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In this paper, models of non-arbitrage markets are constructed on the basis of the
invariance of a set of spot measures with respect to a certain class of evolution
of risky assets. In the first part of the paper, models of complete non arbitrage
markets are built on the basis of an analysis of conditions under which there is only
one martingale measure. In the second part of the work, models of incomplete non-
arbitrage realistic market models are built based on the same principles as in the first
part of the work. For the introduced parametric models of the markets, estimates
of parameters were obtained based on the observed real values of the evolution of
risky assets. This opens up wide opportunities for hedging risks.

Historically the first model evolution of risky assets was suggested in Bachelier’s
work [4]. Then, in the famous works of Black F. and Scholes M. [5] and Merton R.
S. [6] the formula was found for the fair price of the standard call option of Euro-
pean type. The absence of arbitrage in the financial market has a very transparent
economic sense, since it can be considered reasonably arranged. The concept of non
arbitrage in financial market is associated with the fact that one cannot earn money

Abstract- In the first part of the paper, we construct the models of the complete non-arbitrage financial 
markets for a wide class of evolutions of risky assets. This construction is based on the observation that for a 
certain class of risky asset evolutions the martingale measure is invariant with respect to these evolutions. 
For such a financial market model the only martingale measure being equivalent to an initial measure is built. 
On such a financial market, formulas for the fair price of contingent liabilities are presented. A multi-
parameter model of the financial market is proposed, the martingale measure of which does not depend on 
the parameters of the model of the evolution of risky assets and is the only one.

In the second part of the paper, a model of an incomplete non-arbitrage financial market is 
proposed. As in the first part of the paper, we use the fact that the family of spot martingale measures is 
invariant with respect to a certain class of evolutions of risky assets. The set of all martingale measures being 
equivalent to an initial measure is completely described. Each martingale measure is a linear convex 
combination of the finite number of spot measures whose structure is completely described. For a wide class 
of models for the evolution of risky assets, a formula is found for the fair price of a super-hedge, as well as an 
interval of non-arbitrage prices for any contingent liability. A multi-parameter model of the incomplete 
financial market is proposed, the martingale measures of which do not depend on the parameters of the 
model of the evolution of risky assets. For the parameters of the models of the evolution of risky assets, 
statistical estimates are found for both complete and incomplete non-arbitrage markets.
Keywords: random process; spot set of measures; optional doob decomposition; super-
martingale; martingale; assessment of derivatives; non-arbitrage markets.
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without risking, that is, to make money you need to invest in risky or risk-free as-
sets. The exact mathematical substantiation of the concept of non arbitrage was
first made in the papers [7], [8] for the finite probability space and in the general
case in the paper [9]. In the continuous time evolution of risky asset, the proof of

of arbitrage possibility see in [11]. The value of the established Theorems
is that they make it possible to value assets. They got a special name ”The First
and The Second Fundamental Asset Pricing Theorems.” Generalizations of these
Theorems are contained in papers [12], [13], [14].

1 This work was partially supported by the Program of Fundamental Research of the Department of Physics and Astronomy 
of the National Academy of Sciences of Ukraine (project No 0117U000240).
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Non-Arbitrage Models of Financial Markets

This work is a continuation of the works [1], [19], [20], [21]. In paper [1], a
new method for constructing and describing a family of martingale measures was
proposed. This made it possible to build models of non-arbitrage markets. The
construction of a realistic model of non-arbitrage markets has been an urgent prob-
lem since the moment when the concept of the absence of arbitrage appeared in
the scientific literature as the most equitable model of the functioning of financial
markets. What could be more attractive than a realistic model that can be built on
the basis of observations of the evolution of the financial market. The main obstacle
to this was the limited possibilities of constructing a risk-neutral martingale mea-
sure for a given evolution of risky assets in the case of a complete market and their
complete description in the case of incomplete markets. In the case of discrete evolu-
tion of risky assets, the theoretical possibility of the existence of such non-arbitrage
markets was established in [7], [8], [9], [10], [11], [12], [13], [14]. But, there were
no practically regular methods for constructing such non-arbitrage market models,
although such attempts were made for some kind of models of the evolution of risky
assets [13], [14]. With the appearance of the work [1], which proposes a regular
method for describing all martingale measures for a wide class of evolutions of risky
assets [22], [23], [24] that capture the phenomenon of price memory and clustering,
it became possible to construct realistic models of non-arbitrage markets. Note that
such efforts have been made in this direction, and more about this can be found in
the monograph [13], [14]. Valuable is the fact that there is a wide range of models
for the evolution of risky assets for which it is possible to build parametric models
of non-arbitrage markets whose parameters can be estimated based on statistical
data. Problems of risk estimates was considered in papers [15], [16], [17], [18].

This work is the first step in constructing parametric models of non-arbitrage
markets whose parameters can be estimated based on empirical data. In this paper,
models of the evolution of risk assets on a discrete probabilistic space are considered.
Such models can be used to approximate realistic models of the evolution of risky
assets. The value of this model is that in this case the structure of the set of
martingale measures is relatively simple.

In the case of incomplete non-arbitrage markets, the set of equivalent martingale
measures has the cardinality of the continuum, but since they are a linear convex
combination of a set of spot measures whose number is finite, this allows calculat-
ing the required characteristics using a finite number of operations. This allows a
computer to be used to simulate non-arbitrage markets.

In the third section of the work, the necessary and sufficient conditions for the
uniqueness of a martingale measure are established in terms of the law of evolution of
risky assets, and the only martingale measure is found. Using the results of Section
3 in Section 4, a multi-parameter model of the complete financial market is built and
parameter estimates are obtained through empirical data of the financial market.
This will allow the model to be adapted to realistic financial markets to estimate
the fair price of European-type derivatives with different payment functions.

Section 5 establishes the general structure of the family of equivalent martingale
measures for a wide class of risky asset evolutions. The structure of spot measures is
completely described, the formulas for the fair price of the super hedge and the range
of non-arbitrage prices are established. Based on the results of Section 5, Section
6 builds a multi-parameter model of the incomplete non-arbitrage market. The
estimates of the parameters of the model are obtained through empirical observations
of the financial market. This will allow the computer to be used to model the
financial market.

In this section, a class of evolutions of risky assets is described which is used in this
paper. This class is fairly wide and includes well known in the literature evolutions
of risky assets. Let {ΩN ,FN , PN} be a direct product of the probability spaces

{Ω0
i ,F0

i , P
0
i }, i = 1, N, ΩN =

N∏
i=1

Ω0
i , PN =

N∏
i=1

P 0
i , FN =

N∏
i=1

F0
i , where the σ-

II. Evolutions of Risky Assets

https://doi.org/10.1080/17442%20509008833613�
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algebra FN is a minimal σ-algebra, generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i . On the

measurable space {ΩN ,FN}, under the filtration Fn, n = 1, N, we understand the

minimal σ-algebra generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i , where Gi = Ω0

i for i > n.

We also introduce the probability spaces {Ωn,Fn, Pn}, n = 1, N, where Ωn =
n∏
i=1

Ω0
i ,

Fn =
n∏
i=1

F0
i , Pn =

n∏
i=1

P 0
i . There is a one-to-one correspondence between the sets

of the σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-

algebra Fn =
n∏
i=1

F0
i of the measurable space {Ωn,Fn}, n = 1, N. Therefore, we don’t

introduce new denotation for the σ-algebra Fn of the measurable space {Ωn,Fn},
since it always will be clear the difference between the above introduced σ-algebra
Fn of filtration on the measurable space {ΩN ,FN} and the σ-algebra Fn of the
measurable space {Ωn,Fn}, n = 1, N.

We assume that the evolution of risky asset {Sn}Nn=0, given on the probabil-
ity space {ΩN ,FN , PN}, is consistent with the filtration Fn, that is, Sn is a Fn-
measurable. Due to the above one-to-one correspondence between the sets of the
σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-algebra
Fn of the measurable space {Ωn,Fn}, n = 1, N, we give the evolution of risky assets
in the form {Sn(ω1, . . . , ωn)}Nn=0, where Sn(ω1, . . . , ωn) is an Fn-measurable random
variable, given on the measurable space {Ωn,Fn}. It is evident that such evolution
is consistent with the filtration Fn on the measurable space {ΩN ,FN , PN}.

Further, we assume that

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0) > 0,

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn < 0) > 0, n = 1, N, (1)

where ∆Sn = Sn(ω1, . . . , ωn)− Sn−1(ω1, . . . , ωn−1), n = 1, N.

