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for the Energy of a Kirchhoff Type in a
Nonlinear Viscoelastic Equation

Draifia Alaeddine

Absiract- In this work we consider a nonlinear hyperbolic equations of Kirch-hoff type in
viscoelasticity. By using the potential well theory we obtain the existence of a global solution.
Then, we prove the intrinsic decays for the energy of the nonlinear hyperbolic equations of
Kirchhoff type in viscoelasticity of relaxation kernels described by the inequality »’ (t) < —H
(h(t)) for all t > 0, with A convex.

Keywords and phrases: global existence, exponential decay, polynomial decay,

viscoelastic damping, intrinsic decay rates.

[. INTRODUCTION

In this works, we study the global existence and intrinsic decay rates for the
energy of a kirchhoff type in a nonlinear viscoelastic equation

we(z,t) — @ () {u(HVu(tﬂiz(Q))Au(a:,t)—/O h(t — s) Au(z, s)ds| (1.1)

+buy(x,t) =0, € QxR
with initial data
u(z,0) =up (z), w(z,0)=u (x), =z€, (1.2)
and boundary conditions
u(z,t) =0, (x,t) €00 xRy, (1.3)

where Q is a bounded domain in R™, h(.): Ry — Ry are given functions which
will be spaced later and ug (), u1 (x) are given initial data belonging to appropriate
space. All the parameter b are assumed to be positive constants. The function ® (x)
is the density, (p(z))~" = ®(x), ®(z) > 0, for all z € Q, and

p(s) =&+ &187,

where s > 0, £, > 0, £; > 0 and v > 1. For more information on using Kirchhoff
type, see [4 — 6].
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Also, a result of local existence for problem (1.1) — (1.3) for £&; = 0 has been
proved in [1], for & # 0, in the same way as [1], we get the same basic results for
the local existence of problem (1.1) — (1.3) with a slight change in some calculations
that do not affect the basic results.

The motivation of our work is due to some results regarding the following research
papers: Boumaza, N and Boulaaras, S. [2] studied the general decay for Kirchhoff
type in viscoelasticity with not necessarily decreasing kernel of (1.1)—(1.3) . Marcelo
M. Irena Lasiecka and Claudete M. Webler. [3] studied the intrinsic decay rates for
the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods
with variable density. M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka
and F. A. Falcao Nascimento. [7] studied the intrinsic decay rate estimates for
the wave equation with competing viscoelastic and frictional dissipative effects.
I. Lasiecka, S. A. Messaoudi and M. I. Mustafa. [8] studied the note on intrinsic
decay rates for abstract wave equations with memory. I. Lasiecka and X. Wang.
[9] studied the intrinsic decay rate estimates for semilinear abstract second order
equations with memory. Cavalcanti M. Filho VND. Cavalcanti JSP. Soriano JA.
[10] studied the existence and uniform decay rates for viscoelastic problems with
nonlinear boundary damping. For more results in this direction, see [11 — 15].

However, [1 — 3], [4 — 6] and [11 — 15] did not study the intrinsic decay rates for
the energy of problem (1.1) — (1.3) of relaxation kernels described by the inequality
' (t) < —H (h(t)) for all t > 0, with H convex. Motivated by the above research, we
will consider the intrinsic decay rates for the energy of relaxation kernels described
by the inequality b’ (¢) < —H (h(t)) for all ¢ > 0 of the model (1.1) — (1.3) in this
paper.

The outline of the paper is as follows. In the second section we define the energy
E (t) associated to (1.1) — (1.3) and show that it is a non-increasing function of ¢.
In section 3, we prove global existence of solution of (1.1) — (1.3). Finally, in section
4, we prove the intrinsic decay rates for the energy of the posed problem.

[[.  ASSUMPTIONS AND MAIN RESULTS

In this section, we define the energy E (t) associated to (1.1)—(1.3) and show that
it is a non-increasing function of ¢. We suppose that the kernel h (¢) is a function
satisfying

Assumptions 1
The relaxation function h : R, — R, is a C'NL! decreasing function and satisfies

h(0) > 0 and /th(s)ds<£0.
0

Assumptions 2
(i) In addition to Assumption 1, we require

B (t) < —H (h(t)) for all t >0,

where H € C'(R;) which H (0) = 0 is a given strictly increasing and convex
function. Moreover,

H € C?(0,00) and lim inf {2*H" (z) —zH' (z) + H (z)} > 0.

z—0

(ii) With reference to the function H introduced above, let y (t) be the solution of
the ODE

y' (t)+ H(y(t)) =0, y(0) =h(0)>0.
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(iii) We assume that there exists ag € [0,1) such that y'~2° € L(1, 00).
In order to formulate the long-time behavior results, we recall the binary notation

(h *w) (t) ::/0 h(t—s)w(s)ds,

/Q(how) () da ::/h(t—s) w (5, 5) = w (@ D)l gy 5 2.1)

Notes

(how)(t) := p(m)/o h(t—s)(w(t)—w(s))ds.

