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Mathematical modeling of real-life problems usually results in functional
equations, e.g. differential equations, integro-differential equations, stochastic
equations and others. Integro-differential equation is a hybrid of integral and
differential equations which have found extensive applications in sciences and
engineering.

In particular, integro-differential equations arise in fluid dynamics, biolog-
ical models and chemical kinetics. The analytical solutions of some integro-
differential equations (IDEs) cannot be found, thus numerical method are re-
quired. The numerical methods for linear integro-differential equations have
been extensively studied by many authors [4, 6, 9]. There is an alternative
method for approximating the solution of IDEs that is a Taylor series expan-
sion. The Taylor series expansion is one of the methods used to calculate the
solution of differential equations(DEs) and integral equations (IEs) since it is
easy to compute and efficient [1–3, 5, 9]. Those who started to use taylor in
solving IEs were �Y.Ren et al. [10] for Fredholm integral equation and Pallop
et al. [11] have modified Y.ren’s method for more accurate results and used
for wider class of Fredholm integral equation and Itthithep et al. [8] used this
method for the solution of Volterra integro-differential equation.

In this research, we use [8] methods to approximate the solution of Fred-
holm integro-differential equations (FIDEs), given in the form

y′(x)−
∫ b

a

k(x, t)y(t)dt = f(x), y(0) = y0. (1)

where the functions f(x) and the kernel k(x, t) are known.

Abstract- In this paper, we use a modified Taylor series expansion method for solving the linear 
Fredholm integro-differential equations. This method transfroms the equation to linear system 
equations that can be solved easily with reduced row echelon method. Finally, we show the efficiency
of this method with numerical examples by comparing the approximate solutions with exact solutions.
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We consider the FIDE in form (1)

y′(x)−
∫ b

a

k(x, t)y(t)dt = f(x), y(0) = y0.

The Taylor series approximation can be made for the solution y(t) in the (1):

y(t) ≈ y(x)+y′(x)(t−x)+
y′′(x)

2!
(t−x)2+

y′′′(x)

3!
(t−x)3+ · · ·+ y(n)

n!
(x)(t−x)n.

(2)
Substituting (2) for y(t) in the integral in (1),

y′(x)−
∫ b

a

k(x, t)

[
y(x) + y′(x)(t− x) + y′′(x)

2!
(t− x)2 + · · ·

+ y(n)(x)

n!
(t− x)n

]
dt = f(x).

(3)

We obtain,[
−

∫ b

a

k(x, t)dt

]
y(x) +

[
1−

∫ b

a

k(x, t)(t− x)dt

]
y′(x) + · · ·

+

[
− 1

n!

∫ b

a

k(x, t)(t− x)n dt

]
y(n)(x) ≈ f(x).

(4)

Next, we integrate both sides of (1) with respect to t from 0 to x,∫ x

0

y′(t)dt−
∫ x

0

∫ b

a

k(s, t)y(t)dtds =
∫ x

0

f(t)dt. (5)

Application of integration by parts yields∫ x

0

Pk(t)y
(k)(t)dt = Pk(t)y

(k−1)(t)|x0 − P ′
k(t)y

(k−2)(t)|x0 + P ′′
k (t)y

(k−3)(t)|x0 + · · ·

+ (−1)(k−1)P
(k−1)
k (t)y(t)|x0 + (−1)(k)

∫ x

0

P
(k)
k (t)y(t)dt. (6)

Where Pk(t) = 1 and k = 1. So P
(i)
k (t) = 0 for i = 1, 2, . . . , k.

So that, ∫ x

0

y′(t)dt = y(t)|x0

= y(x)− y(0)

(7)

II. Modified Taylor-Series Expansion Method

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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Substituting (7) for
∫ x

0
y′(t)dt in the integral in (5), we obtain

y(x)− y(0)−
∫ x

0

∫ b

a

k(s, t)y(t)dtds =
∫ x

0

f(t)dt. (8)

Similarly, Substitute y(t) is replaced by y(x) in (8) by the right sides of (2) to
obtain

y(x)− y(0)−
∫ x

0

∫ b

a

k(s, t)

[
y(x) + y′(x)(t− x) + y′′(x)

2!
(t− x)2 + · · ·

+ y(n)(x)

n!
(t− x)n

]
dtds =

∫ x

0

f(t)dt.

(9)

We obtain,[
1−

∫ x

0

∫ b

a

k(s, t)dtds

]
y(x)−

[ ∫ x

0

∫ b

a

k(s, t)(t− x)dtds

]
y′(x)

−
[
1

2!