Let us introduce the denotations

Ω−n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn ≤ 0}, Ω+
n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0}, (2)

∆S−n = −∆SnχΩ−
n

(ω1, . . . , ωn), ∆S+
n = ∆SnχΩ+

n
(ω1, . . . , ωn), (3)

Vn(ω1, . . . , ωn−1, ω
1
n, ω

2
n) = ∆S−n (ω1, . . . , ωn−1, ω

1
n) + ∆S+

n (ω1, . . . , ωn−1, ω
2
n),

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (4)

In this paper we assume that

Ω+
n = Ωn−1 × Ω0+

n , Ω−n = Ωn−1 × Ω0−
n , Ω0+

n , Ω0−
n ∈ F0

n, Ω0−
n ∪ Ω0+

n = Ω0
n. (5)

Further, in this paper, we assume that P 0
n(Ω0−

n ) > 0, P 0
n(Ω0+

n ) > 0, n = 1, N.
We also assume some technical suppositions: there exist subsets B0−

n,i ∈ F0
n, i =

1, In, In > 1, and B0+
n,s ∈ F0

n, s = 1, Sn, Sn > 1, satisfying the conditions

B0−
n,i ∩B0−

n,j = ∅, i 6= j, B0+
n,s ∩B0+

n,l = ∅, s 6= l, n = 1, N,

Non-Arbitrage Models of Financial Markets
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P 0
n(B0−

n,i ) > 0, i = 1, In, P
0
n(B0+

n,s) > 0, s = 1, Sn, n = 1, N,

Ω0−
n =

In⋃
i=1

B0−
n,i , Ω0+

n =
Sn⋃
s=1

B0+
n,s, n = 1, N. (6)

Below, we give the examples of evolutions {Sn(ω1, . . . , ωn)}Nn=1 for which the
representations (5) are true.

Suppose that the random values ai(ω1, . . . , ωi), ηi(ωi) satisfy the inequalities

ai(ω1, . . . , ωi) > 0, sup
{ω1,...,ωi}∈Ωi

ai(ω1, . . . , ωi) <
1

sup
ωi∈Ω0

i ,ηi(ωi)<0

η−i (ωi)
,

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (7)

If Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), n = 1, N, (8)

then

{ωi ∈ Ω0
i , ηi(ωi) ≤ 0} = Ω0−

i , {ωi ∈ Ω0
i , ηi(ωi) > 0} = Ω0+

i ,

Ω−i = Ωi−1 × Ω0−
i , Ω+

i = Ωi−1 × Ω0+
i , i = 1, N. (9)

Let us note that not only the evolutions given by the formula (8) provide the rep-
resentation (5). In this work, we use the evolutions of the kind (8). Below we give
examples of the evolution of risky assets that have the form (8). For example, if

Sn(ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (10)

where the random values σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and P 0

i (εi(ωi) < 0) >
0, P 0

i (εi(ωi) > 0) > 0, then such an evolution has the form (8) with

ai(ω1, . . . , ωi) =
eσi(ω1,...,ωi−1)εi(ωi) − 1

eσ
0
i εi(ωi) − 1

, ηi(ωi) = eσ
0
i εi(ωi) − 1, i = 1, N.

satisfying needed conditions.

In this section, the necessary and sufficient conditions in terms of the evolution of
risky assets are obtained relative to the uniqueness of martingale measure. Under
the fairly wide assumptions about the evolution of risky assets, an expression for
a single martingale measure is found . Based on the explicit construction of the
martingale measure and its invariance with respect to a certain type of evolutions,
it is possible to construct the models of non arbitrage markets, both complete and
incomplete.

Non-Arbitrage Models of Financial Markets

III. Uniqueness of the Martingale Measure
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In this and section 4, we put that Ω0
i = {ω1

i , ω
2
i }. Denote by F0

i the σ-algebra
of all subsets of the set Ω0

i . Let P 0
i be a probability measure on F0

i . We assume
that P 0

i (ωsi ) > 0, i = 1, N, s = 1, 2. As before, we put that the probability space
{ΩN ,FN , PN} is a direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, N,

and we put N <∞. We also consider the probability spaces {Ωn,Fn, Pn}, n = 1, N,
being the direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, n. We assume

that the evolution of a risky asset is given by the formula

Sn(ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), {ω1, . . . , ωn−1, ωn} ∈ Ωn, n = 1, N, (11)

where the random values an(ω1, . . . , ωn−1, ωn), ηn(ωn), n = 1, N, given on the
probability space {Ωn,Fn, Pn}, satisfy the conditions

an(ω1, . . . , ωn−1, ωn) > 0, max
{ω1, ...,ωn−1}∈Ωn−1

an(ω1, . . . , ωn−1, ω
1
n) <

1

η−n (ω1
n)
,

ηn(ω2
n) > 0, ηn(ω1

n) < 0. (12)

So, for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the representation

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ωn)ηn(ωn) =

dn(ω1, . . . , ωn−1, ωn)ηn(ωn), dn(ω1, . . . , ωn−1, ωn) > 0, n = 1, N, S0 > 0, (13)

is true, From these conditions, we obtain Ω−n = Ωn−1 × Ω0−
n , Ω+

n = Ωn−1 × Ω0+
n ,

where Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0}.
From the suppositions above, it follows that P 0

n(Ω0−
n ) > 0, P 0

n(Ω0+
n ) > 0. The

measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n = Ω0−

n ∩ F0
n,

P 0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩ F0
n.

Let us introduce the following denotation. For every point {ω1, . . . , ωn−1, ωn} ∈
Ωn, we introduce the set A(ω1, . . . , ωn−1, ωn) ∈ ΩN , where

A(ω1, . . . , ωn−1, ωn) =
2⋃

in+1=1,...,iN=1

{ω1, . . . , ωn−1, ωn, ω
in+1

n+1 , . . . , ω
iN
N }.

For fixed indexes i1, . . . , in we also use the denotation

A(ωi11 , . . . , ω
in−1

n−1 , ω
in
n ) = Ai1,...,in .

It is evident that every set Ai1,...,in has the form

Ai1,...,in =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ωinn , ω
in+1

n+1 , . . . , ω
iN
N },

Non-Arbitrage Models of Financial Markets
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where indexes is takes only one value from the set {1, 2}. Then, Ai1,...,in−1 =
Ai1,...,in−1,1 ∪ Ai1,...,in−1,2 ∈ Fn−1, where

Ai1,...,in−1,1 =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ω
in−1

n−1 , ω
1
n, ω

in+1

n+1 , . . . , ω
iN
N } ∈ Fn,

Ai1,...,in−1,2 =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ω
in−1

n−1 , ω
2
n, ω

in+1

n+1 , . . . , ω
iN
N }} ∈ Fn.

If PN is a measure on FN , then

PN(A(ω1, . . . , ωn−1, ωn)) =
2∑

in+1=1,...,iN=1

PN({ω1, . . . , ωn−1, ωn, ω
in+1

n+1 , . . . , ω
iN
N }).

We give an evident construction of martingale measure for risky assets evolution,
given by the formula (11). Below, we assume that measures P 0

n is concentrated
at points ω1

n, ω
2
n ∈ Ω0

n, where ω1
n ∈ Ω0−

n , ω2
n ∈ Ω0+

n and we have the representation
Ω−n = Ωn−1 × Ω0− and Ω+

n = Ωn−1 × Ω0+. So, we have ηn(ω1
n) < 0, ηn(ω2

n) > 0.

Let us put P 0
n(ω1

n) = pn, P
0
n(ω2

n) = 1 − pn, where 0 < pn < 1. Then, to satisfy
the conditions (14 - 16), (see [1]) we need to put

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

1

pn(1− pn)
, n = 1, N, (14)

and to require that

∆S−n (ω1, . . . , ωn−1, ω
1
n) <∞, (ω1, . . . , ωn−1, ω

1
n) ∈ Ω−n ,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) <∞, (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (15)

The next Lemma 1 is a consequence of results in [1].

On the probability space {ΩN ,FN , PN}, being the direct product of the
probability spaces {Ω0

i ,F0
i , P

0
i }, for the evolution of risky asset given by the formula

(11) only one spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) exists, where {ω1

i , ω
2
i } ∈ Ω0

i , i =

1, N. For it the representation

µ0(A) = µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (16)

is true. This measure is martingale measure for the considered evolution of risky
asset, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (17)

Non-Arbitrage Models of Financial Markets

Lemma 1. 

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

72

  
 

( A
)

V
er

sio
n

I

𝜓𝜓

𝜓𝜓 𝜓𝜓

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (18)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (19)

Next Theorem 1 appeared first in [2] (Theorem 1.4.1), where it was proved under
the less general conditions.

On the probability space {ΩN ,FN , PN}, being the direct product
of the probability spaces {Ω0

i ,F0
i , P

0
i }, suppose that the evolution of risky asset

{Sn(ω1, . . . , ωn)}Nn=1 is given by the formula (11). The necessary and sufficient con-
ditions of the uniqueness of martingale measure µ0(A), A ∈ FN , are the inequalities

Sn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n) 6= Sn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n), n = 1, N, (20)

for every set of indexes i1, . . . , in−1. For any martingale {mn(ω1, . . . , ωn−1, ωn)}Nn=0

relative to the unique measure µ0(A) the representation

mn(ω1, . . . , ωn−1, ωn) =

n∑
k=1

Ck(ω1, . . . , ωk−1)[Sk(ω1, . . . , ωk−1, ωi)− Sk−1(ω1, . . . , ωk−1)]+

m0, n = 1, N, (21)

is true, where

Ck(ω1, . . . , ωk−1) =
2∑

i1=1,...,ik−1=1

di1,...,ik−1
χAi1,...,ik−1 (ω1, . . . , ωk−1). (22)

di1,...,ik−1
=

mk(ω
i1
1 , . . . , ω

ik−1

k−1 , ω
1
k)−mk(ω

i1
1 , . . . , ω

ik−1

k−1 , ω
2
k)

Sk(ω
i1
1 , . . . , ω

ik−1

k−1 , ω
1
k)− Sk(ω

i1
1 , . . . , ω

ik−1

k−1 , ω
2
k)
, k = 1, N. (23)

