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Consider the problem of estimating the proportion π0 of true null hypotheses in a collection of m
tests, given the observed p-values p1, · · · , pm for the collection of m tests. This problem has at-
tracted a lot of attentions in statistical literatures, attributing to its important role in dealing with
multiple testing procedures, since the nominal paper Storey (2002). It has naturally arisen in as-
sessing or controlling an overall false rejection rate, i.e., the false discovery rate (FDR) proposed
by Benjamini and Hochberg (1995) in multiple null hypothesis testing problems and multiple com-
parisons. Benjamini and Hochberg proved that if p1, · · · , pm are independent with continuous dis-
tributions, the popular Sime ’s multiple testing procedure (Sime 1986), where a null hypothesis is
rejected whenever the observed p-value is less than α, results in an FDR controlled by π0α. There-
fore, a reliable estimate is essential to control the FDR in the Sime’s multiple testing procedure
and improve its testing power. On the other hand, the proportion π0 is a quantity of interest in
its own right. For example, researchers may wish to estimate the proportion of genes that are not
differentially expressed in DNA microarray experiments (Parker et. al. 1988).

Store (2002) proposed to approach the estimating problem from a Bayesian point of view by
treating p1, · · · , pm as a random sample of sizem from a mixture distribution of a uniform distribu-
tion and a non-uniform distribution with mixing proportion π0. Specifically, consider a population
consisting of all outcomes of the p-values p1, · · · , pm in testing m null hypotheses. There are two
types of p-values: true-null p-values and false-null p-values. Following Tong, Feng, Hilton and
Zhao (2013)’s terminology, by true-null p-value we mean the p-value is observed from a true null

Authorα: Department of Statistics, School of Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China. 
e-mail: zhaohualing2011@whut.edu.cn
Authorσ: Department of Mathematics and Statistics, Bowling Green State University, Bowling, Green, OH 43403, USA. 
e-mail: hchen@bgsu.edu

hypothesis and by false-null p-value we mean it is observed from a false null hypothesis. Thus, the
population distribution can be described as a finite mixture with mixing proportion π0 of the uni-

Abstract- Many estimators for the proportion of the true null hypotheses in a multiple testing problem have 
been proposed in literature. Motivated from the work on the histogram approach, in this article we propose a 
new estimator based on the likelihood function with an approximating alternative histogram. AIC is used to 
select the number of bins for the histogram. Simulation study demonstrates that the new estimator outperforms 
and substantially improves existing methods including Storey estimators, convex density estimator, and 
histogram estimator. The new method is applied to a real-life data set of breast cancer.
Keywords: akaike information criterion; false discovery rate; finite mixture model; multiple 
comparisons.
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form distribution on [0, 1] and another non-uniform distribution with the pdf, say h(x), with respect
to the Lebesque measure dx. Denote the mixture by f(x|π0, h), i.e.,

f(x|π0, h) = π0 + (1− π0)h(x), 0 ≤ x ≤ 1. (1)

By Storey’s approach, the observed p-values are considered to be a random sample of size m from
f(x|π0, h). As a consequence, the mixing proportion π0 in the mixture model (1) represents the
proportion of true-null p-value subpopulation and an estimate for π0 based on a random sample from
(1) thus yields an estimate for the proportion of true null hypotheses among the m null hypotheses
in the multiple testing problem.

The first well-studied estimator for π0 was proposed by Storey (2002) as follows:

π̂s0(λ) = W (λ)/{m(1− λ)},

where λ is an appropriately chosen value close to 1 and W (λ) is the total number of the p-values
greater than λ. This estimator is motivated by the fact that false-null p-values are typically small
so that with λ close to 1, 1− λ is close to the expected proportion of true-null p-values falling into
(λ, 1]. Since the proportion of the p-values falling into (λ, 1] is a mixture of 1 − λ and

∫ 1
λ h(x)dx

with mixing proportions π0, π̂s0 is obtained mathematically by simply setting the proportion of
false-null p-values falling into (λ, 1] to be zero, i.e.,

∫ 1
λ h(x)dx = 0. As a consequence, π̂s0 tends to

overestimate π0, as
∫ 1
λ h(x)dx is typically positive. The biasedness can be too great to be acceptable

when π0 belongs to the lower part of [0, 1]. Storey (2002) proposed a bootstrap procedure to choose
λ that minimizes an upper bound of the mean square error of the resulting positive FDR estimator
Q̂(λ) = απ̂s0(λ)/R(α) where R(α) = #{pi ≤ α}. See more discussion and some other work on
how to select λ, see Storey, Taylor and Siegmund (2004), and Nettleton, Hwang, Caldo and Wise
(2006).

