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Abstract- According to the general gauge principle, Fluid Gauge Theory is presented to cover a 
wider class of flow fields of a perfect fluid without internal energy dissipation under anisotropic 
stress field. Thus, the theory of fluid mechanics is extended to cover time dependent rotational 
flows under anisotropic stress field of a compressible perfect fluid, including turbulent flows. 
Eulerian fluid mechanics is characterized with isotropic pressure stress fields. The study is 
motivated from three observations. First one is experimental observations reporting large-scale 
structures coexisting with turbulent flow fields. This encourages a study of how such structures 
observed experimentally are possible in turbulent shear flows, Second one is a theoretical and 
mathematical observation: the ”General solution to Euler’s equation of motion” (found by Kambe 
in 2013) predicts a new set of four background-fields, existing in the linked 4d-spacetime. Third 
one is a physical query, ”what symmetry implies the current conservation law ?”. The latter two 
observations encourage a gauge-theoretic formulation by defining a differential one-form 
representing the interaction between the fluid-current field jμ and a background field aμ.   
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Background of present research
Gauge invariance is one of the fundamental symmetries in modern theoretical

physics. It took almost a century for transition from the 19th-century recognition
of a mathematical invariance existing in classical electromagnetic theory to the 20th-
century recognition of its fundamental physical significance. Real recognition of the
gauge symmetry and its physical significance required two new fields developed in the
20th century: the relativity theory for physics of the world structure of linked 4d-
spacetime and the quantum mechanics for the new dimension of a phase factor in
complex representation of wave function. The 20th-century recognition resulted in
the naming of the invariance as gauge invariance and in successful formulation of the
Gauge Principle. Its historical development is reviewed by Kambe (2021a) concerning
its gradual and zigzag developmental processes in quantum electrodynamics (QED). The
gauge theory played vital roles in modern particle physics which was revolutionary (e.g.
Aitchison & Hey (2013), Utiyama (1956)). The same paper (Kambe 2021a) presents also
reviews of the gauge invariances existing in the two theories of the weak gravitational
field and the electromagnetic theory with emphasizing the similarity between them. In
addition, its last section 5 presents ”Motivations for Fluid Gauge Theory”. Thus, on the
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a)

basis of these backgrounds of gauge theories reviewed in the article (Kambe 2021a), the
present paper proposes possible application of the gauge theory to fluid flows although
the field of fluid-flow is not listed in the literatures reviewed.

Abstract- According to the general gauge principle, Fluid Gauge Theory is presented to cover a wider class of flow 
fields of a perfect fluid without internal energy dissipation under anisotropic stress field. Thus, the theory of fluid 
mechanics is extended to cover time dependent rotational flows under anisotropic stress field of a compressible 
perfect fluid, including turbulent flows. Eulerian fluid mechanics is characterized with isotropic pressure stress 
fields. The study is motivated from three observations. First one is experimental observations reporting large-
scale structures coexisting with turbulent flow fields. This encourages a study of how such structures observed 
experimentally are possible in turbulent shear flows, Second one is a theoretical and mathematical observation: 
the ”General solution to Euler’s equation of motion” (found by Kambe in 2013) predicts a new set of four 
background-fields, existing in the linked 4d-spacetime. Third one is a physical query, ”what symmetry implies the 
current conservation law ?”. The latter two observations encourage a gauge-theoretic formulation by defining a 
differential one-form representing the interaction between the fluid-current field and a background field . A 
known relativistic action of a perfect fluid is introduced together with the interaction action just mentioned, and 
furthermore, a third gauge invariant action is defined to govern the field linearly in its free-state. The general
gauge principle is applied to the combined system of the three actions to describe general time-dependent 
rotational flow fields of an ideal compressible fluid. The combined system can be shown to be invariant under 
both global and local gauge transformations of variations of . The global gauge transformation is a diagnostic
test whether the system is receptive to a new field .  Since the test is cleared, a new internal stress field 

is introduced into the flow field of a perfect fluid, together with the current conservation = 0, where 
the stress is an anisotropic stress field which is an extension added to the Eulerian isotropic pressure-stress 
field

jµ aµ

aµ

aµ
aµ(x

ν (

Mik(x
ν ( ∂µj

µ

Mik

p δik.



   
   

 

   

  

 

 
 

  
 
 

 

 
 

 
 

 
 

 

  
  

 
  

 
 

  
 

    
    
  

 
 

  
  

 
   

 
    

 
    

 
  

 
 

  
 

  
 

From the aspects of fluid flows, recent studies of wall turbulence and shear flow
turbulence recognize existence of large scale structures. It is known from experimental
studies that periodic waves exist robustly in the background irregularly fluctuating flow
field, and streak structures are observed to coexist with turbulent field. The streaks in
turbulence are wavy streamwise vortices surrounded by a sea of incoherent turbulent
motions. The observed large scale structures are characterized by streamwise streaks
and long meandering vortical structures. Concerning these experimental studies, see
Reynolds & Hussain (1972); Kim & Adrian (1999); Del Álamo & Jiménez (2006); Monty
et al. (2007); Hutchins & Marusic (2007); Smits et al. (2011).

Related mathematical aspect was investigated by Scofield and Huq (2014), stating
that the conservation law of current flux implies existence of a wavy field governed by
Maxwell-type equations, proposing that this might be applied to transverse travelling
waves observed in turbulent internal flows along a spiral pipe. The theory is based on
four conservation equations of energy and momentum of the whole system.

In order to highlight such aspects of large-scale structures coexisting with irregularly
fluctuating flow field and contemplate how such structures observed experimentally are
possible in turbulent shear flows, Kambe (2017) proposed a new scenario of turbulence
theory, based on the view that the entire physical system is composed of two fields:
fluid-flow field and transverse-wave field. General formalism of theoretical physics is
applied to the study of whole system consisting of a flow field and a wave field, with
two Lagrangian densities corresponding to each component and additional Lagrangian
expressing their interaction. This approach yielded good results that are consistent with
observations.

In particular, it is remarked that the ”fluid gauge theory to be presented here
supports the above theoretical approach proposed by Kambe (2017). In addition, the
most recent research of Kambe (2020) sheds light on physical mechanism how and why
the entire physical system has a structure composed of two fields: a flow field and a
wavy gauge field. The underlying key is the inseparable relation between the mass
conservation law and a gauge symmetry. Namely, the current conservation must be

© 2021 Global Journals
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Fluid Gauge Theory

satisfied at every point and every time by the flow field, which is to be ensured by a
background gauge field. This is the physical idea requiring the system to be composed
of two fields of a flow and a background gauge field.

The new system consisting of a fluid-flow and a background field ensuring current
conservation is powerful. It is likely that this enables to resolve an issue historically
unresolved, that is the problem of ”Dust striations observed in the resonance-tube
experiment” by August Kundt (1866), where there exists two different length scales with
their ratio more than fifty. The larger one correponds to the wavelength of the resonant
acoustic wave. A recent numerical test study based on the present new system gives
encouraging outputs on the smaller scales (see the section §4 Summary and discussions).

As investigated in Kambe (2020), according to the current formulation of fluid
mechanics, from a single relativistic energy equation of fluid motion, two conservation
equations are obtained in the non-relativistic limit : one is the mass conservation and
the other is the traditional form of energy equation. This is a riddle (see below at

from the physics point of view. We are particularly concerned with the mass
conservation equation and investigate what symmetry implies the mass conservation. A
key to resolve this Riddle is provided by the general representation of rotational flows
of an ideal compressible fluid satisfying the Euler’s equation ( ), derived by Kambe
(2013). This gives us a hint of existence of a set of gauge fields, giving rise to anisotropic
stress fields within the flows which are time-dependent and rotational flow fields.

In the present study, the Euler’s equation of motion is still valid, but it is remarked
that the equation is characterized intrinsically by the pressure stress which is represented

the part c)

the part d
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by isotropic stress fields. The present study of Fluid Gauge Theory predicts that the
perfect fluid (i.e. a fluid without dissipative internal mechanism) can accommodate
anisotropic stress field as well which can exist in unsteady shear flow fields.

This suggests that our physical system should be a combined system consisting of
a fluid flow field and a set of background gauge fields. This aspect and its significance
have been already investigated by Kambe (2017, 2020). The gauge symmetry of the
new background gauge fields ensures the law of mass conservation.

Section composition of the paper and mathematical structure of the theory

In the present paper, Fluid Gauge Theory is presented for a perfect fluid according
to the general gauge principle. Section is a preparative section collecting necessary
articles for the theory with the section title: An approach aiming at a fluid gauge
theory. Section presents the main theory with the title, Fluid Gauge Theory and
adds a remark section supplementing insufficient parts of the presentation.

On a mathematical point of view, more must be commented on the present approach
of the Fluid Gauge Theory. When new fields are taken into consideration, those should
be implemented (or absorbed) into the structure of covariant derivatives as connection
terms like the terms of Christoffel symbol in the gravity theory or the gauge potentials
in the electromagnetic theory. The concept of connection in the mathematics is an
essential ingredient of the physical gauge theory. It is a challenging work to implement
connection terms in the structure of fluid gauge theory. This is left to the Appendices
B and C, because sufficient mathematical expressions and concepts must be presented
to arrive at the goal.