Proof. The necessity. Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of the risky
asset on the probability space {ΩN ,FN , PN} is such that the martingale measure
µ0(A), A ∈ FN , being equivalent to the measure PN , is unique. Then, for every
attainable contingent liability mN(ω1, . . . , ωN) the representation (21) is true [11]
for some Fk−1-measurable finite valued random value Ck(ω1, . . . , ωk−1), k = 1, N,
where mn(ω1, . . . , ωn−1, ωn) = Eµ0{mN(ω1, . . . , ωN)|Fn}. For mn(ω1, . . . , ωn−1, ωn)
and Sn(ω1, . . . , ωn−1, ωn) the representations

Non-Arbitrage Models of Financial Markets
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mn(ω1, . . . , ωn−1, ωn) =

2∑
i1=1,...,in=1

χAi1,...,in−1,in (ω1, . . . , ωn)

µ0(Ai1,...,in−1,in)

∫
Ai1,...,in−1,in

mN(ω1, . . . , ωN)dµ0, n = 1, N, (24)

Sn(ω1, . . . , ωn−1, ωn) =

2∑
i1=1,...,in=1

χAi1,...,in−1,in (ω1, . . . , ωn)

µ0(Ai1,...,in−1,in)

∫
Ai1,...,in−1,in

SN(ω1, . . . , ωN)dµ0, n = 1, N, (25)

are true. From the representation (21) and the equality (22) for {ω1, . . . , ωn−1} ∈
Ai1,...,in−1 we obtain the equality

χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn−1)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn−1)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

 , (26)

where di1,...,in−1 is finite. Since ∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

Non-Arbitrage Models of Financial Markets
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∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0, (27)

we have

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

[µ0(Ai1,...,in−1,1) + µ0(Ai1,...,in−1,2)]

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

 ∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 =

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0. (28)

Further,

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

[µ0(Ai1,...,in−1,1) + µ0(Ai1,...,in−1,2)]

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

 ∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 =

Non-Arbitrage Models of Financial Markets
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−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 . (29)

If to put

Rm
1 (ωi11 , . . . , ω

in−1

n−1 ) = µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0, (30)

RSN
1 (ωi11 , . . . , ω

in−1

n−1 ) = µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0. (31)

Then, the equality (26) is transformed into the equality

Rm
1 (ωi11 , . . . , ω

in−1

n−1 ) = di1,...,in−1R
SN
1 (ωi11 , . . . , ω

in−1

n−1 ). (32)

Due to that Sn(ω1, . . . , ωn) and mn(ω1, . . . , ωn) are martingales relative to the mea-
sure µ0 and Ai1,...,in−1,1, Ai1,...,in−1,2 ∈ Fn we have∫

Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,1

Sn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,1)Sn(ω1, . . . , ω
1
n), (33)∫

Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,2

Sn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,2)Sn(ω1, . . . , ω
2
n), (34)

∫
Ai1,...,in−1,1

mN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,1

mn(ω1, . . . , ωn)dµ0 =

-
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µ0(Ai1,...,in−1,1)mn(ω1, . . . , ω
1
n), (35)

∫
Ai1,...,in−1,2

mN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,2

mn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,2)mn(ω1, . . . , ω
2
n). (36)

Since di1,...,in−1 is finite, then RSN
1 (ωi11 , . . . , ω

in−1

n−1 ) 6= 0. The last means that in-
equality (20) takes place. This proves the equality

di1,...,in−1 = (37)

mn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n)−mn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n)

Sn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n)− Sn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n)
,

n = 1, N,

which means that (23) is true, where we introduced the denotation

mn(ω1, . . . , ωn) = Eµ0{m(ω1, . . . , ωN)|Fn} =

2∑
in+1=1,...,iN=1

m(ω1, . . . , ωn, ω
in+1
n , . . . , ωiNN )µ0({ω1, . . . , ωn, ω

in+1
n , . . . , ωiNN }), (38)

Sn(ω1, . . . , ωn) = Eµ0{SN(ω1, . . . , ωN)|Fn} =

2∑
in+1=1,...,iN=1

SN(ω1, . . . , ωn, ω
in+1
n , . . . , ωiNN )µ0({ω1, . . . , ωn, ω

in+1
n , . . . , ωiNN }). (39)

This proves the necessity.
Proof of the sufficiency. Suppose that the inequalities (20) are true. Let us prove

that the martingale measure µ0 is unique. For this purpose, we prove that for every
martingale the representation (21) is true with validity of equalities (22), (23).

Let us note that the equality (26) is true if for di1,...,in−1 to choose (37) since the
equalities 

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,1)
−

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)

×


∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,1)
−

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)


−1

=
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
∫

Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,2)
−

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)

×


∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,2)
−

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)


−1

=

di1,...,in−1 (40)

are valid.
Taking into account the equality (26) and the equalities

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×

2∑
j1=1,...jn−1=1

χAj1,...,jn−1,1(ω1, . . . , ωn)

µ0(Aj1,...,jn−1,1)

∫
Aj1,...,jn−1,1

SN(ω1, . . . , ωN)dµ0+

χAj1,...,jn−1,2(ω1, . . . , ωn)

µ0(Aj1,...,jn−1,2)

∫
Aj1,...,jn−1,2

SN(ω1, . . . , ωN)dµ0−

χAj1,...,jn−1 (ω1, . . . , ωn)

µ0(Aj1,...,jn−1)

∫
Aj1,...,jn−1

SN(ω1, . . . , ωN)dµ0

 = (41)

we have

χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0+

-
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χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)]. (42)

Summing over all indexes i1, . . . , in−1 left and right hand sides of the equality (42)
we obtain the equality

mn(ω1, . . . , ωn)−mn−1(ω1, . . . , ωn−1) =

Cn(ω1, . . . , ωn−1)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)], (43)

Cn(ω1, . . . , ωn−1) =
2∑

i1=1,...,in−1=1

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1). (44)

We proved that for every martingale the representation (21) is true, due to the
conditions (20). Let us prove that the martingale measure is unique. Suppose that
there are at most two martingale measures µ1

0 and µ2
0. If to put m(ω1, . . . , ωN) =

χA(ω1, . . . , ωN), then

χA(ω1, . . . , ωN) =
N∑
n=1

Cn(ω1, . . . , ωn−1)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)] + c0. (45)

From this representation, we obtain the equalities µ1
0(A) = µ2

0(A) = c0, A ∈ FN .
Contradiction. The last proves Theorem 1.

heorem is concerned the case as the set of martingale measures consists of
one measure.

On the probability space {ΩN ,FN , PN}, being the direct product of the
probability spaces {Ω0

i ,F0
i , P

0
i }, suppose that the evolution of risky asset is given

by the formula (11), then the set of martingale measures, being equivalent to the
measure PN , consists of one point

µ0(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN . (46)

The fair price of contract with option ϕ0 of European type with the payoff function
ϕ(ω1, . . . , ωN) is given by the formula

ϕ0 =
2∑

i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕ(ωi11 , . . . , ω

iN
N ), (47)

-

Theorem 2. 
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where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (48)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (49)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (50)

Proof. Since

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, (ω1, . . . , ωn−1) ∈ Ωn−1, (51)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, (ω1, . . . , ωn−1) ∈ Ωn−1, (52)

we have

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn) > 0, (ω1, . . . , ωn) ∈ Ωn. (53)

From this, it follows that µ0(A) > 0 for every A ∈ FN . It means that µ0(A) is
equivalent to PN . The inequality

Sn(ω1, . . . , ωn−1, ω
1
n) =

n−1∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi))(1 + an(ω1, . . . , ω
1
n)ηi(ω

1
n)) 6=

Sn(ω1, . . . , ωn−1, ω
2
n) =

n−1∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi))(1 + an(ω1, . . . , ω
2
n)ηi(ω

2
n)), n = 1, N, (54)

is true, since

(1 + an(ω1, . . . , ω
1
n)ηi(ω

1
n)) 6=

-

© 2021 Global Journals
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(1 + an(ω1, . . . , ω
2
n)ηi(ω

2
n)), n = 1, N, (55)

due to the suppositions relative to the evolutions of risky asset, given by the formula
(11). Thanks to Theorem 1, the martingale measure µ0 is unique.

To prove the rest statement of Theorem 2, we need to construct the self-financing
strategy π such that the capital corresponding this strategy on (B, S) market satisfies
the condition

Xπ
N = ϕ(ω1, . . . , ωn−1, ωN).

Let us consider the martingale

mn(ω1, . . . , ωn−1, ωn) = Eµ0{ϕ(ω1, . . . , ωn−1, ωN)|Fn}.

Due to Theorem 1, for the finite martingale {mn(ω1, . . . , ωn−1, ωn)}Nn=0 relative
to the the measure µ0(A) the representation

mn(ω1, . . . , ωn−1, ωn) =

n∑
i=1

Ci(ω1, . . . , ωi−1)[Si(ω1, . . . , ωi−1, ωi)− Si−1(ω1, . . . , ωi−1)]+

m0, n = 1, N, (56)

is true, where Ci(ω1, . . . , ωi−1) is Fi−1 measurable random value, and m0 =
Eµ0ϕ(ω1, . . . , ωn−1, ωN).

