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Non-Arbitrage Models of Financial Markets

N. S. Gonchar

Absiract- In the first part of the paper, we construct the models of the complete non-arbitrage financial
markets for a wide class of evolutions of risky assets. This construction is based on the observation that for a
certain class of risky asset evolutions the martingale measure is invariant with respect to these evolutions.
For such a financial market model the only martingale measure being equivalent to an initial measure is built.
On such a financial market, formulas for the fair price of contingent liabilities are presented. A multi-
parameter model of the financial market is proposed, the martingale measure of which does not depend on
the parameters of the model of the evolution of risky assets and is the only one.

In the second part of the paper, a model of an incomplete non-arbitrage financial market is
proposed. As in the first part of the paper, we use the fact that the family of spot martingale measures is
invariant with respect to a certain class of evolutions of risky assets. The set of all martingale measures being
equivalent to an initial measure is completely described. Each martingale measure is a linear convex
combination of the finite number of spot measures whose structure is completely described. For a wide class
of models for the evolution of risky assets, a formula is found for the fair price of a super-hedge, as well as an
interval of non-arbitrage prices for any contingent liability. A multi-parameter model of the incomplete
financial market is proposed, the martingale measures of which do not depend on the parameters of the
model of the evolution of risky assets. For the parameters of the models of the evolution of risky assets,
statistical estimates are found for both complete and incomplete non-arbitrage markets.

Keywords: random process; spot set of measures; optional doob decomposition; super-
martingale; martingale; assessment of derivatives, non-arbitrage markets.

L. [NTRODUCTION

In this paper, models of non-arbitrage markets are constructed on the basis of the
invariance of a set of spot measures with respect to a certain class of evolution
of risky assets. In the first part of the paper, models of complete non arbitrage
markets are built on the basis of an analysis of conditions under which there is only
one martingale measure. In the second part of the work, models of incomplete non-
arbitrage realistic market models are built based on the same principles as in the first
part of the work. For the introduced parametric models of the markets, estimates
of parameters were obtained based on the observed real values of the evolution of
risky assets. This opens up wide opportunities for hedging risks.

Historically the first model evolution of risky assets was suggested in Bachelier’s
work [4]. Then, in the famous works of Black F. and Scholes M. [5] and Merton R.
S. [6] the formula was found for the fair price of the standard call option of Euro-
pean type. The absence of arbitrage in the financial market has a very transparent
economic sense, since it can be considered reasonably arranged. The concept of non
arbitrage in financial market is associated with the fact that one cannot earn money
without risking, that is, to make money you need to invest in risky or risk-free as-
sets. The exact mathematical substantiation of the concept of non arbitrage was
first made in the papers [7], [8] for the finite probability space and in the general
case in the paper [9]. In the continuous time evolution of risky asset, the proof of
absence of arbitrage possibility see in [11]. The value of the established Theorems
is that they make it possible to value assets. They got a special name ”"The First
and The Second Fundamental Asset Pricing Theorems.” Generalizations of these
Theorems are contained in papers [12], [13], [14].

Author: Bogolyubov Institute for Theoretical Physics of NAS of Ukraine. e-mail: mhonchar@i.ua

' This work was partially supported by the Program of Fundamental Research of the Department of Physics and Astronomy
of the National Academy of Sciences of Ukraine (project No 0117U000240).

© 2021 Global Journals

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version I E Year 2021



Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ E Year 2021

This work is a continuation of the works [1], [19], [20], [21]. In paper [1], a
new method for constructing and describing a family of martingale measures was
proposed. This made it possible to build models of non-arbitrage markets. The
construction of a realistic model of non-arbitrage markets has been an urgent prob-
lem since the moment when the concept of the absence of arbitrage appeared in
the scientific literature as the most equitable model of the functioning of financial

markets. What could be more attractive than a realistic model that can be built on
the basis of observations of the evolution of the financial market. The main obstacle
to this was the limited possibilities of constructing a risk-neutral martingale mea-

sure for a given evolution of risky assets in the case of a complete market and their
complete description in the case of incomplete markets. In the case of discrete evolu-
tion of risky assets, the theoretical possibility of the existence of such non-arbitrage
markets was established in [7], [8], [9], [10], [11], [12], [13], [14]. But, there were
no practically regular methods for constructing such non-arbitrage market models,
although such attempts were made for some kind of models of the evolution of risky
assets [13], [14]. With the appearance of the work [1], which proposes a regular
method for describing all martingale measures for a wide class of evolutions of risky
assets [22], [23], [24] that capture the phenomenon of price memory and clustering,
it became possible to construct realistic models of non-arbitrage markets. Note that
such efforts have been made in this direction, and more about this can be found in
the monograph [13], [14]. Valuable is the fact that there is a wide range of models
for the evolution of risky assets for which it is possible to build parametric models
of non-arbitrage markets whose parameters can be estimated based on statistical
data. Problems of risk estimates was considered in papers [15], [16], [17], [18].

This work is the first step in constructing parametric models of non-arbitrage
markets whose parameters can be estimated based on empirical data. In this paper,
models of the evolution of risk assets on a discrete probabilistic space are considered.
Such models can be used to approximate realistic models of the evolution of risky
assets. The value of this model is that in this case the structure of the set of
martingale measures is relatively simple.

In the case of incomplete non-arbitrage markets, the set of equivalent martingale
measures has the cardinality of the continuum, but since they are a linear convex
combination of a set of spot measures whose number is finite, this allows calculat-
ing the required characteristics using a finite number of operations. This allows a
computer to be used to simulate non-arbitrage markets.

In the third section of the work, the necessary and sufficient conditions for the
uniqueness of a martingale measure are established in terms of the law of evolution of
risky assets, and the only martingale measure is found. Using the results of Section
3 in Section 4, a multi-parameter model of the complete financial market is built and
parameter estimates are obtained through empirical data of the financial market.
This will allow the model to be adapted to realistic financial markets to estimate
the fair price of European-type derivatives with different payment functions.

Section 5 establishes the general structure of the family of equivalent martingale
measures for a wide class of risky asset evolutions. The structure of spot measures is
completely described, the formulas for the fair price of the super hedge and the range
of non-arbitrage prices are established. Based on the results of Section 5, Section
6 builds a multi-parameter model of the incomplete non-arbitrage market. The
estimates of the parameters of the model are obtained through empirical observations

of the financial market. This will allow the computer to be used to model the
financial market.

II.  EvVOLUTIONS OF Risky ASSETS

In this section, a class of evolutions of risky assets is described which is used in this
paper. This class is fairly wide and includes well known in the literature evolutions
of risky assets. Let {QN,]:N,PN} be a direct product of the probability spaces

{0 FY PP}, i = 1,N, Qy = HQZ, = HP Fn = H.FO where the o-
i=1

i=1 i=1
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N
algebra Fy is a minimal o-algebra, generated by the sets [] G, G; € F?. On the
i=1
measurable space {Qy, Fy}, under the filtration F,, n = 1, N, we understand the

N
minimal o-algebra generated by the sets [[ G;, G; € F?, where G; = Q? for i > n.
i=1

We also introduce the probability spaces {Q,, Fn, P, },n =1, N, where Q,, = [] 9,
i=1

n n
Fo=11F, P, = [ P°. There is a one-to-one correspondence between the sets

i=1 i=1
of the o-algebra F,,, belonging to the introduced filtration, and the sets of the o-

algebra F,, = [] F? of the measurable space {Q,,, F,,},n = 1, N. Therefore, we don’t
i=1

introduce new denotation for the o-algebra F,, of the measurable space {0, F,.},

since it always will be clear the difference between the above introduced o-algebra

F, of filtration on the measurable space {2y, Fx} and the o-algebra F, of the

measurable space {{2,, F,},n =1, N.

We assume that the evolution of risky asset {S,}Y_,, given on the probabil-
ity space {Qx, Fn, Pn}, is consistent with the filtration F,, that is, S, is a JF,-
measurable. Due to the above one-to-one correspondence between the sets of the
o-algebra JF,,, belonging to the introduced filtration, and the sets of the o-algebra

F, of the measurable space {Q,, F,},n = 1, N, we give the evolution of risky assets
in the form {S, (w1, ...,w,) Y, where S, (w1, ...,w,) is an F,-measurable random
variable, given on the measurable space {Q,, F,,}. It is evident that such evolution
is consistent with the filtration F,, on the measurable space {Qy, Fn, Py }.

Further, we assume that
P,((w1,...,wy) € Qp, AS,, >0) >0,

Po((wi, .- wn) € Qny AS, <0)>0, n=1N, (1)

where AS,, = S, (w1, ..., wn) — St (Wi, ooy wp1), n=1,

=

Let us introduce the denotations

Q) ={(wi,...,wn) € A, AS, <0}, QF ={(wy,...,wn) € A, AS, >0}, (2)

AS, = =ASyxq- (w1, wn), AST = ASxqr (Wi, ... wn), (3)
Vi(wi, ooy wp, w0, w2) = AST (Wi, oy Woo1, wh) + ASTH (wi, o wig, w2,
(Wiy oy W, W) €0 (Wi, wpey, w?) € Q. (4)

In this paper we assume that

OF =0, x Q0 Q7 =0, x Q0 Q0 Q0 e P QU =00 (5

~—

Further, in this paper, we assume that P?(Q%7) > 0, P2(Q2") >0, n =1, N.
We also assume some technical suppositions: there exist subsets BY. € F9, i

n,i

11, I, >1,and By, € F), s=1,5,, S, > 1, satisfying the conditions

By,NBy;=0,i#j, BYXnB =0 s#1, n=1N,

n,d
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P)YBy;)>0,i=11, P)(By)>0, s=1,5, n=1N,

In S
o =By, 9 =JBY., n=1N. (6)
i=1 s=1
Below, we give the examples of evolutions {S,(wi,...,w,)}Y_, for which the
representations (5) are true.
Suppose that the random values a;(wy, . . .,w;), 7;(w;) satisfy the inequalities
1
ai(wlw"awi) >Oa sup ai(w1>"'awi) < — )
{wi,e,wi JEQ; sup 777, (wl)
w; €997 (w;)<0
P (ni(wi) <0) >0, P)(mi(w;) >0)>0, i=1N. (7)
If S, (w1, ... ,wy,) is given by the formula
Snlwr, . wa) = So [[A + ai(wr, .., wi)mi(wi), n=TN, (8)

=1
then
{wi € Q?, nz(wz) S 0} = Q?i, {CL)/L' c Q?, Th<wz) > O} = Q?+,

Q; = Qi—l X Q?i, Q;r = Qi—l X Q?+7 1= 1, N. (9)
Let us note that not only the evolutions given by the formula (8) provide the rep-

resentation (5). In this work, we use the evolutions of the kind (8). Below we give
examples of the evolution of risky assets that have the form (8). For example, if

Sn(wh . ;Wn) — S, H ea’i(wl,...,wi—l)Ei(wi)7 n=1,N, (10)
i=1
where the random values o;(wy, ..., w;_1) > 0Y >0, i =1, N, and P?(g;(w;) < 0) >

0, PP(g;(w;) > 0) > 0, then such an evolution has the form (8) with

egi(WL.”’w’iil)Ei(wz‘) B ]' U(-)Ei(wi) —

ai(wl,...,wi): s m(wi):e g 1, ’lIl,N

60?&(%) _ 1

satisfying needed conditions.

[1I.  UNIQUENESS OF THE MARTINGALE MEASURE

In this section, the necessary and sufficient conditions in terms of the evolution of
risky assets are obtained relative to the uniqueness of martingale measure. Under
the fairly wide assumptions about the evolution of risky assets, an expression for
a single martingale measure is found . Based on the explicit construction of the
martingale measure and its invariance with respect to a certain type of evolutions,
it is possible to construct the models of non arbitrage markets, both complete and
incomplete.