Another aspect of the present system of a perfect fluid must be noted. Our system
is free from external forcing and in addition free from any internal mechanism of energy
dissipation. From mechanical point of view, free fluid motions are not always described
by straight trajectories of time evolution of the mechanical system as a whole, namely
their geodesics describing the whole system are curved in general.

In fact, we will see in Appendix C.2 that the free motion of a perfect fluid under a
background field aν can be described by a geodesic equation representing a curved free
dynamics. This is derived by the variational principle that makes the action integrals
invariant. Namely the new field of the fluid gauge theory has been taken into the
structure of covariant derivatives as connection terms and the free dynamics of a perfect
fluid under a background field aν is described by the geodesic equation.

These mathematical concepts would make the structure of theory complicated
easily. In order to make the storyline of the theory clear and as much as simple,
those complicating mathematical factors are left to Appendices B and C. However,
the mathematical concepts such as geodesic, covariant derivative, connection, etc. . are
absolutely necessary for the theory of Fluid Gauge Theory. It is the reason why the
appendices to the present paper get massive.

By what symmetry the mass conservation law is implied ?
It is well-known that the energy conservation is associated with the symmetry of

time translation of mechanical systems. One of the motivations for proposing a fluid
gauge theory is stated by the following question: ”What physical symmetry implies the
mass conservation law ?” This query is raised in regard to the relativistic equation of
energy conservation of fluid flows when its non-relativistic limit is taken (Kambe 2020).
In the ordinary fluid-mechanics valid in non-relativistic limit, the mass conservation
law is given as valid a priori. However, in the fluid-mechanics of relativity theory,
fluid motions are governed by four relativistic conservation equations of energy and

b)

c)

Fluid Gauge Theory
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momentum ∂νT
µν = 0 , where T µν is the stress-energy tensor for µ, ν = 0, 1, 2, 3,

∂ν ≡ ∂/∂xν and xν = (x0, xk) with x0 ≡ c t for t the time. (see [Kambe (2020) §2.2,
2.3] or [Landau & Lifshitz, 1987, §133] ). Its space components for µ = 1, 2, 3 represent
momentum conservation of three components.

On the other hand, its time component ∂νT
0ν = 0 represents an energy conservation

equation. In the non-relativistic limit as a representative flow velocity v is much less
than the light velocity c (β ≡ v/c→ 0), the equation for a perfect fluid of mass density
ρ and specific internal energy ϵ‡ can be written in the following form:

0 = c−1∂tT
00
+ ∂kT

0k
= c

(
∂tρ+ ∂k(ρv

k)
)
+

1

c

(
∂t(ρÊ) + ∂k(ρv

kĤ)
)
+O(β3), (1.1)

Ê =
1

2
v2 + ϵ, Ĥ =

1

2
v2 + h. (1.2)

where vk is the k-th component of fluid velocity for k = 1, 2, 3. In the non-relativistic
limit as β → 0, we obtain the mass conservation equation from the first term:

∂tρ+ ∂k(ρv
k) = 0. (1.3)

Then, deleting it, the remaining expression reduces to the energy equation of ordinary
fluid mechanics in the limit as β → 0. Thus, we obtain the energy conservation equation
of fluid flow (Landau & Lifshitz (1987), Eq.(6.1)):

∂t(ρÊ) + ∂k(ρv
kĤ) = 0. (1.4)

Here we have obtained two conservation equations from the single energy equation
∂νT

0ν = 0. But, the Noether’s theorem (Noether 1918) of theoretical physics states ’A
symmetry implies a conservation law’. This is a riddle. We must ask a question whether
the above is satisfactory. In this paper, we try to propose a resolution to this query.

A hint to resolve the riddle: General solution of Euler’s equation with helicity
A hint to resolve the Riddlementioned above is found in the general representation of

rotational flows given by Kambe (2013) for an ideal compressible flow solution satisfying

‡ There is no energy dissipation in the perfect fluid, hence no entropy change. Assuming uniform

entropy throughout, the internal energy ϵ depends only on ρ. Hence ϵ = ϵ(ρ), and h ≡ ϵ(ρ) + p/ρ.

the Euler’s equation. This solution was derived from the action principle for the action
S(Eul−rot) of non-relativistic flow fields:

S(Eul−rot) = S(nR) + S(g−inv) =

∫
ρ dV

[ ∫
ΛnR dt+

∫
ΛGi dt

]
, (1.5)

ΛnR = 1
2 v

2 − ϵ, ΛGi = −Dt −Dt⟨U , Z⟩ (1.6)

∇ · (ρZ) = 0, ∇ · U = 0, Dt ≡ ∂t + v ·∇, (1.7)

L[Z] ≡ ∂tZ + (v · ∇)Z − (Z · ∇)v = 0, (1.8)

where v = (vk) is the 3-velocity vector, a scalar function to be determined, and ΛnR

is nothing but the ordinary non-relativistic Lagrangian density, while ΛGi is a gauge-
invariant Lagrangian newly introduced in the study (Kambe, 2013). Regarding the
two 3-vectors Z and U , see the paragraph below. Actually, this study had double
aims. One was an attempt to obtain general representation of rotational flow with non-
zero helicity (Kambe 2011). Second aim was more fundamental, striving to establish

d)

Fluid Gauge Theory
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equivalence between two formulations of Eulerian specification of field variables and the
Lagrangian specification under the action principle. Each term of the Lagrangians ΛnR

and ΛGi satisfies local gauge invariance with respect to translation and rotation, hence
it is consistent with the gauge theory.

As discussed in details in Kambe (2020, §1 and 3.1), this new formulation introduced
four independent fields. In fact, regarding the 3-vector potentials U and Z, each
has three components. Those six fields have two invariance conditions of (1.7), i.e.
two divergence-free conditions in 3-space. In addition, from (1.8) and the equation,
(L∗

t [U ])i ≡ ∂tUi+ vk∂kUi+Uk∂iv
k = 0 obtained from the variational analysis of Kambe

(2013), we have the third invariance condition:

Dt⟨U , Z⟩(t,x) ≡ ⟨L∗[U ], Z⟩+ ⟨U , L[Z]⟩ = 0. (1.9)

Hence, the value of scalar product ⟨U , Z⟩ is invariant along the particle path x =
Xp(t,x), keeping its initial value along each trajectory. This is the third invariant
imposed on the potentials U and Z. Therefore we have only three independent fields
remaining free among the six components of U and Z. Furthermore, if we add the scalar
field which is also unconstrained, we have four independent fields in this solution.

Thus, four independent background fields are newly introduced in this solution.
Those must be either given externally or determined internally within the framework of
theory. In the recent study Kambe (2020), the latter approach was taken, and the general
solution of Kambe (2013) is understood to predict existence of new fields ãν . Four
independent fields ãν existing in the 4d-spacetime enables a gauge-theoretic formulation
in terms of one-form. On the basis of this perspective, the present study proposes a set
of new fields to be introduced according to the gauge principle, which may be called a
fluid gauge theory.

Another perspective is as follows. What is the hint to resolve the riddle mentioned in

since this term is considered to describe interaction between the flow-current jν and
background vector-potentials U and Z, and . Corresponding to the new name S(int),
we rename the scalar product ⟨U , Z⟩ with W , and newly define a 4-current jν and a
background field ãν as

jν ≡ (ρ c, ρv) = c ρ uν , ãν ≡ −∂ν( +W ). (1.10)

(See (A.3), (B.9) for the definition of ρ, uν .) The interaction part S(int) is expressed by

S(int) = −
∫ ∫ (

ρDt + ρDtW
)
dV dt =

∫ ∫
jν ãν dV dt, (1.11)

jν∂ν = ρ (∂t + v ·∇) = ρDt , (1.12)

where ∂ν ≡ ∂/∂xν = (c−1∂t, ∇). The 4-current jν is defined by

jν = ρ vν = ρ (c, v) = ρ (dXν
p /dt), dXν

p = (c dt, dXp) = (c,v) dt. (1.13)

where dXµ
p is 4-spacetime notation of displacement of a fluid particle p, and dXp = v dt

is 3-space displacement of the particle p moving with 3-velocity v during an infinitesimal
time interval dt. Denoting Ψ ≡ +W , the field ãν is given by

ãν = −∂νΨ. (1.14)

Fluid Gauge Theory

𝜓𝜓

is as follows. We rewrite the part of action S(g−inv) of (1.5) as S(int)≡
∫
ρdV

∫
ΛGidt,the part c)
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is analogous to the particular field Ãµ = ∂µΘ considered in the recent review paper
(Kambe 2021a, ), where all the fields E andB vanish identically. In other words,
those fields E and B are potentially existing, but vanish in the particular form of
Ãµ = ∂µΘ . Same can be said that our new potential field ãν does exist. But with
the particular form ãν = −∂νΨ, the potentially existing new field does not show in
observable world. From this observation, new Fluid Gauge Theory is proposed in this
paper, according to the theory of general gauge fields proposed by Utiyama (1956, 1987).