Since the publication of Storey (2002), the mixture model approach described above has been
adopted widely and many other estimators have been proposed. They include: Langaas, Lindqvist
and Ferkingstad (2005)’s by a histogram approach, Wu, Guan and Zhao (2006)’s polynomial-
type estimator, Jiang and Doerge (2008)’s estimator averaging over different λ-values with Storey
(2002)’s estimator, Zhao, Wu, Zhang and Chen (2012)’s estimator in exponential mixture model,
Cheng, Gao and Tong (2015)’s estimator with reduction of estimating bias and standard deviation.
For more references and discussion, see Cheng, Gao and Tong (2015), and Tong, Feng, Hilton and
Zhao (2013) that deals with possibly dependent p-values. Nevertheless, when these estimators are
intended to improve some aspects of Storey’s estimator, the biasedness remains significant even
with m as large as 2,000, especially when π0 is not close to 1. Motivated by the histogram approach
(see Mosig et al. 2001 and Nettleton et al. 2006), a new estimator is proposed in this paper via a
likelihood approach with h being approximated by a modified histogram pdf. Akaike information
criterion is used to select the number of categories in histogram construction. Simulation study
demonstrates that the new estimator significantly improves popularly cited existing methods such
as Storey (2002), Langaas, Lindqvist and Ferkingstad Langaas (2005), Jiang and Doerge (2008) and
Nettleton et al.(2006).

The paper is organized as follows. The new method along with discussion of computing issues
is presented in Section 2. Simulation results are reported in Section 3. A real-life example is given
in Section 4.
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Let p1, ..., pm be a random sample of size m from the pdf f(x|π0, h) defined in (1). We propose π0
to be estimated by the MLE when h is subject to a histogram-type approximation. We shall proceed
with a study on the identification problem in the mixture model.

Let Θ be the parameter space consisting of all (π0, h)’s with π0 ∈ (0, 1) and h being a probability
density function on [0,1] and continuous in a neighborhood of 1with h(1−) = 0, where

h(1−) = lim
x→1−

h(x).

For convenience and confirmation, when a pdf is used as a parameter throughout the paper, we
should refer to the probability distribution, say the CDF specified by the pdf.

The distribution f(x|π0, h) in the model (1) is identifiable in (π0, h) ∈ Θ.

Let two parameter sets (π1, h1) and (π2, h2) in Θ define the same distribution, i.e., for any
x ∈ [0, 1],

π1x+ (1− π1)H1(x) = π2x+ (1− π2)H2(x), (2)

where Hi is the CDF of hi, i = 1, 2. Since h1 and h2 are continuous in a common neighborhood of
1, (2) implies that for any x in a neighborhood of 1,

π1 + (1− π1)h1(x) = π2 + (1− π2)h2(x).

So π1 = π2 because h1(1−) = h2(1−) = 0. This in turn implies H1 = H2 in (2) because π1 < 1

and π2 < 1. The lemma is proved.

(a) First of all, note the simple fact that h(1−) = 0 implies that h is non-uniform. Of course,
identification of the parameter π0 of interest requires that h is non-uniform.

(b) When π0 = 1, f is un-identifiable in h.

(c) The assumption that h is continuous in a neighborhood of 1 with h(1−) = 0 is critical.
Without it, the lemma can fail. For a counterexample, let π1 = 1/3 and h1(x) = 1/4 +

(3/2)x, and π2 = 1/2 and h2(x) = 2x. We have

∫ 1

0
h1(x)dx = 1/4 + 3/4 = 1,

∫ 1

0
h2(x)dx = 1,

and for any x in [0, 1]

π1 + (1− π1)h1(x) = 1/3 + (2/3)[1/4 + (3/2)x] = 1/2 + x,
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II. Method

a) Identification

Lemma 1 

Proof. 