We define the corresponding energy functional by

1 1 t
E@) =g lw (t)liz<m+2<§o—/0 h(s)ds> IVu ()17 q)
&1 2(v+1) 1
+mllw(t)lulm) +§/Q(hovm (t) dz. (2.2)

Note that, in view of (2.1), we have that

0<li:= <§0 - /000 h(s) ds) <§, forall (z,t) € Q x R4 (2.3)

The energy satisfies the following identity

Lemma 1. We have the identity

d 1 , 1 2 2
SEOF = 5 [ 0oV0) @de— PO IVaOls) — bl Ol
< o (2.4)

Proof. Multiplying (1.1) by p (z) u; and integration over 2, we have

/Q p (z) upupds — /Q (go+§1 IIVu||iZ(Q)) Au(z, t)uy (z,t) do
+/Qut(w,t) [/Oth(t—s)Au(m,s)ds] dx—l—b/ﬂp(x)utz(m,t)dx

We have

1d )
| p@y s = 55 {01250} (26)
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And by using integration by parts, we have

~ [ (60+ & IVulFie)) Autw, s 2.0) do
Q

= (8 &lVulte) | St @0 de

(€0 + & IVulZe)) /Q Vu (2, 1) Vg (1) do

1 d

= L u ()} + %Hw W2y & {17000y}
d d
= S {ITu 0o} + 50y UV O
d (1
- 23 (o 225 1v <t>||iz(m) VeOl ) @D

And by using integration by parts, we have

/Qut(a:,t) [/Oth(t—s)Au(x,s)ds} do

_/Oth(t_s) UQ Vu (2, 5) . Vi (2, 1) dx} ds,

Global Journal of Science Frontier Research (F) Volume XXI Issue I Version I E Year 2021

and using
—Vu(z,s) Vg (x,1) = %% {|Vu (z,5) — Vu (x,t)|2} - %% {|vu (ﬂc,t)|2} :
then
/Qut(x,t) [/Oth(ts)Au(m,s)ds] dx
= /Ot h(t— s)/Q (;i {\Vu (z,5) — Vu (m,t)|2}> dzds
/Oth(ts)/ <;${|Vu(a:t)| }> dwds
| = ;/Oth(t — ) <c(l:lt {/Q |[Vu(x,s) — Vu (J;,t)|2d:c}> ds

e (G {17l }) as (238)

© 2021 Global Journals
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Notes

by using (2.1), we get

and

;/Oth(t—s)jt{/Q|Vu(a:,s)—Vu(x,t)|2da:} ds
;/Otjt{h(t—s) (/Q |Vu(m,s)—Vu(m,t)|2dx)}ds
_;/Ot W (t— s) (/Q IV (2,5) — Vu (m,t)|2d:c> ds

_ ;j{/ bt /|Vu 2,8) — Vau (2.0)|? dmds}
%/ (/|Vu Vumt|dm>

{( )”V“ I m}+ Sh (@) [Vu )22 - (2:10)
)

By replacement (2.9) and (2.10) into (2.8), we get

/Qut(x,t) {/Oth(ts)Au(x,s)ds} dx

t

: {(/0 h(s) ds) |Vu (t)lliz(m} + %h(t) IVu ()72 0
s { [ hovw @ao— ([ 06)ds) ITu®le )

~3 [ 00 V) @) dat 5h (O IV @)z (2.11)
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(2.7) and (2.11) into (2.5), we get

)s
{||Ut (ﬂ”ig(ﬂ)}

t {; ( o+ (%i 5 [Vu (t)lil(m) [Vu (t)”i?m)}

jt{ [ (hovu) 1o (/Oth(s) ds> IVu (t)|iz(m} Notes

1
(k' o V) (t) da + Sh () [ Vu (1)1 72(0) + b lur (B)lI730)

By combining (2.6
4
dt

M| —

|

§

_|_

Sy

_|_

N | =

DN | =

Q

o

)

j{ e ()1 30 + 5 ( /h >'V“<)”2Lz<m

§ 2(v+1) , 1
S IVa @I + 5 [ (o0 (0o

then

+

1 1
= 3 [ 0oV Ode = 3h O 1T Ol ) — bl Oy (212)

by using (2.2) into (2.12), we get (2.4).
The proof of Lemma 1 is completes.

[1I. GLOBAL EXISTENCE

In this section we show that any solution of (1.1) — (1.3) is bounded and global,
provided that F (0) is positive and small enough.

Theorem 1. Assume that (2.3) holds. Then the solution to problem (1.1) — (1.3)
s bounded and global.