In particular, the following is important in the context of our problem. Gauge
invariance applied to the action S(int) yields the current conservation law:

∂νj
ν = ∂ν(c ρ u

ν) = (c−1∂t, ∇) · (ρ c, ρv) = ∂tρ+∇ · (ρv) = 0. (1.15)

(See (2.24) in §2.5.) This equation is understood showing a potentiality of the fluid
gauge theory. It is remarkable that the two scalar products, ∂νj

ν and

jν∂ν = c ρ uν∂ν = (ρ c, ρv) · (c−1∂t, ∇) = ρ (∂t + v ·∇) ≡ ρDt, (1.16)

are represented relativistically, and that both of them are invariant with respect to the
Lorentz transformation. Thus the above two expressions (1.15) and (1.16) show us a
glimpse of structures of linked 4d-spacetime existing in fluid mechanics.

A motivation for fluid gauge theory
From these observations, we set out toward a new approach of fluid gauge theory.

Gauge transformations and gauge principle:
system under investigation is examined whether the system is invariant with respect to
both global and local transformations. The global gauge transformation is defined by the
transformation: ãµ → aµ = ãµ + ϵµ for ãµ of (1.14) and ϵµ being 4 arbitrary constants.
Firstly, the system must be shown to be invariant with this global transformation. This
is the first step toward the fluid gauge theory, examining whether the system under
consideration is equipped with desirable receptive property.

A next essential step of the gauge principle lies in requiring local gauge invariance.
This is defined by ãµ → aµ = ãµ + αµ(x

ν) for 4 arbitrary differentiable fields αµ(x
ν)

depending on spacetime coordinates xν . Once the local invariance is established, the
so-called gauge-potential aµ is taken into the system which represents a new interaction
force. This is the scenario of the gauge principle to introduce a new force into the system
under consideration by the local gauge invariance.

Important factor for the gauge theory: From the gauge principle and
reflecting on the form of the interaction action S(int) of (1.11), one realizes that an
important factor is the linked 4d-spacetime structure. In order to see it, let us remind
of the general solution of Euler’s equation of motion considered in This corresponds
to a vanishing-field state, because, considering one-form Ã defined by Ã = ãµdx

µ with
ãν = −∂νΨ of (1.14), one obtains

Ã = ãµdx
µ = −∂µΨdxµ = −dΨ.

This represents the vanishing-field state since dÃ = −d2Ψ ≡ 0. This is the case of the
general solution to the Euler’s equation of The field ãµ itself exists, but does not
show in the observable world (see Only the Euler’s flow field is observed. In
this case, the stress field is given by the isotropic pressure field p δik,

e)

i. In the principle, thegauge

ii.

Fluid Gauge Theory
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On the other hand, existence of the new field aµ(x
ν) = ãµ + αµ(x

ν) changes the
flow field drastically. Consider the 4d-spacetime (xν) of fluid flows that is structured
with the one-form A ≡ aµdx

µ, from which one obtains non-vanishing field strength,
F = dA ̸= 0. This gives rise to anisotropic stress field within the flow field, as given in
later sections (see ). Thus, the main factor is the one-form defined by

A = aµdx
µ, (1.17)

that plays the role of a game-changer from vanishing-field state of ãµ to non-vanishing
state of the new field aµ(x

ν). With this fact, the gauge principle is rooted on the
fundamental of Physics. This is the central theme of the present paper.

Euler’s equation of a perfect fluid in the absence of background field

Relativistic form of the action integral of a perfect fluid is given in Appendix B.2 as

S(pf) = −c
∫

ρ dV
∫ (

1 + c−2 ϵ(ρ)
)
dτ . (2.1)

where τ the proper time. Its increment dτ is defined by the time increment (multiplied
by c) in the instantaneously rest frame where v = 0. The relativistic action S(pf) is
defined as an extension to the perfect fluid from that of a single particle of mass m
represented by S(m) = −cm

∫
dτ , which is given in Appendix B.1. The overlined ϵ

in (2.1) denotes proper value of the internal energy ϵ (the value in the rest frame, i.e.
comoving frame where the fluid is at rest). Comparing S(pf) with S(m) and considering
the quantity

∫
ρ dV corresponding to the mass m of S(m), one can see that the second

correction term c−2 ϵ in the parenthesis is a small correction for the fluid medium in
non-relativistic case.

Non-relativistic limit (asβ→ 0, ) of the integrand Λ(pf) of S(pf)(multiplied by
c) per unit mass is given as Λ(pf) = −m1c

2 + 1
2 m1v

2 − ϵ+ · · · with m1 = 1. Neglecting
the first term m1c

2 of the rest-mass energy, the Lagrangian density Λ(pf) reduces to

the non-relativistic form of Λ(nR) of (1.6). Hence it is seen that the action S(pf) is a

relativistic version extended from the classic non-relativistic action S(nR) of (1.5).
From the variation analysis of S(pf) carried out in Appendix B.2, the action principle

yields the following Euler’s equation of motion (B.17) as a geodesic equation:

Dtv
k + ρ−1 ∂kp = 0, k = 1, 2, 3 (2.2)

in the non-relativistic limit of ordinary fluid flows. Noting that the factor ∂kp of the
second term can be replaced by ∂j(p δjk), one can rewrite the equation (2.2) as

ρDtv
k = −∂j(p δjk) k = 1, 2, 3 (2.3)

where

Dt ≡ ∂t + v · ∇ k = 1, 2, 3 (2.4)

is the convective derivative, which is invariant with respect to local gauge transformation
(Kambe (2020), Appendix A2).

II. An Approach Aiming at a Fluid Gauge Theory

a)

Fluid Gauge Theory

Sections III, c) ii.
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New action S(int) including a field aµ ensuring current conservation
In the local gauge transformation considered in the field αµ is assumed to take
a general form not limited to the particular gradient form ∂µΨ, i.e. not like (1.10),
the interaction action S(int) of (1.11) should be extended to general 4-potential aµ by
replacing the particular field ãµ. Hence now, the action S(int) is re-defined by

S(int) =

∫ ∫
jµ aµ dV dt =

∫
ρ dV

∫
vµ aµ dt =

∫
ρ dV

∫
aµ dX

µ , (2.5)

where jν = ρ vµ and see (1.13). This action S(int) was already introduced in Kambe
(2020) at its §4.2. This is rewritten here as an additional action to be added to the
main part S(pf), in order to constrain the conservation of current jµ:

S(int) =

∫ ∫
jν aν dV dt =

∫
ρ dV

∫
aν dx

ν . (2.6)

The one-form structure aν dx
ν in the last integral reminds us of the similar structure

considered in the previous section Similar structure is known in quantum
electrodynamics ( of Kambe (2021a)). There, the wave function is required
to undergo the transformation = 0(x

ν) exp[ iγ
∫
Aν(x

ν) dxν ] in the presence of
electromagnetic field of 4-potential Aν from the zero-field wave function 0, where the
Aν field is the gauge-potential representing a new interaction force of electromagnetism.

Our case is based on the gauge principle such that the action S(int) thus introduced
represents the interaction between the current field jν(xλ) and a background (gauge-
potential) field aν(x

λ) and is receptive to the gauge principle requiring local gauge
invariance. The new field aν(x

ν) thus introduced ensures the mass conservation (2.25)
shown in under the requirement of gauge invariance of the new field.

In addition, in the Maxwell system described in of the review article (Kambe
2021a), the interaction action is given by S

(em)
int = c−2

∫
j νe Aν dΩ of eq.(2.9) of the same

article. Amazingly, the analogy with the present system is obvious.

Composite action Sc and modified Euler’s equation of motion

According to the previous sections one can define a composite action Sc
by using the action S(pf) of a perfect fluid of (2.1) and the action S(int) of (2.6) for the
interaction of jν and aν . Let us define

Sc ≡ S(pf) + S(int), dΩ ≡ d4x = dV dtc, tc = c t, (2.7)

S(pf) ≡ − c

∫
ρ dV

∫ (
1 + c−2 ϵ(ρ)

)
dτ =

∫
L(pf) d4x, (2.8)

S(int) ≡
∫

L(int) d4x, L(int) ≡ c−1 jν aν , (2.9)

where L(pf) ≡ −c ρ (1 + c−2 ϵ)
√

1− β2. To find the equations of motion, the action
principle is applied to the composite action Sc, by assuming the gauge potential aν
given and vary only the position coordinate Xk

p of fluid particles moving with the velocity

DtX
k
p along their trajectories. On the other hand, to find the equations governing the

aν , we vary only the gauge-potential aν with assuming the fluid motion given and fixed.
However, to carry out the latter variation, we have to define a third action to characterize
the background field aν and add it to Sc. Here, we carry out the former variation (in
which the third action is kept fixed), then the action principle applied to the varied Sc
should yield the equation of fluid motion.

b)

c)

Fluid Gauge Theory

Section I, e) i.