Remarks.
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and

π2 + (1− π2)h2(x) = 1/2 + (1/2)(2x) = 1/2 + x.

That is, π1+(1−π1)h1(x) = π2+(1−π2)h2(x) for all x in [0, 1], but π1 6= π2 and h1 6= h2.

h

Motivated by the histogram approach (see Mosig et al. (2001), a histogram approximation to the
alternative pdf h(x) is proposed as follows. Let k > 2 be an integer. Define

h̃(x) =

{
kqj , if (j − 1)/k ≤ x < j/k, 1 ≤ j ≤ k − 1

k2qk−1(1− x), if(k − 1)/k ≤ x ≤ 1

where 0 ≤ q1 ≤ 1, · · · , 0 ≤ qk−1 ≤ 1 satisfying q1 + . . . + qk−1 + qk−1/2 = 1. The linear
modification over the right most subinterval (1 − 1/k, 1] warrants ĥ ∈ Θ so that f(x|π0, h̃) is
identifiable in π0 and q = (q1, · · · , qk−2). As Storey(2002) and Tong et al. (2013) remarked, the
false-null p-values that follow the distribution h are typically small. In other words it is often the
case in application that the alternative pdf h is highly skewed to the right. Therefore, with the linear
modification on the rightmost subinterval (1 − 1/k, 1], the effect on the accuracy of the estimate
for Storey (2002), Jiang and Doerge (2008) and some other methods assume that h is zero in a
neighborhood of 1.

k

Suppose that k > 2 is specific for now (a selection procedure will be described later). When h
is approximated by or restricted to h̃, with a random sample p1, · · · , pm, the log-likelihood of the
parameter π0 of interest and the new nuisance parameter q becomes

l(π0, q) =

m∑
i=1

log f(pi|π0, h̃)

=

m∑
i=1

log

π0 + (1− π0){
k−1∏
j=1

(kqj)
ξij}{k2qk−1(1− pi)}ξik}

 , (3)

where ξij is the indicator whether pi falls into the j-th category of the histogram with k bins or not,
i.e.,

ξij =
1, if (j − 1)/k ≤ pi < j/k,

0, otherwise
(4)

for i = 1, · · · ,m, j = 1, · · · , k.

Let (π̂0(k), q̂) be the MLE of (π0, q) with the log-likelihood function (3), subject to 0 < π0 < 1

and 0 < q1 < 1, · · · , 0 < qk−1 < 1, qk = qk−1/2 such that
∑k

j=1 qj = 1. This defines the new
estimator π̂0(k) for π0 with specified k. A direct application of the standard theory of MLE yields
the following theorem and hence a theory of consistency of the new estimator.
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For any (π0, h) ∈ Θ and k > 2, let

qj =

∫ j/k

(j−1)/k
h(x)dx

for j = 1, · · · , k − 2. Put q = (q1, · · · , qk−2) and θ = (π0, q). Then
√
m(π̂0(k) − π0, q̂ − q)

converges to N(0,Σ) in distribution, as m→∞, where

Σ = −
[
E

(
∂2

∂θ∂θ
log f(X|π0, h̃)

)]−1
.

π̂0(k)

Maximizing the nonlinear log-likelihood function (3) can be complicating. However, the EM algo-
rithm can be used to obtain an approximation to the MLE π̂0(k) easily. To do so, introduce a latent
Bernoulli variable w indicating the component-ship of the p-value in the finite mixture distribution.
That is, let w be a binary random variable with P (w = 1) = π0 and P (w = 0) = 1 − π0, and
let a random variable p follow the distribution as follows. Given w = 1, p follows the uniform
distribution on [0, 1] and given w = 0, p ∼ h̃. It is clear that p follows the mixture distribution
f(x|π0, h̃). Thus P = {p1, · · · , pm} can be viewed as the incomplete data of a random sample
(p1, w1), · · · , (pm, wm) from (p, w) with missing values w1, · · · , wm.

