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In this works, we study the global existence and intrinsic decay rates for the
energy of a kirchhoff type in a nonlinear viscoelastic equation

(1.1)


utt(x, t)− Φ (x)

[
µ
(
‖∇u (t)‖2L2(Ω)

)
∆u(x, t)−

∫ t

0

h (t− s) ∆u(x, s)ds

]
+but(x, t) = 0, x ∈ Ω× R∗+,

with initial data

(1.2)u(x, 0) = u0 (x) , ut(x, 0) = u1 (x) , x ∈ Ω,

and boundary conditions

(1.3)u (x, t) = 0, (x, t) ∈ ∂Ω× R+,

where Ω is a bounded domain in Rn, h (.) : R+ −→ R+ are given functions which
will be spaced later and u0 (x), u1 (x) are given initial data belonging to appropriate
space. All the parameter b are assumed to be positive constants. The function Φ (x)

is the density, (ρ (x))
−1

= Φ(x), Φ(x) > 0, for all x ∈ Ω, and

µ (s) := ξ0 + ξ1s
γ ,

where s > 0, ξ0 > 0, ξ1 > 0 and γ ≥ 1. For more information on using Kirchhoff
type, see [4− 6].

Abstract- In this work we consider a nonlinear hyperbolic equations of Kirch-hoff type in 
viscoelasticity. By using the potential well theory we obtain the existence of a global solution. 
Then, we prove the intrinsic decays for the energy of the nonlinear hyperbolic equations of 
Kirchhoff type in viscoelasticity of relaxation kernels described by the inequality 

for all with H convex.
Keywords and phrases: global existence, exponential decay, polynomial decay, 
viscoelastic damping, intrinsic decay rates.
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The motivation of our work is due to some results regarding the following research
papers: Boumaza, N and Boulaaras, S. [2] studied the general decay for Kirchhoff
type in viscoelasticity with not necessarily decreasing kernel of (1.1)−(1.3) .Marcelo
M. Irena Lasiecka and Claudete M. Webler. [3] studied the intrinsic decay rates for
the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods
with variable density. M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka
and F. A. Falcao Nascimento. [7] studied the intrinsic decay rate estimates for
the wave equation with competing viscoelastic and frictional dissipative effects.
I. Lasiecka, S. A. Messaoudi and M. I. Mustafa. [8] studied the note on intrinsic
decay rates for abstract wave equations with memory. I. Lasiecka and X. Wang.
[9] studied the intrinsic decay rate estimates for semilinear abstract second order
equations with memory. Cavalcanti M. Filho VND. Cavalcanti JSP. Soriano JA.
[10] studied the existence and uniform decay rates for viscoelastic problems with
nonlinear boundary damping. For more results in this direction, see [11− 15].
However, [1− 3], [4− 6] and [11− 15] did not study the intrinsic decay rates for

the energy of problem (1.1)− (1.3) of relaxation kernels described by the inequality
h′ (t) ≤ −H (h (t)) for all t ≥ 0, withH convex. Motivated by the above research, we
will consider the intrinsic decay rates for the energy of relaxation kernels described
by the inequality h′ (t) ≤ −H (h (t)) for all t ≥ 0 of the model (1.1)− (1.3) in this
paper.

The outline of the paper is as follows. In the second section we define the energy
E (t) associated to (1.1)− (1.3) and show that it is a non-increasing function of t.
In section 3, we prove global existence of solution of (1.1)− (1.3). Finally, in section
4, we prove the intrinsic decay rates for the energy of the posed problem.

In this section, we define the energy E (t) associated to (1.1)−(1.3) and show that
it is a non-increasing function of t. We suppose that the kernel h (t) is a function
satisfying

The relaxation function h : R+ −→ R+ is a C1∩L1 decreasing function and satisfies

h (0) > 0 and
∫ t

0

h (s) ds < ξ0.

(i) In addition to Assumption 1, we require

h′ (t) ≤ −H (h (t)) for all t ≥ 0,

where H ∈ C1 (R+) which H (0) = 0 is a given strictly increasing and convex
function. Moreover,

H ∈ C2 (0,∞) and lim inf
x→0+

{
x2H ′′ (x)− xH ′ (x) +H (x)

}
≥ 0.

(ii) With reference to the function H introduced above, let y (t) be the solution of
the ODE

y′ (t) +H(y (t)) = 0, y (0) = h (0) > 0.
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Also, a result of local existence for problem (1.1) − (1.3) for ξ1 = 0 has been
proved in [1] , for ξ1 6= 0, in the same way as [1], we get the same basic results for
the local existence of problem (1.1)−(1.3) with a slight change in some calculations
that do not affect the basic results.

II. Assumptions and Main Results

Assumptions 1

Assumptions 2
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(iii) We assume that there exists α0 ∈ [0, 1) such that y1−α0 ∈ L1(1,∞).
In order to formulate the long-time behavior results, we recall the binary notation

(2.1)



(h ∗ w) (t) :=

∫ t

0

h (t− s)w (s) ds,

∫
Ω

(h ◦ w) (t) dx :=

∫ t

0

h (t− s) ‖w (x, s)− w (x, t)‖2L2(Ω) ds,

(h � w) (t) := ρ (x)

∫ t

0

h (t− s) (w (t)− w (s)) ds.

We define the corresponding energy functional by

E (t) : =
1

2
‖ut (t)‖2L2ρ(Ω) +

1

2

(
ξ0 −

∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

+
ξ1

2 (γ + 1)
‖∇u (t)‖2(γ+1)

L2(Ω) +
1

2

∫
Ω

(h ◦ ∇u) (t) dx. (2.2)

Note that, in view of (2.1), we have that

(2.3)0 < l :=

(
ξ0 −

∫ ∞
0

h (s) ds

)
≤ ξ0 for all (x, t) ∈ Ω× R+.