I, e) ii.
Section II, b)
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Note that, under the requirement of invariance of S(int) to the gauge transformation
of potential aν considered in the current conservation law ∂νj

ν= 0 is deduced.
Therefore, when variations are taken with respect to the particle position Xk

p , the
invariance of the mass dm ≡ ρ dV is assumed for a fluid particle during the motion
along its trajectory.

Modified Euler’s equation of motion in the presence of new field aν
The variational analysis of the composite action Sc is given in Appendix B.3.

The equation (B.26) summarizes the variation analyses with respect to the particle
coordinate δXν of fluid element ∆m,

δJ (fl+a) ≡ δ J (pf) + δJ (int) = −c∆m
[ d

dτ
uν + c−2 1

ρ
∂νp − c−1 fνµ u

µ
]
dτ δXν (2.10)

as leading order terms in the expansion with respect to the very small parameter β = v/c.

The action principle requires δJ (fl+a) = 0 for arbitrary variation δXν . This leads to the
equation: (duν/dτ) + c−2 (1/ρ)∂νp− c−1 fνµu

µ = 0. Its non-relativistic limit (as β → 0)
is expressed by the equations:

Dtv
k = −ρ−1 ∂kp+ fkν v

ν , (k = 1, 2, 3; ν = 0, 1, 2, 3), (2.11)

fµν = ∂µaν − ∂νaµ. (2.12)

This is the Euler’s equation (2.2) modified by the effect of a background field aν expressed
by the third term fkν v

ν . Section gives details concerning the significance of the
new tensor field fµν by the section title, Background field: Fluid Maxwell fields.

Scenario of general gauge principle according to Utiyama
In the previous section we have derived the modified Euler equation (2.11) from
the composite action Sc (= S(pf)+S(int)) of (2.7). The first term −ρ−1 ∂kp on the right-
hand side of (2.11) represents the pressure force caused by the isotropic stress tensor
−p δkl, while the second term fkν v

ν represents a new force caused by an anisotropic
stress field, as explained in a later section It is remarkable that the tensor
components fµν of (2.12) all are linear with respect to space-time derivatives of the
background potential aµ. This is essential for the gauge principle to be given now.

Suppose that our basic undisturbed state is described by the equation (2.11) and
by the composite action Sc of (2.7), and in addition that the background field aµ is given
a special form, i.e. a potential field expressed by ãµ = ∂µΨ with Ψ(xν) a scalar field.
Note that this field form ãµ = ∂µΨ is a special class among general background fields.

As described in the next section in details, all the components fµν associated
with the background potential ãµ = ∂µΨ vanish identically. Hence the equation (2.11)
reduces to the Euler’s equation (2.2). Namely, the basic undisturbed state is assumed
to be governed by the Euler’s equation. In addition, from the action Sint, the continuity
equation (2.14) was derived in

In this case, the action S(int) does not give any mechanical effect on the system
(see ). Therefore, the mechanical effect of the composite action Sc is equivalent
to that of the term S(pf) of perfect fluid only, not different from the state without the
field aµ. Therefore, for the potential fields of ãµ = ∂µΨ, the basic undisturbed state is
represented by that of the perfect-fluid action Spf only. Namely, the state is nothing
but the Euler field.

According to Utiyama (1956, 1987), the general gauge principle states as follows.
”If both of the composite action Sc and the equation of motion (2.11) are invariant under

d)

Fluid Gauge Theory

Section II, e),

III c), ii.

II c),

III c), iii.

e),II ii.

e),II iii.

e),II ii.
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a global transformation defined by ãµ → ã′µ = ãµ + δaµ for uniformly constant value of
δaµ = ϵµ, then the system is said invariant globally for the aµ-transformation.”

The invariance of the governing equation (2.11) is almost trivial because the field
ãµ is included only in fµν where all the components ãµ are expressed in derivative forms,
as seen from (2.12). Hence, constant variation ϵµ of ãµ does not give any effect on the
equation (2.11). Concerning the action S(int), its invariance by the global transformation
ãµ → ãµ + ϵµ is investigated in the section below the line (3.11), and the system
is invariant mechanically with this global transformation. Thus, the system is globally
invariant for the uniform ãµ-variation.

The gauge principle reads furthermore, ”Even if the global invariance of the system
is satisfied, one may consider local transformation with δaµ(x

ν) varying with the space-
time coordinates xν, for which neither the action integral nor the equation of motion are
invariant locally under such a local gauge transformation.”

Here, we have to remind that the interaction action S(int) of (2.9) is already defined
by using general aµ(x

ν) field depending on the space-time coordinates xν . In the previous
using this S(int), we have derived the equation of motion (2.11). For the particular

form of potential ãµ = ∂µΨ considered above in the global transformation, the new
tensor field fµν vanishes identically (verified immediately by substitution). Then, the
equation (2.11) reduces to the Euler’s equation (2.2). Under the local transformation,
however, the tensor field fµν does not vanish in general, then the equation (2.11) deviates
from the Euler’s equation (2.2). In other words, the equation (2.11) is not invariant for
the local transformation: aµ → aµ + δaµ(x

ν). This fact is interpreted as follows.
There may exist a background field aµ in the flow field vµ(xν), which interacts with

the flow under the action of the stress field fµνv
ν . The last is a new stress field. Thus,

the general gauge principle predicts existence of a certain background field aµ and an
internal stress field fµνv

ν generated by aµ. The original basic state was the one governed
by the Euler’s equation. The equation (2.3) states that its stress field is given by an
isotropic stress tensor −p δik. In the present context, corresponding equation (2.11) can
be rewritten as

ρDtv
k = −∂j(p δjk) + ρ fk vν, (k = 1, 2, 3; ν = 0, 1, 2, 3), (2.13)

Later in the second term on the right ρ f vν is rewritten −∂νM νk

which represents anisotropic stress field.
It is essential in the scenario of the general gauge principle of Utiyama that the

background field aµ ensures the current conservation ∂µ j
µ = 0, by the gauge invariance

property of the background field aµ itself. In the author’s previous paper (Kambe,
2020), this action S(int) was already introduced at its section 4.2 ”Gauge invariance and
mass conservation”, where invariance of S(int) was required to the gauge transformation
aµ → aµ− ∂µΨ∗ for arbitrary scalar field of Ψ∗(x

ν). The close connection between the
gauge invariance and the law of mass conservation has been established there.

In the next section requiring the invariance of the action S(int) under the
gauge transformation for arbitrary scalar field of Ψ(xν), the mass conservation equation
is deduced:

∂µj
µ = ∂tρ+∇ · (ρv) = 0. (2.14)

This is the scenario of the general gauge principle of Utiyama.
According to the scenario of Utiyama’s general gauge principle, we have to show

one more, which is as follows. The new field aµ should be incorporated as a connection
term in a covariant derivative. This is done in the Appendix B.4 where physical and
mathematical formulations for curved space are presented and applied to flow fields of
a perfect fluid.

Fluid Gauge Theory

II e) iii.

b)III

c)IISection

section III c) ii.
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This enables to introduce a general notion of covariant derivatives (connections).
Its mathematical formulation is applied to free evolution of physical systems (free from
external actions) but exhibiting non-straight motion even in flat space. Mathematical
formulation by geometrical language enables us to formulate this generalization, namely
enabling to conclude the fluid gauge theory.

Background field aν ensuring current conservation ∂µ j
µ = 0

Background field aν represented by A, F and fa
Using the background field aν , one can define a one-form A ≡ aν dx

ν . Taking its
exterior differential d, a field strength two-form F is given by

F ≡ dA =
∑
ν<λ

fνλ dx
ν ∧ dxλ, fνλ ≡ ∂νaλ − ∂λaν = −fλν . (2.15)

where ∂ν ≡ ∂/∂xν = (c−1∂t, ∇), the tensor fνλ is anti-symmetric.
Representing the 4-potential aν with a (1+3)-expression given by aν = (−ϕ/c,a)

where a0 = −ϕ/c and a = (ak) = (a1, a2, a3), one can define

b = (bk) ≡ ∇× a; fij = ∂iaj − ∂jai = εijkbk, bk = εklm∂lam, (2.16)

e = (ek) ≡ −∂ta−∇ϕ; fk0 = ∂ka0 − ∂0ak = c−1ek ≡ ek. (2.17)

where each of i, j and k takes the number of either 1, 2, or 3.
The modified Euler equation (2.11) includes the term of internal stress field fµνv

ν ,
which can be given a 3-vector form by using 3-vectors e, b and v as

fa = (fa,i) ≡ e+ v × b, fa,i = fiνv
ν = fi0v

0 + fikv
k. (2.18)

fa,i = fiνv
ν = fi0v

0 + fijv
j = c−1ei c+ (εijkbk) v

j = (e+ v × b)i, (2.19)

where vν = (v0,v) = (c, v) from (1.13).

Special background field ãµ = ∂µΨ implies Eulerian field

Using ãµ = ∂µΨ, let us define a one-form by Ã = ãν dx
ν = (∂νΨ) dxν = dΨ. Then

the field strength two-form F̃ ≡ dÃ vanishes identically since d2Ψ ≡ 0, which can be
shown alternatively by using the vanishing components fνλ:

F̃ = dÃ =
∑
ν<λ

fνλ dx
ν ∧ dxλ ≡ 0, i .e. fνλ = ∂ν∂λΨ− ∂λ∂νΨ = 0.