Note that with the complete data (p1, w1), · · · , (pm, wm), the likelihood function of (π0, q) is

m∏
i=1

πwi
0

(1− π0)[
k−1∏
j=1

(kqj)
ξij ][k2qk−1(1− pi)]ξik


1−wi

, (5)

where ξij’s are defined in (4), and the log-likelihood function is thus

l∗(π0 , q) = w. log π0 +(m−w.) log(1−π0 )+

k−1∑
j=1

ξ∗.j log(kqj )+
m∑
i=1

ξ∗ik log[k2 qk−1 (1−pi)], (6)

where ξ∗ij = (1− wi)ξij , w. =
∑m

i=1wi, and ξ∗.j =
∑m

i=1 ξ
∗
ij .

The EM algorithm can be easily implemented as follows. Let (π
(s)
0 , q(s)) be the current ap-

proximations to the MLE (π̂0(k), q̂) with the log-likelihood function l given in (3). The next ap-
proximation (π

(s+1)
0 , q(s+1)) is given by the EM algorithm in two steps, the so-called E-step and

M-step.

Compute the conditional expectation of the log-likelihood function

Q(π0 , q = E
π
(s)
0 ,q(s)

{l∗(π0, q)|P}

Theorem 1 

d) Computation of 
_

E-Step:

)

Notes
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Note

E
π
(s)
0 ,q(s)

(wi|P) := ŵi = P
π
(s)
0 ,q(s)

(wi = 1|P)

=
π
(s)
0

π
(s)
0 + (1− π(s)0 ){

∏k−1
j=1(kq

(s)
j )ξij}{k2q(s)k−1(1− pi)}ξik}

.

We have

Q(π0 , q) = (

m∑
i=1

ŵi) log π0) + (m−
m∑
i=1

ŵi) log(1− π0) +

k−1∑
j=1

[
m∑
i=1

(1− ŵi)ξij

]
log(qjk)

+
m∑
i=1

(1− ŵi)ξik log[k2qk−1(1− pi)].

In the M-step, Q(π0 , q) is maximized to yield the next approximation π(s+1)
0 and q(s+1).

Setting ∂Q/∂π0 = 0, we immediately have

π
(s+1)
0 =

∑m
i=1 ŵi
m

.

By Lemma 2 in Appendix,

q
(s+1)
j =

1

m̂

m∑
i=1

(1− ŵi)ξij , j = 1, · · · , k − 2

q
(s+1)
k−1 =

2

3m̂

m∑
i=1

(1− ŵi)(ξi(k−1) + ξik)

q
(s+1)
k = q

(s+1)
k−1 /2,

The formulas in the EM algorithm above are similar to to those developed by Oluyemi (2016)
and Oluyemi and Chen (2016) where there are some algebraic errors.

where

m̂ =

k∑
j=1

m∑
i=1

(1− ŵi)ξij = m−
m∑
i=1

ŵi .

M-Step:

= E
π
(s)
0 ,q(s)

(w.|P) log(π0) + (m− E
π
(s)
0 ,q(s)

(w.|P)) log(1− π0)

+
∑k−1

j=1 Eπ(s)
0 ,q(s)

(ξ∗.j |P)) log(kqj) +
∑m

i=1{E{ξ∗ik log[k2qk−1(1− pi)]|P}.

Notes
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k

In this subsection, we discuss about selection of k. As a histogram-type approximation to h(x),
the value of k can reveal different features of the data. Since k is the number of categories of
the histogram fitting h, a larger value of k does a better fitting job and hence is expected to result
in a more accurate estimate of π0. However, a larger value of k causes a greater standard error
in estimating π0 because there are more nuisance parameters to handle. As the estimate π̂0(k) is
based on the likelihood function, the Akaike information criterion (AIC) can be a nature choice of
criteria for selection of an appropriate value of k. Let l̂k be the maximum value of the log-likelihood
function l defined in (3), i.e., l̂k = l(π̂0(k), q̂). Noting that we have total of k− 1 free parameters in
computing l̂k, the AIC selection of k is to choose k̂ such that 2l̂k − 2(k − 1) is maximized, i.e.,

k̂ = arg max{2l̂k − 2(k − 1)}.