If to put π = {βn, γn}Nn=0, where

γn = Cn(ω1, . . . , ωn−1), βn = mn−1(ω1, . . . , ωn−1)− γnSn−1(ω1, . . . , ωn−1),

then it easy to see that π is self-financed strategy. Really,

∆βnBn−1 + γn∆Sn−1 = ∆βn + ∆γnSn−1 =

mn−1 − γnSn−1 −mn−2 + γn−1Sn−2 + (γn − γn−1)Sn−1 =

mn−1 −mn−2 − γn−1(Sn−1 − Sn−2) = 0.

Fn−1-measurability of (βn, γn) is evident.
It is easy to show that

Xn(ω1, . . . , ωn) = βnBn + γnSn = mn(ω1, . . . , ωn).

Therefore,

X0 = m0 = Eµ0ϕ(ω1, . . . , ωn−1, ωN), XN = ϕ(ω1, . . . , ωn−1, ωN).
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In this section, the securities market is constructed, the evolution of which occurs
in accordance with Formula (11). Possible for this was the observation that with
respect to a certain class of evolutions of risky assets, the family of martingale
measures is invariant. This fact turned out to be crucial for the construction of
models of non-arbitrage markets. In papers [10], [11], such a possibility of the
existence of non-arbitrage markets is established on the basis of the Hahn-Banach
Theorem. This beautiful result has the disadvantage that it does not provide an
algorithm for constructing models of non-arbitrage markets. How to build them
having the evolution of risky assets is practically a difficult problem.

In Proposition 1, we establish the form of measurable transformations relative
to which the only measure is invariant. Using that, a model of the securities market
is built, which is complete. This result is constructive in contrast to the existence
theorem from [10], [11]. Our denotations in this section are the same as in the
previous section. We consider the evolution of risky assets given by the formula (11)
on the same probability space.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (11), with ai(ω1, . . . , ωi) = bi(ω1, . . . , ωi−1)fi(ω1, . . . , ωi), where the random
variables fi(ω1, . . . , ωi), bi(ω1, . . . , ωi−1), satisfy the inequalities

fi(ω1, . . . , ωi) > 0, bi(ω1, . . . , ωi−1) > 0, max
{ω1,...,ωi−1}∈Ωi−1

bi(ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ωi−1, ω1
i )η
−
i (ω1

i )
, i = 1, N. (57)

For such an evolution, the unique martingale measure µ0 does not depend on the
random variables bi(ω1, . . . , ωi−1), i = 1, N, and it is given by the formula

µ0(A) = µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (58)

where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (59)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (60)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

IV. Complete Market Hedging

Proposition 1. 

© 2021 Global Journals
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Proof. Due to the representation (46) for the measure µ0, to prove Proposition 1
it needs to prove that all n(ω1, . . . , ωn), n = 1, N, do not depend on the random
variables bi(ω1, . . . , ωi−1), i = 1, N, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (62)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (63)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (64)

But,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
2
n)η+

n (ω2
n), (65)

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
1
n)η−n (ω1

n). (66)

Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (67)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (68)

(ω1, . . . , ωn−1) ∈ Ωn−1.

The equalities (67), (68) prove Proposition 1.

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
. (61)
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Suppose that the market consists of d assets the evolutions of which are given
by the law

Sn((ω1, . . . , ωn) = {S1
n((ω1, . . . , ωn), . . . , Sdn((ω1, . . . , ωn)}, n = 1, N, (69)

where

Skn((ω1, . . . , ωn) = Sk0

n∏
i=1

(1 + bki (ω1, . . . , ωi−1)fi(ω1, . . . , ωi)ηi(ωi)), k = 1, d, (70)

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, not depend on k, and
satisfy inequalities

fi(ω1, . . . , ωi) > 0, bki (ω1, . . . , ωi−1) > 0, max
{ω1,...,ωi−1}∈Ωi−1

bki (ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ωi−1, ω1
i )η
−
i (ω1

i )
, k = 1, d, i = 1, N. (71)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, if the evolution of d risky assets is given by the

formula (69), (70), then such a market is complete non arbitrage one. The unique
martingale measure does not depend on the random variables bki (ω1, . . . , ωi−1), k =
1, d, i = 1, N, and it is determined by the formula (58). For the contingent claims
ϕi(ω1, . . . , ωN), i = 1, d, the fair prices ϕi0 are given by the formulas

ϕi0 =
2∑

i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕi(ω

i1
1 , . . . , ω

iN
N ), i = 1, d. (72)

(Cox, Ross, Rubinstein, see [3]) On the probability space {ΩN ,FN , PN},
being the direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of

risky asset is given by the formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (73)

where the random values ρi(ωi), i = 1, N, are such that ρi(ω
1
i ) = a, ρi(ω

2
i ) = b, and

let the bank account evolution be given by the formula

Bn = B0(1 + r)n, r > 0, B0 > 0 n = 1, N. (74)

Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0(1 + r)n
, n = 1, N, (75)

the martingale measure µ0 is unique if a < r < b. It is a direct product of measures
µi0(A), A ∈ F0

i , i = 1, N, given on the measurable space {Ω0
i ,F0

i }, where µi0(ω1
i ) =

Proposition 2. 

Corollary 1.
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b−r
b−a , µ

i
0(ω2

i ) = r−a
b−a . The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN)

given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

ϕN(ωi11 , . . . , ω
iN
N )

N∏
k=1

µk0(ωikk ). (76)

Proof. For the discount evolution (75), the representation

Sn((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ηi(ωi)) , n = 1, N, (77)

is true, where ηi(ωi) = ρi(ωi))−r
(1+r)

. Due to Theorems 1, 2, since ηi(ω
1
i ) = a−r

1+r
< 0,

ηi(ω
2
i ) = b−r

1+r
> 0, then the measure µ0 is unique.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (78)

where the random values ρi(ωi), i = 1, N, are such that ρi(ω
1
i ) = b1

i , ρi(ω
2
i ) =

b2
i , i = 1, N, and let the bank account evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (79)

where the random values ri(ωi), i = 1, N − 1, are such that ri(ω
1
i ) = r1

i , ri(ω
2
i ) =

r2
i , i = 1, N − 1, r0 > 0. Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (80)

the martingale measure µ0 is unique, if b1
1 < r0 < b2

1, b
1
i < r1

i−1 < r2
i−1 < b2

i , i =

2, N. It is determined by the formula (58) with

η1(ω1) = ρ1(ω1)− r0, ηi(ωi) = ρi(ωi)− r2
i−1, i = 2, N,

f1(ω1) =
1

1 + r0

, fi(ω1, . . . , ωi) =

ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− r2
i−1)(1 + ri−1(ωi−1))

, i = 2, N. (81)

Theorem 3.        
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The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (82)

Proof. To prove Theorem 3 it is necessary to prove the existence of unique spot
measure. The discount evolution (80) can be represented in the form

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (83)

where

η1(ω1) = ρ1(ω1)− r0, ηi(ωi) = ρi(ωi)− r2
i−1, i = 2, N,

f1(ω1) =
1

1 + r0

, fi(ω1, . . . , ωi) =

ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− r2
i−1)(1 + ri−1(ωi−1))

, i = 2, N, (84)

It is evident that ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0. Therefore, from the rep-

resentation (83), (84) it follows that we can construct only one spot measure, which
is martingale measure being equivalent to the initial measure PN . In accordance
with Theorem 1, since Sn(ω1, . . . , ω

1
n) 6= Sn(ω1, . . . , ω

2
n), {ω1, . . . , ωn−1} ∈ Ωn−1

such a measure is unique. Theorem 3 is proved.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (85)

where the random values εi(ωi), i = 1, N, are such that εi(ω
1
i ) < 0, εi(ω

2
i ) > 0,

σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and let the bank account evolution be given by

the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (86)

where the random values ri(ωi), i = 1, N − 1, are such that ri(ω
1
i ) = r1

i , ri(ω
2
i ) =

r2
i , i = 1, N − 1, r0 > 0. Then, for the discount evolution of risky asset

Theorem 4. 

© 2021 Global Journals
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Sn((ω1, . . . , ωn) =

S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi)

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (87)

the martingale measure µ0 is unique, if

exp{σ0
1ε1(ω1

1)} < r0 < exp{σ0
1ε1(ω2

1)},

exp{σ0
i εi(ω

1
i )} < r1

i−1 < r2
i−1 < exp{σ0

i εi(ω
2
i )}, i = 2, N. (88)

It is determined by the formula (58) with

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − r2

i−1, fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − r2

i−1)(1 + ri−1(ωi−1))
, {ω1, . . . , ωi} ∈ Ωn, i = 2, N. (89)

The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (90)

Proof. For the discount evolution (87), the following representation

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (91)

is true, where

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − r2

i−1, fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − r2

i−1)(1 + ri−1(ωi−1))
, {ω1, . . . , ωi} ∈ Ωn, i = 2, N. (92)

It is evident that ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0. From this, we obtain

that the spot measure exists and it is unique. Theorem 4 is proved.
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On the probability space {ΩN ,FN , PN}, being the direct product of probability
spaces {Ω0

i ,F0
i , P

0
i }, suppose that the market consists of d assets the evolution of

which is given by the law

Sn((ω1, . . . , ωn) = {S1
n((ω1, . . . , ωn), . . . , Sdn((ω1, . . . , ωn)}, n = 1, N, (93)

where

Skn((ω1, . . . , ωn) = Sk0

n∏
i=1

(1 + aki fi(ω1, . . . , ωi)ηi(ωi)), k = 1, d, (94)