The energy satisfies the following identity

We have the identity

d

dt
{E (t)} =

1

2

∫
Ω

(h′ ◦ ∇u) (t) dx− 1

2
h (t) ‖∇u (t)‖2L2(Ω) − b ‖ut (t)‖2L2ρ(Ω)

≤ 0. (2.4)

Proof. Multiplying (1.1) by ρ (x)ut and integration over Ω, we have

∫
Ω

ρ (x)uttutdx−
∫

Ω

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
∆u(x, t)ut (x, t) dx

+

∫
Ω

ut (x, t)

[∫ t

0

h (t− s) ∆u (x, s) ds

]
dx+ b

∫
Ω

ρ (x)u2
t (x, t)dx

= 0. (2.5)

We have

(2.6)
∫

Ω

ρ (x)uttutdx =
1

2

d

dt

{
‖ut (t)‖2L2ρ(Ω)

}
.
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Lemma 1. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

And by using integration by parts, we have

−
∫

Ω

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
∆u(x, t)ut (x, t) dx

= −
(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)∫
Ω

∆u(x, t)ut (x, t) dx

=
(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)∫
Ω

∇u (x, t) .∇ut (x, t) dx

=
(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

) 1

2

d

dt

{∫
Ω

|∇u (x, t)|2 dx
}

=
ξ0

2

d

dt

{
‖∇u (t)‖2L2(Ω)

}
+
ξ1

2
‖∇u (t)‖2γL2(Ω)

d

dt

{
‖∇u (t)‖2L2(Ω)

}

=
ξ0

2

d

dt

{
‖∇u (t)‖2L2(Ω)

}
+

ξ1

2 (γ + 1)

d

dt

{
‖∇u (t)‖2(γ+1)

L2(Ω)

}

=
d

dt

{
1

2

(
ξ0 +

ξ1

(γ + 1)
‖∇u (t)‖2γL2(Ω)

)
‖∇u (t)‖2L2(Ω)

}
. (2.7)

And by using integration by parts, we have∫
Ω

ut (x, t)

[∫ t

0

h (t− s) ∆u (x, s) ds

]
dx

= −
∫ t

0

h (t− s)
[∫

Ω

∇u (x, s) .∇ut (x, t) dx

]
ds,

and using

−∇u (x, s) .∇ut (x, t) =
1

2

d

dt

{
|∇u (x,s)−∇u (x,t)|2

}
− 1

2

d

dt

{
|∇u (x,t)|2

}
,

then ∫
Ω

ut (x, t)

[∫ t

0

h (t− s) ∆u (x, s) ds

]
dx

=

∫ t

0

h (t− s)
∫

Ω

(
1

2

d

dt

{
|∇u (x,s)−∇u (x,t)|2

})
dxds

−
∫ t

0

h (t− s)
∫

Ω

(
1

2

d

dt

{
|∇u (x,t)|2

})
dxds

=
1

2

∫ t

0

h (t− s)
(
d

dt

{∫
Ω

|∇u (x,s)−∇u (x,t)|2 dx
})

ds

−1

2

∫ t

0

h (t− s)
(
d

dt

{
‖∇u (t)‖2L2(Ω)

})
ds, (2.8)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

by using (2.1) , we get

1

2

∫ t

0

h (t− s) d
dt

{∫
Ω

|∇u (x,s)−∇u (x,t)|2 dx
}
ds

=
1

2

∫ t

0

d

dt

{
h (t− s)

(∫
Ω

|∇u (x,s)−∇u (x,t)|2 dx
)}

ds

−1

2

∫ t

0

h′ (t− s)
(∫

Ω

|∇u (x,s)−∇u (x,t)|2 dx
)
ds

=
1

2

d

dt

{∫ t

0

h (t− s)
∫

Ω

|∇u (x,s)−∇u (x,t)|2 dxds
}

−1

2

∫ t

0

h′ (t− s)
(∫

Ω

|∇u (x,s)−∇u (x,t)|2 dx
)
ds

=
1

2

d

dt

{∫
Ω

(h ◦ ∇u) (t) dx

}
− 1

2

∫
Ω

(h′ ◦ ∇u) (t) dx, (2.9)

and

−1

2

∫ t

0

h (t− s)
(
d

dt

{
‖∇u (t)‖2L2(Ω)

})
ds

= −1

2

(∫ t

0

h (t− s) ds
)(

d

dt

{
‖∇u (t)‖2L2(Ω)

})

= −1

2

(∫ t

0

h (s) ds

)(
d

dt

{
‖∇u (t)‖2L2(Ω)

})

= −1

2

d

dt

{(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

}
+

1

2
h (t) ‖∇u (t)‖2L2(Ω) . (2.10)

By replacement (2.9) and (2.10) into (2.8) , we get

∫
Ω

ut (x, t)

[∫ t

0

h (t− s) ∆u (x, s) ds

]
dx

=
1

2

d

dt

{∫
Ω

(h ◦ ∇u) (t) dx

}
− 1

2

∫
Ω

(h′ ◦ ∇u) (t) dx

−1

2

d

dt

{(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

}
+

1

2
h (t) ‖∇u (t)‖2L2(Ω)

=
1

2

d

dt

{∫
Ω

(h ◦ ∇u) (t) dx−
(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

}

−1

2

∫
Ω

(h′ ◦ ∇u) (t) dx+
1

2
h (t) ‖∇u (t)‖2L2(Ω) . (2.11)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

By combining (2.6), (2.7) and (2.11) into (2.5), we get

1

2

d

dt

{
‖ut (t)‖2L2ρ(Ω)

}
+
d

dt

{
1

2

(
ξ0 +

ξ1

(γ + 1)
‖∇u (t)‖2γL2(Ω)

)
‖∇u (t)‖2L2(Ω)

}

+
1

2

d

dt

{∫
Ω

(h ◦ ∇u) (t) dx−
(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

}

−1

2

∫
Ω

(h′ ◦ ∇u) (t) dx+
1

2
h (t) ‖∇u (t)‖2L2(Ω) + b ‖ut (t)‖2L2ρ(Ω)

= 0,

then
d

dt

{
1

2
‖ut (t)‖2L2ρ(Ω) +

1

2

(
ξ0 −

∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω)

+
ξ1

2 (γ + 1)
‖∇u (t)‖2(γ+1)

L2(Ω) +
1

2

∫
Ω

(h ◦ ∇u) (t) dx

}

=
1

2

∫
Ω

(h′ ◦ ∇u) (t) dx− 1

2
h (t) ‖∇u (t)‖2L2(Ω) − b ‖ut (t)‖2L2ρ(Ω) , (2.12)

by using (2.2) into (2.12) , we get (2.4) .
The proof of Lemma 1 is completes.