The final estimate π̂0 for π0 is π̂0 = π̂0(k̂).

Simulation studies are conducted with the p-values based on one-sided z-test in finite normal mix-
ture models to evaluate the performance of the new estimator π̂0 and compare it with some existing
method. Specifically, consider the finite normal model π0N(0, 1) + (1− π0)N(1, 1) with five grid-
ing values of π: 0.2, 0.35, 0.50, 0.65 and 0.8 . The p-value is computed by p = 1 − Φ(z). Four
sample sizes, m = 500, 1000, 1500 and 2000 are consider. With each combination, 2000 Monte
Care trials are used.

In the simulation studies, the EM algorithm is used to approximate the MLE’s and a linear
algorithm is used to search for the AIC selection k̂.

Four existing estimators popularly cited in the literature are considered for purpose of compar-
ison. They are Storey’s estimator with bootstrap method π̂s0, the convex density estimator π̂c0 by
Langaas, Lindqvist and Ferkingstad (2005), the averaging Storey estimator π̂a0 by Jiang and Doerge
(2008) and the histogram estimator π̂h0 by Nettleton, Hwang, Caldo, and Wise (2006). The R pack-
age cp4p is used for computations of these estimates; all the computations are done with default
settings of the R package.

Simulation results are reported in Table 1. The following findings from the simulation studies
are immediate:

1. The new estimator π̂0 performs very well. A clear converging pattern is demonstrated in each
simulation model, as m increases. The convergence with lower values of π0 is faster than
with higher values.

2. The new estimator performs substantially better than all other four existing estimators. It is
noted that the Storey’s π̂s0 performs somewhat better than the other three existing estimators
in general and its best performance is on the higher values of π0 as expected. See Storey
(2002).

In this section, we apply the new estimate method to the real life data from Hedenfalk et al.
(2001)where 3226 genes were studied with n1 = 7 BRECA1 arrays and n2 = 8 BRCA2 arrays.
The example is to test with each gene the null hypothesis that there is no differential gene expres-
sion between BRCA1-mutation-positive tumors and BRCA2-mutation-positive tumors by using a

e) Selection of via AIC

III. Simulation Study

IV. Real Data Analysis

Notes
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Empirical average of the estimates for the proportion π0 with their empirical standard
deviations in parentheses. The true model for the p-value of one-sided test is: p = 1 − Φ(x) with
x ∼ π0N(0, 1) + (1− π0)N(1, 1). Each of the entries is based on 2,000 Monte Carlo trials.

