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[. INTRODUCTION

Mathematical modeling of real-life problems usually results in functional
equations, e.g. differential equations, integro-differential equations, stochastic
equations and others. Integro-differential equation is a hybrid of integral and
differential equations which have found extensive applications in sciences and
engineering.

In particular, integro-differential equations arise in fluid dynamics, biolog-
ical models and chemical kinetics. The analytical solutions of some integro-
differential equations (IDEs) cannot be found, thus numerical method are re-
quired. The numerical methods for linear integro-differential equations have
been extensively studied by many authors [4,6,9]. There is an alternative
method for approximating the solution of IDEs that is a Taylor series expan-
sion. The Taylor series expansion is one of the methods used to calculate the
solution of differential equations(DEs) and integral equations (IEs) since it is
easy to compute and efficient [1-3,5,9]. Those who started to use taylor in
solving IEs were Y.Ren et al. [10] for Fredholm integral equation and Pallop
et al. [11] have modified Y.ren’s method for more accurate results and used
for wider class of Fredholm integral equation and Itthithep et al. [8] used this
method for the solution of Volterra integro-differential equation.

In this research, we use [8] methods to approximate the solution of Fred-
holm integro-differential equations (FIDEs), given in the form

class of second kind integral equations, J. Comput. Appl.

10.Y. Ren, B. Zhang, H. Qiao, A simple Taylor-series expansion for a
Vol.110(1999), 15-24.

() - / ke, Oy()dt = f(z), y(0) = yo. 1)

where the functions f(x) and the kernel k(z,t) are known.
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II.  MODIFIED TAYLOR-SERIES EXPANSION METHOD

We consider the FIDE in form (1)
b
y(@) = [ K todt = 7o) 9(0) = o

The Taylor series approximation can be made for the solution y(¢) in the (1):

"( "( (n)
()~ y(@) +y/ @) =)+ D U
(2)
Substituting (2) for y(t) in the integral in (1),
b ae
V@)~ [ ke o) + @) + Lo+
' (3)
(n) (5
+2 nf )(t—x)”} dt = f(x)
We obtain,
— | k(z,t)dt|y(z)+ |1 — [ k(z,t)(t—z)dt|y/(z) + -
oo - frnensar

n [_ 1 /ablf(a:,t)(t - m)"dt] Y (@) ~ f(x).

n!

Next, we integrate both sides of (1) with respect to ¢ from 0 to z,

/Ozy’(t) dt—/om/abk(s,t)y(t) dtds = /Omf(t) dt. (5)

Application of integration by parts yields

0

+ (~D)*EVRE Y@y ()]s + () / PPy i (©)

Where Py(t) =1 and k=1. So P)(t) =0 fori =1,2,... k.
So that,
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Substituting (7) for [ 4/(¢)dt in the integral in (5), we obtain

// (5. 1)y dtds_/f (8)

Similarly, Substitute y(t) is replaced by y(x) in (8) by the right sides of (2) to

obtain
Notes // st{ y()(t—:c)+y//2(f)(t—x)2+'“
(9)
+ "J(":lf )(t—x)"} dtds = / /
We obtain,

[1—// stdtds} {// stt—xdtds} (z)
_[% /0 /abk(s,t)(t—x)thdsly”(x) —
[n'// (s,)( t—x"dtds] ™ (z) = y(0 /f (10)

Next, we differentiate both sides of (1) n times, one obtains

s - 2| [ s ar] = @) )
0 = 2| [ ke two at] = (12)
/) - o] [t at] = o) (13

Using Leibnitz rule, we find that

gﬂ Uabk(m,t)y(t) dt} = /ab ;:n {k(x,t)}y(t) dt = /ab {kén)(x,t)}y(t) dt

Therefore,

b
ww—/%mmwmmzfm, (14)
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b
y(z) - / K ty(t) dt = f(x), (15)

b
y™ (x) —/ KD (e, ty(t) dt = f0 V(). (16)

Substitute y(t) is replaced by y(z) in (14)-(16) by the right sides of (2) to
obtain