© 2021 Global Journals



In this and section 4, we put that Q¥ = {w}, w?}. Denote by F? the o-algebra
of all subsets of the set QY. Let P? be a probability measure on F?. We assume
that P2(w$) > 0, i = 1, N, s = 1,2. As before, we put that the probability space
{Qu, Fn, Py} is a direct product of the probability spaces {Q?2, F°, P%}, i =1, N,
and we put N < oo. We also consider the probability spaces {Q,,, F,, P,},n =1, N,
being the direct product of the probability spaces {QV, F?, P?}, i = 1,n. We assume

that the evolution of a risky asset is given by the formula

Sp(wry . ywy) =
So ﬁ(l +ai(wi, . w)ni(ws), {wis . Wnet, Wy € A, n=1,N, (11)
i=1
where the random values a,(wi,...,Wn_1,Wn), Tn(wn), n = 1,N, given on the
probability space {2, F,, P,}, satisfy the conditions
(W1, -y W1, wy) >0, o ...I,ggi}eﬂn_l an(wi, ... Wpl1,wh) < m,
a(wn) >0, () < 0. (12)
So, for AS,(wi,...,Wn_1,ws), n =1, N, the representation

AS, (Wi, ey W1, wy) =

Sn—l(wly cee 7wn—l)an(w17 o, Wn—1, Wn)nn(wn) -

dp(Wiy oy W1, W) (Wn),  do(wiy .. Wo1,wy) >0, n=1,N, Sy>0, (13)

is true, From these conditions, we obtain 2, = Q, ; x Q07 QF = Q, ; x Q%
where Q0 = {w, € QY n,(w,) <0}, Q0 = {w, € O n,(w,) > 0}.

From the suppositions above, it follows that P?(Q27) > 0, PY(Q%") > 0. The
measure PY~ is a contraction of the measure P? on the g-algebra F2— = Q0= N F2,
P is a contraction of the measure PY on the g-algebra FOT = Q0T N FP.

Let us introduce the following denotation. For every point {ws,...,w,_1,wp} €
Q,,, we introduce the set A(wy,...,w,_1,w,) € Qn, where

2

— i+1 N
Alwy, .y Wpo1,Wp) = U {wi, . s wno1, W, Wt WA

int1=1,...in=1

For fixed indexes i1, ...,1, we also use the denotation
i1 in—1 ) ATyt
Alwi, .o w,) T wpm) = At

It is evident that every set A% has the form

2
il,...,l' _ i1 7 in+1 iN
Attt = U {wit, . wrl W T

ing1=1,...in=1
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where indexes i, takes only one value from the set {1,2}. Then, A"-in-1
A“""’Z"_l’l U A7417~--,'Ln—172 c ]—"n_l, where

2
iyeemyin_1,1 __ i1 in-1 1  intl in
Aitin-1l U {wit, o wp, w Wy € F,

tn+1=1,.,in=1

2
Ail,...,in_hQ _ i1 in—1 2 in+1 iN ,F
= {wit, o wp L wh, wt W ) € Fa.

int1=1,...in=1

If Py is a measure on Fy, then

2

PN(A(wl,...,wn_l,wn))z Z PN({Wla---awn—lawmwzi:ll""vwf]i\jfv )

in+1=1,..,in=1

We give an evident construction of martingale measure for risky assets evolution,
given by the formula (11). Below, we assume that measures P is concentrated
at points wl w? € Q0 where w! € QY7 w? € QVF and we have the representation

n’

Q. =Q, 1 xQ% and QF = Q,,_1 x Q°F. So, we have n,(w!) < 0,7,(w?) > 0.

Let us put P%(w!) = p,, P°(w?) = 1 — p,, where 0 < p, < 1. Then, to satisfy

the conditions (14 - 16), (see [1]) we need to put

1 _
1 1 2 2
n(QWys - Wy fi WY, Wy f) = ———, n=1N, 14
(oo i D) = s (14
and to require that
AS; (Wi, w1, wh) <00, (Wiy. .y Wee,wh) €
ASH(wr, .. weo1,w?) <00, (Wi, ., Wpo1,w?) € QL. (15)

The next Lemma 1 is a consequence of results in [1].

Lemma 1. On the probability space {Qn,Fn, Pn}, being the direct product of the
probability spaces {Q2, F?, P?}, for the evolution of risky asset given by the formula
(11) only one spol measure i1 .2, (wt w2} (A) exists, where {w}, Wi} € O, i =

1, N. For it the representation

fo(A) = M{w},wf},...,{w}v,wfv}(f‘l) =

2 2 N
Z...ZHlpn(w?,...,w;")XA(w?,...,wf\],V), A e Fy,
=1 in=1n=1

(16)

1s true. This measure is martingale measure for the considered evolution of risky

asset, where
Yo (wi,. .., wy) = Xo- (wr, - .. ,wn_l,wn)z/)i(wl, cy W)t

XQrf(wla cee 7wn715wn)¢72l(w17 cee 7wn)7

© 2021 Global Journals
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wi(wl, ey Wpo1,Wp) =

AST(wyy . w1, w?)

, ey Wno1) € Qg 18
Valwi, .oy wp_1,wh, w?2) (w1 “n-1) ! (18)
lpi(wla-"awn—hwn) =
AS (wiy .y wWn, W)
URSELAE Rl s A ZA ey Wno1) € Q. 19
Vn(wla"wwn—law}ww%) (wl . 1) ' ( )

Next Theorem 1 appeared first in [2] (Theorem 1.4.1), where it was proved under
the less general conditions.

Theorem 1. On the probability space {Qy,Fn, Py}, being the direct product
of the probability spaces {Q0, F?, PP}, suppose that the evolution of risky asset
{Sn(wi, ..., wn) A, is given by the formula (11). The necessary and sufficient con-
ditions of the uniqueness of martingale measure po(A), A € Fy, are the inequalities

Sp(Wi, W wh) £ S Wi w?), n=1,N, (20)
for every set of indexes iy, ... i, 1. For any martingale {m, (w1, ..., wn_1,wn)}

relative to the unique measure pg(A) the representation

M (W1 -y W1, Wy) =

ch(wb ey Wi 1) [Sk(wry - w1, ws) — S (Wi - wi-n) [
k=1

mo, n = 17 N7 (21)
18 true, where
2
Cr(wi - wim) = > iy i X g (W1, wp). (22)
11=1,...,i—1=1
dil,.“,ik_l =
mg (wil wllck 117wk:) mk(wilv - wlzck 117wk> T
i1 g1 i1 g1 , k=LN. (23)
Sk(wits - wy T wy) = Se(wr - wT L wi)

Proof. The necessity. Suppose that the evolution {S,(w,...,w,)}_; of the risky
asset on the probability space {Qy, Fn, Py} is such that the martingale measure
po(A), A € Fy, being equivalent to the measure Py, is unique. Then, for every

attainable contingent liability my(ws,...,wy) the representation (21) is true [11]
for some Fj_j-measurable finite valued random value Cy(wy,...,wk_1), k = 1, N,
where my, (w1, ..., wp_1,wy) = EF{my(wy,...,wx)|Fn}. For m,(wi,...,w,_1,wn)
and S, (wq,...,ws_1,w,) the representations
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mn(wla cee 7wn717wn) =

2

) / IU,o(Ail""’i"_l’i")
11=1,..,in=1 Ailsin—1in

Sn(wlv s 7wn—17wn) =

2

e 119 (Ait-sin—1in)
1=1..tn= Ailv-"infl’i”

3 X pitin—vin (W1, - - W) / my(wi, ..., wy)dpe, n=1,N, (24)

Z A <W17 — 7wn) / SN<w17 s 7wN>d:U’07 n = L_N7 (25)

are true. From the representation (21) and the equality (22) for {wy,...,wp_1} €

Altrin=1 we obtain the equality

X Aitrein—1,1 (wl, PN ,wn)
1o (Aitvin—1,1) / m(wi, . .., wy)dpo+

AfLsnin_1,1

X At1srin—1.2(W1y ..oy Wp
- luo(Alily'(uyii—172> ) / m(wl, e ’wN)d/"LO_

AiLserin—1,2

XAi-in-1 ((’Ul? s 7wn71) B
fig(Ait-in-1) / m(wy, ..., wn)dpy =

dil,...,in_lXAh ~~~~~ in—1 (Wla s >Wn71> X

X Ai1rin—1,1 (O.)l, Ce ,wn)
1o (Aitin1.1) / Sn(wi, ... wn)dpot

Aflesin 1)1

ivein_12 (W1, .o Wy
. 1#0(141"1»('-7@'1—1,2) : / Sn(wiy .. wn)dpo—

AiLsein—1,2

X gi1r-in—1 (wl, c. ,wn,1>
l[,(/o(Ail""»infl) / SN((U]_, ctt 7wN)dlLL0 Y

where d;, . ; , is finite. Since

© 2021 Global Journals
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we have

HO(Ailym,in_l) / m(wh s 7WN)d,u0_

AiLsin—1,1

pho (A-in=1:1) / m(wi, ..., wy)dig =

AiLsein—1

[,LLO(Ail""7i"_1’1) + NO(AH,...,in_LQ)] / m(wl, o aUJN)d,UO_

AiLserin—1,1

MO(Ail’m’inihl) / m<w17 R 7wN)d:u0 + / m(wlu R )wN)d:uO

AfLsin—1,1 AfLrnin 1,2

o1y [ )

AfLrensin_1,1

fro (A" in=tl) / m(wi, ..., wn)dpo.

AiLsin—1,2

Further,

g (Aitoin1) / (s on)dpio—

ALrerin 1,2

pho(A-in=1.2) / m(wi, ..., wy)dg =

AiLsein—1

[0 ( ATt i) 4 g (Afroini2)] / m(wi - . won)djio—

Ail,...,in_l,Z

pro(AMin=1:2) / m(wi, ..., wn)dug + / m(wi, ..., wn)dpg

AiLserin—151 AiLserin—1,2

(28)
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— /LO(Ail""’i"‘l’Q) / m(wi, ..., wn)do—

AiLserin—1,1

UO(Ail""’in_l’l) / m(wl, .. ,wN)dug

AiLrerin—1,2
If to put

R™M(wit, .. win ) = pg(Al-in-vly / m(wi, ..., wn)dig—

AfLreerin 1,2

prg(Ain=1?) / m(wi, - - . ,wn)dpio,

AiLseesin—1,1

RN (Wi, win ) = pg(Afin-nt) / Sn(wi, ...y wN)dpo—

AfLrin 1,2

luo(Ail""’i"_l’2> / SN(wl, . ,WN)d,UO.

AiLserin—1,1

Then, the equality (26) is transformed into the equality

m i1 In—1\ __ SN i1 in—1
Rl (wl yee e Wh ) - dil,~~~,in—1R1 (wl yeee s Wh 1 )

sure po and Al-in=nl - Alein-12 ¢ Fowe have

/ SN(Wla---awN)d,uo = / Sn(wh---awn)dﬂo =

Alesin 1,1 AfLrenin_1,1

pro (A=t G (o wh),

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ E Year 2021

/ Sn(wiy ..o wn)dpo = / Sn(wiy .o, wn)dpo =

Ail,...,in,1,2 Ail,...,in,1,2

fo (A1) (1L w?),

n

/ mN(Wla---va>d,U/0 = / mn(wlw--vwn>d,u/0 =

AfLrmin_1,1 AfLresin_1,1

© 2021 Global Journals
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(30)

(31)

(32)

Due to that Sy, (wi, ... ,w,) and m, (w1, ... ,w,) are martingales relative to the mea-

(34)



po (A =1 0my (wy, . w!h), (35)

/ mN(wla"'>wN)dM0: / mn(wlv"'awn>d,u0:

APLsnsin—1,2 AfLerin—1,2
i1 peenyin—1,2 2
po (A= my (wy, . Wi ). (36)
Since d;,._;,_, is finite, then RY¥ (Wi, ..., w!"}) # 0. The last means that in-

equality (20) takes place. This proves the equality

s, i1 = (37)
M (W, Wi wl) = m (WL W w?)
Sp(wi, Wt wl) = Sp(wit, Wi w?)
n=1N,

which means that (23) is true, where we introduced the denotation

mp(wi, ..., w,) = EP{m(wy,...,w§N)|Fn} =
2
Z mwi, ..., Wy, w1 W o ({wr, - ooy Wiy w o w ), (38)

ins1=1,in=1
Sn(wi, .o ywy) = EF{Sy(w1,...,wN)|Fn} =

2
Z SN (Wi -y Wyt  po({wr, -y Wy Wi L ,w%v ). (39)

ing1=1,...in=1

This proves the necessity.