∫ x

0

∫ b

a

k(s, t)(t− x)2 dtds

]
y′′(x)− · · ·

−
[
1

n!

∫ x

0

∫ b

a

k(s, t)(t− x)n dtds

]
y(n)(x) = y(0) +

∫ x

0

f(t)dt. (10)

Next, we differentiate both sides of (1) n times, one obtains

y′′(x)− ∂

∂x

[ ∫ b

a

k(x, t)y(t)dt

]
= f ′(x), (11)

y′′′(x)− ∂2

∂x2

[ ∫ b

a

k(x, t)y(t)dt

]
= f ′′(x), (12)

...

y(n)(x)− ∂n

∂xn

[ ∫ b

a

k(x, t)y(t)dt

]
= f (n−1)(x). (13)

Using Leibnitz rule, we find that

∂n

∂xn

[ ∫ b

a

k(x, t)y(t)dt

]
=

∫ b

a

∂n

∂xn

[
k(x, t)

]
y(t)dt =

∫ b

a

[
k(n)
x (x, t)

]
y(t)dt

Therefore,

y′′(x)−
∫ b

a

k′
x(x, t)y(t)dt = f ′(x), (14)

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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y′′′(x)−
∫ b

a

k′′
x(x, t)y(t)dt = f ′′(x), (15)

...

y(n)(x)−
∫ b

a

k(n−1)
x (x, t)y(t)dt = f (n−1)(x). (16)

Substitute y(t) is replaced by y(x) in (14)-(16) by the right sides of (2) to
obtain

y′′(x)−
∫ b

a

k′
x(x, t)

[
y(x) + y′(x)(t− x) + y′′(x)

2!
(t− x)2 + · · ·

+ y(n)(x)

n!
(t− x)n

]
dt = f ′(x),

(17)

y′′′(x)−
∫ b

a

k′′
x(x, t) ds

[
y(x) + y′(x)(t− x) + y′′(x)

2!
(t− x)2 + · · ·

+ y(n)(x)

n!
(t− x)n

]
dt = f ′′(x),

(18)

...

y(n)(x)−
∫ b

a

k(n)
x (x, t)

[
y(x) + y′(x)(t− x) +y′′(x)

2!
(t− x)2 + · · ·

+ y(n)(x)

n!
(t− x)n

]
dt = f (n−1)(x).

(19)

We obtain, [
−
∫ b

a

k′
x(x, t)dt

]
y(x) +

[
−
∫ b

a

k′
x(x, t)(t− x)dt

]
y′(x)

+

[
1− 1

2!

∫ b

a

k′
x(x, t)(t− x)2 dt

]
y′′(x) + · · ·

+

[
− 1

n!

∫ b

a

k′
x(x, t)(t− x)n dt

]
y(n)(x) = f ′(x) (20)

[
−
∫ b

a

k′′
x(x, t)dt

]
y(x) +

[
−
∫ b

a

k′′
x(x, t)(t− x)dt

]
y′(x)

+

[
− 1

2!

∫ b

a

k′′
x(x, t)(t− x)2 dt

]
y′′(x) + · · ·

+

[
− 1

n!

∫ b

a

k′′
x(x, t)(t− x)n dt

]
y(n)(x) = f ′′(x) (21)

. .
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[
−
∫ b

a

k(n−1)
x (x, t)dt

]
y(x) +

[
−
∫ b

a

k(n−1)
x (x, t)(t− x)dt

]
y′(x)

+

[
− 1

2!

∫ b

a

k(n−1)
x (x, t)(t− x)2 dt

]
y′′(x) + · · ·

+

[
1− 1

n!

∫ b

a

k(n−1)
x (x, t)(t− x)n dt

]
y(n)(x) = f (n−1)(x) (22)

Combining equations (4), (10), (20)-(22) , we obtain



1−
∫ x

0

∫ b

a
k(s, t)dtds−

∫ x

0

∫ b

a
k(s, t)(t− x)dtds · · · − 1

n!

∫ x

0

∫ b

a
k(s, t)(t− x)n dtds

−
∫ b

a
k(x, t)dt 1−

∫ b

a
k(x, t)(t− x)dt · · · − 1

n!

∫ b

a
k(x, t)(t− x)n dt

−
∫ b

a
k′
x(x, t)dt −

∫ b

a
k′
x(x, t)(t− x)dt · · · − 1

n!