Proof. Tt suffices to show that |lug (t)||i2(m + [|[Vu (t)H%z(Q) is bounded indepen-
P

dently of .
By using (2.3) and (A1) into (2.12), we get

2 2
wi [lus () 12(q) + w2 [Vu @)z (q) < E(t) < E(0),
where w; > 0 and ws > 0, then

[|we (t)||2L§(Q) + [[Vu (t)||2L2(Q) <w3E(0),

where w3 > 0.
Then the solution to problem (1.1) — (1.3) is bounded and global.
The proof of Theorem 1 is completes.

[V.  DECAY OF SOLUTIONS
Now, we are in a position to state our main result.

Lemma 2. Let us assume that Assumption 1 and Assumption 2 are the place.
Then, there exists a positive constant Ty > 0 such that

E(n+1)T)+H(Cs'E(n+1)T)) <E(nT), n=123.,
for all T > Ty and alln € N, where H is given in (4.49) and Cy is given in (4.52).



Proof. For this purpose, a by now standard procedure is to multiply (1.1) by the
viscoelastic multiplier

(how ()= p(a) [ h(t=) () ~u(s)ds

and integrating over Q x (nT, (n+ 1)T), we infer that

(n+1)T
Notes L7 o) 020

B /,L(MT (2@ (60 + & IVu @) ) du ), (how ®) ,  db

T L2(Q)

+ /H:H)T (cp (@) (/Ot h(t—s) Au(s) ds) (hou) (t)) e

(n+1
4 [ ) (00 ) ()
0

We shall analyze the above terms separately.
Direct calculation give

Il
&=
—N—
Y
<
~
=
N—
O\ﬁ
>
~—~
~
|
=
—
<
—
)
|
<
—~
»
N—
SN—
IS8
V)
N———
h
N
=2
~——

then

(n+1)T

_ (ut (t) v/ot h(t=s)(u(t) —u(s) ds) L2()
(Ol

/(,L+1)T < /Ot R (t—s) (u(t) —u(s)) dS) @ dt
.

(n+1)T )
([ tsrs) b o o (1.2
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For the second term, by using integration by parts, we have

B CIETCRENL AP FURIIT)

T

-/ " (6 IVl ) (v, [ e 5) (w(®) - u(s) )

T

L*(Q)

L2(9)

— [L(”+1) (fo +& ||Vu||L2 Q)) (Vu (t), /Ot h(t—s)(Vu(t) — Vu(s)) d5>

(4.3)

For the third term, by using integration by parts, we have

/n(n+1)T ((I) () /Ot h(t—s)Au(s)ds, (hou) (t)> dt

T £2(9)

/R:H)T </Oth(ts) Vu (s) ds, /Oth(ts) (Vu(t)Vu(s))ds>L2(Q) dt

(n+1)T 2
L

dt
L2(Q)

/0 h(t—s)(Vu(t)— Vu(s))ds

/n(T”H)T </Oth(ts) Vu (1) ds,/oth(ts) (Vu (t)Vu(s))ds)LQ(Q) dt.

Combining (4.2) — (4.4) into (4.1), we arrive at

(n+1)T

(wet® [ =5 ) - uisn ) ol
-/, o (“ o. [ B () (8) — u(s)) ds) o
T |
/ n+1>T (60 + & Va0 (vu ), / bt = ) (Vu(t) - Vu(s) ds)

/ (n+1)T </ (t —s) Vu (t) ds, /Ot h(t = s) (Vu(t) = Vu(s)) ds) L2() :

n+1)T
[ ), (hou) (8)) g dt

+

2

/ (t—s)(Vu(t) — Vu(s))ds

= 0,

© 2021 Global Journals

dt

dt.

L*(Q)

dt

L2(Q)

(4.5)

Notes



then (4.5) is equivalent

(n+1)T t 2
/T (/0 h(s) ds) |t (m>t)||Lf7(Q) dt

(we®. [ 1= (00 - uis)as) o
[re—owo-vow)
Notes -/ (T"H)T (wetor, [ =9 @ - uis)as) o
[T (6 19 (V0@ [ -9 a0 - Tute)as)
[T e s e - vuieas ;(m at

_/n:lH)T (/Oth(t—s)Vu(t)ds,/Oth(t—s)(Vu(t)—Vu(s))ds)

(n+1)
b / @O (ow )y

= Ji+ o+ Js+Js+ 5+ Js.

Estimate for |J;|, where

(n4+1)T
Bo= ut<<n+1>T>,/0 h((n+1>T—s><u<(n+1>T>—u(s))ds)

nT
— u (nT), /0 h(nT —s) (u(nT) —u(s)) ds)

L2(Q)
Now, let m € N be an arbitrary, natural number.
By using Young’s inequality (for e = 1), we get

mT
ug (mT) ,/0 h(mT — s) (u(mT) —u(s)) ds)

LZ(9)

" R OmT — 8) (g () (0 (T) — 1)) 3 s

I
S~

mT

IN
S~

mT
| = ) s ()2

mT
2
+§/0 h(mT — s) [lu(mT) —u(s )HLg(Q) ds,

N | —

—_

by using

2 2 2
I (t)”Lg(Q) < ||P||L2(Q) Vu (t)HL/%(Q)a

BT = 5) | el D)y + 5 o) — (o) | s

dt

L2 ()