Proof of the sufficiency. Suppose that the inequalities (20) are true. Let us prove
that the martingale measure g is unique. For this purpose, we prove that for every
martingale the representation (21) is true with validity of equalities (22), (23).

Let us note that the equality (26) is true if for d;, ;. , to choose (37) since the
equalities

f m(wla"'7wN)dM0 f m<w17"'7wN)d:u0
AfLoerin—1,1 B AiLsin—1 o
MO(Ah,...,in_hl) MO(Aih...,in_l)
f SN((JJ]_,.-.,WN)d/J/O f SN(oJl,...,wN)d,uO -1
AfLrnsin_1)1 B AfLrin_1 _
/'LO(Ail"..7in71’1) MO(Ail,A..,infl)
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f m<w17"'7wN)dM0 f m(wla"‘)wN)d:uO

AbLserin 1,2 AfLserin_1
po(Ann?) T (A "
f Sn(wi, ..., wn)dpg f Sn(wi, ..., wn)dpg -
Ail,...,in_l,Q Ail ..... ip—1 o
po(AT-17) Ho(ATi03) )
iy in

are valid. ) .
Taking into account the equality (26) and the equalities

d’i1,m,7ﬁn71XAil ,,,,, i1 (wl, C.. ,wn_l) X

i1t 1,1 (W1 e ooy Wiy
N luo(Aliu.(..,;l,g ) / Sn(wi, -, wn)dpo+

AiLsin—1,1

i1t —1,2 (W1, .« oy Why
XA 1/‘1“0(1421"("711;[11,2) ) / SN(w17 ct 7WN)d/1/0_

AiLrenrin 1,2

X Aisvin—1 (wl, NN ,wn) / g J B
MO(Ail,...,in,l) | N(Wh e 7WN) Ko

dil,-n,inleAil ..... in_1 (wl, R ,wn,1> X

2
i1seerdm—1,1 (W1« o s W
Z e JgAzl,.(..,ji7171)7 s / S, )it
J1=1,..jn—1=1 Ho AJLr-dn—1,1

X Ad15-in—1,2 (wla s 7wn)
IUO(Ajh...,jn—lQ) / SN(wl, e ,wN)d,lL()_

AJLsndin—1,2

XAjl ..... Jn—1 <w17 . o ,wn) B
I[,[/O(Ajlrwjnfl) / SN(wla S ’WN)d,UO =

dil,...,in,1XAil ----- in—1 (wh s 7wn>[Sn(w17 <oy Wn-1, wn) - Sn71<w17 s 7wn71)]7

we have

i5enin—1,1 (W1, .+ ., Wp
XA 1“0(1412'1"(‘"7:11,1) ) / m(w17 s 7wN)d,u/O+

AiLsvin—1,1
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(41)



X pitserin—1.2(W1, .« ., Wp
4 INO(Alilz-(~~7ii—1,2) ) / m(wl, e 7wN)d/*’LO_

AiLseerin—1,2

X At in_1<w1,...,wn) B
IUO(Ail,...,in_l) / m<w17 . 7WN)dM0 =

Ail ..... ip—1
iy im A X aiteeino1 (W1« ooy W) [Sn(wr, ooy wn—1,wn) — Spe1 (Wi, oo wn—1)]. (42)

Summing over all indexes i1, ...,4,_1 left and right hand sides of the equality (42)
we obtain the equality

My (W1, - ooy wn) — Mp_g (W1, Wpo) =
Cn(wl, . ,wn_l)[Sn(wl, . ,wn_l,wn) — Sn_l(wl, e ,wn_l)], (43)
2
Colwiy o wnot) = D iy Xaineins (W1, Wn1). (44)

i1=1,....ip_1=1

We proved that for every martingale the representation (21) is true, due to the
conditions (20). Let us prove that the martingale measure is unique. Suppose that

there are at most two martingale measures pj and p2. If to put m(wi,...,wy) =
XA(wh cee ,CUN), then
Xalwy, ... ,wy) =
N
Z C’n(wl, ce ,wn_l)[Sn(wl, e ,wn_l,wn) - Sn_l(wl, N ,wn_l)] + Cop. (45)
n=1

From this representation, we obtain the equalities uj(A) = p2(A) = ¢y, A € Fy.
Contradiction. The last proves Theorem 1.

Next Theorem is concerned the case as the set of martingale measures consists of
one measure.

Theorem 2. On the probability space {Qn,Fn, Py}, being the direct product of the
probability spaces {QV, F?, PP}, suppose that the evolution of risky asset is given
by the formula (11), then the set of martingale measures, being equivalent to the
measure Py, consists of one point

po(A) =
2 2 N ' ' '
Z . Z Ht/)n(w?, coowmxalwrt .o wy), A€ Fa. (46)
ii=1  in=ln=1

The fair price of contract with option @o of European type with the payoff function
o(wy,...,wy) is given by the formula

2 2 N
po=3 ... > J[walwi, .. wiewi,. .. wi), (47)

’i1=1 iN=1 n=1
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where

Ynlwi, - wn) = Xo- (Wi, - -  Wne 1, W)W (W1, . wp )+
XQ;(wl,...,wn_l,wn)lpi(wl,...,wn), (48)

lpyll(wla s >wn—17wn) -

AST(wy, ..y, w?)

1 .,42)’
Vn(wla ceey Wno1, Wy, wn)

(wlv s awnfl) € anla (49)

lpi(wl, Ce ,wn_l,wn) =

AST (Wi Wn, W)
% (w1 oy ol w2), (wl, Ce 7wn_1) S Qn—l- (50)
Proof. Since
lpi(wla s 7wn—17wn) =
ASH(wry .y wno1, w?)
V(w1 Wn1, Wk, w2) >0, (oo nma) € By (51
lpi(wla s 7wn—17wn) -
AS (Wi, . Wy, wh)
v (wl o1 (,ul w2) > O, (wl, C ,wn,1> € anl, (52)
we have
Yn(wi, .. wn) = Xq- (W1, -  Wne 1, W) WE (Wi, . wn )+
Xat (Wi, -+ Wnen, W)W (W, - wy) >0, (Wi, ... w) € Q. (53)

From this, it follows that ug(A) > 0 for every A € Fy. It means that po(A) is
equivalent to Py. The inequality

n—1
Sp(Wi, .y Wno1,wy) = H(l + ai(wr, - wi)mi (W) (1 + an(wy, .. wl)ns(w?h)) #
i=1
Sp(Wiy -y W1, w?) =
n—1
i=1

is true, since

(1 + an(wr, . wp)mi(wy)) #

© 2021 Global Journals



<1+an(w1)7w121)7]1<w121>)’ n = 17N7 (55)

due to the suppositions relative to the evolutions of risky asset, given by the formula
(11). Thanks to Theorem 1, the martingale measure pq is unique.

To prove the rest statement of Theorem 2, we need to construct the self-financing
strategy m such that the capital corresponding this strategy on (B, S) market satisfies
the condition

Xy =@(wy, ., Wp_1,WN)-

Let us consider the martingale

mn(wla ce 7wn717wn) = Euo{@(“ﬂa cee 7wn717wN)|‘Fn}-

Due to Theorem 1, for the finite martingale {m,,(wy,...,w,_1,w,) }\_, relative
to the the measure 1o(A) the representation

M (W1 - ooy W1, Wy) =

n

Z Ci(wl, Ce ,wi_l)[Si(wl, e ,wi_l,wi) — Si_l(wl, Ce ,wi_l)]+
i=1

me, n=1,N, (56)

is true, where Cj(wi,...,w;_1) is F;—; measurable random value, and my, =
Euo(ﬁ(wla cee 7wn717wN)'

If to put ™ = {Bn, Vn }_y, where

Yn = Cn(wb cee 7wnfl)> Bn = mnfl(wla ce )wnfl) - Vnsnfl(wb ce 7wn71)7
then it easy to see that 7 is self-financed strategy. Really,

A/BTLanl + fYnASnfl = Aﬁn + AfYnSnfl =
Mmp—1 — ’)/nSnfl — My_2 + ’ynflsnf2 + (’Yn - ’Yn71>Sn71 =

Mp—1 — Mp—2 — %—1(571—1 - Sn—Q) =0.

Fn_1-measurability of (3,,7,) is evident.
It is easy to show that

Xn(wiy ..o ywn) = BnBn + S = My (w1, . .., wn).
Therefore,

Xo=mo = E"p(wy,...,wn-1,wn), Xny=pWi,. .., W 1,wn).
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IV. COMPLETE MARKET HEDGING

In this section, the securities market is constructed, the evolution of which occurs
in accordance with Formula (11). Possible for this was the observation that with
respect to a certain class of evolutions of risky assets, the family of martingale

measures is invariant. This fact turned out to be crucial for the construction of
models of non-arbitrage markets. In papers [10], [11], such a possibility of the

existence of non-arbitrage markets is established on the basis of the Hahn-Banach
Theorem. This beautiful result has the disadvantage that it does not provide an
algorithm for constructing models of non-arbitrage markets. How to build them
having the evolution of risky assets is practically a difficult problem.

In Proposition 1, we establish the form of measurable transformations relative
to which the only measure is invariant. Using that, a model of the securities market
is built, which is complete. This result is constructive in contrast to the existence
theorem from [10], [11]. Our denotations in this section are the same as in the
previous section. We consider the evolution of risky assets given by the formula (11)
on the same probability space.