Hence, the background field of the type ãµ = ∂µΨ constitutes a special class in the flow
field, and that, for this type of field, the modified Euler equation (2.11) reduces to the
original Euler’s equation (2.2), because all the fields fµν derived from ãµ = ∂µΨ vanish
identically. In other words, the tensor fields fµν are potentially existing, but vanish for
the particular form ãµ = ∂µΨ, where Ψ(xν) is an arbitrary twice differentiable scalar
field in the spacetime xν . The ãµ field does exist, but with the particular form ãν = ∂νΨ,
the potentially existing fields do not show in observable world. Thus, the potential form,
ãµ = ∂µΨ, constitutes a special class of background field.

Hence, the modified Euler equation (2.11) reduces to the original Euler equation
(2.2). In addition, regarding the composite action Sc = S(pf)+S(int), the interaction part
S(int) does not give any mechanical effect on the system with the special field ãµ = ∂µΨ.
The field ãµ is included only in the interaction action S(int) of (2.9).

The variational principle requires that variation of the action Sc must vanish
with respect to the variation ãµ given by δãµ = ∂µ(δΨ) where δΨ is the variation

e)
i.

ii.

Fluid Gauge Theory



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

of Ψ. Substituting the ãµ-variation into S(int), its resulting variation δS(int) owing to
δãµ = ∂µ(δΨ) is given by

δS(int) =

∫
jµ (∂µδΨ)dΩ = −

∫
(∂µj

µ) δΨdΩ +

∫
∂µ

(
jµ δΨ

)
dΩ , (2.20)

where dΩ = dV dt. The invariance requires the integral on the left-hand side to vanish.
The last integral of 4-divergence ∂(Ψjν)/∂xν on the right-hand side is transformed
to vanishing integrals over bounding hypersurfaces (where the imposed function Ψ is
assumed to vanish, or irrelevant because the variational analysis is carried out only at
internal points). Vanishing of the first integral for arbitrary variation δΨ (at internal
points) leads to the following equation of the mass conservation:

∂νj
ν = ∂τ (ρc∗) + ∂k(ρv)k = ∂tρ+∇ · (ρv) = 0. (2.21)

Thus, the mechanical effect of the composite action Sc reduces to that of the term
S(pf) of perfect fluid without the background field aµ. Therefore, for potential fields of
ãµ = ∂µΨ, the basic undisturbed state is equivalent to the Eulerian field constrained
with the mass conservation equation.

Gauge invariance of S(int) requires the mass conservation
It is essential in the scenario of the general gauge principle of Utiyama that the

background field aµ ensures the current conservation ∂µ j
µ = 0, by the gauge invariance

property of the background field aµ itself. Likewise the transformation done in Kambe
(2021a; we define a one-formA ≡aν dxνand introduce an arbitrary scalar field
Θ(xν). Then, we carry out a gauge transformation, G: aν → a′ν = aν − ∂νΘ , and we
have

A′ ≡ a′ν dx
ν = (aν − ∂νΘ) dxν = aνdx

ν − ∂νΘ dxν = A− dΘ . (2.22)

From this, we find the invariance of the field strength two-form F ≡ dA as follows:

F ′ ≡ dA′ = dA+ d2Θ = dA ≡ F , (2.23)

since d2Θ = 0 identically. Thus it is found that the two-form F is invariant with respect
to the gauge transformation G.

Matrix elements of F represented by fνλ = ∂νaλ − ∂λaν are also gauge-invariant.
The expressions of (3.15) give matrix-form representations of fνλ and its contravariant
form f νλ. In these matrix forms, the 4-potential aν is expressed by (−ϕ/c,a), together
with b = (bk) ≡ ∇× a and e = (ek) ≡ −∂ta−∇ϕ. Thus, the background field matrix
fνλ can be represented by components of b and e, which are also gauge-invariant.

Next, let us require invariance of the action S(int) under the gauge transformation
G for arbitrary scalar field of Θ(xν). By replacing aµ with aµ − ∂µΘ . Then, the action
S(int) of (2.9) has an additional term (which is required to vanish),

−
∫
jµ (∂µΘ) dΩ =

∫
(∂µj

µ)Θ dΩ −
∫
∂µ

(
jµΘ

)
dΩ , (2.24)

The gauge invariance requires the integral on the left-hand side to vanish. The last
integral of 4-divergence ∂(Θjν)/∂xν is transformed to vanishing integrals over bounding
surfaces where the imposed function Θ is assumed to vanish. Vanishing of the above
integral for arbitrary Θ at internal points leads to the current conservation ∂µj

µ = 0.
Namely, the following mass conservation equation must be satisfied:

∂µj
µ = ∂tρ+∇ · (ρv) = 0. (2.25)

Hence, the invariance of S(int) under the transformation G requires the mass conservation
equation to be satisfied.
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Action S(F) of the background Field aν
Up to now, the action formulation on our fluid system is not completed. To make

the fluid system self-contained, we need a third action S(F) =
∫
L(F)dΩ governing free-

state of the background field aν , describing only on the property of the field itself. To
establish the form of the Lagrangian density L(F) of the field, we start from the following
observation and requirements:
(i) The tensor field fνλ should be ensured to vanish when the background field aν takes
the special form ãν = ∂µΨ with Ψ(xν) a twice differentiable scalar field. This means
the following. According to the item (i.) of this section, the original Euler’s equation of
motion (2.2) is valid in spite of the existence of the field aν .

(ii) The Lagrangian density L(F) is a Lorentz scalar, i.e. invariant with respect to the
Lorentz transformation (Appendix).
(iii) In the subsections (i.)∼ (iii.) of this section we have already defined the
field strength tensor fµν = ∂µaν − ∂νaµ, which is gauge-invariant and also satisfies the
condition (i), namely fµν = 0 for aµ given by ãν = ∂µΨ. This representation of fµν was
derived from the one-form A = aµdx

µ defined by (1.17) in

Under these conditions, we expect the free-Lagrangian L(F) to be quadratic in
∂µaν or fµν , because the variation of S(F) reduces the degree by one with resulting
equation becoming linear to ∂µaν . The only Lorentz-invariant quadratic form is a
multiple of fµνf

µν (see Landau & Lifshitz (1975, §27), or Jackson (1999, §12.7), for
the corresponding Lagrangian of electromagnetic field).

Thus, the Lagrangian density L(F) for the background Field aν should be
represented as

S(F) =

∫
L(F)dΩ , L(F) ≡ C fµνf

µν . C : a constant. (2.26)

New field equations re-ensuring current conservation

According to the observations of on the actions of the present fluid system,
it is proposed that total Lagrangian density L consists of three terms: Lagrangians of
(i) a perfect fluid L(pf), (ii) a background field L(F) and (iii) their mutual interaction

L(int). Hence, the total Lagrangian is L = L(pf) + L(int) + L(F):

L(pf) = −c ρ (1 + c−2 ϵ); L(int) = c−1 jµ aµ; L(F) = − 1

4µc
fµνf

µν . (2.27)

where the constant C is rewritten as C = −(4µc)−1 with using another constant µ for
later convenience.

Action principle
We define the total action S(total) by

S(total) = Sc + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (2.28)

where the Lagrangian densities L(pf), L(int) and L(F) are defined by (2.27), dΩ = c dt dV ,
dV = dx1dx2dx3 and ρ dV = ρ dV .† Relativistic 4-current is defined by jν ≡ ρvν , in
addition by

jν = ρ
dXν

dt
= ρ vν

√
1− β2 = ρ ( c, v ). (2.29)

† dτ = cdt
√
1− β2, dV = dV/

√
1− β2 and ρ = ρ

√
1− β2. Hence dV dτ = dV c dt.

iv.

f)

i.

Fluid Gauge Theory

Sections II c) e)∼

Sections I e) ii.

II e)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

126

  
 

( A
)

V
er

sio
n

I

The tensor fνλ ≡ ∂νaλ − ∂λaν in the expression L(F) is a field strength tensor, and
aν ≡ (−ϕ/c,a) is a 4-potential.

To find the equations governing the background field aν , the principle of least action
is applied to the action S(total). We must assume the fluid motion a given field, hence
fixed. We vary only the potential field aν . In regard to the fluid motion, its equation
of motion is already found from the composite action Sc in the section whereaν is
assumed to be a given field. The equation of motion is given by (2.11). Citing it,

Dtv
k + ρ−1 ∂kp− fkν v

ν = 0, (k = 1, 2, 3; ν = 0, 1, 2, 3). (2.30)

We aim that the continuity equation of fluid flows is deduced also from this variational
analysis. Since the first Lagrangian L(pf) does not include the field aν to be varied, we
consider variations of the other two Lagrangians L(int) and L(F).

Variation with respect to aν
The two Lagrangians L(int) and L(F) include the background field aν . First, we note

δ
(
f νλ fνλ

)
= 2f νλ (δfνλ). This is because

(δf νλ) fνλ = (δf νλ) ηναηλβf
αβ = fαβ (δfαβ).