In this section we show that any solution of (1.1)− (1.3) is bounded and global,
provided that E (0) is positive and small enough.

Assume that (2.3) holds. Then the solution to problem (1.1) − (1.3)
is bounded and global.

Proof. It suffi ces to show that ‖ut (t)‖2L2ρ(Ω) + ‖∇u (t)‖2L2(Ω) is bounded indepen-
dently of t.
By using (2.3) and (A1) into (2.12) , we get

ω1 ‖ut (t)‖2L2ρ(Ω) + ω2 ‖∇u (t)‖2L2(Ω) ≤ E (t) ≤ E (0) ,

where ω1 > 0 and ω2 > 0, then

‖ut (t)‖2L2ρ(Ω) + ‖∇u (t)‖2L2(Ω) ≤ ω3E (0) ,

where ω3 > 0.
Then the solution to problem (1.1)− (1.3) is bounded and global.
The proof of Theorem 1 is completes.

Now, we are in a position to state our main result.

Let us assume that Assumption 1 and Assumption 2 are the place.
Then, there exists a positive constant T0 > 0 such that

E ((n+ 1)T ) + H̃
(
C−1

9 E ((n+ 1)T )
)
≤ E (nT ) , n = 1, 2, 3...,

for all T > T0 and all n ∈ N , where H̃ is given in (4.49) and C9 is given in (4.52) .
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Theorem 1. 

IV. Decay of Solutions

Lemma 2.  

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Proof. For this purpose, a by now standard procedure is to multiply (1.1) by the
viscoelastic multiplier

(h � u) (t) = ρ (x)

∫ t

0

h (t− s) (u (t)− u (s)) ds,

and integrating over Ω× (nT, (n+ 1)T ), we infer that∫ (n+1)T

nT

(utt (t) , (h � u) (t))L2(Ω) dt

−
∫ (n+1)T

nT

(
Φ (x)

(
ξ0 + ξ1 ‖∇u (t)‖2γL2(Ω)

)
∆u (t) , (h � u) (t)

)
L2(Ω)

dt

+

∫ (n+1)T

nT

(
Φ (x)

(∫ t

0

h (t− s) ∆u (s) ds

)
, (h � u) (t)

)
L2(Ω)

dt

+b

∫ (n+1)T

nT

(ut (t) , (h � u) (t))L2(Ω) dt

= 0. (4.1)

We shall analyze the above terms separately.
Direct calculation give

(utt (t) , (h � u) (t))L2(Ω)

=
d

dt

{(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

}

−
(
ut (t) ,

d

dt

(∫ t

0

h (t− s) (u (t)− u (s)) ds

))
L2ρ(Ω)

=
d

dt

{(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

}

−
(
ut (t) ,

(∫ t

0

h′ (t− s) (u (t)− u (s)) ds

))
L2ρ(Ω)

−
(
ut (t) ,

(∫ t

0

h (t− s)ut (t) ds

))
L2ρ(Ω)

,

then ∫ (n+1)T

nT

(utt (t) , (h � u) (t))L2(Ω) dt

=

(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2
ρ
(Ω)

∣∣∣∣∣
(n+1)T

nT

−
∫ (n+1)T

nT

(
ut (t) ,

∫ t

0

h′ (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

dt

−
∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖ut (x, t)‖2L2ρ(Ω) dt. (4.2)
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For the second term, by using integration by parts, we have

−
∫ (n+1)T

nT

(
Φ (x)

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
∆u (t) , (h � u) (t)

)
L2(Ω)

dt

= −
∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)(
∆u (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2(Ω)

dt

=

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)(
∇u (t) ,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt.

(4.3)

For the third term, by using integration by parts, we have∫ (n+1)T

nT

(
Φ (x)

∫ t

0

h (t− s) ∆u (s) ds, (h � u) (t)

)
L2(Ω)

dt

= −
∫ (n+1)T

nT

(∫ t

0

h (t− s)∇u (s) ds,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt

=

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt

−
∫ (n+1)T

nT

(∫ t

0

h (t− s)∇u (t) ds,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt. (4.4)

Combining (4.2)− (4.4) into (4.1) , we arrive at

(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

∣∣∣∣∣
(n+1)T

nT

−
∫ (n+1)T

nT

(
ut (t) ,

∫ t

0

h′ (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

dt

−
∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖ut (x, t)‖2L2ρ(Ω) dt

+

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)(
∇u (t) ,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt

+

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt

−
∫ (n+1)T

nT

(∫ t

0

h (t− s)∇u (t) ds,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt

+b

∫ (n+1)T

nT

(ut (t) , (h � u) (t))L2(Ω) dt

= 0, (4.5)
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then (4.5) is equivalent∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖ut (x, t)‖2L2ρ(Ω) dt

=

(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

∣∣∣∣∣
(n+1)T

nT

−
∫ (n+1)T

nT

(
ut (t) ,

∫ t

0

h′ (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

dt

+

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)(
∇u (t) ,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt

+

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt

−
∫ (n+1)T

nT

(∫ t

0

h (t− s)∇u (t) ds,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt

+b

∫ (n+1)T

nT

(ut (t) , (h � u) (t))L2(Ω) dt

= J1 + J2 + J3 + J4 + J5 + J6. (4.6)

Estimate for |J1| , where

J1 : = ut ((n+ 1)T ) ,

∫ (n+1)T

0

h ((n+ 1)T − s) (u ((n+ 1)T )− u (s)) ds

)
L2ρ(Ω)

− ut (nT ) ,

∫ nT

0

h (nT − s) (u (nT )− u (s)) ds

)
L2ρ(Ω)

.