Proposition 1. On the probability space {Qn,Fn, Pn}, being the direct product of
the probability spaces {QY, F?, PP}, let the evolution of risky asset be given by the

(2

formula (11), with a;(wy, ..., w;) = bi(wi, ..., wi—1)fi(wi, ... ,w;), where the random
variables fi(wi,...,w;), bi(wy,...,wi_1), satisfy the inequalities
fi(wl,...,wi) > 0, b,-(wl,...,wi_l) > 0, max bi(wl,...,wi_l) <
{W17~~~7Wi—1}€Qi—l
! =TN (57)
1= )
max filwr, . wiig,wi)n (wh)’ ’

{wi,eewi—11EQ 1

For such an evolution, the unique martingale measure o does not depend on the
random variables b;(wy, ... ,w;_1), i =1, N, and it is given by the formula

/’LO(A) = M{w},w%},...,{w}v,w?v}(A) =

2 2 N
Z . Z Hzpn(w’f, Wi xalwit W), A€ Fu, (58)

11=1 in=1n=1
where
Yn(Wi, - wn) = Xoo (W15 -+ W1, W )W (Wi, - Wi )+
Xm(wl,...,wn_l,wn)lpi(wl,...,wn), (59)
ASH(wy, .. Wy, W2
lpé(wlw"awn*l?wn): ”( = — 11’ "2> -
Vn(wla--wwn*luwnawn)
fn<w17 sy Wno1, wi)nx(‘”i) (60)
fn(wla--wwnflaw?z)n;—(w?z)+fn<w17'"7wn*1>w%>n;(w}z)’
AS (Wi, .. wy1,wh)
2 — n 9 9 n ) n —
l/)n(WIP”’wn_l,wn) Vn(wla"wwn—law'}mw%)
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fn(wla cet 7wn—17w$)n;(w}1) (61)
fn(wla ey Wn—1, w%)n:(w%) + fTL(wl’ sy Wn-1, wrlz)n;(wrlz)

Proof. Due to the representation (46) for the measure pg, to prove Proposition 1
it needs to prove that all Y, (wy,...,w,), n =1, N, do not depend on the random

variables b; (w1, ...,w; 1), i = 1, N, where
Yn(wi, - wn) = Xq- (W1, -+  Wne 1, Wa) W (W1, ..o wp )+
Xot (W1 -+ - S Wn 1, W )W (Wi, -y W), (62)
lp,ll(wl, ey Wn1,Wh) =
AST(wyy oy wn1, w?)
n ’ e T e, Wi Q,_ 63
Vn(wla"-awn—law’}ww%)’ (Wh i 1> © a ( )
wi(wl, e Wi, Wyy) =
AST(wiy ey Wy, wl)
L d e e Wnot1) € Q. 64
Valwi, ooy wpo1,wl,w?) (wn wn-1) ! (64)
But,
ASTH(wr, .. weg,w2) =
Snfl(wla cee >wn71>bn(wl> cee 7wnfl)fn<w17 cee ,(JJZ)?]Z(W%), (65)
AST (w1, wl) =
Sp1(Wiy s Wne )b (Wi, -y Wnet) (Wi, - - wh)n (wh). (66)
Therefore,
AST(wy, .oy wWno1, w?)
Volwi, ooy wn_q,wl w?) -
fn<w17 s 7wn—17w72L>777—i_(w121> (67)
fn(wlv cey Wi, W%)Tﬁ{(wg) + fn<w17 sy Wn—1, w%)rr];(w%)’
AS (wiy ey wWn, W)
Volwi, ooy wpo1,wl, w?) N
fN<w17 s 7wn—17wrlL>"77: (w}@) (68)
fn(wlv cey Wn1, W%)n{f(wg) + fn<w17 sy Wn1, W%)Uﬁ(wi)’

(wb s awnfl) S anl-
The equalities (67), (68) prove Proposition 1.
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Suppose that the market consists of d assets the evolutions of which are given
by the law

Sul(wi, ... wn) = {SH((wi, ..y wn), .., S ((wr, ... wn)}, n=T1,N, (69)

where
Sﬁ((wl,..., H 1+bk wl,...,wi_l)fi(wl,...,wi)ni(wi)), k‘:]_,_d, (70)

and the random values n;(w;), fi(wi,...,w;), ¢ =1, N, do not depend on k, and
satisfy inequalities

filwiy .. ywi) >0, bF(w,...,wi) >0, max bi(wy, ... wis1) <
{wiyewi—1}€Q—1
L k=1d, i=1N (71)
max fi(wla"'?wi*hwz‘l)n;(wz})’ Y ’

{wi,ewi—11EQ 1

Proposition 2. On the probability space {Qn,Fn, Pn}, being the direct product of
the probability spaces {0, FP, P}, if the evolution of d risky assets is given by the
formula (69), (70), then such a market is complete non arbitrage one. The unique

martingale measure does not depend on the random variables W (wr, .y wii), k=
l,d, ©=1,N, and it is determined by the formula (58). For the contingent claims
i(wi,...,wn),i = 1,d, the fair prices @ are given by the formulas

2 2 N
:ZZH Wi, wim) (Wit W), i =1,d. (72)
i1=1  iy=ln=1

Corollary 1. (Coz, Ross, Rubinstein, see [3]) On the probability space {Qn, Fn, Pn},
being the direct product of the probability spaces {QV, F?, P}, let the evolution of
risky asset is given by the formula

SY((wy, .. wn) :SOH(l‘f‘Pi(wi)), n=1,N, (73)

where the random values p;(w;), i = 1, N, are such that p;(w}) = a, p;(w?) =0, and
let the bank account evolution be given by the formula

Bn,=By(14+71)", r>0, By>0 n=1N. (74)

Then, for the discount evolution of risky asset

So ﬁ (14 piwi))

i=1 NG

~ 1N
Bo(l+ryr T (75)

Sn((wiy .. wy) =

the martingale measure p is unique if a <r <b. Itis a direct product of measures
ph(A), Ae F, i =1,N, given on the measurable space {QV, FP}, where pi(w}) =
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lg 2, pho(w?) = =2 The fair price @, of the contingent liability @y (wr,...,wy)

15 given by the formula

0o = /gpN(wl,...,wN)d,uo =

QN
2 2
ZZ@ (wit, ... H“O (76)
=1 in=1

Proof. For the discount evolution (75), the representation

n

Sn((wiy - ywy) = SOH (I+ni(w), mn=

i=1

LN, (77)

is true, where 7;(w;) = % Due to Theorems 1, 2, since n;(w)) = T <0,

ni(w?) = ll’;; > 0, then the measure pg is unique.

Theorem 3. On the probability space {Qn,Fn,Pn}, being the direct product of
the probability spaces {Q9, F?, P2}, let the evolution of risky asset be given by the
formula

Sh(wi, .- wn) = So [ [+ pilwi)), n=TN, (78)

where the random values p;(w;), i = 1, N, are such that p;(w}) = b}, pi(w?) =
b2, i =1, N, and let the bank account evolution be given by the formula

B, = By H(l + Ti_l(wi_1)>, By > 0, n = 1,N, (79)
=1

where the random values r;(w;), i = 1, N — 1, are such that ri(w}) = r}, ri(w?) =

i=1,N —1, ro > 0. Then, for the dzscount evolution of msky asset

’L?

So ﬁ(l + pi(w:)) L
Sn((wi, .y wy) = =1 , n=1,N, (80)

By g(l + i1 (wis1))

the martingale measure pi is unique, if bi < ro < bj, b} <rl, <ri, <b? i=
2, N. It is determined by the formula (58) with

771(w1) = Pl(wl) — To, 7)1‘(%’) = Pz‘(wz’) - 7’2'2717 i=2,N,

1
filw) =4 o filwr, o wi) =
,Oz‘(wi) - Tifl(wifl) i—9 N. (81)

(pi(wi) =77 )X +rica(wica))’
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The fair price @y of the contingent liability pn (w1, . ..,wn) is given by the formula

Yo = /@N(wl,...,wN)duo =

2 2 N '
S et i en (Wit wi). (82)
i1=1 in=1n=1

Proof. To prove Theorem 3 it is necessary to prove the existence of unique spot
measure. The discount evolution (80) can be represented in the form

Sn((wl, Ce ,wn) =
So 1~ —
0 =1

where
m(w1) = pr(w1) — 1o,  mi(w;) = pilw;) =77, i=2,N,

1
1+T0

fl(wl) = s fi(wl,...,wi) =

pi(wi) —ri—1(wi—1) —
(pi(wi) —r2 DA+ rim1(wi1))’ 1=2,N, (84)

It is evident that n;(w}) < 0, n;(w?) > 0, fi(wi,...,w;) > 0. Therefore, from the rep-
resentation (83), (84) it follows that we can construct only one spot measure, which
is martingale measure being equivalent to the initial measure Py. In accordance
with Theorem 1, since S, (wi,...,w}) # Sp(wi,...,w?), {wi, ., w1} € L
such a measure is unique. Theorem 3 is proved.

Theorem 4. On the probability space {Qn,Fn,Pn}, being the direct product of
the probability spaces {Q0, F?, PP}, let the evolution of risky asset be given by the
formula

Sh((wi, .-y wy) = So [ [ e s n =TN, (85)

i=1

where the random values €;(w;), i = 1, N, are such that g;(w}) < 0, g;(w?) > 0,
oi(wiy ... ,wii1) >0 >0, i =1,N, and let the bank account evolution be given by
the formula

n

B, =B [[A+rici(wis), By>0, n=1N, (86)

=1

where the random values r;(w;), i = 1, N — 1, are such that ri(w}) = r}, ri(w?) =

r?2, i=1,N —1, rg > 0. Then, for the discount evolution of risky asset

79
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n
So H eOi (Wi, wi—1)ei(wi)
=1

Sn((wr, .. wy) = —— , n=1,N, (87)
Bo JT(1 + ri—1(wi-1))
i=1
the martingale measure Lo 1s unique, if
0 1 0 2
exp{oier(wy)} < 1o < exp{oier(wi)},
exp{ole;(wH)} <7} | <71’ <exp{ode;(w?)}, i =2, N. (88)
It is determined by the formula (58) with
1
_ 0 _ _
m(wi) = exp{ojer(wi)} —ro, fi(wi) 1+ry

ni(wi) = exp{ofe(w)} — 1l filwr, ... wi) =

eOi(wi,wi1)ei(wi) _ Tio1 (Wi—l)

(exp{ofei(wi)} — 77 )1 +ris1(wii1))

;o fwr, o wibeQ,, =2,N. (89)

The fair price @qo of the contingent liability pn (w1, . ..,wy) s given by the formula

Vo = /gpN(wl,...,wN)duo =

Qn

2 2 N . . .
Z Z Hl/)n(w?,...,w;”)goN(wil,...,w%V). (90)
ii=1  iy=ln=1

Proof. For the discount evolution (87), the following representation

Sn((wiy . ywy) =
_H(l+fi<wlv"'7wi>772'(wi))a n:L_N, (91)

is true, where

mlw) = eXP{U[l)é?l(wl)} — 710, Jfi(w) =

ni(wi) = exp{ofe(wi)} —ri g, filwr, .. w) =

i (W1seewi—1)€i (W) _ o )
€ Tz—l(wz—l) . R

, {wr,owib€Q, =2, N. 92
(exp{ayei(wi)} — 77 1) (1 +ri1(wi-1)) ter J 62

It is evident that n;(w}) < 0, n;(w?) > 0, fi(wi,...,w;) > 0. From this, we obtain
that the spot measure exists and it is unique. Theorem 4 is proved.
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On the probability space {Qy, Fy, Py}, being the direct product of probability
spaces {Q?, F? PP}, suppose that the market consists of d assets the evolution of
which is given by the law

Sp((wiy .o ywn) ={S (w1, .. wn), .o S (wr, .. ,w)}, n=1,N, (93)

where
SE(wrs .- wn) = S§ [+ af filwr, . wimi(ws), &k =1.d, (94)
i=1

and the random values 7;(w;), fi(wi,...,w;), i =1, N, and constants a satisfy the

inequalities

nz(wzl) <07 771<w12) >07 fi(wl?"'awi) >07
1 _ —

0<al< ., i=1,N, k=1,d 95
e el @) o

{w1,ewi—1}EQ 1

Proposition 3. On the probability space {Qn, Fn, Px}, being the direct product of
the probability spaces {2, F?, PP}, let the evolution of risky assets be given by the
formulas (93), (94), where constants a¥ i = 1, N, k = 1,d, satisfy the inequalities
(95). For such an evolution of risky asset the martingale measure g does not depend

on a¥ and is unique. It is determined by the formula (58). For the contingent claims

7

O (wi, ..., wy), i = 1,d, the fair prices @} are given by the formulas
2 2 N
vy = Z e Z Hl,l)n(w’f, oo wmey (Wit W), i=1,d. (96)
=1  iy=ln=1
If filwy,...,w;)) =1, i =1, N, the unique martingale measure is a direct product of

measures pi(A), A € F?, given on the measurable space {Q9, FP}, i =1, N, where

i(ol) = 77?(‘%2) i (2) — m‘(wil)
Ho) = e @y D) T e T @) &7

The fair prices @}y, i =1, N, of the contingent liabilities @'y (w1, ..., wx), i =1, N,
are given by the formula

%:/%v(wb---,wzv)duo:

2 2 N
S S el T hel) (99

=1 iy=1 k=1
Suppose that {gi(Xn)}_,, i = 1,d, are the mappings from the set [0, 1]" into
itself, where Xy = {z1,...,on}, 0 < a2, <1, k= 1,N. If S}, S¢,..., 5%, i =
1,d, are the samples of the processes (93), (94) let us denote the order statis-
tics SZO),SZI), .. .,SfN), i = 1,d, of this samples. Introduce also the denotation

(SN = gi (22, <f-l>),k:1,N,i:1,d.
gk([ ]N) 9k (S(N) s(N)
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Proposition 4. Suppose that Si,S%,. ,S% is a sample of the random processes
(93), (94). Then, for the parameters a',...,a’ the estimation

1Rt (5]

al = — ., 0<7i<l, i=1,d,
' fing (wr) °
1— g ([S°]n)
i 92—1([Si}N) k 2_ . m (99)
a = — Y - ) ) 1= Y )
. frmy (wp)

is walid, if for g([SYn) > 0, [Sn € [0,1)Y, the inequalities gi([S'|n)
g ([Sn) = ... = g5 ([S']w) are true. If 74 =0, then al, =1, k=1,N, i =1,d.