L2(Q)

dt

L*(Q)

(4.6)

(4.7)

(4.8)
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we get

1

mT
5 [ hOnT =) ) = us) oy ds
0

IN

1 mT
31l [ BT =) [Vu(mT) = T s) 2 0y ds

1
= 3ol [ (o0 (), (49)

mT mT

by replacement (4.9) into (4.7) and using / h(mT —s)ds = / h(s)ds, we
0 0

get

g (mT), /O " T = ) (u (mT) - u(s))ds>

12(9)
1 mT 9
< 3 ; h(s)ds ||Ut(mT)||Lg(Q)
1 2
+§ ”PHm(Q) Q (hoVu)(mT)dz, (4.10)
by using (2.2), we get
1 2
3 [ue(mT)|[12(q) < E (mT),
and (4.11)

%/Q (ho V) (mT) dz < E (mT),

then, by combining (4.11) into (4.10), we get

mT
g (mT) /O h(mT — s) (u (mT) — u(s))ds>

£2(9)

mT
</ h<s>d8>E(mT>+||p||izm)E<mT>
< {Ihll 200y + NoN32(0) | B (D),
then
I < CE((n+ 1)T) + BT, (4.12)
where

2
Cr =Ml 110,00 + lol22(0) -
Estimate for |J3|, where

Ty = — / e (ut ®), /0 W - 8) () —u(s))ds) dt.

T L7()

© 2021 Global Journals
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€
By using Young’s inequality (for €= —1), we get

2

(n+1)T
B < e / ()23 0

1 (n+1 2
/ Wt —s) (u(t)—u(s)ds|| . (4.13)
451 Lg(Q)
NOteS By using (4.8), Cauchy-Schwarz inequality and (2.1), we get
(n+1)T t 2
/ / B (t—s)(u(t)—u(s))ds dt
nT 0 L%(Q)
(n+1)T 2
< lolie | / W (t—s)(Vult) - Vu(s)ds|  db
0 L2(Q)
) (n+1)T  pt )
< ol b [ [0 =) 900 = T 9) o

) (n+1)T ,

By replacement (4.14) into (4.13), we get

(n+1)T )
Bl < & / e (@, )11
nT 4

1 9 (n+1)T ,
= 1ol 1 (0) / / (W o Vu) () dadt. (4.15)
€1 nT Q

Estimate |.J3|, where

Jy = /n(nﬂ) (0 + € 1Vul o)) (Vu (t),/oth(ts) (Vau(t) — Vu (s))ds> dt.

T L2(Q)

By using Young’s inequality (for €= %2) , we get

(n+1)T 2 9
B < T (Gor & IVulle) IVu @ d

1 (n+1)T 2
+7

dt 4.16
462 ’ ( )

L2 (Q)

/0 h(t—s)(Vu(t)—Vu(s))ds

2y

2 1
by using ||[Vu (t)||2LZ(Q) < <(’Y§1+)E(o)> 2(v+1) , we get

(n+1)T )
o (& IVl IV de

T

2y 2

24D (n+1)T

< e £o+£1< (Vg“)E(O))( )> / IVu Ot (417)
1 nT
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by using Cauchy-Schwarz inequality and (2.1), we get

(/Oth(t— S)ds) /Oth(t— $) [IVu (t) = Vu(s)| 720 ds

2

/0 h(t—s)(Vu(t) — Vu(s))ds

L2()

IN

Notes

IN

TP /Q (h o Vu) (1) dz, (4.18)

by replacement (4.17) and (4.18) into (4.16), we get

2y 2
2 ’Y‘i’]- I+ (n+1)T
< e o6 (200 2E0) ) L vl

1 (n+1)T
L Bl e / / (ho V) (t) dad. (4.19)
452 ’ nT Q

Estimate |Jy|, where

(n+1)T t 2
Ja= / / h(t—s)(Vu(t) = Vu(s)ds|  dt.
nT 0 L2(Q)
By using (4.18), we get
(n+1)T
al < 1Bl 1 om0 / / (h o Vu) (t) dadt. (4.20)
nT Q

Now, estimate |.J5|, where

Ty = —/n(nH)T (/Oth(t ) Vu () ds,/oth(t— s) (Vu(t) — Vu (s))ds) dt.