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, and constants aki satisfy the
inequalities

ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0,

0 < aki <
1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ω1
i )η
−
i (ω1

i )
, i = 1, N, k = 1, d. (95)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky assets be given by the

formulas (93), (94), where constants aki i = 1, N, k = 1, d, satisfy the inequalities
(95). For such an evolution of risky asset the martingale measure µ0 does not depend
on aki and is unique. It is determined by the formula (58). For the contingent claims
ϕiN(ω1, . . . , ωN), i = 1, d, the fair prices ϕi0 are given by the formulas

ϕi0 =
2∑

i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕiN(ωi11 , . . . , ω

iN
N ), i = 1, d. (96)

If fi(ω1, . . . , ωi) = 1, i = 1, N, the unique martingale measure is a direct product of
measures µi0(A), A ∈ F0

i , given on the measurable space {Ω0
i ,F0

i }, i = 1, N, where

µi0(ω1
i ) =

η+
i (ω2

i )

(η−i (ω1
i ) + η+

i (ω2
i ))

, µi0(ω2
i ) =

η−i (ω1
i )

(η−i (ω1
i ) + η+

i (ω2
i ))

. (97)

The fair prices ϕi0, i = 1, N, of the contingent liabilities ϕiN(ω1, . . . , ωN), i = 1, N,
are given by the formula

ϕi0 =

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

ϕiN(ωi11 , . . . , ω
iN
N )

N∏
k=1

µk0(ωikk ). (98)

Suppose that {gik(XN)}Nk=1, i = 1, d, are the mappings from the set [0, 1]N into
itself, where XN = {x1, . . . , xN}, 0 ≤ xk ≤ 1, k = 1, N. If Si0, S

i
1, . . . , S

i
N , i =

1, d, are the samples of the processes (93), (94) let us denote the order statis-
tics Si(0), S

i
(1), . . . , S

i
(N), i = 1, d, of this samples. Introduce also the denotation

gik ([Si]N) = gik

(
Si
(0)

Si
(N)

, . . . ,
Si
(N−1)

Si
(N)

)
, k = 1, N, i = 1, d.

Proposition 3. 
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Suppose that Si0, S
i
1, . . . , S

i
N is a sample of the random processes

(93), (94). Then, for the parameters ai1, . . . , a
i
N the estimation

ai1 =

[
1− τ i0

Si
(0)

Si
0
gi1 ([Si]N)

]
f1η
−
1 (ω1

1)
, 0 < τ i0 ≤ 1, i = 1, d,

aik =

[
1− gik([Si]N)

gik−1([Si]N )

]
fkη

−
k (ω1

k)
, k = 2, N, i = 1, d, (99)

is valid, if for giN([Si]N) > 0, [Si]N ∈ [0, 1]N , the inequalities gi1([Si]N) ≥
gi2([Si]N) ≥ . . . ≥ giN([Si]N) are true. If τ i0 = 0, then aik = 1, k = 1, N, i = 1, d.

In the formulas (99) we put that fk = max
{ω1,...,ωk−1}∈Ωk−1

fk(ω1, . . . , ωk−1, ω
1
k), k =

1, N.

This section presents all the necessary results for constructing a non-arbitrage in-
complete market on a discrete probability space. The conditions under which the
entire family of martingale measures is described for the considered class of evolu-
tion of risky assets are minimal. In particular, conditions are presented under which
the family of martingale measures considered is equivalent to the original measure.
They are minimal. The entire set of equivalent martingale measures is a convex
combination of a finite number of spot martingale measures. On this basis, new
formulas were found for the fair price of the super hedge.

In this section, we put that Ω0
i = {ω1

i , . . . , ω
M
i }, i = 1, N, and we assume that

2 < M < ∞, the σ-algebra F0
i consists from all subsets of Ω0

i . We suppose that
P 0
i (ωki ) > 0, ωki ∈ Ω0

i , k = 1,M. As before, the probability space {ΩN ,FN , PN}
is a direct product of probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, N. Sometimes, any

elementary event ωki ∈ Ω0
i it is convenient to denote by ωi not indicating the index

k. Further, we use the both denotations. As in section 2, we introduce filtration
Fn on the probability space {ΩN ,FN , PN}. As before, it is convenient to introduce
the family of probability spaces {Ωn,Fn, Pn}, n = 1, N, being a direct product of
probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, n.

The evolution of risky assets is given by the formula (8) with the assumptions
given in the section 2. In this case

Ω−n = Ωn−1 × Ω0−
n , Ω+

n = Ωn−1 × Ω0+
n , (100)

where Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0},Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0},
P 0
n({ωn, ηn(ωn) > 0}) > 0, P 0

n({ωn, ηn(ωn) < 0}) > 0. Further, we also use the
measurable space with measure{

N∏
i=1

[Ω0−
i × Ω0+

i ],
N∏
i=1

[F0−
i ×F0+

i ],
N∏
i=1

[P 0−
i × P 0+

i ]

}
. (101)

Proposition 4. 

V. Martingale Measures on Discrete Probability Space
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The measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n =

Ω0−
n ∩F0

n, P
0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩F0
n.

Additionally, we assume

P 0
n({ωn ∈ Ω0

n, |ηn(ωn)| <∞}) = 1. (102)

In this case, Lemma 1 (see [1]) is formulated as follows

Suppose that for Ωa
n, a = −,+, n = 1, N, the representations (100) are

true. If the conditions

B0−
n,i ∩B0−

n,j = ∅, i 6= j,

B0+
n,s ∩B0+

n,l = ∅, s 6= l, k = 1, Nn,

Ω0−
n =

Nn⋃
i=1

B0−
n,i , Ω0+

n =
Nn⋃
i=1

B0+
n,i ,

P 0
n(Ω0−

n \B
0,−
n,i ) > 0, i = 1, In, In > 1, n = 1, N,

P 0
n(Ω0+

n \B0,+
n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

P 0
n(B0,−

n,i ) > 0, i = 1, In, In > 1, n = 1, N,

P 0
n(B0,+

n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,∫
ΩN

∆S−n (ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N, (103)

are true, then the set of bounded strictly positive random values αn({ω}1
n; {ω}2

n),
satisfying the conditions (14) - (16),(see [1]) is a nonempty set.

Suppose that the conditions of Lemma 2 are true. For the measure
µ0(A), A ∈ FN , constructed by the recurrent relations (23) - (25),(see [1]) the
representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (104)

is true and µ0(ΩN) = 1, that is, the measure µ0(A) is a probability measure being
equivalent to the measure PN , where we put

n(ω1, . . . , ωn) = χΩ0−
n

(ωn) 1
n(ω1, . . . , ωn)+

χΩ0+
n

(ωn) 2
n(ω1, . . . , ωn), (105)

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0+
n

(ω2
n)αn({ω1, . . . , ωn−1, ωn}; {ω1, . . . , ωn−1, ω

2
n})×

Lemma 2.

Lemma 3.

© 2021 Global Journals
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∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (106)

2
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0−
n

(ω1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ωn})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (107)

Proof. We only need to prove that n(ω1, . . . , ωn) > 0, n = 1, N. Suppose that

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = α1

n(ω1
n)α2

n(ω2
n),

where

α1
n(ω1

n) > 0, ω1
n ∈ Ω0−

n , α2
n(ω2

n) > 0, ω2
n ∈ Ω0+

n .

Since

∆S−n (ω1, . . . , ωn−1, ω
1
n) = Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ω

1
n)η−n (ω1

n),

where

η−n (ωn) = −χΩ0−
n

(ωn)ηn(ωn), η+
n (ωn) = χΩ0+

n
(ωn)ηn(ωn),

Therefore,

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0+
n

(ω2
n)αn({ω1, . . . , ωn−1, ωn}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n) =

Sn−1(ω1, . . . , ωn−1)α1
n(ωn)

∫
Ω0

n

χΩ0+
n

(ω2
n)α2

n(ωn)×

an(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω2

n) > 0, (ω1, . . . , ωn) ∈ Ωn−1 × Ω0−
n . (108)
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n (ω1, . . . , ωn−1, ω

2
n) = Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ω

2
n)η+

n (ω2
n),

an(ω1, . . . , ωn−1, ω
1
n) > 0, an(ω1, . . . , ωn−1, ω

2
n) > 0.
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Analogously,

(109)

(110)

From these inequalities, we obtain

n(ω1, . . . , ωn−1, ωn) > 0, (ω1, . . . , ωn) ∈ Ωn.

This proves the equivalence of the measures PN and µ0.

Suppose that the conditions of Lemma 2 are true. Then, the set of
strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (111)

is a nonempty one and the convex linear span of the set of measures (104), de-
fined by the random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the

conditions (111), is a set of martingale measures being equivalent to the measure
PN .

Proof. All bounded random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, con-

structed in Lemma 2 satisfy the conditions (111), since |∆Sn(ω1, . . . , ωn−1, ωn)| takes
only finite values. The fact that the measures (104) are martingale ones is proved
as early (see [1]).

Suppose that the conditions of Lemma 2 are valid. If, on the probability
space {Ωn−1,Fn−1, µ

n−1
0 }, for each B ∈ Fn−1, µ

n−1
0 (B) > 0, the nonnegative random

value fn(ω1, . . . , ωn−1, ωn) satisfies the inequality

1

µn−1
0 (B)

∫
B

∫
Ω0

n

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) ≤ 1, B ∈ Fn−1, (112)

Theorem 5. 