∫ b

a
k′
x(x, t)(t− x)n dt

−
∫ b

a
k′′
x(x, t)dt −

∫ b

a
k′′
x(x, t)(t− x)dt · · · − 1

n!

∫ b

a
k′′
x(x, t)(t− x)n dt

... ... . . . ...
−
∫ b

a
k
(n−1)
x (x, t)dt −

∫ b

a
k
(n−1)
x (x, t)(t− x)dt · · ·1− 1

n!

∫ b

a
k
(n−1)
x (x, t)(t− x)n dt


×



y(x)
y′(x)
y′′(x)
y′′′(x)

...
y(n)(x)


=



y(0) +
∫ x

0
f(t)dt

f(x)
f ′(x)
f ′′(x)

...
f (n−1)(x)


(23)

Equation (23) becomes a linear systems of n + 1 algebraic equation for n + 1
unknowns y(x), y′(x), y′′(x), . . . , y(n)(x), which can be solved easily use of initial
condition.

We present in this section numerical result for some examples to show
efficient and accuracy of the modified Taylor-series expansion method, and the
corresponding absolute errors between their values as en(x) = |exactn(x) −
appn(x)|.

Consider

y′(x)−
∫ 1

0

(xt)y(t)dt = 3 + 6x, y(0) = 0 (24)

such that k(x, t) = xt , f(x) = 3 + 6x , a = 0 , b = 1 and exact solution is
y(x) = 4x2 + 3x.

III. Numerical Examples

Example 3.1. 

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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Let n = 2. We apply equation (23) to approach the equation (24) that is,1−
∫ x

0

∫ 1

0
(st)dtds −

∫ x

0

∫ 1

0
(st)(t− x)dtds −1

2

∫ x

0

∫ 1

0
(st)(t− x)2 dtds

−
∫ 1

0
(xt)dt 1−

∫ 1

0
(xt)(t− x)dt −1

2

∫ 1

0
(xt)(t− x)dt

−
∫ 1

0
(t)dt −

∫ 1

0
(t)(t− x)dt 1− 1

2

∫ 1

0
(t)(t− x)dt

×

 y(x)
y′(x)
y′′(x)

=

∫ x

0
(3 + 6t)dt
3 + 6x

6

 . (25)

We obtain, 1− 1
4
x2 −1

6
x2 + 1

4
x3 − 1

16
x2 + 1

6
x3 − 1

8
x4

−1
2
x 1− 1

3
x+ 1

2
x2 −1

8
x+ 1

3
x2 − 1

4
x3

−1
2

−1
3
+ 1

2
x 7

8
+ 1

3
x− 1

4
x2

×

 y(x)
y′(x)
y′′(x)

=

3x2 + 3x
3 + 6x

6

 . (26)

And approximation is

y(x) = 4x2 + 3x.

Numerical approximation for y(x) in Example 3.1 with n = 2.

x y(x) Absolute error
Exact Our approx. Exact Our approx.

0.0 0.00000 0.00000 0.00000 0.00000
0.1 0.34000 0.34000 0.00000 0.00000
0.2 0.76000 0.76000 0.00000 0.00000
0.3 1.26000 1.26000 0.00000 0.00000
0.4 1.84000 1.84000 0.00000 0.00000
0.5 2.50000 2.50000 0.00000 0.00000
0.6 3.24000 3.24000 0.00000 0.00000
0.7 4.06000 4.06000 0.00000 0.00000
0.8 4.96000 4.96000 0.00000 0.00000
0.9 5.94000 5.94000 0.00000 0.00000
1.0 7.00000 7.00000 0.00000 0.00000

Table 1:

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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Comparison of approximations and exact solution with n = 2.

As a second example, we solve the following Fredholm integro-
differential equation

y′(x)−
∫ 1

−1

(1− x2t2)y(t) dt = 4, y(0) = −2 (27)

such that k(x, t) = 1 − x2t2 , f(x) = 4 , a = −1 , b = 1 and exact solution is
y(x) = −2 + 4

9
x3.

Let n = 3. We apply equation (23) to approach the equation (27) that is,


1−

∫ x

0

∫ 1

−1
(1− s2t2) dt ds · · · − 1

3!

∫ x

0

∫ 1

−1
(1− s2t2)(t− x)3 dt ds

−
∫ 1

−1
(1− x2t2) dt · · · − 1

3!

∫ 1

−1
(1− x2t2)(t− x)3 dt

−
∫ 1

−1
(−2t2x) dt · · · − 1

3!