T 12(9)

By using Young’s inequality (for €= %3) , Cauchy-Schwarz inequality and (4.18) , we
get

2

dt

(n+1)T
|J5] < 63/
n 12(9)

T

/th(t—s)Vu(t)ds
0

1 (n+1)T 2

+7

dt
des Jor

L2()

/0 h(t—s)(Vu(t) — Vu(s))ds

© 2021 Global Journals



IN

(n+1)T  pt )
T / ) / Bt — 5) [V (1) 220 dsdt

1 (n+1)T
+— 1Pl 1100 00 / / hoVu) (t)dxdt
bl [ [ oV @)

Notes ()T /ot
= ol | ) ( / h(s)ds> 19 (1) g

1 (TL+1)T
L o / / (ho V) (t) dadt. (4.21)
des ’ nT Q

Now, estimate |.Jg|, where

(n+1)T
Js :b/T (e (£), (h 01) (£) 2 ey

:b/n(nH)T <ut (t),/oth(t—s) (u (1) —u(s))ds> dt.

T L2(9)

By using Young’s inequality (for €= %), (4.8) and (4.18), we get

(n+1)T
|Jsl < b [|we (t)”izm) dt
nT s

1 (n+1)T t 2
+-— / h(t—s)(u(t)—u(s))ds dt
de1 Jur 0 L2(Q)
(n+1)T )
< Be [ fu @) de
nT e
1 ) (n+1)T t 2
b ol [ | [ he=) (Va0 - Vugsnas|
deq nT 0 L2(Q)
(n+1)T )
< a0 Ol d
nT s
1 9 (n+1)T
+— llellz2(0) HhHLl(o,oo)/ / (h o Vu) (1) dzdt. (4.22)
451 nT Q

Combining (4.12), (4.15) and (4.19)—(4.22) into (4.6), and recalling that [|h[| 11 ) <

&y, we write
(n+1)T t 9
[ ([ ras) b0l 0
nT 0

< GiE((n+ DT) + B(nT)]
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(n+1)T )
ey / e (D11
nT 4

1 ) (n+1)T ,
T LC) R RCE IO
€1 nT Q

2y 2
) +1 3y (nJr].)T
e mgl( o )E<o>) ) / IVu () dt

& T

1 (n+1)T
g, / / (ho Va) (t) dudt
dey nT Q

(n+1)T
+£, /nT /Q(h o Vu) (t) dzdt

(n+1)T t )
+ety [ ( / h(s) ds) 190 (8) 2

T

1 (n+1)T
+—¢& / / (hoVu) (t)dzdt
453 nT Q

) (n+1)T )
e [ Ol de
nT

1 ) (n+1)T
bbbl [ [ (hoVu) (e dat (4.23)
€1 nT Q

Since h (0) > 0, we can select a points ¢; < T with ¢; close to zero such that for all

/Oth(s) ds > t1h(t1) == co.

Then (4.23) is equivalent

(n+1)T 2
/ {th(t1) — 1 (1+62) } [l (2, 1)]17 ot
nT ’

< CiL[E((n+1)T)+ E(nT)]

1 ) (n+1)T ,
e ol b [ [ 0o V) ¢ o
1 nT Q

2~ 2

2(v+1 2(v+1) (n+1)T

ter g+ (20 E ) ) L IV d
1 n

1 1 1 ) (n+1)T
+&o {452 +1+ 1cs + 1 ||p||L2(Q)} /nT /Q( o V) (t) dadt

(n+1)T t
testy /n ( /0 h(s) ds) IV ()220 dt. (4.24)

T

Notes



Now, multiplying (1.1) by p () u (x,t) and integrating over Q x (nT, (n+ 1) T'), we

infer that
(n+1)T
(et ( (t))Lﬁ(Q) dt
n+1)T
S RA ;
/ (o +&lIulig) Au®) ),
N (n4+1)T t
otes +/ (/ h(t—s) Au(s) ds,u(t)> dt
0 L2()
(n+1)T
—|—b/ (ue(x, t), (m,t))L%(Q) dt
= (4.25)
By using
d
ug () u(t) = P {u (8 u ()} —uf (1),
we get

(n+1)
[ et )y d

= (u(t),u (t))Lf)(Q)

(n+1)T (n+1)T 9
B B TG [T ED

By using integration by parts, we get

B (L RACRAC) B

T L2 ()

(n+1)T 9
[ (v &Vl (Tu) . Va0) g de

T

(n+1)T - )
[ (or&lVulie) IVu @ (127)

T

By using integration by parts, we get

/n(:H)T (/Ot h(t—s)Au(s)ds,u (t)> . dt

(n+1)T
/ / Bt = 5) (Vu(s), Vau (£)) 12y dsdt

(n+1)T
/ / h(t—s)(Vu(t) = Vu(s), Vu(t)) 2 (g dsdt

(n+1)T
LT a9 (a0, 90 0) g i

(n+1)T
/ / (t —s) (Vu(t) = Vu(s), Vu(l)) 2 (q) dsdl

-/ :H)T ([ nsras) 19010 (1.25)

© 2021 Global Journals

Global Journal of Science Frontier Research (F) Volume XXI Issue I Version I E Year 2021



And

(n+1)T
b/ (Ut(xvt)au(xat))Lz(Q) dt
nT ?