Lemma 4. 

© 2021 Global Journals
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n

(ω1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ωn})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n) =

Sn−1(ω1, . . . , ωn−1)α2
n(ωn)

∫
Ω0

n

χΩ0−
n

(ω1
n)α1

n(ω1
n)×

an(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n) > 0, (ω1, . . . , ωn) ∈ Ωn−1 × Ω0+
n .
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then the inequality ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1,

{ω1, . . . , ωn−1} ∈ Ωn−1, n = 1, N, (113)

is true.

Proof. The proof see in [1].

Suppose that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the representation
(13) is valid and Lemma 4 conditions are true. Then, for the nonnegative random
value fn(ω1, . . . , ωn−1, ωn) the inequalities

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1,

(ω1, . . . , ωn−1) ∈ Ωn−1, (ω1
n, ω

2
n) ∈ Ω0−

n × Ω0+
n , n = 1, N, (114)

are true.

Proof. The proof see in [1].

Suppose that the conditions of Theorem 6 are true. Then, the non-
negative random values fn(ω1, . . . , ωn−1, ωn), n = 1, N, satisfy the inequalities

fn(ω1, . . . , ωn−1, ωn) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (115)

where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.

Proof. It is evident that there exists ω1
n ∈ Ω0−

n and ω2
n ∈ Ω0+

n such that the inequal-
ities

max
(ω1,...,ωn−1)∈Ωn−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
<∞,

max
(ω1,...,ωn−1)∈Ωn−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
<∞, n = 1, N, (116)

are true. This proves Theorem 7 (see [1]).

Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of risky asset satisfies
the conditions of Theorems 5, 6, 7, then for every nonnegative super-martingale
{f 1

n(ω1, . . . , ωn)}Nn=0 relative to the set of martingale measure M, described in The-
orem 5, the optional decomposition is true.

Theorem 6. 

Theorem 7. 

Theorem 8. 
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Proof. The proof see in [1]. More detail about optional decomposition see in [25],
[26], [28] [27], [29].

Let us consider the random values

n(ω1, . . . , ωn) = χΩ0−
n

(ωn) 1
n(ω1, . . . , ωn)+

χΩ0+
n

(ωn) 2
n(ω1, . . . , ωn), (117)

where

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (118)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (119)

Let the evolution of risky assets be given by the formula (8). On
the measurable space {ΩN ,FN}, being the direct product of the measurable spaces

{Ω0
i ,F0

i }, for every point {{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i ×Ω0+

i ] let us introduce

the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (120)

where n(ω1, . . . , ωn) is determined by the formulas (117) - (119).

The spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A), given by the formula (120), is a

martingale measure for the evolution of risky asset given by the formula (8) for every

point {{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i ×Ω0+

i ]. If the point {ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}

is such that ∆Sn(ω1, . . . , ωn−1, ω
1
n) < 0, ∆Sn(ω1, . . . , ωn−1ω

2
n) > 0, {ω1, . . . , ωn−1} ∈

Ωn−1, n = 1, N, then the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a martingale measure

being equivalent to the measure PN .

Proof. Let us prove that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a probability measure. Let us cal-

culate

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j ) = j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j ) + j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

Definition 1. 

Lemma 5. 
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χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
i
j−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω1
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

+

χΩ0−
j

(ω2
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω2
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω2
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

= χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j ) = 1.

that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) = 1 for every point

{{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i × Ω0+

i ]. Further,

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j )∆Sj(ω

i1
1 , . . . , ω

ij
j ) =

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )+

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
2
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )×
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χΩ0−
j

(ω1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0−
j

(ω1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0+
j

(ω1
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0−
j

(ω2
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j )+

χΩ0+
j

(ω2
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j ) =

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

The last equalities prove



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let us prove that the set of measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale

measures. Really, for A, belonging to the σ-algebra Fn−1 of the filtration we have

A = B ×
N∏
i=n

Ω0
i , where B belongs to σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Then, ∫
A

∆Sn(ω1, . . . , ωn)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

[
−

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )+

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

]
= 0, j = 1, N. (121)

2∑
i1=1

. . .

2∑
in=1

n∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in−1=1

n−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )×

2∑
in=1

n(ωi11 , . . . , ω
in
n )∆Sn(ωi11 , . . . , ω

in
n ) = 0, A ∈ Fn−1. (122)

To prove the last statement it needs to prove that n(ω1, . . . , ωn) > 0, n = 1, N.
But,

n(ω1, . . . , ωn) = χΩ0−
n

(ωn)
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

+

χΩ0+
n

(ωn)
∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, n = 1, N. (123)

The last means the needed statement.

We remind that the evolution of risky asset is given by the formula (8). Therefore,
in this case the condition (16) (see [1]) is formulated, as follows:∫

Ω0
n×Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

© 2021 Global Journals
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dP 0
n(ω1

n)dP 0
n(ω2

n) = 1, n = 1, N. (124)

Below, we describe the convex set of equivalent martingale measures.

The measure µ0(A), constructed by the strictly positive finite valued
random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions (124), is a mar-

tingale measure for the evolution of risky asset, given by the formula (8). Every
measure, belonging to the convex linear span of such measures, is also martingale
measure for the considered evolution of risky asset. They are equivalent to the mea-
sure PN .

Proof. Since the set of strictly positive finite valued random values αn({ω}1
n; {ω}2

n), n =
1, N, satisfies the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (125)

then the set of measures µ0(A), given by the formula (111), is a non empty one.
This proves Theorem 9.

We use for αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) the denotation αN({ω}1

N ; {ω}2
N).

Let the evolution of risky asset be given by the formula (8). On the

measurable space with measure {
N∏
i=1

[Ω0−
i × Ω0+

i ],
N∏
i=1

[F0−
i × F0+

i ],
N∏
i=1

[P 0−
i × P 0+

i ]},

suppose that the random value αN({ω}1
N ; {ω}2

N), satisfies the conditions

αN({ω}1
N ; {ω}2

N) > 0, {ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N} ∈

N∏
i=1

[Ω0−
i × Ω0+

i ], (126)

∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = 1. (127)

The measure µ0(A), given by the formula

µ0(A) =∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω}1
N ; {ω}2

N)µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A)d

N∏
i=1

[P 0−
i × P 0+

i ], (128)

is a martingale measure, being equivalent to the measure PN .

Theorem 9. 

Theorem 10. 

       

               

                          

                   

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

97

  
 

( A
)

© 2021 Global Journals

V
er
sio

n
I

Non-Arbitrage Models of Financial Markets

𝜓𝜓



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Proof. Let us note that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) = 0 if {{ω1

1, ω
2
1}, . . . , {ω1

N , ω
2
N}} does

not belong to the set
N∏
i=1

[Ω0−
i × Ω0+

i ]. Let us introduce the denotations

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = (129)

∫
N∏

i=n+1
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i )

∫
N∏

i=n
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n

dP 0
i (ω1

i )dP
0
i (ω2

i )

, n = 1, N.

Since the random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) are finite val-

ued, then ∫
Ω0−

n ×Ω0+
n

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

(ω1, . . . , ωn−1) ∈ Ωn−1. (130)

It is evident that the set of strictly positive finite valued random values
αn({ω}1

n; {ω}2
n), n = 1, N, given by the formula (129), satisfy the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N. (131)

Moreover, for the measure (128) the representation (104) is true, meaning that it is
equivalent to the measure PN . The last proves Theorem 10.

Let us define the integral for the random value fN(ω1, . . . , ωN−1, ωN) relative to
the measure µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) by the formula

∫
ΩN

fN(ω1, . . . , ωN−1, ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )fN(ωi11 , . . . , ω

iN
N ). (132)
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Let the evolution of risky asset be given by the formula (8). If the
conditions of Theorem 10 are true, then the fair price of super-hedge for the non-
negative payoff function f(x) is given by the formula

f0 = sup
P∈M

EPf(SN) = max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}. (133)

Proof. Let us prove the formula (133). Denote M the set of all martingale measures,
being equivalent to PN . If an equivalent martingale measure P0 ∈ M, then αP0 +
(1− α)µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N} ∈M for arbitrary 0 < α ≤ 1. We have the inequality

αEP0f(SN) + (1− α)

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

Since α > 0 is arbitrary, we obtain the inequality∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

From here, we obtain the inequality

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

The inverse inequality follows from the representation (128) for any martingale mea-
sure being equivalent to the measure PN .

Using the construction of the family of spot measures introduced in the previous
section, this section presents the conditions under which the considered family of
spot measures is invariant with respect to a certain class of evolutions of risky
assets. For a certain class of contingent liabilities including a standard call option,
the fair price of the super hedge is shown to be less than the spot price of the
underlying asset. Specific applications of the results obtained for the previously
known evolutions of risky assets are considered. New formulas
arbitrage price range. A model of a non-arbitrage incomplete market is proposed
and estimates are obtained in the case of a multi-parameter model of a non-arbitrage
market.