∫ 1

−1
(−2t2x)(t− x)3 dt

−
∫ 1

−1
(−2t2) dt · · · 1− 1

3!

∫ 1

−1
(−st2)(t− x)3 dt

×


y(x)
y′(x)
y′′(x)
y′′′(x)

=


−2 +

∫ x

0
(4) dt

4
0
0

 . (28)

We obtain,


1 + 2

9
x3 − 2x −2

9
x4 + 2x2 1

9
x5 − 14

15
x3 − 1

3
x − 1

27
x6 + 4

15
x4 + 1

3
x2

2
3
x2 − 2 1− 2

3
x3 + 2x 1

3
x4 − 4

5
x2 − 1

3
−1

9
x5 + 2

15
x3 + 1

3
x

4
3
x −4

3
x2 2

3
x3 + 2

5
x+ 1 −2

9
x4 − 2

5
x2

4
3

−4
3
x 2

3
x2 + 2

5
1− 2

9
x3 − 2

5
x

×

Figure 1:

Example 3.2.

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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
y(x)
y′(x)
y′′(x)
y(3)(x)

=


−2 + 4x

4
0
0

 . (29)

And approximation is

y(x) = −2 + 4

9
x3.

Next, we discuss the Fredholm integro-differential equation

y′(x)−
∫ π

2

0

(t)y(t) dt = − 1 + cos(x), y(0) = 0 (30)

such that k(x, t) = t , f(x) = −1 + cos(x) , a = 0 , b = π
2

and exact solution
is y(x) = sin(x).

Numerical approximation for y(x) in Example 3.2 with n = 3.

x y(x) Absolute error
Exact Our approx. Exact Our approx.

-1.0 -2.44444 -2.44444 0.00000 0.00000
-0.8 -2.22755 -2.22755 0.00000 0.00000
-0.6 -2.09600 -2.09600 0.00000 0.00000
-0.4 -2.02844 -2.02844 0.00000 0.00000
-0.2 -2.00356 -2.00356 0.00000 0.00000
0.0 -2.00000 -2.00000 0.00000 0.00000
0.2 -1.99644 -1.99644 0.00000 0.00000
0.4 -1.97156 -1.97156 0.00000 0.00000
0.6 -1.90400 -1.90400 0.00000 0.00000
0.8 -1.77244 -1.77244 0.00000 0.00000
1.0 -1.55556 -1.55556 0.00000 0.00000

Example 3.3. 

Table 2: 
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Comparison of approximations and exact solution with n = 3.

Let n = 8. We apply equation (23) to approach the equation (30) that is,


1−

∫ x

0

∫ π
2

0
(t) dt ds · · · − 1

8!

∫ x

0

∫ π
2

0
(t)(t− x)8 dt ds

−
∫ π

2

0
(t) dt · · · − 1

8!

∫ π
2

0
(t)(t− x)8 dt

0 · · · 0
... . . . ...
0 · · · 1

×


y(x)
y′(x)
y′′(x)

...
y(8)(x)

=



∫ x

0
(−1 + cos(t)) dt
−1 + cos(x)
− sin(x)

...
sin(x)

 (31)

Figure 2: 

A Modified Taylor Series Expansion Method for Solving Fredholm Integro-Differential Equations
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Numerical approximation for y(x) in Example 3.3 with n = 8.

x y(x) Absolute error
Exact Our approx. Exact Our approx.

0 0.00000 0.00000 0.00000 0.00000
π
20

0.15643 0.15644 0.00000 0.00000
2π
20

0.30901 0.30902 0.00000 0.00000
3π
20

0.45400 0.45400 0.00000 0.00000
4π
20

0.58778 0.58778 0.00000 0.00000
5π
20

0.70711 0.70711 0.00000 0.00000
6π
20

0.80902 0.80902 0.00000 0.00000
7π
20

0.89101 0.89101 0.00000 0.00000
8π
20

0.95106 0.95106 0.00000 0.00000
9π
20

0.98769 0.98769 0.00000 0.00000
10π
20

1.00000 1.00000 0.00000 0.00000

Comparison of approximations and exact solution with n = 8.

As illustrated in the examples of this paper, the modified Taylor-series
method is a powerful procedure for solving FIDEs. Using the proposed method
in solving integral equation shows the high capability of this method compared
to other methods.

The authors would like to thank referees for their valuable��comments��and
suggestions. This work is supported by Srinakharinwirot�University,�Thailand
(grant number 017/2563).
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