In the formulas (99) we put that f;, = max felwr, . wr1,wp), k=

{1y Wi —1}E€QR 1

LN
V.  MARTINGALE MEASURES ON DISCRETE PROBABILITY SPACE

This section presents all the necessary results for constructing a non-arbitrage in-
complete market on a discrete probability space. The conditions under which the
entire family of martingale measures is described for the considered class of evolu-
tion of risky assets are minimal. In particular, conditions are presented under which
the family of martingale measures considered is equivalent to the original measure.
They are minimal. The entire set of equivalent martingale measures is a convex
combination of a finite number of spot martingale measures. On this basis, new
formulas were found for the fair price of the super hedge.

In this section, we put that QY = {w},...,wM} i =1, N, and we assume that
2 < M < oo, the g-algebra F? consists from all subsets of QY. We suppose that

T

P(wF) > 0,wF € Q) k = 1, M. As before, the probability space {Qn, Fn, Py}

is a direct product of probablhty spaces {QO FO, P i = 1,N. Sometimes, any

elementary event w¥ € Q9 it is convenient to denote by w; not indicating the index
k. Further, we use the both denotations. As in section 2, we introduce filtration
F,, on the probability space {Qy, Fn, Px}. As before, it is convenient to introduce

the family of probability spaces {Qn,]:n, P,},n = 1, N, being a direct product of
probability spaces {Q9, F?, P’},i =1,n.

The evolution of risky assets is given by the formula (8) with the assumptions
given in the section 2. In this case

Q; = Qn—l X Q?},—? Q: = Qn—l X Q(7)L+7 (100)
where Q07 = {w, € D n(w,) < 0L = {w, € QO n.(w,) > 0},

P({wn, mn(wn) > 0}) > 0, P°({wn, mu(w,) < 0}) > 0. Further, we also use the
measurable space with measure

N N N
{H 0 x QL T[IF x 7L TIPS < PP } (101)
i=1 i=1

i=1
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The measure P%~ is a contraction of the measure PV on the o-algebra F°0~ =
Q0= NFY PO is a contraction of the measure PY on the o-algebra F°+ = Q0+ N FP.
Additionally, we assume

P ({wn € O, Inu(wn)] < 00}) = 1. (102)

In this case, Lemma 1 (see [1]) is formulated as follows

Lemma 2. Suppose that for Q% a = — +, n =1, N, the representations (100) are
true. If the conditions

By, NBY =0, i+#j,

322032;:®757§l7 k:]-?Nna

Np, Nn
0— _ 0— 0+ _ 0+
Qn _UBn,i7 Qn _UBn,i’
i=1 i=1

PAQO\By;)>0, i=11, I,>1, n=1N,

PO\ ByH) >0, s=1,5,, S,>1, n=1N,

P)By;)>0, i=11I, I,>1, n=1LN,

PAB%) >0, s=1,5, S.>1, n=LN,

/AS;(wl, s 7wn—1awn)dPN < o0, n = 1,N, (103)
Qn

are true, then the set of bounded strictly positive random wvalues o, ({w}l;{w}?),
satisfying the conditions (14) - (16),(see [1]) is a nonempty set.

Lemma 3. Suppose that the conditions of Lemma 2 are true. For the measure
uo(A), A € Fy, constructed by the recurrent relations (23) - (25),(see [1]) the
representation

1o(A) = / [Tt smalens - oom) [ dPP(e) (104)

is true and po(Q2n) = 1, that is, the measure po(A) is a probability measure being
equivalent to the measure Py, where we put

l/hz(wla ce 7wn) = Xqo- (Wn)lp,lz(wl, .. ,wn)+
X0+ (wn)lpi<wl> cee 7wn)7 (105)
¢711(w17 s 7wn—1’wn) -

/XQ%+ (wi)a’n({wl? sy Wno1, wn}a {wh sy Wno1, w'rzl}>><
)
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AS;_(WI, o .. 7(,{)"_17 wg)
dP?(w? Wlsewr o Wn1) €
vn(@)l’...,wnil’w}”w%) TL( n)7 ( 15 s Wn 1) n—1,
wg(wlﬂ"'ywn—l,wn) =
/XQ%(Wvlz)an({wl,-..,wn_l,w}z};{wl,...,wn_l’wn})x
Qg
dP)(w,, e Wh—1) € Q1.
Vn(wh'"awn—lyw}uw%) n(wn), (wh yn 1) n—1

Proof. We only need to prove that ¥,,(wy, ..

an({wy, - wn b {wl, Wk wnd) = o (wy)ad (w)),
where
ab(wWh) >0, w e (W) >0, w?eQlf

Since

AS(wry .o Wy, w,ll) = Sn-1(wi, .« oy, Wn—1)an(wr, ... ,wn_l,wi)ng(w}l),

AST(wy,y ... Whit, wi) = Sn1(wi, -+ wn1)ag(wr, ... ,wn_l,wi)n:[(wi),
where

M (Wn) = =Xao- (W) (wn), 1t (W) = Xao+ (Wn )1 (Wn),
an (Wi, Wno1,wl) >0, ap(wi,... W, 1,w?) > 0.
Therefore,
I/Ji(wl, ey Wpo1,Wp) =
/XQ%Jr (WZ)O[,L({LUl, ceeyWno1, wn}; {wh ceeyWno1, w,i}>><
Q)
AST(wy, ... ,wn_ll, w,z) IPO(2) —
Volwr, .oy wpo1,wk, w?2)
Suir - ont)ah(wn) [ xegs (@D)ad (@)
00
an<wlv e Wn—1, W%)n:(wi) 0/, 2 0—
dP’(w2) >0 w W) €y X QT
Vol ) o) 7 0 () € o

(106)

(107)

.,wy) >0, n=1,N. Suppose that
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Analogously,

lpi(wla s >wn*17wn) -

/XQ%— (wi)an({wl, s >wn717w711}; {wla sy Wno1, wn})x

Q)
AST (Wi W, W) (1)
Vn(wla'-->wn—17wrlww721) e

an(wl,...,wn_h )7] ( ) 0 .
o2y (W) >0 W) € Qg x QO (109
Valwi, .oy wno1,wl w?2) (@ ) o (Wi wy) 1 x 82 (109)

From these inequalities, we obtain
Yo (Wi, Wone1,wp) >0, (Wi, wy) € Q. (110)
This proves the equivalence of the measures Py and .

Theorem 5.  Suppose that the conditions of Lemma 2 are true. Then, the set of
strictly positive random values o, ({w}l; {w}?), n =1, N, satisfying the conditions

E“O|ASH(CL)1, c. ,wn,l,wn)] =
N
/Hl/)z Wiy - wi) [AS, (Wi, .. ,wn_l,wn)|HdPiO(wi) <oo, n=1,N, (111)
i=1

is a nonempty one and the conver linear span of the set of measures (104), de-
fined by the random values o, ({wi, ... ,wi};{w?, ... ,w2}), n = 1, N, satisfying the
conditions (111), is a set of martingale measures being equivalent to the measure

Py.
Proof. All bounded random values a,,({wi,...,wik:{w? ...,w2}), n = 1, N, con-
structed in Lemma 2 satisfy the conditions (111), since |AS,, (w1, ..., wn_1,w,)| takes

only finite values. The fact that the measures (104) are martingale ones is proved
as early (see [1]).

Lemma 4. Suppose that the conditions of Lemma 2 are valid. If, on the probability
space {1, Fn_1, 0 '}, for each B € F,_1, ' (B) > 0, the nonnegative random

value fp(wy, ... ,wn_1,wy) satisfies the inequality
//H%Mw- D fnwr,s - Wy Hﬂm%g,Beﬂ%ﬂm
B Q0 =1
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then the inequality

/wn(wl, ey W) falwr, . ,wn)dPS(wn) <1,
Q0

{wl,...,wn_l} eQn—l; nzl,N, (113)
18 true.

Proof. The proof see in [1].

Theorem 6. Suppose that for AS,(wy,...,wn_1,wn), n =1, N, the representation
(13) is valid and Lemma 4 conditions are true. Then, for the nonnegative random
value fp(wi, ... ,wp_1,wy) the inequalities

AST(wyy -y Wy, w?
o g () |70 :

1
Wiy eooyWpo1,W, )+
...,(JJn_l,W}l,w%)fn( 1 y Wn—1, n)

AST (Wi W, W) 2
n ) y Un—1,%Wn n gy Wn—1, <1’
Vn(wl, R 7wn—1, w"]’.” UJ%) f (wl w 1 wn) <
(@ cswn) € Quoyy - (wn,wn) € Q7 X QL =T N, (114)

are true.
Proof. The proof see in [1].

Theorem 7.  Suppose that the conditions of Theorem 6 are true. Then, the non-

negative random values f,(wi,...,wn_1,wn), n =1, N, satisfy the inequalities
folwi, .y wn1,wn) <
(14 Vo1 (Wi, s wn1)AS (Wi, -y We1, W), n=1,N, (115)
where Yp—1 (w1, ..., wWp_1) 1S a bounded F,_1-measurable random value.

Proof. Tt is evident that there exists w;, € Q0 and w? € QY such that the inequal-
ities

1
max < 0,
(W1yeeesn—1)EQp—1 ASE (wl, e, Wh—1, W%J)
! < N (116)
max 0, n=1, )
(W1yeerswn—1)EQp—_1 ASJ(wl, e, Wh—1, w%)

are true. This proves Theorem 7 (see [1]).

Theorem 8. Suppose that the evolution {S,(wi,...,w,)}N_, of risky asset satisfies
the conditions of Theorems 5, 6, 7, then for every monnegative super-martingale
{fHwr,...,wn) N relative to the set of martingale measure M, described in The-
orem &, the optional decomposition is true.
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Proof. The proof see in [1]. More detail about optional decomposition see in [25],
[26], [28] [27], [29].

Let us consider the random values

Y (Wi, Wa) = Xgo- (Wa) P (w1, - Wi )+

Xao+ (@Wn) W (w1, -+, W), (117)
where
lp}z(wlﬁ s >wn—17wn) =
AS:(WD <oy Wn—1, wr%)
V. (wl W1 (JJl U.)Z)’ (wla R awn—1> € Qn—l, (118)
Yo (Wi, Wo1, W) =
AS (Wi, . W, wh —
v (wl( - W1 wll w2>)7 (wh ] anfl) € anh n = 1,N (119)

Definition 1. Let the evolution of risky assets be given by the formula (8). On
the measurable space {Qn,Fn}, being the direct product of the measurable spaces

N
{Q0, FNY, for every point {{w}, w?}, ... {wk,wd}} € TT[QY x Q] let us introduce
i=1

the spot measure

(4) =

’UJ{"J% 7(«1%},...,{&111\,,&)]2\[}

2 2 N
ST el wixa(wit L wl), A€ Fy, (120)

ii=1  iy=ln=1

where Y, (wq, . .., wy,) is determined by the formulas (117) - (119).