m π0 π̂0 π̂s0 π̂c0 π̂a0 π̂h0
500 0.20 0.194 0.339 0.324 0.357 0.378

(0.101) (0.059) (0.061) (0.068) (0.593)
500 0.35 0.327 0.454 0.569 0.488 0.507

(0.116) (0.066) (0.066) (0.067) (0.096)
500 0.50 0.457 0.586 0.583 0.618 0.644

(0.130) (0.067) (0.065) (0.066) (0.086)
500 0.65 0.605 0.710 0.712 0.746 0.773

(0.123) (0.069) (0.064) (0.060) (0.068)
500 0.80 0.749 0.826 0.834 0.864 0.885

(0.113) (0.066) (0.059) (0.052) (0.051)
1000 0.20 0.202 0.328 0.308 0.322 0.314

(0.082) (0.044) (0.047) (0.057) (0.085)
1000 0.35 0.336 0.455 0.445 0.462 0.468

(0.095) (0.049) (0.051) (0.060) (0.086)
1000 0.50 0.480 0.583 0.578 0.599 0.615

(0.093) (0.052) (0.050) (0.055) (0.074)
1000 0.65 0.624 0.701 0.707 0.729 0.750

(0.089) (0.052) (0.049) (0.052) (0.065)
1000 0.80 0.777 0.829 0.834 0.886 0.875

(0.084) (0.050) (0.044) (0.041) (0.042)
1500 0.20 0.206 0.292 0.291 0.298 0.294

(0.072) (0.042) (0.040) (0.051) (0.071)
1500 0.35 0.348 0.423 0.433 0.440 0.449

(0.079) (0.049) (0.044) (0.056) (0.074)
1500 0.50 0.480 0.553 0.569 0.581 0.579

(0.081) (0.053) (0.043) (0.054) (0.070)
1500 0.65 0.636 0.684 0.703 0.721 0.741

(0.075) (0.055) (0.043) (0.048) (0.055)
1500 0.80 0.788 0.801 0.829 0.848 0.870

(0.068) (0.050) (0.040) (0.039) (0.042)
2000 0.20 0.206 0.295 0.290 0.292 0.284

(0.066) (0.038) (0.035) (0.045) (0.062)
2000 0.35 0.348 0.425 0.434 0.435 0.436

(0.071) (0.042) (0.037) (0.050) (0.067)
2000 0.50 0.496 0.556 0.571 0.579 0.585

(0.065) (0.047) (0.038) (0.051) (0.065)
2000 0.65 0.636 0.683 0.700 0.713 0.731

(0.071) (0.050) (0.038) (0.047) (0.056)
2000 0.80 0.798 0.812 0.831 0.847 0.865

(0.056) (0.047) (0.035) (0.035) (0.038)

Table 1:

Notes
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Histogram of the available 2752 p -values for detection of differently expressed genes with
the data in Hedenfalk et al.(2001). The solid line has the intercept of π̂0 = 0.523 and the dash line
has the intercept of π̂h0 = 0.677.

two-sample t-statistic. It was also analyzed by Storey and Tibshirani (2003). Following their in-
structions, we were able to download the p-values from http://www.genomine.org/qvalue/results.txt.
Removing missing values left with m=2752 p-values.

The estimates for the proportion π0 of true null hypotheses by the new estimator and the other
four existing estimators are listed in Table 2. The AIC selection of k for the new estimator is k̂ = 41.
In Figure 1 for the histogram of the 2752 available p-values with data in Hedenfalk et al. (2001),
the solid horizontal line would be the expected bottom of the graph of the density function of the
p-value under assumption inf h(x) = 0 if the real value of π0 were equal to the estimate π̂0 (0.523),
whereas the dash line would indicate the expected bottom of the graph of the density function if the
real value of π0 were equal to the histogram estimate π̂h0 = 0.677. It is evident from Figure 1 that
the existing estimators overestimates π0.

Estimates for the proportion π0 of not differentially expressed genes with the break cancer
data in Hedenfalk et al. (2001)

π̂0 π̂s0 π̂c0 π̂a0 π̂h0
0.523 0.689 0.682 0.704 0.677

© 2021 Global Journals

Figure 1:

Table 2: 
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Appendix: Computation for the estimate of q

In M-step of the EM iteration algorithm, we compute the update for the estimate of q based on the
following result.

Let g(q) =
∑k−1

j=1 xj log qj , where xj ≥ 0 are constant and 0 ≤ qj ≤ 1 such that

k−2∑
j=1

qj + (3/2)qk−1 = 1.

Then the maximum of g is attained at q̂1 = x1/m̂, · · · , q̂k−2 = xk−2/m̂, q̂k−1 = (2/3)xk−1/m̂,
where

m̂ =

k−1∑
j=1

xj .

PROOF. Let

G(q, λ) = g(q) + λ[1− (
k−2∑
j=1

qj + (3/2)qk−1)].

We have ∂G/∂λ = 1− (
∑k−2

j=1 qj + (3/2)qk−1) and

∂g

∂qj
= xj/qj − λ, j = 1, · · · , k − 2;

∂g

∂qk−1
= xk−1/qk−1 − (3/2)λ.

Setting all the partial derivatives to be zero yields

qjλ = xj , j = 1, · · · , k − 2; (3/2)qk−1λ = xk−1.

Adding all the equations above gives the solution of λ = m̂ and so the solutions for qj . The lemma
is proved.

Lemma 2 

Estimating the Proportion of True Null Hypotheses: A Likelihood Approach

Notes
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