" b / / //($) 2
y'(@) — | Ket)|y() + @)t — o) + Lo -2 +
/a [ 2 (17)
() (4
| a = ro)
/@)= [ e 0ds|ate) + -0+ L a4
' (n) | (18)
+ 2 nfx) (t - :z;)"} dt = f"(x),
v ) — [ KO0y + v - + LDy
/a [ 2 (19)
+ y(n;@ (t - x)"] dt = f" ) (x)
We obtain,
{—/ K (z,t) dt}y(m)—i— [—/ El(z, ) (t — ) dt|y (z)
+ :1 —% i k;(x,t)(t—xﬁdt] y'(x) + -
.
e R RO (20)
r b b
—/ Kl (x,t) dt]y(w)—i— {—/ Kl (2, t)(t —z)dt|y (z)
+:—% i kg(x,t)(t—x)Zdt]y”(x)+---
# = o [ R oyl - 1w @1
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[_ /ab k0= (2, 1) dt]y(x) + {_ /ab KD (2, 4)(t — 2) dt |y (2)

+:—% k= (2, ) (t — )dt} "(x) 4 -

Notes oL ]g(”*l)(x,t)(t — )" dt] y " (x) = [ () (22)

n! *
Combining equations (4), (10), (20)-(22) , we obtain

=[5 [P k(s,t) At ds— [7[ k(s t)(t —x)dtds - ~L [T [P k(s, ¢)(t — )" dtds

—Of:ak(x,t) dt 11— [Tk, t)(t—a)dt - L[ ke t)(t—2)"dt
— [V K. (2, 1) dt —fbk’ (2,8)(t — z)dt - 1 fgk/ (z,8)(t — z)" dt
—ffk;’(x,t)dt f k;”:z:t)(t—:c)dt —i,fa"k;”a:t t—a:)"dt 8
—ffké"*l tydt — [Pk 1(:1: )t —x)dt —ni )t —x)"dt
y() y(0) + [y f(t)dt
al
y'(x x
y///(‘r) — f,/(l‘) (23)
¥ (a) oD (@)

Equation (23) becomes a linear systems of n 4+ 1 algebraic equation for n + 1
unknowns y(z),y'(x),y"(z), . ..,y™ (z), which can be solved easily use of initial
condition.

[1I.  NUMERICAL EXAMPLES

We present in this section numerical result for some examples to show
efficient and accuracy of the modified Taylor-series expansion method, and the
corresponding absolute errors between their values as e,(z) = |exact,(x) —

appn()].

Example 3.1. Consider
1
y'(x) — / (xt)y(t)dt =3 + 62, y(0)=0 (24)
0

such that k(x,t) = ot |, f(x) =3+6z,a =0, b =1 and exact solution is
y(z) = 42? + 3z.
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Let n = 2. We apply equation (23) to approach the equation (24) that is,

We

fox fol st)dtds

— Iy fol (st)(t —z)dtds

2f0 fo (st) t—x2dtds
2f0 )t —z)dt

—fo (xt) dt 1—[0 (xt)(t — ) dt
_fo _fo )t —x)dt fo
y(x) Jy (34 6t)dt
y'(z) | = 3+ 6x
//(x) 6
obtain,
= T T R
—sr  1l—gr+322 —gz+3a®— 2% | x
iy i1 AT A
2 3 T 37 g 3737
y(z) 32 + 3z
y(z) | =1 3+6x
y'(x) 6

And approximation is

y(z) = 42 + 3z.

)t —x)dt

(26)

Table 1: Numerical approximation for y(z) in Example 3.1 with n = 2.

x y(x) Absolute error
Exact  Our approx. Exact Our approx.

0.0 0.00000 0.00000 0.00000 0.00000
0.1 0.34000 0.34000 0.00000 0.00000
0.2 0.76000 0.76000 0.00000 0.00000
0.3 1.26000 1.26000 0.00000 0.00000
0.4 1.84000 1.84000 0.00000 0.00000
0.5 2.50000 2.50000 0.00000 0.00000
0.6 3.24000 3.24000 0.00000 0.00000
0.7 4.06000 4.06000 0.00000 0.00000
0.8 4.96000 4.96000 0.00000 0.00000
0.9 5.94000 5.94000 0.00000 0.00000
1.0 7.00000 7.00000 0.00000 0.00000

2021 Global Journals



Notes

Tt approx EXCCT |

Figure 1: Comparison of approximations and exact solution with n = 2.