Now, let m ∈ N be an arbitrary, natural number.
By using Young’s inequality (for ε = 1), we get

ut (mT ) ,

∫ mT

0

h (mT − s) (u (mT )− u (s)) ds

)
L2ρ(Ω)

=

∫ mT

0

h (mT − s) (ut (mT ) , (u (mT )− u (s)))L2ρ(Ω) ds

≤
∫ mT

0

h (mT − s)
[

1

2
‖ut(mT )‖2L2ρ(Ω) +

1

2
‖u(mT )− u (s)‖2L2ρ(Ω)

]
ds

=
1

2

∫ mT

0

h (mT − s) ds
)
‖ut(mT )‖2L2ρ(Ω)

+
1

2

∫ mT

0

h (mT − s) ‖u(mT )− u (s)‖2L2ρ(Ω) ds, (4.7)

by using

(4.8)‖u (t)‖2L2ρ(Ω) ≤ ‖ρ‖
2
L2(Ω) ‖∇u (t)‖2L2ρ(Ω) ,
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we get

1

2

∫ mT

0

h (mT − s) ‖u(mT )− u (s)‖2L2ρ(Ω) ds

≤ 1

2
‖ρ‖2L2(Ω)

∫ mT

0

h (mT − s) ‖∇u(mT )−∇u (s)‖2L2(Ω) ds

=
1

2
‖ρ‖2L2(Ω)

∫
Ω

(h ◦ ∇u) (mT ) dx, (4.9)

by replacement (4.9) into (4.7) and using
∫ mT

0

h (mT − s) ds =

∫ mT

0

h (s) ds, we

get

ut (mT ) ,

∫ mT

0

h (mT − s) (u (mT )− u (s)) ds

)
L2ρ(Ω)

≤ 1

2

∫ mT

0

h (s) ds

)
‖ut(mT )‖2L2ρ(Ω)

+
1

2
‖ρ‖2L2(Ω)

∫
Ω

(h ◦ ∇u) (mT ) dx, (4.10)

by using (2.2), we get

(4.11)



1

2
‖ut(mT )‖2L2ρ(Ω) ≤ E (mT ) ,

and

1

2

∫
Ω

(h ◦ ∇u) (mT ) dx ≤ E (mT ) ,

then, by combining (4.11) into (4.10), we get

ut (mT ) ,

∫ mT

0

h (mT − s) (u (mT )− u (s)) ds

)
L2ρ(Ω)

≤
∫ mT

0

h (s) ds

)
E (mT ) + ‖ρ‖2L2(Ω)E (mT )

≤
{
‖h‖L1(0,∞) + ‖ρ‖2L2(Ω)

}
E (mT ) ,

then

(4.12)|J1| ≤ C1 [E((n+ 1)T ) + E(nT )] ,

where

C1 := ‖h‖L1(0,∞) + ‖ρ‖2L2(Ω) .

Estimate for |J2| , where

J2 := −
∫ (n+1)T

nT

(
ut (t) ,

∫ t

0

h′ (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

dt.
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By using Young’s inequality
(
for ε =

ε1

2

)
, we get

|J2| ≤ ε1

∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+
1

4ε1

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h′ (t− s) (u (t)− u (s)) ds

∥∥∥∥2

L2ρ(Ω)

dt. (4.13)

By using (4.8) , Cauchy-Schwarz inequality and (2.1), we get

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h′ (t− s) (u (t)− u (s)) ds

∥∥∥∥2

L2ρ(Ω)

dt

≤ ‖ρ‖2L2(Ω)

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h′ (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt

≤ −‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫ t

0

h′ (t− s) ‖∇u (t)−∇u (s)‖2L2(Ω) dsdt

= −‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt. (4.14)

By replacement (4.14) into (4.13), we get

|J2| ≤ ε1

∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

− 1

4ε1
‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt. (4.15)

Estimate |J3| , where

J3 :=

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)(
∇u (t) ,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt.

By using Young’s inequality
(
for ε =

ε2

2

)
, we get

|J3| ≤ ε2

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)2

‖∇u (t)‖2L2(Ω) dt

+
1

4ε2

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt, (4.16)

by using ‖∇u (t)‖2γL2(Ω) ≤
(

2 (γ + 1)

ξ1

E (0)

) 2γ

2 (γ + 1)
, we get

ε2

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)2

‖∇u (t)‖2L2(Ω) dt

≤ ε2 ξ0 + ξ1

(
2 (γ + 1)

ξ1

E (0)

) 2γ
2(γ+1)

)2 ∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt, (4.17)
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by using Cauchy-Schwarz inequality and (2.1), we get

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

≤
(∫ t

0

h (t− s) ds
)∫ t

0

h (t− s) ‖∇u (t)−∇u (s)‖2L2(Ω) ds

≤ ‖h‖L1(0,∞)

∫
Ω

(h ◦ ∇u) (t) dx, (4.18)

by replacement (4.17) and (4.18) into (4.16) , we get

|J3| ≤ ε2 ξ0 + ξ1

(
2 (γ + 1)

ξ1

E (0)

) 2γ
2(γ+1)

)2 ∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt

+
1

4ε2
‖h‖L1(0,∞)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt. (4.19)

Estimate |J4| , where

J4 :=

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt.

By using (4.18), we get

(4.20)|J4| ≤ ‖h‖L1(0,∞)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt.

Now, estimate |J5|, where

J5 := −
∫ (n+1)T

nT

(∫ t

0

h (t− s)∇u (t) ds,

∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

)
L2(Ω)

dt.

By using Young’s inequality
(
for ε =

ε3

2

)
, Cauchy-Schwarz inequality and (4.18) , we

get

|J5| ≤ ε3

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s)∇u (t) ds

∥∥∥∥2

L2(Ω)

dt

+
1

4ε3

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt
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Now, estimate |J6|, where

J6 : = b

∫ (n+1)T

nT

(ut (t) , (h � u) (t))L2(Ω) dt

: = b

∫ (n+1)T

nT

(
ut (t) ,

∫ t

0

h (t− s) (u (t)− u (s)) ds

)
L2ρ(Ω)

dt.