Lemma 5. The spot measure fig,1 .2y . (w1 w2} (A), given by the formula (120), is a
martingale measure for the evolution of risky asset given by the formula (8) for every
pOint {{w%a w%}? {wN7 WN}} € H [QO_ QO+] ]f the poznt {wla %}7 ) {w]l\h WJQV}

is such that AS, (w1, ..., wWy_1,w ) < 0, AS, (w1, .., wp1w?) >0, {wy,...,wp 1} €
Q,_1, n=1,N, then the spot measure “{wivwl},--w{w}v,wfv}(A) 1s a martingale measure
being equivalent to the measure Py.

Proof. Let us prove that g1 2y {WNMJQV}(A) is a probability measure. Let us cal-
culate

2
lej(wil""’w;j):lpj(wila'“ ] 1, )—l—l/)j(w’f,...,w;j_‘f,w]?.):

ij=1
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XQof(w})lpjl-(wil, . ,w;-jjllw})+
Xoo- (w@) 1.(w’f, . ,w;-j__fw;)—i-
Xao+ (WHPF - wiw))+
i1 Gj—1 2

Xqf- (%2) ]1‘(0% e Wi Wj)‘l'

X+ (w?)t/)?(w?, . ,w;jjllw?) =

i

AST (Wb, .. wiT w?)
XQ?— (%’)XQ‘” (%2) Jil : i;flj 17 ]2
Vj(wl,7w]_1,wij])

AST (wi, ... LWl w;)

1 1 =1
Xao+ (W) Xao- (W) ) — T +
i J Vj(w?,...,w;]_f,w},w})
ASH(w, .. Wi w?)
Xa9- (W?)XQ?+ (WJQ) Jil : i;—lj 1’ 12
Vj(wl ,...7(,{)]'_1,(")]‘7(/‘}]’)
AST (wil . wi-j__ll wl)
XQ?*(WJQ‘)XQ;?* <wjl) Jil : i;—lj 17 ]1 -
‘/J(wl 7...7Wj_1,wj;wj)
ASHW, . Wi w?)
XQQ*(WJI‘)XQ“(MJQ') jil : i;—lj 1’ J2 +
i g Vi(wi's . wiT, wiwi)
AST (Wi, Wi wh)
2 1 gL 10 1 2
Xao+ (@) Xao- (w)) — ; = Xop (W5 )Xapr(5) = 1.
Q; (w5) & ( ’>X/}(w§1,...,wéjll,w},w}) K ) E )

The last equalities prove that P! w2 ok 1(Qn) = 1 for every point

2
N

N
{{wt, ot} Aoy, wi ) € TR x Q7. Further,
i=1

2
Yol wW)AS W) =

1;=1
wj(wil’ e ’w;j:ll’wjl>ASj<wil7 <o 7(,0;3:117(,«);)_}_
Py (Wi, wi T W AS WL Wi w?) =

Xao- (W;)XQEH (%2) X
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B ASTH(wi, ... Wi w?)

et i RS —(, i1 o1 1
U n TR AS; (wl,...,wj_l,wj)—l—
Gwity . wi whw?)
AST (Wi Wi wh) -
JANTL =10 +(, i -1 2V 1 N
e — 1A5j(w1,...,wj_1,wj) =0, j=1,N. (121)
Hwis e wi T W) wi)

Let us prove that the set of measures M{w%,w%},...,{w}v,w?v}(A) is a set of martingale
measures. Really, for A, belonging to the o-algebra F,,_; of the filtration we have

N
A = B x [[ 9, where B belongs to o-algebra F, ; of the measurable space
{Qn—la ]:n_l}i. Then,

/Asn(wla <o 7wn)dﬂ{w%,w%},...,{w}v,w%\,} =
Z e Z Hlpj(wila T 7w;j)XB<wil7 s 7w;n:11)ASn(wi1v T 7("):1”) =
2 . .
SN Tl (it A (wwi) =

2 2
Z Z lpj(w?,...,w;j)XB(wil,...,w;":ll)x

2
> awl, W) AS, (Wi wi) =0, A€ Fo (122)
To prove the last statement it needs to prove that ¥, (wy,...,w,) > 0, n = 1,
But,
AST(wry .y w1, w?)
lp”(wh o 7wn) B Xng (wn) Vn(wla s 7wn—17w71u w'rgz)

AST (Wi .y Whot, W) E—
n ’ ’ TS () =1 N. 123
Vn(wlv“-awn*l?w#w%) ’ ! , ( )

Xaot+ (wn)

The last means the needed statement.

We remind that the evolution of risky asset is given by the formula (8). Therefore,
in this case the condition (16) (see [1]) is formulated, as follows:

/ XQ%_ (W;)XQ,‘# (wi)an({wia s 7("")’!]7:717 wrlt}; {UJ%, s 7("'7121717 wi}) X

Q0 x Q9
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dP(wh)dP’(w?) =1, n=1,N. (124)
Below, we describe the convex set of equivalent martingale measures.

Theorem 9. The measure pg(A), constructed by the strictly positive finite valued
random values o, ({w}l; {w}?),n = 1, N, satisfying the conditions (124), is a mar-
tingale measure for the evolution of risky asset, given by the formula (8). FEvery
measure, belonging to the convex linear span of such measures, is also martingale
measure for the considered evolution of risky asset. They are equivalent to the mea-
sure Py.

Proof. Since the set of strictly positive finite valued random values a,, ({w}l: {w}?),n =
1, N, satisfies the conditions

EFIAS, (w1, ..y Wy, wn)| =

N

N
/ Hll)i(wl, oo W) |AS (Wi - W1, wh)| HdPZ-O(wi) <oo, n=1,N, (125)
Gy =1

i=1
then the set of measures pg(A), given by the formula (111), is a non empty one.
This proves Theorem 9.
We use for ay({wi,...,wy};{w,...,wi}) the denotation ay({w}h;{w}3)-
Theorem 10.  Let the evolution of risky asset be given by the formula (8). On the

N N N
measurable space with measure {[[[Q0~ x QY] TT[F>~ x F2, T1PY x P},
i=1 i=1 i=1
suppose that the random value an({w}y; {w}% ), satisfies the conditions

ay({why {w}t) >0, {wr,wit . {wy,wi) €[]0 x ], (126)

=1

/ an({eh, i o AN TTAPhIPY et = 1. (121)

N
11 (20 x0*)
4

The measure o(A), given by the formula

MO(A):
N
/ o ({0 F s {2t oyt (A [P x P, (128)

=1
N
1 (20 x00*]
L

15 a martingale measure, being equivalent to the measure Py.
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Proof. Let us note that g1 .2y gt w23(Qn) = 0 if {{w],w?}, ..., {wy,wi }} does

N
not belong to the set [[2Y~ x Q9F]. Let us introduce the denotations
i=1

an({wr, . wpoy we b {wl, Wi W) = (129)

I aw(feh Wk et wdd) 1T dPYw)dPY (W)

I (00 xat e
= < ,m=1,N.
S aw({wl - wp ket el ) TT AP (w])dPP(w7)
T1 99 x00+] o
Since the random values v, ({wi, ..., wl |, wi}; {w? ... ,w? |, w?}) are finite val-
ued, then
O‘n({wh to 7wrlzfl= wrlz}; {wfa ce 7w121717wi})x
Q) xapt
AST(wy, ... ,wn,l,wi)AS;(ofl, & ’wnfl’wi)dPg(w}L)dPg(wi) o,
Vn(wla ey Wn—1, Wy, Wn)
(wl, Ce ,wn,l) S anl- (130)

It is evident that the set of strictly positive finite valued random values
an({w}t;{w}?),n =1, N, given by the formula (129), satisfy the conditions

EM|AS, (wiy ..y W1, wn)| =

=1

N N
/Hllii(wl,...,wi)|ASn(w1,...,wn_l,wn)|HdPZ-0(wi)<oo, n=TN. (131)
QN =1

Moreover, for the measure (128) the representation (104) is true, meaning that it is
equivalent to the measure Py. The last proves Theorem 10.

Let us define the integral for the random value fy(wi,...,wy_1,wy) relative to
the measure fif,1 .2} . (w1 w2} (A) by the formula

/ In(wr, .. wn—, WN)dM{w},wf},...,{w}V,wfv} =
Qn

2 2 N ‘ } '

S [ nwit o wi) it W) (132)

11=1 in=1n=1
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Theorem 11.  Let the evolution of risky asset be given by the formula (8). If the
conditions of Theorem 10 are true, then the fair price of super-hedge for the non-
negative payoff function f(x) is given by the formula

_ P _
fo= I§1€1]1\3E f(Sn) = - Z_ZlN/f(SN)d,u{w{,wf},...,{w}v,w?\,}' (133)
(3 T 7 v ’ QN

Proof. Let us prove the formula (133). Denote M the set of all martingale measures,

being equivalent to Py. If an equivalent martingale measure Py € M, then aF, +
(1-— Oé)ﬂ{w{,wf folwzy €M for arbitrary 0 < a < 1. We have the inequality

QB f(S) + (1= a) [ F(SKngaguiy...ihoty < sup 7 F(Sy).
S
QN

Since a > 0 is arbitrary, we obtain the inequality

P
/f(SN)du{w%,w%},...,{w}\,,w%\,} < ggﬁE f(Sn).
Qn
From here, we obtain the inequality

max fOSN)dpg,t .2 12y < sup BT f(Sy).
wi e wie T i=1N ()b s ) PeM (Sw)
QN

The inverse inequality follows from the representation (128) for any martingale mea-
sure being equivalent to the measure Py .

VI.  MODELS OF NON-ARBITRAGE INCOMPLETE FINANCIAL MARKETS

Using the construction of the family of spot measures introduced in the previous
section, this section presents the conditions under which the considered family of
spot measures is invariant with respect to a certain class of evolutions of risky
assets. For a certain class of contingent liabilities including a standard call option,
the fair price of the super hedge is shown to be less than the spot price of the
underlying asset. Specific applications of the results obtained for the previously
known evolutions of risky assets are considered. New formulas are found for the non-
arbitrage price range. A model of a non-arbitrage incomplete market is proposed
and estimates are obtained in the case of a multi-parameter model of a non-arbitrage
market.

On the probability space {Qy, Fn, Py}, let us assume that the random values

bi(wi, .. wic1), filwr, ..o wy), mi(w;), i =1, N, satisfy the inequalities
bi(wlw"awi—l) >07 fi(wla---7wi) >07
max bi(wl, e ,wi_l) <

{wi,ewi 1 YEQ 1

1

fi(wh s 7%‘)77;(%‘)’

max max
{wiyeeywi—1 161 {wi,mi(wi)<0}
P)(ni(w;) <0) >0, Pni(w;)>0)>0 i=1N. (134)
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As before, we put Q07 = {w; € Q) n;(w;) <0}, QO = {w; € Q0 n;(w;) > 0}. We
assume that the evolution S, (wy, . ..,w,) of risky asset is given by the formula

n

Sulwr, . wn) = So [ [+ bilwr, -, wia) filwr, ., wimi(wi)), n=T1,N. (135)

i=1

N
With every point v = {(w!,w?),..., (wk,w?)} €V, where V = J][Q)™ x Q2] we
connect the spot measure =1

(4) =

/“L{UJ% 7{"]%}7--'7{"'}11\]7"‘)]2\/'}

2 2 N
Z e Z Hl/)n(w?,...,wfl")XA(wil,...,wj{,V), A e Fy. (136)

Let us denote v,(A) = H Vot (Ai), A= H A;, € Fy, the direct product of the

=1
measures v, ,2(4;), A E F2,i=1,N, Where v = {(wf,wd),..., (wh,wd)} €V,

2

N
V=TT x QF], and

i=1

+(,,2 ~(wl
1o2(A) = va (Wl ACH) + v (W2 n; (@) : 137
R o R e ) E v N

for w} € Q07 w2 € Q0 A; € FP. Then, there exists a countable additive function
v,(A), A € Fn, on the o-algebra Fy for every v € V.