p DT 4 )
=5/ G{mEnie )
n

b 2 2
= S{l(+ DDz — Dz ) -
By combining (4.26) — (4.29) into (4.25), we get

(n+1)T

(n+1)T )
OOz = [ Tl o

0+ &0 IVullh g ) 190 ()32 dt

h(t—s)(Vu(t) = Vu(s), Vu(l))p2(q) dsdt

E
/—\ \ ~~

sy ds) IV 010

b ) ,
+§ {HU((TZ +1) T)”Lg(g) —|lu (nT)HL%(Q)}

= 0.
Then (4.30) is equivalent

(n+1)T )
[ e w0l
n

(n+1)T 5
+/ (50 +& ”VU‘”L2 Q)) [Vu (t)HL2(Q) dt

T

(n+1)T
= = (w(),u®) 2 o

(n+1)T  pt
,/nT /0 h(t—s)(Vu(t) = Vu(s), Vu(t)) 2 dsdt

(n+1)T t )
f ( / h(s)ds) 19 (8)[ 2 g

b
5 {lu( + DD ~ a2 0} -
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[ | To estimate the term

(n+1)T
—[1 ¢ = — (ut (t) ) U (t))L?’(Q) nT

== (w ((n+1)T),u((n+1)T))p2(q) + (ur (0T) ,u (nT)) 12 (q -

© 2021 Global Journals

(4.29)

(4.30)

(4.31)

Notes



Notes

. . . 1 1
By using Young’s inequality (for & = 1), (4.8), 7 [|u )70y < E(t) and 5 IV D7) <
P
I7YE (t), we get

(ut (1), u (t))Lg(Q)

1 1
< 3 (e (t)Hig(Q) T3 ||U(t)||2Lg(Q)
< e O + = ol e [V (0]
= o e Wliez) T 5 P2 VUl L2 (@)
< B+ plaq ! E®)
2 _
= {1+l B,
then
1] < Co{E ((n+1)T) + E (nT)}, (4.32)
where

Cy =1+ ||pl 72 ™"

To estimate the term

(n+1)T  pt
Iy = 7/ / h(t—s)(Vu(t) = Vu(s), Vu(l))2(q) dsdt.
nT 0
. . . €4
By using Young’s inequality (for €= 5) and (2.1), we get

1

I —
| 12| =

IA

(n+1)T  pt )
; /0 h(t—s)[[Vu(t) = Vu(s)lpzi) dsdt

(n+1)T  pt )
de [ [ R ) [Tu Ol st
nT 0

1 (n+1)T
= / (ho V) (£) dadt
dey Jor Q

(n+1)T t 9
+54/ (/ h(s) ds) Vu ()] 72(q) dt. (4.33)
n 0

T

1
By using (4.8) and - [|Vu (D7) S TTUE(1), we get

b
5 {4 DD G0 — u ()25 0}

IN

b
5 ol 2y {19 (0 + D D3y + V0 020 }

IN

bllpll72 o) I {E ((n+1)T) + E (nT)}

= CHE((n+1)T)+E(nT)}, (4.34)
where
Ch :=bllpl 72" > 0.
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By combining (4.32) — (4.34) into (4.31), we can write

(n+1)T 9
[ Dl
n

(n+1)T ,
[ (ot @ IVUlT) IV O oy

< [Co+ CI{E((n+1)T) + E (n)}
1 n+1)T
= /Q (hoVu) (t)dxdt

+lea+ 1) /n e ( /0 "hs) ds) IVu (O d. (4.35)

T

On multiplied (4.24) by v, and multiplied (4.35) by =5 and combining suitably, we

get
(n+1)T )
bt =2 (42} =] [ e )y
n
(n+1)T ) (n+1)T +1)
g [ IVuOladt g [ IVl
nT nT
< MG+ [0+ G} E((n+ 1)T) + E(nT))
(n+1)T
g el 00 [ [0 o V) 0 dod
4 nT Q
2041, NI e
ma g6 (20 E0) [ Il
§1 nT
1 (n+1)T
e e m Wl tep ) [ [ (o0 @
(n+1)T t )
tmeato D) [T ([ 1) 190 @l b (1.6
n 0
Let
. hh)
T o+ e?y
3e
Eg = 50 - 3
2(v+1)
M1 (€0+§1 (2(27T1)E(0)) W ) (4.37)
£z = 78
i 7150’
€4 1= 2¢,
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and

_ 4
T ah ()’ (4.38)
Yo = la
by using (4.37) and (4.38) into (4.36), we get
Notes (n+1)T 5
[ur (2, )12 (c)
nT
(n+1)T ) (n+1)T 2(v41)
to [ Vel [ VeI @
< G3[E((n+1)T) + E(nT)]
(n+1)T
—Cy / / (W' o Vu) (t) dzdt
nT Q
(n+1)T )
wacy [ Va0
(n+1)T
+Cs / / (hoVu) (t)dzdt
nT Q
(n+1)T t )
b (3e+1) / ( / h(s) ds) IVa (O dt, (4.39)
nT 0
where
Cs :=v,C1 +Cs + Cé,
(1+0%) o
= h
C14 712t1h(t1) ||pHL2(Q) (0)7
Y1 §0+§1(2(7+§1)E(0)) 2(311))2 ( 2)
. _4¢ ! 3 1+b 2
Cs = mrin Toe¢, +14+ 220 + 5wy lollie) ¢+ -