By using Young’s inequality
(
for ε =

ε1

2

)
, (4.8) and (4.18) , we get

|J6| ≤ b2ε1

∫ (n+1)T

nT

‖ut (t)‖2L2ρ(Ω) dt

+
1

4ε1

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (u (t)− u (s)) ds

∥∥∥∥2

L2ρ(Ω)

dt

≤ b2ε1

∫ (n+1)T

nT

‖ut (t)‖2L2ρ(Ω) dt

+
1

4ε1
‖ρ‖2L2(Ω)

∫ (n+1)T

nT

∥∥∥∥∫ t

0

h (t− s) (∇u (t)−∇u (s)) ds

∥∥∥∥2

L2(Ω)

dt

≤ b2ε1

∫ (n+1)T

nT

‖ut (t)‖2L2ρ(Ω) dt

+
1

4ε1
‖ρ‖2L2(Ω) ‖h‖L1(0,∞)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt. (4.22)
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≤ ε3 ‖h‖L1(0,∞)

∫ (n+1)T

nT

∫ t

0

h (t− s) ‖∇u (t)‖2L2(Ω) dsdt

+
1

4ε3
‖h‖L1(0,∞)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

= ε3 ‖h‖L1(0,∞)

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt

+
1

4ε3
‖h‖L1(0,∞)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt. (4.21)

Combining (4.12) , (4.15) and (4.19)−(4.22) into (4.6), and recalling that ‖h‖L1(0,∞) <

ξ0, we write ∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖ut (x, t)‖2L2ρ(Ω) dt

≤ C1 [E((n+ 1)T ) + E(nT )]
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+ε1

∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

− 1

4ε1
‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt

+ε2 ξ0 + ξ1

(
2 (γ + 1)

ξ1

E (0)

) 2γ
2(γ+1)

)2 ∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt

+
1

4ε2
ξ0

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ξ0

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ε3ξ0

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt

+
1

4ε3
ξ0

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+b2ε1

∫ (n+1)T

nT

‖ut (t)‖2L2ρ(Ω) dt

+
1

4ε1
ξ0 ‖ρ‖

2
L2(Ω)

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt. (4.23)

Since h (0) > 0, we can select a points t1 < T with t1 close to zero such that for all
t ≥ t1 ∫ t

0

h (s) ds ≥ t1h(t1) := c0.

Then (4.23) is equivalent

∫ (n+1)T

nT

{
t1h(t1)− ε1

(
1 + b2

)}
‖ut (x, t)‖2L2ρ(Ω) dt

≤ C1 [E((n+ 1)T ) + E(nT )]

− 1

4ε1
‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt

+ε2 ξ0 + ξ1

(
2 (γ + 1)

ξ1

E (0)

) 2γ
2(γ+1)

)2 ∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt

+ξ0

{
1

4ε2
+ 1 +

1

4ε3
+

1

4ε1
‖ρ‖2L2(Ω)

}∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ε3ξ0

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt. (4.24)
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Now, multiplying (1.1) by ρ (x)u (x, t) and integrating over Ω× (nT, (n+ 1)T ), we
infer that ∫ (n+1)T

nT

(utt (t) , u (t))L2ρ(Ω) dt

−
∫ (n+1)T

nT

((
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
∆u (t) , u (t)

)
L2(Ω)

dt

+

∫ (n+1)T

nT

(∫ t

0

h (t− s) ∆u (s) ds, u (t)

)
L2(Ω)

dt

+b

∫ (n+1)T

nT

(ut(x, t), u (x, t))L2ρ(Ω) dt

= 0. (4.25)

By using

utt (t)u (t) =
d

dt
{ut (t)u (t)} − u2

t (t) ,

we get ∫ (n+1)T

nT

(utt (x, t) , u (x, t))L2ρ(Ω) dt

= (ut (t) , u (t))L2ρ(Ω)

∣∣∣(n+1)T

nT
−
∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt. (4.26)

By using integration by parts, we get

−
∫ (n+1)T

nT

((
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
∆u (t) , u (t)

)
L2(Ω)

dt

=

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
(∇u (t) ,∇u (t))L2(Ω) dt

=

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
‖∇u (t)‖2L2(Ω) dt. (4.27)

By using integration by parts, we get∫ (n+1)T

nT

(∫ t

0

h (t− s) ∆u (s) ds, u (t)

)
L2(Ω)

dt

= −
∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (s) ,∇u (t))L2(Ω) dsdt

=

∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t)−∇u (s) ,∇u (t))L2(Ω) dsdt

−
∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t) ,∇u (t))L2(Ω) dsdt

=

∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t)−∇u (s) ,∇u (t))L2(Ω) dsdt

−
∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt. (4.28)
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And

b

∫ (n+1)T

nT

(ut(x, t), u (x, t))L2ρ(Ω) dt

=
b

2

∫ (n+1)T

nT

d

dt

{
‖u (x, t)‖2L2ρ(Ω)

}
dt

=
b

2

{
‖u ((n+ 1)T )‖2L2ρ(Ω) − ‖u (nT )‖2L2ρ(Ω)

}
. (4.29)

By combining (4.26)− (4.29) into (4.25) , we get

(ut (t) , u (t))L2ρ(Ω)

∣∣∣(n+1)T

nT
−
∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
‖∇u (t)‖2L2(Ω) dt

+

∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t)−∇u (s) ,∇u (t))L2(Ω) dsdt

−
∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt

+
b

2

{
‖u ((n+ 1)T )‖2L2ρ(Ω) − ‖u (nT )‖2L2ρ(Ω)

}
= 0. (4.30)

Then (4.30) is equivalent

−
∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
‖∇u (t)‖2L2(Ω) dt

= − (ut (t) , u (t))L2ρ(Ω)

∣∣∣(n+1)T

nT

−
∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t)−∇u (s) ,∇u (t))L2(Ω) dsdt

+

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt

− b
2

{
‖u ((n+ 1)T )‖2L2ρ(Ω) − ‖u (nT )‖2L2ρ(Ω)