Theorem 12. On the probability space {Qn,Fn,Pn}, being the direct product of
the probability spaces {Q9, F?, P2}, let the evolution of risky asset be given by the
formula (135). For every point v = {(wi,w?), ..., (wk,wx)} €V, the spot measure
M{w%,w%},...,{w}v,w?\,}(A) given by the formula (136) does not depend on the random
values by(wy, ... ,wi_1), i = 1, N. In the case as fi(wi,...,w;) = 1, i = 1, N, the
formula

Pt w?h e fwh i} (A) = 1(A) (138)

is true. For the evolution of risky asset (135), the set of martingale mea-
sures being equivalent to the measure Py does not depend on the random wvalues

bi(wl, Ce ,wi,l), 1= 1, N.

Proof. Since the spot measures fiy,1 w2y, ol w2} (A) are given by the formula (136),
to prove Theorem 12 it needs to prove that any 1,1) ( ,wn), n=1,N, does not

depend on the random values b;(wy, . ..,w;_1), @ N Really,

l/)n(wh L ,(Un) == XQ; ((")17 ceey Whp— 17wn)lp (wla C ,Wn)‘l—
Xﬂz(wl,...,wn_l,wn)lpi(wl,...,wn), (139)

lpi(wla s 7wn—17wn) =

© 2021 Global Journals



AST(wy, ...y Wno1, w?)

o wn1) €l 140
Valin, - om )’ 10 rent) € Bl o
llli(wl, e Wh 1, W) =
AST(wiy ey wWno1,wl)
L d e e Wnot1) € Q. 141
Valwi, ooy wpo1,wl, w?) (wn wn-1) ! (141)
But,
AST(wi, ... we1,w?) =
Sn—1(wi, .y wp—1)bp(wr, .y wn—1) frlws, ... ,wi)n;(wi), (142)
AS;(CUl, e ,wn,l,w}l) =
Sp1(wi, e Wne )b (Wi, W 1) fu(wr, - wh ) (W), (143)
Therefore,
AST(wyy .y Wy, w?) _
Valwr, ooy wno1,wl, w?)
fn(wb s 7wn—17w721)77;zr(w721) (144)
fn(wlv ey Wn—1, W%)U?@L(w%) + fn(wh sy Wn1, W%)UE(W}@)?
AS (wry ey Wi, w))
Vn(wh cee awn—law}ww%) B
Jnlwi, ... 7wn—lvw£)77; (%ﬁ) (145)
fn(wlv cey Wi, W%)Uﬁ(“ﬁ) + fn<w17 s Wno1, W%)"Iﬁ(wé)’

(C{)l, s 7wn—1) € Qn—l-

From this, all the rest statements of Theorem 12 follow.

Theorem 13. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {0, F?, PP}, let the evolution of risky asset be given by the
formula (135). Suppose that the nonnegative conver down payoff function f(z) on
the set 0 < x < oo satisfies the inequality 0 < f(x) < x. Then, the inequalities

f(So) < sup EY f(Sy) =

PeM

ol e i??gq* TN / f(SN>d:U’{w11,w% ,...,{w}v,w?\]} < SO (146)
7 1 7 [ ! QN

are true.

© 2021 Global Journals

Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version I E Year 2021



Global Journal of Science Frontier Research (A ) Volume XXI Issue IV Version [ E Year 2021

Proof. Since the set of points v = {(w},w}), ..., (Wk,w%)} in the set V is finite then
the minimum in the formula

min [SN(wl, Ce ,(UN) — f(SN(wl, Ce ,WN))] =d>0 (147)
W1y WN
is reached at a certain point vy = {(w;”, W), ..., (Wy’, wi’)}. Therefore, the in-
equality
Sn(wi, ... wy) — f(Sn(wi,...,wn)) >d, {wi,...,wn} € Qn, (148)
1s true

Integrating left and right parts of inequality over the measure 1 .2y, . (w2} (A),
we have

/ SN (W1, WN) AR w2), (w0l w2} —

QN
[ gty S Sl ow) 2 d (149)
Y
Since
/ SN(wl, Ce aWN)dU{w%,wf},...,{w}\,,wIQv} = SD (150)
QN

we obtain the needed. It is evident that from the convexity down of payoft function
f(z) and Jensen inequality we obtain the inequality

/ f(SN(wb s 7wN))du{w},w%},...,{w}\,,w?\,} > f(SU) (151)
QN

Theorem 13 is proved.
Let us note that the interval of non arbitrage prices for a certain processes was

found in the papers [30], [31].

Corollary 2. For the standard call option of European type with payoff function
f(z) = (x = K)", K > 0, the conditions of Theorem 13 are true. Therefore, the

inequalities (146) are valid.

Theorem 14. On the probability space {Qn,Fn,Pn}, being the direct product of
the probability spaces {9, F?, P2}, let the evolution of risky asset be given by the
formula (135). Suppose that the nonnegative conver down payoff function f(z) on
the set 0 < x < oo satisfies the inequality 0 < f(zx) < K, K > 0. Then, the

mequalities

P _

s < up B = mas S0 <K 052
1 K3 3 1 QN

are true.

Proof. The proof is evident.
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Corollary 3. For the standard put option of Furopean type with payoff function
f(z) = (K —x)", K > 0, the conditions of Theorem 1/ are true. Therefore, the
inequalities (152) are valid.

Corollary 4.  For the standard call option of Furopean type with payoff function
f(x) = (x — K)", K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)d/jJ wl w2}, dwl w2}
wgeﬂgf,w?EQ?Jr,i:l,iN torwibofoy et
QN
max FOSN)dptror w2y gt w2 | - (153)
wle™ w2t i=I.N {wpeih o (oW}
Qn

Corollary 5. For the standard put option of European type with payoff function
f(x) = (K —x)", K > 0, the interval of non arbitrage prices coincide with the
interval

min f(SN)d/’L whw?l.{wk,w? s
wileﬂgf,w?EQ?Jr,i:l,iN torwibofoy et
QN
max FOSN)dptror w2y gt w2 | - (154)
wle)™ w2t i=I.N tot @i vy o)
Qn

Corollary 6. On the probability space {Qn, Fn, Py}, being the direct product of
the probability spaces {QV, F?, P}, let the evolution of risky asset is given by the
formula

S (wry .. wn) = S H(1 + pi(wi)), n=1,N, (155)

where the random value p;(w;) is given on the probability space {Q, F2, P’} i =
1, N, and let the bank account evolution be given by the formula

B,=By(l+7r)", r>0, By>0, n=1N. (156)

Then, for the discount evolution of risky asset

n

So [T+ pi(wi))

Su((Wr, . ) = 1210(1“)71 . n=T1,N, (157)

the set of martingale measure is nonempty one if the following conditions are true

P(pi(wi) —r < 0) >0, P(pi(w;) —r>0) >0,

P2(pi(w;) — 7 < 0) + P(pi(w;) —r>0)=1, i=1N.
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For every point v = {(w},w?),...,(wk,w%)} in the set V the spot measure
[t w2}l w2} (A) B8 a direct product of measures pg(A;), A; € F), i = 1,N,
given on the measurable space {2, F}'}, where piy(A;) = v ,2(A), and v, ,2(4;)
is given by the formula (157) with n;(w;) = pi(f—f, i =1,N. The fair price @y of
super-hedge of the nonnegative contingent liability on(wi,...,wx) is given by the
formula

Yo = magi/SON(Wl, e ,WN)qu-
Qn

The interval of non-arbitrage prices is written in the form

min/QON(Wl,...,CL)N)dVv, ma’%/gpN(wh”'awN)dVv
ve

veY
QN QN
Theorem 15. On the probability space {Qn,Fn, Pn} being the direct product of
the probability spaces {Q9, F? PP}, let the evolution of risky asset be given by the

formula
n

Sh(wr, .. owa) = So [[(L + pi(wi), n=T,N, (158)

=1

where the random wvalue p;(w;), is given on the probability space {9, F?, PY},
P’({pi(w;) < 0}) >0, P°({pi(w;) > 0}) >0, i = 1, N, and let the bank account
evolution be given by the formula

n

B, =By [[(1 +rica(wis1)), Bo>0, n=1N, (159)

=1

where the strictly positive random values r;(w;) are given on the probability
{QV FO P’} i =1,N. Then, for the discount evolution of risky asset

So [1(1+ pifes)
Sn((wry .o ywy) = =l , n=1N, (160)
(1 +7“7, 1((&)1 1))

X
=

<.
Il
—

the set of martingale measure is nonempty one if the following conditions are true

max Ti,l(wi,l) < min Pi (wi),
wi—1€Q_1 wi€Q4,pi(w;i)>0

min ri_l(wi_l) > 0, 1= 2, N
wi—1€Q—1

0<ry < min w1). 161
0 leﬂl,pl(w1)>Op1( 1) ( )

The fair price pq of super-hedge of the nonnegative contingent liability oy (w1, ..., wyN)

1s given by the formula

Yo = max N/ @N(wl, N ,WN)d[L{w%’w%}ww{w]lwwIZV}.

wj EQO w2edt, =T,
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The interval of non-arbitrage prices is written in the form

min ON(W1y o WN )t 021 fol W21,
wleQl, w? EQ?+, i=1, {wpeihnd N N}
Qn
max ON (W1, o WN )t w21 ol o2
w] 69377 w? EQ?+, i= 1 / { 1 1}7 7{ N> N}
Qn

Proof. The discount evolution (160) can be represented in the form

Sp(wi, .. ywy) =
So (Pl wl —To ) E < —7“1 1(% 1))
B[)( 1+ 7 zl_! 1+T1 1(W1 1)
SO ~
(L+ filwrs - wi)mi(wi)) (162)
By i=1
where
1
fl(wl) = 1+ 1o’ 771(W1) = Pl(wl) —To, (163)
pi(w;) = ri—1(wi—1)
W1y oo, Wi) = - s
filen ) (pi(w;) — . i i1 (wim1) (1 + 7ric1(wiz1))
nl(wz) = pz(wz) — min Tz‘_l(wi_l) 1= 2, N. (164)
w;i 1680241
Since
fi(w17"‘7wi) >07 izlaNa (]‘65)
P)(ni(wi) <0) >0, PBl(ni(wi) >0)>0, i=1,N, (166)

then it means that the set of martingale measures being equivalent to Ry is a
nonempty set. Theorem 15 is proved.