On the probability space {ΩN ,FN , PN}, let us assume that the random values
bi(ω1, . . . , ωi−1), fi(ω1, . . . , ωi), ηi(ωi), i = 1, N, satisfy the inequalities

bi(ω1, . . . , ωi−1) > 0, fi(ω1, . . . , ωi) > 0,

max
{ω1,...,ωi−1}∈Ωi−1

bi(ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

max
{ωi,ηi(ωi)<0}

fi(ω1, . . . , ωi)η
−
i (ωi)

,

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (134)

Theorem 11. 

VI. Models of Non-Arbitrage Incomplete Financial Markets
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are found for the non-



 
 

 
 

 
 
 
 
 
 
 
 
 
 

As before, we put Ω0−
i = {ωi ∈ Ω0

i , ηi(ωi) ≤ 0}, Ω0+
i = {ωi ∈ Ω0

i , ηi(ωi) > 0}. We
assume that the evolution Sn(ω1, . . . , ωn) of risky asset is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + bi(ω1, . . . , ωi−1)fi(ω1, . . . , ωi)ηi(ωi)), n = 1, N. (135)

With every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V , where V =

N∏
i=1

[Ω0−
i × Ω0+

i ], we

connect the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN . (136)

Let us denote νv(A) =
N∏
i=1

νω1
i ,ω

2
i
(Ai), A =

N∏
i=1

Ai,∈ FN , the direct product of the

measures νω1
i ,ω

2
i
(Ai), Ai ∈ F0

i , i = 1, N, where v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V ,

V =
N∏
i=1

[Ω0−
i × Ω0+

i ], and

νω1
i ,ω

2
i
(Ai) = χAi

(ω1
i )

η+
i (ω2

i )

η−i (ω1
i ) + η+

i (ω2
i )

+ χAi
(ω2

i )
η−i (ω1

i )

η−i (ω1
i ) + η+

i (ω2
i )
, (137)

for ω1
i ∈ Ω0−

i , ω2
i ∈ Ω0+

i , Ai ∈ F0
i . Then, there exists a countable additive function

νv(A), A ∈ FN , on the σ-algebra FN for every v ∈ V .

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). For every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V , the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) given by the formula (136) does not depend on the random

values bi(ω1, . . . , ωi−1), i = 1, N. In the case as fi(ω1, . . . , ωi) = 1, i = 1, N, the
formula

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) = νv(A) (138)

is true. For the evolution of risky asset (135), the set of martingale mea-
sures being equivalent to the measure PN does not depend on the random values
bi(ω1, . . . , ωi−1), i = 1, N.

Proof. Since the spot measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) are given by the formula (136),

to prove Theorem 12 it needs to prove that any n(ω1, . . . , ωn), n = 1, N, does not
depend on the random values bi(ω1, . . . , ωi−1), i = 1, N. Really,

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (139)

1
n(ω1, . . . , ωn−1, ωn) =

Theorem 12. 
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∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (140)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (141)

But,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
2
n)η+

n (ω2
n), (142)

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
1
n)η−n (ω1

n). (143)

Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (144)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (145)

(ω1, . . . , ωn−1) ∈ Ωn−1.

From this, all the rest statements of Theorem 12 follow.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 ≤ x <∞ satisfies the inequality 0 ≤ f(x) < x. Then, the inequalities

f(S0) ≤ sup
P∈M

EPf(SN) =

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} < S0 (146)

are true.

Theorem 13. 
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Proof. Since the set of points v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} in the set V is finite then

the

min
ω1,...,ωN

[SN(ω1, . . . , ωN)− f(SN(ω1, . . . , ωN))] = d > 0 (147)

is reached at a certain point v0 = {(ω1,0
1 , ω2,0

1 ), . . . , (ω1,0
N , ω2,0

N )}. Therefore, the in-
equality

SN(ω1, . . . , ωN)− f(SN(ω1, . . . , ωN)) ≥ d, {ω1, . . . , ωN} ∈ ΩN , (148)

is true

Integrating left and right parts of inequality over the measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A),

we have ∫
ΩN

SN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}−

∫
ΩN

dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}f(SN(ω1, . . . , ωN)) ≥ d. (149)

Since ∫
ΩN

SN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} = S0 (150)

we obtain the needed. It is evident that from the convexity down of payoff function
f(x) and Jensen inequality we obtain the inequality∫

ΩN

f(SN(ω1, . . . , ωN))dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≥ f(S0). (151)

Theorem 13 is proved.
Let us note that the interval of non arbitrage prices for a certain processes was

found in the papers [30], [31].

For the standard call option of European type with payoff function
f(x) = (x − K)+, K > 0, the conditions of Theorem 13 are true. Therefore, the
inequalities (146) are valid.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 ≤ x < ∞ satisfies the inequality 0 ≤ f(x) ≤ K, K > 0. Then, the
inequalities

f(S0) ≤ sup
P∈M

EPf(SN) = max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ K (152)

are true.

Proof. The proof is evident.

Corollary 2.

Theorem 14. 
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For the standard put option of European type with payoff function
f(x) = (K − x)+, K > 0, the conditions of Theorem 14 are true. Therefore, the
inequalities (152) are valid.

For the standard
f(x) = (x − K)+, K > 0, the interval of non arbitrage prices coincide with the
interval  min

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 . (153)

For the standard put option of European type with payoff function
f(x) = (K − x)+, K > 0, the interval of non arbitrage prices coincide with the
interval  min

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 . (154)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset is given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (155)

where the random value ρi(ωi) is given on the probability space {Ω0
i ,F0

i , P
0
i }, i =

1, N, and let the bank account evolution be given by the formula

Bn = B0(1 + r)n, r > 0, B0 > 0, n = 1, N. (156)

Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0(1 + r)n
, n = 1, N, (157)

the set of martingale measure is nonempty one if the following conditions are true

P 0
i (ρi(ωi)− r < 0) > 0, P 0

i (ρi(ωi)− r > 0) > 0,

P 0
i (ρi(ωi)− r < 0) + P 0

i (ρi(ωi)− r > 0) = 1, i = 1, N.

Corollary 3. 

Corollary 4. 

Corollary 5. 

Corollary 6. 
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For every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} in the set V the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a direct product of measures µi0(Ai), Ai ∈ F0

i , i = 1, N,

given on the measurable space {Ω0
i ,F0

i }, where µi0(Ai) = νω1
i ,ω

2
i
(Ai), and νω1

i ,ω
2
i
(Ai)

is given by the formula (137) with ηi(ωi) = ρi(ωi)−r
1+r

, i = 1, N. The fair price ϕ0 of
super-hedge of the nonnegative contingent liability ϕN(ω1, . . . , ωN) is given by the
formula

ϕ0 = max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv.

The interval of non-arbitrage prices is written in the formmin
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv, max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv

 .

On the probability space {ΩN ,FN , PN} being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (158)

where the random value ρi(ωi), is given on the probability space {Ω0
i ,F0

i , P
0
i },

P 0
i ({ρi(ωi) < 0}) > 0, P 0

i ({ρi(ωi) > 0}) > 0, i = 1, N, and let the bank account
evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (159)

where the strictly positive random values ri(ωi) are given on the probability
{Ω0

i ,F0
i , P

0
i }, i = 1, N. Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (160)

the set of martingale measure is nonempty one if the following conditions are true

max
ωi−1∈Ωi−1

ri−1(ωi−1) < min
ωi∈Ωi,ρi(ωi)>0

ρi(ωi),

min
ωi−1∈Ωi−1

ri−1(ωi−1) > 0, i = 2, N

0 < r0 < min
ω1∈Ω1,ρ1(ω1)>0

ρ1(ω1). (161)

The fair price ϕ0 of super-hedge of the nonnegative contingent liability ϕN(ω1, . . . , ωN)
is given by the formula

ϕ0 = max
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}.

Theorem 15. 
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The interval of non-arbitrage prices is written in the form min
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 .

Proof. The discount evolution (160) can be represented in the form

Sn(ω1, . . . , ωn) =

S0

B0

(
1 +

(ρ1(ω1)− r0)

1 + r0

) n∏
i=2

(
1 +

ρi(ωi)− ri−1(ωi−1)

1 + ri−1(ωi−1)

)
=

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , (162)

where

f1(ω1) =
1

1 + r0

, η1(ω1) = ρ1(ω1)− r0, (163)

fi(ω1, . . . , ωi) =
ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− min
ωi−1∈Ωi−1

ri−1(ωi−1)(1 + ri−1(ωi−1))
,

ηi(ωi) = ρi(ωi)− min
ωi−1∈Ωi−1

ri−1(ωi−1) i = 2, N. (164)

Since

fi(ω1, . . . , ωi) > 0, i = 1, N, (165)

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N, (166)

it means that the set of martingale measures being equivalent to RN is a
nonempty set. Theorem 15 is proved.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (167)

where the random values εi(ωi), i = 1, N, are such that

Theorem 16. 
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P 0
i (εi(ωi) < 0) > 0, P 0

i (εi(ωi) > 0) > 0,

P 0
i (εi(ωi) < 0) + P 0

i (εi(ωi) > 0) = 1,

σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N,

and let the bank account evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (168)

where the random values ri(ωi), i = 1, N − 1, are strictly positive ones, r0 > 0.
Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi)

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (169)

the set of martingale measure is nonempty one, if

exp{σ0
1 max
{ω1,ε1(ω1)<0}

ε1(ω1)} < r0 < exp{σ0
1 min
{ω1,ε1(ω1)>0}

ε1(ω1)},

exp{σ0
i max
{ωi,εi(ωi)<0}

εi(ωi)} < min
{ωi−1∈Ωi−1}

ri−1(ωi−1) <

max
{ωi−1∈Ωi−1}

ri−1(ωi−1) < exp{σ0
i min
{ωi,εi(ωi)>0}

εi(ωi)}, i = 2, N. (170)

Then, the fair price of super-hedge ϕ0 of the nonnegative contingent liability
ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 = max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

max
v∈V

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (171)

Proof. For the discount evolution (169), the following representation

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (172)

© 2021 Global Journals
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is true, where

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − max

{ωi−1∈Ωi−1}
ri−1(ωi−1),

fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − max

{ωi−1∈Ωi−1}
ri−1(ωi−1))(1 + ri−1(ωi−1))

> 0,

{ω1, . . . , ωi} ∈ Ωi, i = 2, N. (173)

In this case, the spot measures

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (174)

figuring in the formula (171), are determined by the formulas

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (175)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (176)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (177)

where

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (178)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=
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fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (179)

(ω1, . . . , ωn−1) ∈ Ωn−1.