}
. (4.31)

To estimate the term

I1 : = − (ut (t) , u (t))L2ρ(Ω)

∣∣∣(n+1)T

nT

: = − (ut ((n+ 1)T ) , u ((n+ 1)T ))L2ρ(Ω) + (ut (nT ) , u (nT ))L2ρ(Ω) .
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By using Young’s inequality (for ε = 1) , (4.8) ,
1

2
‖ut (t)‖2L2ρ(Ω) ≤ E (t) and

1

2
‖∇u (t)‖2L2(Ω) ≤

l−1E (t), we get

(ut (t) , u (t))L2ρ(Ω)

≤ 1

2
‖ut (t)‖2L2ρ(Ω) +

1

2
‖u (t)‖2L2ρ(Ω)

≤ 1

2
‖ut (t)‖2L2ρ(Ω) +

1

2
‖ρ‖2L2(Ω) ‖∇u (t)‖2L2(Ω)

≤ E (t) + ‖ρ‖2L2(Ω) l
−1E (t)

=
{

1 + ‖ρ‖2L2(Ω) l
−1
}
E (t) ,

then

(4.32)|I1| ≤ C2 {E ((n+ 1)T ) + E (nT )} ,

where

C2 := 1 + ‖ρ‖2L2(Ω) l
−1.

To estimate the term

I2 := −
∫ (n+1)T

nT

∫ t

0

h (t− s) (∇u (t)−∇u (s) ,∇u (t))L2(Ω) dsdt.

By using Young’s inequality
(
for ε =

ε4

2

)
and (2.1) , we get

|I2| ≤
1

4ε4

∫ (n+1)T

nT

∫ t

0

h (t− s) ‖∇u (t)−∇u (s)‖2L2(Ω) dsdt

+ε4

∫ (n+1)T

nT

∫ t

0

h (t− s) ‖∇u (t)‖2L2(Ω) dsdt

=
1

4ε4

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ε4

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt. (4.33)

By using (4.8) and
1

2
‖∇u (t)‖2L2(Ω) ≤ l−1E (t), we get

− b
2

{
‖u ((n+ 1)T )‖2L2ρ(Ω) − ‖u (nT )‖2L2ρ(Ω)

}
≤ b

2
‖ρ‖2L2(Ω)

{
‖∇u ((n+ 1)T )‖2L2(Ω) + ‖∇u (nT )‖2L2(Ω)

}
≤ b ‖ρ‖2L2(Ω) l

−1 {E ((n+ 1)T ) + E (nT )}

= C ′2 {E ((n+ 1)T ) + E (nT )} , (4.34)

where

C ′2 := b ‖ρ‖2L2(Ω) l
−1 > 0.
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By combining (4.32)− (4.34) into (4.31) , we can write

−
∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+

∫ (n+1)T

nT

(
ξ0 + ξ1 ‖∇u‖

2γ
L2(Ω)

)
‖∇u (t)‖2L2(Ω) dt

≤ [C2 + C ′2] {E ((n+ 1)T ) + E (nT )}

+
1

4ε4

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ (ε4 + 1)

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt.

(4.35)

On multiplied (4.24) by γ1 and multiplied (4.35) by γ2 and combining suitably, we
get

[
γ1

{
t1h(t1)− ε1

(
1 + b2

)}
− γ2

] ∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+γ2ξ0

∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt+ γ2ξ1

∫ (n+1)T

nT

‖∇u‖2(γ+1)
L2(Ω) dt

≤ {γ1C1 + γ2 [C2 + C ′2]} [E((n+ 1)T ) + E(nT )]

−γ1

1

4ε1
‖ρ‖2L2(Ω) h (0)

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt

+γ1ε2 ξ0 + ξ1

(
2 (γ + 1)

ξ1

E (0)

) 2γ
2(γ+1)

)2 ∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt

+

{
γ1ξ0

{
1

4ε2
+ 1 +

1

4ε3
+

1

4ε1
‖ρ‖2L2(Ω)

}
+ γ2

1

4ε4

}∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ {γ1ε3ξ0 + γ2 (ε4 + 1)}
∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt. (4.36)

Let

(4.37)



ε1 :=
t1h (t1)

2 (1 + b2)
,

ε2 :=
3εξ0

γ1

(
ξ0 + ξ1

(
2(γ+1)
ξ1

E (0)
) 2γ
2(γ+1)

)2 ,

ε3 :=
ε

γ1ξ0

,

ε4 := 2ε,
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and

(4.38)


γ1 :=

4

t1h (t1)
,

γ2 := 1,

by using (4.37) and (4.38) into (4.36) , we get

∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+ξ0

∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt+ ξ1

∫ (n+1)T

nT

‖∇u (t)‖2(γ+1)
L2(Ω) dt

≤ C3 [E((n+ 1)T ) + E(nT )]

−C4

∫ (n+1)T

nT

∫
Ω

(h′ ◦ ∇u) (t) dxdt

+3εξ0

∫ (n+1)T

nT

‖∇u (t)‖2L2(Ω) dt

+C5

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+ (3ε+ 1)

∫ (n+1)T

nT

(∫ t

0

h (s) ds

)
‖∇u (t)‖2L2(Ω) dt, (4.39)

where



C3 := γ1C1 + C2 + C ′2,

C4 := γ1

(
1 + b2

)
2t1h (t1)

‖ρ‖2L2(Ω) h (0) ,

C5 := 4ξ0
t1h(t1)


γ1 ξ0+ξ1

(
2(γ+1)E(0)

ξ1

) 2γ
2(γ+1)

)2

12εξ0
+ 1 + γ1ξ0

4ε +
(1+b2)
2t1h(t1) ‖ρ‖

2
L2(Ω)

+ 1
8ε .