Theorem 16. On the probability space {Qn,Fn, Py}, being the direct product of
the probability spaces {9, F?, PP}, let the evolution of risky asset be given by the
formula

Si((wl’ o ;Wn) — S, H eo’i(wl,...,wi—l)Ei(wi)7 n=1N, (167)

=1

where the random values €;(w;), ¢ = 1, N, are such that
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FJiO(&;(wi) < O) > 0, F)i()(é‘i(wi) > 0) > 0,
PY(ei(wi) < 0) + P)(gi(w;) > 0) =1,

Ji(wl,...,wi_1)20?>0, 1=1,N,

and let the bank account evolution be given by the formula

B, =By [[(1 +ria(wis)), Bo>0, n=1N, (168)
=1

where the random values r;(w;), i = 1, N — 1, are strictly positive ones, 19 > 0.
Then, for the discount evolution of risky asset

n

SO H eoi(wh...,wi,l)ai(wi)
Sn((Wi, ... wy) = —=2 ., n=1,N, (169)
BO H (1 + ri_l(wi_l))

=1

the set of martingale measure is nonempty one, if

0 0 .
ex g max e1lw < 7o < ex g min e1lw s
p{ l{wl,el(w1)<0} )} 0 p{ 1{wl,el(wl)>0} )}

exp{o; {wi,gﬁ%m} ei(wi)} < {wi_flﬂeiéli_l}ri—l(wz‘—l) <

0 . .
max  7;—1(wi—1) < expi0o; min  &;(w;)}, =2, N. 170
{wi—1€Q_1} 1( 1) p{ {wi,ei(wi)>0} ( )} ( )

Then, the fair price of super-hedge @y of the monnegative contingent liability
on(wi,...,wy) is given by the formula

Yo = vea@{/@N(Wl,---7WN)d“{w%,wf}»-~-7{w}V’”?V} B
QN

2 2 N
NN hoL W), 171
TS?(ZI -211_111’0 (wi w,)en (Wi Wy (171)

1= in=1n=

Proof. For the discount evolution (169), the following representation
Sn((wl, Ce ,wn) =

& (]_ + fi(wl, PN ,wz)nz(wl)) , n = 1,_N, (172)

i=1
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is true, where

1
771(W1) = eXp{O?gl(wl)} — To, fl(wl) = 1+ 1o’
ni(w;) = exp{ode;(wi)} — max  ri_y(wi1),
{wi—1€Q-1}
fi(wh e ,Wz') =

eoi(wi,wi1)ei(wi) _ Ti—l(wi—1>

(exp{a?ai(wi)} — max ri,l(wi,l))(l + ri,l(wi,l))
{wi—1€Qi-1}

>0,

{wl,...,wi}EQi, 1=2,N.
In this case, the spot measures

Hfl w2} ol w2 (A) =
2 2 N . A ‘
Z ... Z H‘/)n(w?’...,w%")XA(wil’,..,w}{,v), A€ Fn,
i1=1 in=1n=1

figuring in the formula (171), are determined by the formulas

lpn(wh cee 7wn) - XQ;(wh cee 7wn—17wn)¢i(w1a s 7wn)+
XQ:;(wlw"awn—lawn)lprg,(wl:"'?wn)a
lpi(wla-"ywn—hwn) =
AST(wyy .oy Wy, w?)
Wiy evnyWnot) €
Vn(wl,---,wn—l,wé,wz)’ ( 1, sy Wn 1) n—1,
lpZ(wl;'--;wnfl?wn) =
AST(wiy ey Wi, wl)
Wiy evn,Wnot) €
Vn(w17“'7w71_1’w7117w721)a ( 1 sy n 1) n—1,
where
AS;[(wl,...,wn_l,wa) _
Vn<w1>---7wn*17wrlww12l)
fn(wlv ceeyWn—1, W?{)W:(W?«L)
fn(wla s 7wn*17w721)nf{(w721) + fn<w17 s 7wn*17wrlz)77;(w7lz)’
AS (Wi Wnet, w)) _
Valwi, oy wno1,wl w?2)

(173)

(174)

(175)

(176)

(177)

(178)
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fn(wb s 7wn717w711)nr:<w711> (179)
fa(wi, - wn,w2)t (W2) + fo(wi, - w1, wh )y (W)

(W15 oy Wno1) € Qyy.

and the random values 7;(w;), fi(wi,...,w;), i = 1, N, are given by the formulas
(173). The obtained representation (172) proves Theorem 16.
Suppose that the random values ng(wy), fr(wi,...,wk), & =1, N, and constants

ai satisfy the inequalities

. 1 _ _
0<dl < ., k=1,N, i=1.4d,

Jelw, . wi)ny, (wi)

max max
{w1,ewe—1}€2% 1 {wr, Mk (we)<0}

filwr, .. ,w) >0, Pl(ni(w;) <0)>0, P’ni(w;)>0)>0, i=1N. (180)

We assume that the evolutions of d risky assets Sy, (w1, . . . ,wy,) is given by the formula
Sp(wi, .. ywn) = {SH (Wi, ... wn) Y, (181)

where
St (Wi, .., wn H 1+ apfe(wr, ..., we)me(wr)), n=1,N, i=1.d. (182)

Proposition 5. On the probability space {Qn,Fn, Py}, being the direct product of
the probability spaces {QY, F?, PP}, let the evolution of risky assets be given by the
formulas (181), (182), where the random values ng(wy), fr(wi, ..., wk) and constants
ai, k= 1,N, i = 1,d satisfy the inequalities (180). For such an evolution of risky
assets the set of martingale measures g does not depend on a.. The spot measures
[l w2}, (o, w2} (A) are determined by the formulas (174) - (179). The fair price
ol of super-hedge of the nonnegative contingent liability @' (wy, ..., wN) is given by
the formula

900 maﬁ( / Soﬁv(wb s 7WN)du{w},w%},...,{w}V,w?\,}a = 17 d.
QN

The interval of non-arbitrage prices is written in the form

veY
Qn

min / ¢§V<w17 s 7wN)d:u{w%,w%},...,{w}v,w%v} )

1'11)135( / 903\/((")17 St 7wN>du{w%,w%},...,{w}V,w]2V} , 1= 17 d.
Qn
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In the case fi(wy,...,wp) =1,k =1, N, for every point v = {(wi,w?), ..., (W, w%)}
in the set V the spot measure #{w},w%},...,{w}v,wfv}(A) 1s a direct product of measures

wh(A;), A; € FP, i =1, N, given on the measurable space {9, FP}, where uh(A;) =

Vit 2 (Ai), andlyw%wiz(Ai) is given by the formula (137). Z

Suppose that {gi(Xn)} Y ,, i = 1,d, are the mappings from the set [0, 1]V into
itself, where Xy = {xy,...,2n}, 0< 2, <1, k=1,N. If S§, S, ..., S%, i = 1,d,
are the samples of the processes (181), (182), let us denote the order statis-
tics Sgo),Sgl), . .,SEN), i = 1,d, of this samples. Introduce also the denotation

. (s S -
9 ([S"Iv) = gk <sf°’,---, ;“), k=1,N,i=1,d

K3
(N) (N)

Let us introduce the denotations

1 1
fi = max . frlwr, .o wp—1,wy), k=1,N.
{wi w1 YEQR 1, wie]™

Proposition 6. Suppose that S§,Si,...,S% is a sample of the random processes
(181), (182). Then, for the parameters a}, ..., a'y the estimation

.Gt . .
-t s

a; = 0<Té§1, i=1,d,

fi max ny(wf)
w%GQ?_

1_ 9;.(15Iv)
. g (57w) TN, T4 (183)
ak:: — s oy — s s

fi s (wi)

Y

is walid, if for g¢4([Sn) > 0, [SYny € [0,1]V, the inequalities ¢t ([S]y) >
g ([Sn) = ... = g5 ([S']w) are true. If 74 =0, then al, =1, k=1,N, i=1,d.

VII.  APPLICATIONS

In this section, we discuss the issue of applying the results obtained to real calcu-
lations of the range of non-arbitrage prices in the case of incomplete non-arbitrage
markets. The first question that arises is what should be the evolution of risky assets
when describing non-arbitrage markets. In this case, we must rely on the study of
the evolution of stock index proposed in [22], [23], [24], that is,

Sn(wiy . wn) =S H i@ wim)ei(@i) oy — TN (184)
i=1
where the random values o;(wy, ..., w;_1) >0y >0, i =1, N, and P?(g;(w;) < 0) >

0, PP(gs(w;) > 0) > 0, then such an evolution has the form (8) with

eUi(wl,---,wz'—l)ai(wi) -1 _

0 (w; P
fi(wla"'7wi): ecf?&(wi)—l ’ ni(wi):eza( )_1a Z—l,N.

satisfying needed conditions. Here, the random values o;(wy,...,w;_1), i = 1, N, are
conditional volatilities, €;(w;), ¢ = 1, N, are identically distributed random values.
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Therefore, when modeling non-arbitrage securities markets, the evolution of the
stock index should be described by formula (167). The evolution of shares quoted
on the exchange should be described by parametric processes described by formulas
(181), (182). The parameters of such a process are determined in accordance with
the Proposition 6.

VIII.  CONCLUSIONS

Section 3 contains the results related to the uniqueness of the set of martingale
measures. In Lemma 1 it is shown that in the case of evolution of risky assets
given by formula (11) there is only one spot martingale measure for the considered
class of risky assets. A wide class of risky asset evolutions has been identified
for modeling real processes in the financial market. In Theorem 1, necessary and
sufficient conditions are given for the evolution of risky assets under which the
martingale measure is the only one, and in Theorem 2 it is shown that it coincides
with a point martingale measure.

In section 4, Proposition 1 formulates the conditions for the evolution of risky
assets under which the martingale measure is the same for a wide class of evolutions
of risky assets. Proposition 2 states that the considered securities market in Propo-
sition 1 is complete and non-arbitrage and provides formulas for the fair values of
the contingent liabilities.

A direct consequence of the considered results is Corollary 1 known as the Cox,
Ross, Rubinstein model and Theorem 3 being the direct generalization of the above
mentioned model. In Theorem 4, the conditions are found under which the dis-
counted evolution can be represented in the form considered in the work. A formula
is found for the fair price of the super-hedge in this realistic case. In Proposition 3,
a parametric model of the complete non-arbitrage market is proposed and formulas
for the fair prices of contingent liabilities are written out. Proposition 4 provides
an assessment of the parameters of a complete non-arbitrage market model, which
opens up opportunities for modeling processes in financial markets.

Section 5 presents the theoretical foundations of the incomplete non-arbitrage
market model. In Lemmas 2 and 3, conditions for the evolution of risky assets are
formulated for which the family of martingale measures is equivalent to the original
one. It is shown in Theorem 5 that the family of measures constructed in Lemma 2
is a family of martingale measures equivalent to the original measure. In Lemma 4
and Theorems 6 and 7, estimates are found for nonnegative random variables that
ensure the validity of the optional decomposition for nonnegative super-martingales
with respect to all martingale measures presented in Theorem 8. In contrast to
earlier results, the optional decomposition can be found explicitly here. Lemma 5
contains a result that introduced in Definition 1 the spot measure is a martingale
one (see also in [1]).

Theorems 9 and 10 describe all martingale measures equivalent to the original
measure. In the case under consideration, the conditions of Theorems 9 and 10 are
not restrictive. In Theorem 11, a formula is found for the fair price of the super-
hedge for random claims, which allows it to be calculated using a finite number of
operations.

Section 6 presents possible models of incomplete non-arbitrage markets. For this,
Theorem 12 shows that the set of spot measures does not depend on a certain type
of evolution of risky assets and is one and the same set. Under certain simplified
conditions, each spot measure is a direct product of the spot measures indicated in
the theorem. Due to the finiteness of the set of spot measures in Theorem 13, it
was found that for a certain class of contingent liabilities the super-hedge price is
less than the initial price of the underlying asset. The range of non-arbitrage prices
is found. Among these contingent liabilities is the standard European call option.
Non-arbitrage price interval is found. Corollaries 6 and 15 provide examples of the
evolution of risky assets.
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Theorems 15 and 16 consider realistic models of the evolution of both risky and
non-risky assets for which there is a finite family of point measures.

Proposition 5 presents a realistic parametric model of an incomplete non-
arbitrage market and also presents formulas for the fair price of the super hedge
and the range of non-arbitrage prices. In Proposition 6, estimates of the parameters
of the incomplete non-arbitrage market model are found.
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