Adding and subtracting in (4.39) the term

(n+1)T t (n+1)T
— / / </ h(s) ds) |Vul® dzdt  and / / a(z) (ho Vu) (t) dzdt,
nT Q 0 nT Q

in order to recover the energy F (t),we obtain

(1-3¢) /H:H)T/Q (50—/(:11(3) ds> IV (8)]? dadt
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where

we get
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where
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(n+1)T )
[ @Ol e
nT

(n+1)T ) . (n+1)T
+£1/ IV (t)IIL‘J(E))dtJr/ /(hovu) (t) dwdt
nT nT Q

< G[E((n+1)T) + E(nT)]

(n+1)T
+C5 / / Fy (=h o V) (1) dadt
nT Q

(n+1)T
+Cs / / (h o Vu) (t) dzdt,
nT Q

Cy
k1= —.
1 s

From (4-40), choosing ¢ sufficiently small, k1 > 0 and T large enough and using

- {nut (320 + IV () 3200y + IVu OIS0 + /Q (hoVu) (1) dx}

1. &1
= 1,1, —t
“ 2mm{ ’ ’(7+1)}’

and

&=
=
Sy
53
INA

Cs [E((n + 1)T) + E(nT)]
LG / et / (ho V) (t) dwdt
nT Q

(n+1)T
+C7/ / ki(—h' o Vu) () dxdt,
nT Q

04203
min {(1 - 3¢)1,1,&,}’

CG =

and

- QQCE')
- min{(1-3¢)1,1,&}

(4.40)

< E<t>§a2{|ut O30 + IV @z + IV @I + [ (o0 <t>dx},

(4.41)

Notes



Notes

In the last step, we need to relate the viscoelastic energy to the viscoelastic
damping. In the case when the relaxation function obeys a linear equation, this
relation is straightforward and is expressed by a suitable multiplication. However, in
the case of general decays, additional arguments are used. Here, we follow [17]. From
the assumption 2 made on the viscoelastic kernel h and from [17, Lemma 4] we
obtain

(hoVu)(t) < H7'(=h' oVu)(t), te[nT,(n+1)T], (4.42)

where ﬁa is a rescaling of H, with

and « € (0,1) is such that

t
sup/ RY (8 — 5) [V (t) — Vu (s)]|* ds < oo.
>0 Jo

From Assumption 2 it is clear that o > ag. The main point, however, is that
the argument can be reiterated (based on [16, Lemma 8] leading to o = 1). This
allows us to replace H,, the function in (4.42), by the original function H which is

- C
a rescaling of H (s). This means that H = cH | — | for some ¢, C > 0. Now, from
s

(4.42) and taking (4.41) into account, we deduce that

(n+1)T
/ E@Wdt < CslE((n+1)T)+ EnT)]
nT

(n+1)T R
7 / / [H Tt kl} (=h o Vu) (t) dzdt.(4.43)
nT Q

Next, we shall employ the following version of Jensen’s inequality applied to
measures and convex functions F. Let F be a convex increasing function on [, b],
let f: Q+— [a,b], and let h be an integrable function such that h (z) > 0 and

/Qh(:z:)dx:ho > 0.
Then, we have
/Q FL(f (2)) b (2) dz < hoF— [hgl /Q F@)h@) dx} . (4.44)

We shall use (4.44) in order to bring the functions H in front of the integrals. Let
us denote

ap := meas ().
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We note that the function H~! + k1 is concave.
Let

F_IZg_1+k17

thus, we have
(n+1)T R
/ / [H*l + kl] (—1' o V) (t) dzdt
nT Q

< aoT {I:I_l + kjl]

(n+1)T
ag Tt / / (=h' o Vu) (t)dzdt| . (4.45)
nT Q

On the other hand, from the identity (2.4) for the energy, we can write

E((n+1)T)— E(nT)

1 (n+1)T , 9 9
-5/ {/Qw oVu)(t)dxh(t)Wu(t)Hmm2b|ut<t>||Lg(m}dt

where
D(t) := % {/Q (=h' o Vu) (t)dx + h(t)||Vu (t)||i2(9) + 2 ||ue (t)”ig(g)} . (4.46)