Adding and subtracting in (4.39) the term

−
∫ (n+1)T

nT

∫
Ω

(∫ t

0

h (s) ds

)
|∇u|2 dxdt and

∫ (n+1)T

nT

∫
Ω

a (x) (h ◦ ∇u) (t) dxdt,
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(1− 3ε)

∫ (n+1)T

nT

∫
Ω

(
ξ0 −

∫ t

0

h (s) ds

)
|∇u (t)|2 dxdt
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+

∫ (n+1)T

nT

‖ut (x, t)‖2L2ρ(Ω) dt

+ξ1

∫ (n+1)T

nT

‖∇u (t)‖2(γ+1)
L2(Ω) dt+

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

≤ C3 [E((n+ 1)T ) + E(nT )]

+C5

∫ (n+1)T

nT

∫
Ω

k1 (−h′ ◦ ∇u) (t) dxdt

+C5

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt, (4.40)

where

k1 :=
C4

C5
.

From (4.40), choosing ε suffi ciently small, k1 > 0 and T large enough and using

α1

{
‖ut (t)‖2L2ρ(Ω) + ‖∇u (t)‖2L2(Ω) + ‖∇u (t)‖2(γ+1)

L2(Ω) +

∫
Ω

(h ◦ ∇u) (t) dx

}

≤ E (t) ≤ α2

{
‖ut (t)‖2L2ρ(Ω) + ‖∇u (t)‖2L2(Ω) + ‖∇u (t)‖2(γ+1)

L2(Ω) +

∫
Ω

(h ◦ ∇u) (t) dx

}
,

where 

α1 :=
1

2
min

{
1, l,

ξ1

(γ + 1)

}
,

and

α2 :=
1

2
max

{
1, ξ0,

ξ1

(γ + 1)

}
,

we get ∫ (n+1)T

nT

E (t) dt ≤ C6 [E((n+ 1)T ) + E(nT )]

+C7

∫ (n+1)T

nT

∫
Ω

(h ◦ ∇u) (t) dxdt

+C7

∫ (n+1)T

nT

∫
Ω

k1(−h′ ◦ ∇u) (t) dxdt, (4.41)

where 

C6 :=
α2C3

min {(1− 3ε) l, 1, ξ1}
,

and

C7 :=
α2C5

min {(1− 3ε) l, 1, ξ1}
.
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In the last step, we need to relate the viscoelastic energy to the viscoelastic
damping. In the case when the relaxation function obeys a linear equation, this
relation is straightforward and is expressed by a suitable multiplication. However, in
the case of general decays, additional arguments are used. Here, we follow [17]. From
the assumption 2 made on the viscoelastic kernel h and from [17, Lemma 4] we
obtain

(4.42)(h ◦ ∇u) (t) ≤ Ĥ−1
α (−h′ ◦ ∇u) (t) , t ∈ [nT, (n+ 1)T ] ,

where Ĥα is a rescaling of Hα with

Hα (s) = αs
1−

1

αH

s 1

α

 ,

and α ∈ (0, 1) is such that

sup
t>0

∫ t

0

h1−α (t− s) ‖∇u (t)−∇u (s)‖2 ds <∞.

From Assumption 2 it is clear that α ≥ α0. The main point, however, is that
the argument can be reiterated (based on [16, Lemma 8] leading to α = 1). This
allows us to replace Hα, the function in (4.42), by the original function Ĥ which is

a rescaling of H (s). This means that Ĥ = cH

(
C

s

)
for some c, C > 0. Now, from

(4.42) and taking (4.41) into account, we deduce that

∫ (n+1)T

nT

E (t) dt ≤ C6 [E((n+ 1)T ) + E(nT )]

+C7

∫ (n+1)T

nT

∫
Ω

[
Ĥ−1 + k1

]
(−h′ ◦ ∇u) (t) dxdt.(4.43)

Next, we shall employ the following version of Jensen’s inequality applied to
measures and convex functions F . Let F be a convex increasing function on [α, b],
let f : Ω 7−→ [α, b], and let h be an integrable function such that h (x) ≥ 0 and

∫
Ω

h (x) dx = h0 > 0.

Then, we have

(4.44)
∫

Ω

F−1 (f (x))h (x) dx ≤ h0F
−1

[
h−1

0

∫
Ω

f (x)h (x) dx

]
.

We shall use (4.44) in order to bring the functions H in front of the integrals. Let
us denote

α0 := meas (Ω) .
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We note that the function Ĥ−1 + k1 is concave.
Let 

F−1 = Ĥ−1 + k1,

f (x) = (−h′ ◦ ∇u) (t) ,

h (x) = T,

h0 = Tα0,

h−1
0 = α−1

0 T−1,

thus, we have ∫ (n+1)T

nT

∫
Ω

[
Ĥ−1 + k1

]
(−h′ ◦ ∇u) (t) dxdt

≤ α0T
[
Ĥ−1 + k1

] [
α−1

0 T−1

∫ (n+1)T

nT

∫
Ω

(−h′ ◦ ∇u) (t) dxdt

]
. (4.45)

On the other hand, from the identity (2.4) for the energy, we can write

E ((n+ 1)T )− E (nT )

=
1

2

∫ (n+1)T

nT

{∫
Ω

(h′ ◦ ∇u) (t) dx− h (t) ‖∇u (t)‖2L2(Ω) − 2b ‖ut (t)‖2L2ρ(Ω)

}
dt

= −
∫ (n+1)T

nT

D (t) dt,

where

(4.46)D (t) :=
1

2

{∫
Ω

(−h′ ◦ ∇u) (t) dx+ h (t) ‖∇u (t)‖2L2(Ω) + 2b ‖ut (t)‖2L2ρ(Ω)

}
.