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, are given by the formulas
(173). The obtained representation (172) proves Theorem 16.

Suppose that the random values ηk(ωk), fk(ω1, . . . , ωk), k = 1, N, and constants
aik satisfy the inequalities

0 < aik <
1

max
{ω1,...,ωk−1}∈Ωk−1

max
{ωk,ηk(ωk)<0}

fk(ω1, . . . , ωk)η
−
k (ωk)

, k = 1, N, i = 1, d,

fi(ω1, . . . , ωi) > 0, P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (180)

We assume that the evolutions of d risky assets Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = {Sin(ω1, . . . , ωn)}di=1, (181)

where

Sin(ω1, . . . , ωn) = Si0

n∏
k=1

(1 + aikfk(ω1, . . . , ωk)ηk(ωk)), n = 1, N, i = 1, d. (182)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky assets be given by the

formulas (181), (182), where the random values ηk(ωk), fk(ω1, . . . , ωk) and constants
aik, k = 1, N, i = 1, d satisfy the inequalities (180). For such an evolution of risky
assets the set of martingale measures µ0 does not depend on aik.
µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) are determined by the formulas (174) - (179). The fair price

ϕi0 of super-hedge of the nonnegative contingent liability ϕiN(ω1, . . . , ωN) is given by
the formula

ϕi0 = max
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}, i = 1, d.

The interval of non-arbitrage prices is written in the formmin
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ,

max
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 , i = 1, d.

Proposition 5.

© 2021 Global Journals
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In the case fk(ω1, . . . , ωk) = 1, k = 1, N, for every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)}

in the set V the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a direct product of measures

µi0(Ai), Ai ∈ F0
i , i = 1, N, given on the measurable space {Ω0

i ,F0
i }, where µi0(Ai) =

νω1
i ,ω

2
i
(Ai), and νω1

i ,ω
2
i
(Ai) is given by the formula (137).

Suppose that {gik(XN)}Nk=1, i = 1, d, are the mappings from the set [0, 1]N into
itself, where XN = {x1, . . . , xN}, 0 ≤ xk ≤ 1, k = 1, N. If Si0, S

i
1, . . . , S

i
N , i = 1, d,

are the samples of the processes (181), (182), let us denote the order statis-
tics Si(0), S

i
(1), . . . , S

i
(N), i = 1, d, of this samples. Introduce also the denotation

gik ([Si]N) = gik

(
Si
(0)

Si
(N)

, . . . ,
Si
(N−1)

Si
(N)

)
, k = 1, N, i = 1, d.

Let us introduce the denotations

f 1
k = max

{ω1,...,ωk−1}∈Ωk−1, ω
1
k∈Ω0−

1

fk(ω1, . . . , ωk−1, ω
1
k), k = 1, N.

Suppose that Si0, S
i
1, . . . , S

i
N is a sample of the random processes

(181), (182). Then, for the parameters ai1, . . . , a
i
N the estimation

ai1 =

[
1− τ i0

Si
(0)

Si
0
gi1 ([Si]N)

]
f 1

1 max
ω1
1∈Ω0−

1

η−1 (ω1
1)

, 0 < τ i0 ≤ 1, i = 1, d,

aik =

[
1− gik([Si]N)

gik−1([Si]N )

]
f 1
k max
ω1
k∈Ω0−

k

η−k (ω1
k)
, k = 2, N, i = 1, d, (183)

is valid, if for giN([Si]N) > 0, [Si]N ∈ [0, 1]N , the inequalities gi1([Si]N) ≥
gi2([Si]N) ≥ . . . ≥ giN([Si]N) are true. If τ i0 = 0, then aik = 1, k = 1, N, i = 1, d.

In this section, we discuss the issue of applying the results obtained to real calcu-
lations of the range of non-arbitrage prices in the case of incomplete non-arbitrage
markets. The first question that arises is what should be the evolution of risky assets
when describing non-arbitrage markets. In this case, we must rely on the study of
the evolution of stock index proposed in [22], [23], [24], that is,

Sn(ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (184)

where the random values σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and P 0

i (εi(ωi) < 0) >
0, P 0

i (εi(ωi) > 0) > 0, then such an evolution has the form (8) with

fi(ω1, . . . , ωi) =
eσi(ω1,...,ωi−1)εi(ωi) − 1

eσ
0
i εi(ωi) − 1

, ηi(ωi) = eσ
0
i εi(ωi) − 1, i = 1, N.

satisfying needed conditions. Here, the random values σi(ω1, . . . , ωi−1), i = 1, N, are
conditional volatilities, εi(ωi), i = 1, N, are identically distributed random values.

Proposition 6.

VII. Applications
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Therefore, when modeling non-arbitrage securities markets, the evolution of the
stock index should be described by formula (167). The evolution of shares quoted
on the exchange should be described by parametric processes described by formulas
(181), (182). The parameters of such a process are determined in accordance with
the Proposition 6.

Section 3 contains the results related to the uniqueness of the set of martingale
measures. In Lemma 1 it is shown that in the case of evolution of risky assets
given by formula (11) there is only one spot martingale measure for the considered
class of risky assets. A wide class of risky asset evolutions has been identified
for modeling real processes in the financial market. In Theorem 1, necessary and
sufficient conditions are given for the evolution of risky assets under which the
martingale measure is the only one, and in Theorem 2 it is shown that it coincides
with a point martingale measure.

In section 4, Proposition 1 formulates the conditions for the evolution of risky
assets under which the martingale measure is the same for a wide class of evolutions
of risky assets. Proposition 2 states that the considered securities market in Propo-
sition 1 is complete and non-arbitrage and provides formulas for the fair values of
the contingent liabilities.

A direct consequence of the considered results is Corollary 1 known as the Cox,
Ross, Rubinstein model and Theorem 3 being the direct generalization of the above
mentioned model. In Theorem 4, the conditions are found under which the dis-
counted evolution can be represented in the form considered in the work. A formula
is found for the fair price of the super-hedge in this realistic case. In Proposition 3,
a parametric model of the complete non-arbitrage market is proposed and formulas
for the fair prices of contingent liabilities are written out. Proposition 4 provides
an assessment of the parameters of a complete non-arbitrage market model, which
opens up opportunities for modeling processes in financial markets.

Section 5 presents the theoretical foundations of the incomplete non-arbitrage
market model. In Lemmas 2 and 3, conditions for the evolution of risky assets are
formulated for which the family of martingale measures is equivalent to the original
one. It is shown in Theorem 5 that the family of measures constructed in Lemma 2
is a family of martingale measures equivalent to the original measure. In Lemma 4
and Theorems 6 and 7, estimates are found for nonnegative random variables that
ensure the validity of the optional decomposition for nonnegative super-martingales
with respect to all martingale measures presented in Theorem 8. In contrast to
earlier results, the optional decomposition can be found explicitly here. Lemma 5
contains a result that introduced in Definition 1 the spot measure is a martingale
one (see also in [1]).

Theorems 9 and 10 describe all martingale measures equivalent to the original
measure. In the case under consideration, the conditions of Theorems 9 and 10 are
not restrictive. In Theorem 11, a formula is found for the fair price of the super-
hedge for random claims, which allows it to be calculated using a finite number of
operations.

Section 6 presents possible models of incomplete non-arbitrage markets. For this,
Theorem 12 shows that the set of spot measures does not depend on a certain type
of evolution of risky assets and is one and the same set. Under certain simplified
conditions, each spot measure is a direct product of the spot measures indicated in
the theorem. Due to the finiteness of the set of spot measures in Theorem 13, it
was found that for a certain class of contingent liabilities the super-hedge price is
less than the initial price of the underlying asset. The range of non-arbitrage prices
is found. Among these contingent liabilities is the standard European call option.
Non-arbitrage price interval is found. Corollaries 6 and 15 provide examples of the
evolution of risky assets.

VIII. Conclusions

© 2021 Global Journals
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Theorems 15 and 16 consider realistic models of the evolution of both risky and
non-risky assets for which there is a finite family of point measures.

Proposition 5 presents a realistic parametric model of an incomplete non-
arbitrage market and also presents formulas for the fair price of the super hedge
and the range of non-arbitrage prices. In Proposition 6, estimates of the parameters
of the incomplete non-arbitrage market model are found.
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