See Appendix A for the Minkowski metric ηνα.
Therefore, variation of L(int) + L(F) is given by

c (δL(int) + δL(F) ) = jν δaν −
1

2µ
f νλ δfνλ = jν δaν −

1

2µ
f νλ

∂

∂xν
δaλ

+
1

2µ
f νλ

∂

∂xλ
δaν =

(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν . (2.31)

where the term −(1/2µ)f νλ∂ν(δaλ) of the last term on the upper line can be equated to
(1/2µ)f νλ∂λ(δaν) by using the anti-symmetry, −f νλ = fλν . On interchanging the indices
ν and λ, this term can be combined with its next term to give (1/µ)f νλ∂λ(δaν). Finally
carrying out integration-by-parts leads to the second term of (2.31), with omitting the
term of divergence-form ∂λ[(1/µ)f

νλ δaν ] which vanishes on integration.

Requiring vanishing of δL(int) + δL(F) = 0 for arbitrary variation δaν , we obtain

∂

∂xλ
f νλ = µ jν . (2.32)

where the 4-current jν is defined by (2.29). This is the equation governing the
background field f νλ derived from the principle of least action. Thus,

the system of field equations (2.30) and (2.32) have been derived by the
invariant variation of the total action S(total) of (2.28).

Current conservation
The equation of current conservation can be derived from this, which is directly

connected with the gauge-invariant property of the Lagrangian L(F). This is analogous
to the electromagnetic fields (Kambe (2021a) . In fact, applying the divergence
operator ∂ν on the equation (2.32), one obtains

0 = ∂ν∂λf
νλ = µ ∂νj

ν . (2.33)

The left-hand side vanishes because of the anti-symmetry of f νλ and the symmetry of
∂ν∂λ. Total sum with respect to ν and λ (taking indices 0, 1, 2, 3) vanishes identically.
Hence, we find the current conservation equation:

ii.

Fluid Gauge Theory
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for jν = (ρc, ρv). Thus it is found that the newly added Lagrangian L(F) ensures the
mass conservation.

All the analyses, concerning the field potential aν , the differential forms and the
variations, are exactly analogous to the electromagnetic case (Kambe (2021a) §2.1 (a)).
Only differences are the letters used, whether those are lower-case or upper-case, and
the material constants are different between the two cases. Thus for our fluid system, we
obtain the same form of Maxwell-type equations with the field vectors e ≡ −∂ta−∇ϕ
and b ≡ ∇× a with two field constants, µ and ε = 1/(c2 µ):

∂tb+∇× e = 0, ∇ · b = 0. (2.35)

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j. (2.36)

A road to fluid gauge theory
More than sixty years ago, Utiyama (1956) proposed a general approach to the gauge
theory and called it General Gauge Theory. He extended the Weyl’s gauge principle
(described in Kambe (2021a)) to general Lie groups and included the theory of gravity
(O’Raifeartaigh 1997, Chap.10). He realized already the broad analogy between the
two theories of gravitational field and electromagnetic field, which is reviewed in Kambe
(2021a) too. According to the scenario of the general gauge theory, new fields are
introduced in the systems under investigation which are carrying interaction forces such
as gravity force or electromagnetic force.

How the fluid-flow field is required to be improved or reformed by the fluid gauge
theory ? The answer is that the isotropic pressure stress field is extended to general
anisotropic stress field in the flow of perfect fluid if its motion is time-dependent
and rotational. This is required by the constraint to the current conservation under
background gauge fields. However, the Euler’s equation of motion is still valid as far as
the stress field is constrained to be isotropic.

On a mathematical point of view, more must be added according to the Utiyama’s
approach of the General Gauge Theory. The new fields should be taken (or absorbed)
into the structure of covariant derivatives as connection terms like the terms of
Christoffel symbols in the gravity theory or the gauge potentials in the electromagnetic
theory. The concept of connection in the mathematics of Riemannian geometry is an
essential ingredient in the physical gauge theory. It is a challenging work to implement
connection terms in the structure of fluid gauge theory. This is left to Appendix B
(Relativistic formulation of three mechanical systems) and Appendix C (Free motion of
physical systems and curved geodesics), because sufficient mathematical expressions and
concepts must be presented to arrive at the goal.

We are going to propose and present a new formulation of Fluid Gauge Theory
in this section §3 by the help of Appendix B and Appendix C. In fact, before giving
the final conclusion, we have to examine that free motions are not always described by
straight trajectories of time evolution of mechanical systems, namely their geodesics are
curved in general. In Appendix C.2, we will see that the free motion of a perfect fluid
under a background field aν can be described by the geodesic equation representing a
curved free dynamics. This is derived by the variational principle that makes the action
integrals invariant. Namely the new field of the fluid gauge theory has been taken into
the structure of covariant derivatives as connection terms and the free dynamics of a
perfect fluid under a background field aν is described by the geodesic equation.

Thus, the Fluid Gauge Theory is concluded now.

∂νj
ν = 0 ⇒ ∂tρ+∇ · (ρv) = 0, (2.34)

III. Fluid Gauge Theory

a)
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Fluid Gauge Theory summarized
According to the scenario of the general gauge principle, the last section has concluded
that the flow field of a perfect fluid is supported with a background field aµ ensuring
current conservation. Now our quest for the fluid gauge theory has come to the final
stage.

Statement of the fluid gauge theory :
Collecting main results obtained in the last section (An approach aiming at a fluid

gauge theory), the fluid gauge theory is presented by the following set of expressions:

S(total) = S(pf) + S(int) + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (3.1)

L(pf) = −c−1(c2 + ϵ(ρ)) ρ , L(int) = c−1jν aν , (3.2)

L(F) = − 1

4µc
f νλ fνλ, fµν = ∂µaν − ∂νaµ, (3.3)

aµ = (a0, a1, a2, a3) = (−ϕ/c,a), (3.4)

Dtv + ρ−1 ∇p = fa , (3.5)

∂νj
ν = ∂tρ+∇ · j = 0, jν = (ρc, j), j = ρv, (3.6)

fa = e+ v × b (3.7)

b = ∇× a, e = −∂ta−∇ϕ. (3.8)

∇ · b = 0, ∂tb+∇× e = 0, (3.9)

∇ · (ε e) = ρ, − ∂t(ε e) + µ−1∇× b = j. (3.10)

where c is the light velocity and aµ the background field. Two parameters µ and
ε = 1/(c2 µ) are field constants.

According to the scenario of Utiyama (1956), to begin with, we have to check the
global invariance of the system under consideration. Namely, with respect to the global
transformation aµ → aµ + ϵµ for constants ϵµ independent of coordinates xν , we ask
whether the action integral S(total) and the governing equation (3.5) derived from it are
invariant or not.

In regard to the modified Euler equation (3.5), the field aµ is included only in the
additional term fa which includes all the components aµ linearly and in derivative forms,
as seen from (3.7) and (3.8). Hence, constant variation ϵµ of aµ does not give any effect
on the equation (3.5). Not only the equation of motion (3.5), but the action S(total) of

(3.1) must be invariant. Since the third Lagrangian L(F) of (3.3) includes only derivative
forms of aµ, the above global transformation causes no variation. However, regarding

the second interaction Lagrangian L(int), its integrand J (int) of S(int) associated with the
part dm = ρ dV is given by

J (int) ≡ L(int) dV c dt = c−1 (ρ dV) aµ (dXµ/dt) c dt = (dm) aµ dX
µ. (3.11)

With respect to the global transformation aµ → aµ + ϵµ, the action variation is

dSint =

∫
J (int) = (dm) ϵµ

∫ b

a

dXµ = (dm) ϵµ [X
µ]ba ,

for a fixed mass element dm of a fluid particle. It is seen that the variation dSint does
not depend on internal values of Xµ, but depends only on its boundary values. Hence

b)

Fluid Gauge Theory
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Next, even if the global invariance of the system S(total) is satisfied, one may consider
local transformation by δaµ(x

ν) varying with space-time coordinates xν . By substituting
the transformed variable aµ + δaµ(x

ν) into aµ of the action S(total) of (2.28), the system
of field equations (2.30) and (2.32) have been deduced by the action principle in
In other words, Invariant Variation of the total action S(total) of (3.1) yields the system
of field equations (3.5) and (3.10). The two equations of (3.9) are immediately derived
from the identity d2A ≡ 0 satisfied by the one-form A, which is given in

The present system is a genuine mechanical system described by the action (3.1)
and the equation of motion (3.5) derived by the action principle. Then, in this case, there
must be a certain background field aµ(x

ν) that is interacting with the flow field vµ(xν),
and the interaction force is the fluid Lorentz force fa of (3.7). Concerning the last point,
more detailed account is given at the second half of the last section of (Summary and
discussions). The background field aµ(x

ν) ensures the current conservation ∂νj
ν = 0

of (3.6), which is verified in based on the gauge invariance. Hence, our riddle
mentioned in is resolved.