En replacement (4.45) into (4.43) and using

(4.47)E (nT ) = E ((n+ 1)T ) +

∫ (n+1)T

nT

D (t) dt,

we get ∫ (n+1)T

nT

E (t) dt

≤ C6

{
2E((n+ 1)T ) +

∫ (n+1)T

nT

D (t) dt

}

+C7α0T
[
Ĥ−1 + k1

] [
α−1

0 T−1

∫ (n+1)T

nT

∫
Ω

(−h′ ◦ ∇u) (t) dxdt

]
,

and using (4.46) we get∫ (n+1)T

nT

∫
Ω

(−h′ ◦ ∇u) (t) dxdt ≤ 2

∫ (n+1)T

nT

D (t) dt,
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thus, we get ∫ (n+1)T

nT

E (t) dt

≤ C6

{
2E((n+ 1)T ) +

∫ (n+1)T

nT

D (t) dt

}

+2C7α0T
[
Ĥ−1 + k1

] [
α−1

0 T−1

∫ (n+1)T

nT

D (t) dt

]

= 2C6E((n+ 1)T ) + C6

∫ (n+1)T

nT

D (t) dt

+2C7α0T
[
Ĥ−1 + k1

] [
α−1

0 T−1

∫ (n+1)T

nT

D (t) dt

]

≤ 2C6E((n+ 1)T ) + C8

[
Ĥ−1 + k2

] [∫ (n+1)T

nT

D (t) dt

]

= 2C6E((n+ 1)T ) + C8H̃
−1

[∫ (n+1)T

nT

D (t) dt

]
, (4.48)

where

(4.49)



C8 := max {2C7, 1} ,

H̃ :=
[
Ĥ−1 + k2

]−1

,

k2 := (C6 + 2C7k1) .

By integrating t to (n+ 1)T on both sides of the inequality d
dt
{E (t)} ≤ 0 yields

(4.50)E ((n+ 1)T ) ≤ E (t) for all (n+ 1)T ≥ t,

integrating (4.50) from nT to (n+ 1)T yields∫ (n+1)T

nT

E (t) dt ≥
∫ (n+1)T

nT

E ((n+ 1)T ) dt

=

∫ (n+1)T

nT

dtE ((n+ 1)T )

= TE ((n+ 1)T ) , (4.51)

by replacement (4.51) into (4.48) , we get

TE ((n+ 1)T ) ≤ 2C6E((n+ 1)T ) + C8H̃
−1

[∫ (n+1)T

nT

D (t) dt

]
,

then

(T − 2C6)E ((n+ 1)T ) ≤ C8H̃
−1

[∫ (n+1)T

nT

D (t) dt

]
.
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For T large enough, where C6 is a positive constant, which implies that

E ((n+ 1)T ) ≤ C9H̃
−1

[∫ (n+1)T

nT

D (t) dt

]
,

where

(4.52)C9 :=
C8

(T − 2C6)
,

which gives that

(4.53)H̃
(
C−1

9 E ((n+ 1)T )
)
≤
∫ (n+1)T

nT

D (t) dt,

by using (4.47) into (4.53) , we get

H̃
(
C−1

9 E ((n+ 1)T )
)
≤ E (nT )− E ((n+ 1)T ) ,

from the above we have

E ((n+ 1)T ) + H̃
(
C−1

9 E ((n+ 1)T )
)
≤ E (nT ) , n = 1, 2, 3....

Then the Proof of Lemma 2 is complete.

Let p be a positive, increasing function such that p (0) = 0. Since p is in-
creasing, we can define an increasing function q, q (x) ≡ x−(I + p)

−1
(x) . Consider

a sequence Fn of positive numbers which satisfies

(4.54)Fm+1 + p (Fm+1) ≤ Fm.

Then Fm ≤ S (m) where S (t) is a solution of the differential equation

(4.55)
d

dt
{S (t)}+ q (S (t)) = 0, S (0) = F0.

Moreover, if p (x) > 0 for x > 0 then limt−→∞ S (t) = 0.

Proof. Proof of the Lemma use the proof retraction. Assume Fm ≤ S (m) and prove
that Fm+1 ≤ S (m+ 1) .
Inequality (4.54) is equivalent to

(I + p)Fm+1 ≤ Fm,

and since (I + p)
−1 is monotone increasing, Fm+1 ≤ (I + p)

−1
Fm, and using

(I + p)
−1
Fm = (I − q)Fm,

we get

Fm+1 ≤ (I − q)Fm

= Fm − q (Fm) . (4.56)

On the other hand, since q is an increasing function, the solution S (t) of equation
(4.55) is described by a nonlinear contraction.

In particular integrating
d

dt
{S (t)} ≤ 0 from m to τ yields

(4.57)S (τ) ≤ S (m) for all t ≥ τ .
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Since q is increasing, by using (4.57) we obtain for all m ≤ τ ≤ m+ 1∫ m+1

m

q (S (τ)) dτ ≤
∫ m+1

m

q (S (m)) dτ

= q (S (m))

∫ m+1

m

dτ

= q (S (m)) ,

then

(4.59)−
∫ m+1

m

q (S (τ)) dτ ≥ −q (S (m)) , for all m ≤ τ ≤ m+ 1,

by replacement (4.59) into (4.58) and using the inductive assumption Fm ≤ S (m) , we
get

S (m+ 1) ≥ S (m)− q (S (m))

= (I − q)S (m)

≥ (I − q)Fm

= Fm − q (F (m)) , (4.60)

comparing (4.60) with (4.56) yields

S (m+ 1) ≥ Fm+1.

Then the Proof of Lemma 3 is complete.

Let us assume that Assumption 1 and Assumption 2 ar the place.
Then there exist positive constants c1, c2 and T0 such that the solution of problem
(1.1)− (1.3) satisfies E (t) ≤ s (t), where s (t) verifies the ODE

st + Ĥ (s) = 0, s (0) = E (0) , t ≥ T0 > 0,

with Ĥ (s) = c1H (c2s) .

Proof. Thus, we are in a position to apply the result of Lemma 2 with

Fm ≡ E (mt) , F0 ≡ E (0) .

This yields

E (mT ) ≤ S (m) , m = 0, 1, 2, 3....

Setting t = mT + τ and recalling the evolution property gives

E (t) ≤ E (mT ) ≤ S (m) ≤ S
(
t− τ
T

)
≤ S

(
t

T
− 1

)
,

which completes the proof of Theorem 2.
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Integrating equation (4.55) from m to (m+ 1) yields

(4.58)S (m+ 1)− S (m) +

∫ m+1

m

q (S (τ)) dτ = 0.

Notes

Theorem 2.
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