En replacement (4.45) into (4.43) and using

E(mT)=E(n+1)T)+ / et D (t)dt, (4.47)

nT

we get

(n+1)T

< Cs {2E((n+1)T)+/ D(t) dt}

T

R (n+1)T
+CraT [H‘l—Hﬁ] ang—l/ /(—h'oVu) (t) dadt| ,
nT Q

and using (4.46) we get

(n4+1)T (n+1)T
/ / (—H o V) (t) dudt < 2 / D () dt,
n Q

T nT

© 2021 Global Journals

Notes



thus, we get
(n+1)T
/ B () dt
nT

(n+1)T

IN

Cs {2E((n+ 1)T) +/ D(t) dt}

T

. (n+1)T
Notes +2C7a0T [H‘1 +k1] ang—l/ D (t)dt

T

(n+1)T
— 2CE((n+1)T) +06/ D(t)dt

nT

R (n+1)T
1205 a0T [H—1 +k1} ang—l/ D(t)dt
n

T

(n+1)T
/ D(t)dt
nT

(n+1)T

IN

2C6E((n+ 1)T) + Cs {H‘*l + kz}

= 2C6E((n+1)T)+ CsH ™! l / D (t) dt] , (4.48)

T

where
Cs := max{2C7, 1},

A faen) (1.49)

ko := (C(,' + 207]{11) .
By integrating t to (n + 1) T on both sides of the inequality fZIZ {E(t)} <0 yields
E(n+1)T)<E(t) foral (n+1)T >t, (4.50)

integrating (4.50) from nT to (n + 1) T yields

(n+1)T (n+1)T
/ E(t)dt > / E((n+1)T)dt
nT nT

(n+1)T
/ dtE ((n+1)T)
nT

= TE(n+1)T), (4.51)
by replacement (4.51) into (4.48), we get
(n+1)T

TE((n+1)T) <2CsE((n+1)T) + Cs H™* l/
nT

D(t) dt] :

then

5 (n+1)T
(T —205) E((n+1)T) < Cy A V D(t) dt}.
nT
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For T large enough, where Cj is a positive constant, which implies that

(n+1)T
/ D(t)dt|,
nT

E(n+1)T) < CoH™!

where
Cs
Co = ——— 4.52
VT T 20y (4.52)
which gives that
- (n+1)T
H(Ca'E((n+1)1)) g/ D (t)dt, (4.53)
nT

by using (4.47) into (4.53), we get

H(Cs'E((n+1)T)) <E(nT)—E((n+1)7),
from the above we have
E(n+1)T)+H (Ca'E((n+1)T)) <E(nT), n=123..

Then the Proof of Lemma 2 is complete.

Lemma 3. Let p be a positive, increasing function such that p (0) = 0. Since p is in-
creasing, we can define an increasing function q, q (x) = x—(I + p)71 (x). Consider
a sequence F,, of positive numbers which satisfies

Then Fp, < S (m) where S (t) is a solution of the differential equation
d
7 WO +a(S(®) =0, 5(0)=Fo. (4.55)

Moreover, if p(z) > 0 for x > 0 then lim;_,o S (t) = 0.

Proof. Proof of the Lemma use the proof retraction. Assume F;,, < S (m) and prove
Inequality (4.54) is equivalent to

(I +p) Finy1 < i,
and since (I 4+ p)~" is monotone increasing, Fp, 11 < (I +p) " Fy,, and using
(L+p)"" P = (I = q) F,
we get
Froyi < (I—q)Fn
= F,—q(Fn). (4.56)

On the other hand, since ¢ is an increasing function, the solution S (t) of equation
(4.55) is described by a nonlinear contraction.

d
In particular integrating pn {S (@)} <0 from m to T yields

S(r)<S(m) forallt>r. (4.57)

Notes



Notes

Integrating equation (4.55) from m to (m + 1) yields
m+41

S (m—+1) —S(m)+/ q(S (1)) dr = 0. (4.58)

m

Since ¢ is increasing, by using (4.57) we obtain for all m <7 <m+1

IN

[as@ar < [T s

m 1

then

_ /mH q(S(r))dr > —q(S(m)), forallm<7<m+1, (4.59)

m

by replacement (4.59) into (4.58) and using the inductive assumption Fy,, < S (m), we
get

Sm+1) = 5(m)—q(S(m))

= (I—q)S(m)
> (I—-q)Fy
= Fn—q(F(m)), (4.60)

comparing (4.60) with (4.56) yields

Then the Proof of Lemma 3 is complete.
Theorem 2. Let us assume that Assumption 1 and Assumption 2 ar the place.
Then there exist positive constants ci,co and Ty such that the solution of problem
(1.1) — (1.3) satisfies E (t) < s(t), where s (t) verifies the ODE

si+H(s)=0, s(0)=E(0), t>Ty>0,
with H (s) = ¢1 H (cg5) .
Proof. Thus, we are in a position to apply the result of Lemma 2 with

F,=E(mt), Fy=FE(0).
This yields
E(mT)<S(m), m=0,1,2,3...

Setting t = mT + 7 and recalling the evolution property gives

E(t) < E(mT) < S (m) SS(t;T) SS(;—1>,

which completes the proof of Theorem 2.
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