Thus, the above fluid gauge theory is proposed, according to the gauge principle of
Utiyama (1956). The field of fluid-flow is required to be improved or reformed as follows.
The flow field of Eulerian system is characterized by the isotropic pressure stress field.
The stress field is extended to general anisotropic stress field in the flow of a perfect
fluid if its motion is time-dependent and rotational. This is required by the constraint
of the current conservation driven by the background gauge fields.

Remarks on the fluid gauge theory
Whole structure of the present theory is founded on the Gauge Principle which

worked successfully in theoretical physics, particularly in the particles physics. The
analyses presented so far in the present paper verifies that the scenario of the Gauge
Principle works successfully in the flow field of a perfect fluid too. Here in this section
some remarks on the theory are presented in order to supplement insufficient parts of
the above presentation.

Euler’s equation Dtv + ρ−1 ∇ p = 0 is still valid
Euler’s equation of motion is still valid as a family member. There is a special class

of background field ãν , for which the equation (3.5) reduces to the Euler’s equation of
motion (2.2) for ãν = ∂νΨ, because, with this field, the fluid Maxwell fields e and
b vanish by (3.8) (where ak → + ∂kΨ and ϕ → − ∂tΨ since aµ = (−ϕ/c,a
∂0 = c−1∂t), and hence fa of (3.7) vanishes as well.

Namely, the Euler’s equation of motion (2.2), Dtv + ρ−1 ∇p = 0, is valid for the
background field ãν = ∂νΨ and the continuity equation ∂tρ +∇ · (ρv) = 0 is deduced
from the action principle as shown in . Accordingly, one may say that the field
ãν itself exists, but does not show in the observable world. Hence, the rotational flow
solution (Kambe 2013) mentioned in and Appendix C is yet valid as a general
solution to the Euler’s equation of motion Dtv + ρ−1 ∇p = −∇ΦE, where the term
−∇ΦE on the right hand side (due to the gravitational potential ΦE) does not cause
any problem in the present context. Anyway, if ΦE is set to a constant, this equation
reduces to (2.2). The class of flow fields governed by the Euler’s equation of motion,
Dtv + ρ−1 ∇p = 0, may be called a ground flow-state.

Significance of the new force fa represented with anisotropic stress tensor
Background field: Fluid Maxwell fields
In we have defined the 4-potential aν by (a0,a) with a0=−ϕ/c and

a = (a1, a2, a3) and the one form A = aν dx
ν with x0 ≡ c t. Taking exterior differential,

the field strength two-form F is given by

the constant variation ϵµ does not give any mechanical effect on the system. Thus, the
present system described by S(total) is globally invariant for the uniform aµ-variation.

c)
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F = dA =
∑
ν<λ

fνλ dx
ν ∧ dxλ , (3.12)

fνλ = ∂νaλ − ∂λaν = −fλν . (3.13)

Then, a pair of fluid Maxwell fields e and b are defined:

e ≡ − ∂ta−∇ϕ, b ≡ ∇× a , and e ≡ e/c . (3.14)

For the tensor fνλ, the diagonal elements are all zero, and the element f01 is given
by ∂0a1 − ∂1a0 = (∂ta1 + ∂1ϕ)/c = −e1/c = −e1 and the element f12 given by
∂1a2 − ∂2a1 = (∇ × a)3 = b3. The field strength tensor of covariant (downstairs)
indices fµν and that of contravariant (upstairs) form fµν = ηµαFαβη

βν are given by
matrix forms as follows:‡

( fνλ ) =


0 −e1 −e2 −e3
e1 0 b3 −b2
e2 −b3 0 b1
e3 b2 −b1 0

 , ( f νλ ) =


0 e1 e2 e3

−e1 0 b3 −b2
−e2 −b3 0 b1
−e3 b2 −b1 0

 . (3.15)

Taking non-relativistic limit of the definition of vν = cuν of (A.3), we have vν = (c,v).
Then, from (3.15) with noting the index of fkν , the equation (2.30), equivalently (2.11),
can be represented in 3-vector form as follows:

Dtv + ρ−1 ∇p− fa = 0, (3.16)

fa ≡ e+ v × b = −∂ta−∇ϕ+ v × (∇× a). (3.17)

The equation (3.16) is the modified Euler’s equation of motion of a perfect fluid with
additional force term fa depending on the assumed background gauge-potential aµ.
Note that the background potential aµ = (−ϕ/c,a) is analogous to the electromagnetic
gauge potential Aµ of eq.(2.1) of Kambe (2021a), where Φ corresponds to ϕ/c.

Using the definition (3.14) of the fields e and b and the matrix representation (3.15)
of the field strength tensor f νλ, the equation (2.32) represents the followings:

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j. (3.18)

where ε = 1/(c2 µ). Another pair of fluid Maxwell equations is given

Second pair of fluid Maxwell equations for the background field aν = (−ϕ/c,a)
Using the field tensor (fνλ) defined by (3.13), one can derive fluid Maxwell equations

of source-free type. In fact, taking one more exterior differential of F of (3.12), we obtain

dF = d2A =
∑

α<β<γ

(
∂αfβγ + ∂βfγα + ∂γfαβ

)
dxα ∧ dxβ ∧ dxγ = 0, (3.19)

because d2A ≡ 0. This leads to the equation, ∂αfβγ + ∂βfγα + ∂γfαβ = 0, yielding the
following pair of fluid Maxwell equations for b and e of (3.14):

∇ · b = 0, ∂tb+∇× e = 0, (3.20)

where the first is obtained with (α, β, γ) = (1, 2, 3), while the second is obtained when
one of α, β and γ takes the suffix number 0.

‡ The latter matrix fνλ is to be used later to derive field equations. Practically, the matrix fνλ is

obtained from fνλ with simply replacing e by −e.

b.
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Significance of fa in the representation with anisotropic stress tensor
the formulation described so far is based on logical reasonings both physically

and mathematically, the present theory is valid solidly. The present fluid gauge
theory for a perfect fluid represents a broader class of flow fields than the current
Eulerian field, although the Eulerian field too is valid, as stated in the of
this section. The current Eulerian flow field is governed by the Euler’s equation of
motion: Dtv + ρ−1 ∇p = 0. However, the present gauge theory extends the current
Eulerian flow field to a wider class, covering a broader family of flow fields of a perfect
fluid (an inviscid fluid).

In the presence of background field aν , the governing equations are given by (3.5),
(3.7) and (3.8):

ρDtv = −∇ p+ ρfa. (3.21)

fa = e+ v × b = −∇ϕ− ∂ta+ v × (∇× a). (3.22)

At first sight, it is surprising to see the Lorentz-type force fa (acceleration correctly)
in fluid-flow field which is electrically neutral. The role of charge density in the
electromagnetism is played by the mass density ρ. Significance of the fluid Lorentz
acceleration fa is interpreted from the following two aspects.

Firstly, the acceleration fa is independent of the mass density ρ as obviously seen
in (3.7), but depends on the velocity v unlike the gravity acceleration, in addition
depending on the time derivative term ∂ta and rotational term ∇× a. In other words,
the acceleration term fa would become significant in turbulent flow fields in which flow
fields are time-dependent and rotational.

It is emphasized that the fluid Lorentz acceleration fa is considered to be a
generalization of the pressure force −∇p. In fact, citing the equation (2.13) again:

ρDtv
k = −∂j(p δjk) + ρ fkν v

ν , (k = 1, 2, 3; ν = 0, 1, 2, 3), (3.23)

this is equivalent to (3.21), but represented in component form.
Secondly, physical meaning of fa may be given as follows. It is remarkable to find

that the force field F a ≡ ρfa can be represented by the stress field M νk (where F a may
be called the fluid Lorentz force). In fact, for spatial components (i, k = 1, 2, 3), the
k-th component of the force F a ≡ ρfa can be rewritten as follows:

(F a)k = (ρe+ ρv × b)k = − ∂νM
νk, ∂ν = (c−1∂t, ∂k), (3.24)

M0k = cϵ (e× b)k, we ≡ 1
2 ϵ |e|

2 + 1
2 µ

−1 |b|2 =M00,

M ik = −ϵ eiek − µ−1 bibk + weδik, (3.25)

[Mαβ ≡ Θαβ
w with Θαβ

w defined by Eq.(33) of Kambe (2017)], where µ and ϵ = 1/(µ c2)
are parameters of flow fields, and the equality (ρe+ ρv × b)k = −∂νM νk can be shown
by using (3.9) and (3.10).

The stress tensor M ik of (3.25) as well as the parameters ϵ and µ are analogous to
those (Maxwell stress) of electromagnetism. The term (−∇ p)k on the right-hand side
of (3.21) can be written as −∂ν(p δνk), a force from the isotropic pressure stress −p δνk.

According to the present fluid gauge theory, the state of isotropic pressure stress
p δνk of Eulerian system is extended to the state of combined anisotropic stress
p δνk + M νk. Namely the isotropic pressure stress p δνk valid at the Eulerian system
is modified and augmented by an anisotropic stress M νk depending on the velocity vk

and the time change ∂ta
k, to ensure the current conservation.

