a= 03371 |-
+1/2 er(22/w) (1 b= 01622 |
—erf(V(4/2x) (x/u s
+1))) Goodness of fit: o2 = = " p’ = =
SSE: 1.012
Lognormal Distribution Coefficients (with =
95% confidence | " ]
1 In(x) —u bounds): ;0'8
zrerfe (‘ G—ﬁ> o= 1667
Where p= 228 |z
erfc is the complementary £04
error function. Goodness of fit: |2 |
SSE:0.001625 | ., J/
5 10 15 e 20 25 30
Beta type Il Distrribution Coefficients (with
95% confidence | h |
I x (a,B) bounds): %:j L
Where T a = 1606 g,
L.(a, B) is the incomplete beta function. b= 1.986 50-5
€

Goodness of fit:
SSE:0.003733

Time

25 30
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Burr type Xll Distribution

Coefficients (with

_hy—aQ
ebx

where a is real and b
is the shape parameter

95% confidence

bounds):
a = 1.44
b = 16.85

Goodness of fit:
SSE: 0.006365

95% confidence . ::
bounds): 5, 1
1—(14x°)Fk c = 7.078 —
Where k = 0.05934 |sos
k>0 §°’4
Goodness of fit: "
SSE:0.1386 o 5 10 15 20 25 30
Time
Number 6 Coefficients (with .
0 .
1 X+ xVZ 41 95% confidence o8
kV2(lp-— bounds): 07
8 —x2 +xv2 -1 k= 06022]-
+2tan " (xvV2 + 1) Goodness of fit: -
+2 tan—l(x\/i _ 1)) SSE: 0.3504 o5
Coefficients (with ,
Number 7 95% confidence . T
bounds): £ 07
[k a= 0218 §e
kEi| 1, — _k g
cx_"x[—M +e x] k = 224 %>
x n= 05929 "
0.2 /
Where Ei is the exponential Integral| Goodness of fit: ° 10 e ® %
SSE:0.00472
Frechet Coefficients (with . —
95% confidence 2 05 L — ]
bounds): £or
e-(@)‘“ a= 3506 §o°
m= -15.01| ;"
Where s = 2253 |+
a is the shape parameter . /.
s |s., the scale parameter Goodness of fit: ° 1 e 2 # %
m is the location parameter SSE-0.001123
Gumbel Coefficients (with e
//_—

Number of people with HIV'

Figure 6.4: Graph of F'and (@k, yx)
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Amongst these distributions , the Lognormal distribution function,

* -1 o2.(Int)?
F(x):K./ expwdt
0

provided the best least squares fit

6
> [F(zr — yx)? = 0.001625
k=1

0.6

Number of People with HIV

o
w

/

5 10 15 20 25 30
Time

o
N

Figure 0.4: Graph of Fand (zg,yx)

According to our model, the number of people with HIV/AIDS will not reach
40, 000, 000.

V. DISCUSSIONS

This method is different from the classical methods of density estimation and
kernel estimation because some of these methods do not provide indefinitely smooth
models and some provide some twice differentiable models with much more than
two points of inflection. In addition our model will give us tools to estimate the
behaviour of the considered (natural, social and others) phenomena in the future if
the environment and other conditions or circumstances do not change.This method
cam only be used for relative increment functions with at most two phases. Further
analysis of the algorithm to accommodate sample whose relative increment func-
tions are more than two phased may prove useful to our work of finding continuous
distributions. Results from this study sheds light on the use of relative increment
functions in determining distributions which would be very helpful in forecasting
and estimating percentiles of growth processes. By using indefinitely smooth model
of growth processes, one can predict how the process in question will behave in the
future.
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