FExample 3.2. As a second example, we solve the following Fredholm integro-
differential equation

() - / (- 2Ryt =4, y(0) = —2 (27)

1

such that k(z,t) =1 — 2%, f(z) =4 ,a= -1, b= 1 and exact solution is
y(a) = -2 + ga°

Let n = 3. We apply equation (23) to approach the equation (27) that is,

L— [T dtds - —%foxf (1 — s22)(t — x)3 dt ds
— [N (1 =22 dt ~Lha- 2t2 (t—x)>dt
—fl( 2%x) dt —%fl —2022)(t — x)® dt
— [1(~2t%) at — L st2 —x)dt
y(z) =2+ f0x<4) dt
y'(x) | _ 4
y'(x) | 0 ' 2%)
y///(x) 0
We obtain,
1+22% — 22 —22*+22% §a° — fa® — fo —5a% + Lot + 1a?
2,2 2,..3 1,.4 4.2 1 1.5 2.3 1
§304 2 ! 3%1 ;i—Zx §2$ 5 323: 3 ¥ 2+41—5x2 —Z N
iy T AR T T
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And approximation is

4
y(r) = =2 + ca”.

3
9

Example 3.3. Next, we discuss the Fredholm integro-differential equation

such that k(z,t) =t , f(z)

t
is y(x) = sin(z).

= —14cos(z) ,a=0,b= 7 and exact solution

(t)y(t)dt = — 1+ cos(x),

y(0) =0

(30)

Table 2: Numerical approximation for y(x) in Example 3.2 with n = 3.

© 2021 Global Journals

x y(x) Absolute error
Exact  Our approx. Exact Our approx.
-1.0 -2.44444 -2.44444 0.00000 0.00000
-0.8  -2.22755 -2.22755 0.00000 0.00000
-0.6  -2.09600 -2.09600 0.00000 0.00000
-0.4 -2.02844 -2.02844 0.00000 0.00000
-0.2  -2.00356 -2.00356 0.00000 0.00000
0.0 -2.00000 -2.00000 0.00000 0.00000
0.2 -1.99644 -1.99644 0.00000 0.00000
0.4 -1.97156 -1.97156 0.00000 0.00000
0.6 -1.90400 -1.90400 0.00000 0.00000
0.8 -1.77244 -1.77244 0.00000 0.00000
1.0 -1.55556 -1.55556 0.00000 0.00000

Notes
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Figure 2: Comparison of approximations and exact solution with n = 3.

Let n = 8. We apply equation (23) to approach the equation (30) that is,

L= [y fp (@) dtds - fo Jo2 ()t —)* dt ds
— [ @) dt L t )8 dt

0 e >

0 I
y(z) Jo (=14 cos(t)) dt
y'(z) —1 4 cos(z)
y'(x) | = — sin(z) (31)
¥ (a) sin()
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Table 3: Numerical approximation for y(x) in Example 3.3 with n = 8.

Figure 3: Comparison of approximations and exact solution with n = 8.

T y(x) Absolute error
Exact  Our approx. Exact Our approx.
0 0.00000 0.00000 0.00000 0.00000
55 0.15643 0.15644 0.00000 0.00000
%—g 0.30901 0.30902 0.00000 0.00000
ST 0.45400 0.45400 0.00000 0.00000
g—g 0.58778 0.58778 0.00000 0.00000
g—g 0.70711 0.70711 0.00000 0.00000
g—g 0.80902 0.80902 0.00000 0.00000
;—g 0.89101 0.89101 0.00000 0.00000
S 0.95106 0.95106 0.00000 0.00000
2% 0.98769 0.98769 0.00000 0.00000
120—0” 1.00000 1.00000 0.00000 0.00000
-
0.8
0.6
0.4+
02
1] T T T T T 1
x &= 3 xStz 3z Ix =
16 8 16 4 16 8 16 2

As illustrated in the examples of this paper, the modified Taylor-series
method is a powerful procedure for solving FIDEs. Using the proposed method
in solving integral equation shows the high capability of this method compared

to other methods.
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