The flow field described by the Euler’s equation ρDtv + ∇ p = 0 may be called
a ground flow-state. Then, another flow states governed by (3.21) may be an excited
flow-state. The terms ”ground” and ”excited” are used in analogy with quantum states,
although the states here are not discrete.

c.

Fluid Gauge Theory

Because

part i.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

132

  
 

( A
)

V
er

sio
n

I

Theory of fluid mechanics is extended to cover time-dependent rotational flows under
anisotropic stress field of a compressible perfect fluid, including turbulent flows. The
Eulerian fluid mechanics is characterized with isotropic pressure stress fields. According
to the general gauge principle, the current theoretical structure of fluid mechanics can
be extended to a wider class of flow fields of a perfect fluid under anisotropic stress field
by the Fluid Gauge Theory presented in the present paper.

Motivation of the present study is based on three observations. First one is the
experimental evidence of observation of large-scale structures coexisting with turbulent
flow fields; second one is a physical query of what symmetry implies the current
conservation law; and third motivation is posed by a mathematical representation of
the field of fluid flow, described in (Introduction).

The third one is based on the general representation of rotational flows of an
ideal compressible fluid satisfying the Euler’s equation presented by Kambe (2013),
in which ”four independent fields are newly introduced in the general solution to the
Euler’s equation of motion. Those fields must be either given externally or to be
determined internally within the framework of theory. Present study has taken the
latter approach on the understanding that the general solution predicts existence of
new fields. Importantly, the very fact that the four independent fields exist in the 4-
dimesional linked spacetime encourages a gauge-theoretic formulation on the basis of
differential forms or one-form A existing in the liked 4d-spacetime.

The last point is essential in the present study in the sense that even the fluid
mechanics from the Euler’s point of view has a glimpse of structures of linked 4d-
spacetime. As an obvious example, this is seen in the equation of current conservation,
∂jν/∂xν , represented in terms of the current 4-vector jν = (ρ c, ρvk) and the 4-
differential operator ∂/∂xν = (c−1∂t, ∂k). We have ∂jν/∂xν = ∂tρ + ∂k(ρv

k). It is
remarkable that the scalar product ∂νj

ν is invariant by the Lorentz transformation.
In the 4d-spacetime xν , by introducing a set of four fields aµ(x

ν), a one-form
structure is defined by A ≡ aµdx

µ = ρ−1jµaµ dt. Using it, an interaction action
S(int) = c−1

∫
jµ aµ d4xν was defined for the combined field of a 4-current field

jµ = ρ (dxµ/dt) and a background 4-field aµ. Correspondingly, a combined action
Sc = S(pf) + S(int) is defined by incorporating the known action of a perfect fluid S(pf),
both expressed relativistically. The action principle applied to Sc yields the equation of
motion (2.11):

Dtv
k + ρ−1 ∂kp = fkν v

ν . fµν ≡ ∂µaν − ∂νaµ (4.1)

(vk = ηklvl = vk). The term fkν v
ν on the right-hand side is a new term (owing

to interaction) added to the Euler’s equation of motion given on the left-hand side.
However, if the field aν takes a particular form ãν = ∂νΨ, then the field tensor fµν
vanishes identically since fµν = ∂µ∂νΨ − ∂ν∂µΨ = 0. Then the equation (4.1) reduces
to the original Euler’s equation, and in addition the equation of current conservation
(2.21), ∂νj

ν = 0, is deduced for this case (§2.1).

According to Utiyama (1956, 1987), the general gauge principle states as follows.
”If both of the composite action Sc and the equation of motion (4.1) are invariant under
a global transformation of ãµ defined by ãµ → ãµ + δaµ for a uniform value of δaµ = ϵµ
(constant), then the system is said invariant globally for the aµ-transformation.”

The constant variation ϵµ of ãµ does not give any effect on the equation (4.1).
Invariance of the action S(int) (therefore invariance of Sc) is also verified in §3.2.† Hence,

† In §3.2, the transformation was ãµ → aµ = ãµ + ϵµ. However, as far as the variation part of the

action S(int) is concerned, there is no difference from that of the transformation aµ → a′µ = aµ + ϵµ.

IV. Summary and Discussions

Fluid Gauge Theory
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the constant variation ϵµ does not give any mechanical effect on the system, and the
system is globally invariant for the uniform aµ-variation.

The gauge principle reads furthermore, ”Even if the global invariance of Sc is
satisfied, one may consider local transformation of ãµ → aµ(x

ν) = ãµ + δaµ(x
ν) with

δaµ(x
ν) varying with the space-time coordinates xν.” The problem is now reduced to

whether one can construct a physical system which is invariant under such a local gauge
transformation of aµ field.

The last point is interpreted as follows. There may exist a background field aµ in
the flow field jµ = ρ vµ, which interacts with the flow by the force fkν v

ν (which vanished
in the test of global transformation for ãµ). Existence of a background field aµ causes
drastic change of our battle field. Not only the term fkν v

ν is non-vanishing, but also
the equations governing the new field aµ should be given a physically reasonable form.

This is done by introducing the third action S(F) with the total action given by
S(total) = Sc + S(F). The system is still free from external forcing. The Appendix
C.2 (c) investigates the dynamics: ”Free dynamical systems and the action principle of
invariant variations” based on the invariant variations in the presence of background
gauge field ensuring mass conservation. The background gauge field is an agent to
make the dynamical system curved. This is carried out in the present formulation by
implementing the connection term (i.e. the background gauge field) in the covariant
derivative to make up the structure of fluid gauge theory. Finally, the free motion of
physical system is described by curved geodesics. This scenario of investigating physical
systems of ”Free motions described by curved geodesics” is presented in Appendix C
in details. In this way, the geodesic equation governing our physical system in curved
motion is given by the equation (C.23) of Appendix C.2 (c), which reduces finally to
the modified Euler equation (2.11) obtained or (3.16) of

This is the scenario of Principle. established,
the - aµ taken into the system which represents a new
force, and a new force field fa(x

ν) has been introduced into our physical system by the
gauge principle. Significance of the fluid Lorentz acceleration (fa)k = fkν v

ν is given
in The force field fkνv

ν is considered to be a generalization of the pressure
acceleration −ρ−1∂i(p δik), as follows.

In the ground flow-state where aν = ∂νΨ, the Euler’s equation of motion (2.2) is
valid. The equation can be rewritten in the form, ρDtvk = ∂iσik (≡ Fk), where the
stress field σik is isotropic: σik[iso] ≡ −p(xν) δik. One can say that the background field
ãν ≡ ∂νΨ itself exists, but it does not show in the observable world.

However, transition of the stress field can occur from the isotropic state σik[iso] to
states of anisotropic stress σik[aniso] when the flow field (velocity field) becomes non-
uniform and time-dependent. In other words, in addition to the isotropic pressure stress
σik[iso] = −p δik valid at the rest frame vk = 0, an anisotropic stress field σik[aniso] begins
to grow, which depends on the velocity vk and the time change ∂tak, to ensure the current
conservation. To be more precise, using the fluid Maxwell stress M νk of (3.25), the force
Fk from the anisotropic stress is given by (3.24), as follows:

Fk[aniso] = −∂νM νk = −ρ ∂tak − ρ ∂kϕ+ ρ (v × b)k .

Thus, outcomes of the Fluid Gauge Theory are summarized in this concluding section.
Based on the present fluid gauge theory, a test study has been carried out recently

by M. Hashiguchi (Former iCFD researcher, Tokyo) with solving numerically the new
system, finding an encouraging result on the problem: ”Dust striations observed in
the resonance-tube experiment” by August Kundt (1866). Brief result is shown in the
presentation of Kambe (2021b). In this system there exist two different length scales
with their ratio more than fifty, consistent with the photo observation of Kundt. The
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larger scale corresponds to the wavelength of the resonant acoustic wave, while the
smaller one corresponds to an eddy structure generated by the background gauge field.

The author expresses his deep thanks to late Professor Ryoyu Utiyama, the author of
the book in Japanese ”一般ゲージ場論序説 (Ippan Gauge ba ron josetsu) Introduction
to the general gauge field theory”. The present study aims to apply the theory to fluid
systems according to the scenario of the theory of general gauge fields of Utiyama (1956,
1987). One of the motivations of the present study is that Fluid Mechanics of a perfect
fluid can join in the circles of the physical theory. Also, the present author benefitted
from informal discussions with Professor Yasuhide Fukumoto (Kyushu University) on
the theory of general gauge fields of Utiyama.

Here, some basics of the relativity theory are presented for expressions of linked 4-
dimensional space-time.

Suppose that a material particle or fluid particles are moving with high velocities
in an inertial frame K: (x0, x1, x2, x3) with x0 = c t and c the light velocity. In a time
interval dt, the position of the particle changes with time and its displacement is given
by a 4-vector:

dxµ = (c dt, dX1, dX2, dX3), dXk = vk dt (k = 1, 2, 3), (A.1)

where µ = 0, 1, 2, 3, and the upper-case notation dXk denotes displacement of a
material (fluid) particle with vk components of 3-velocity v. In the relativity theory,
an infinitesimal interval ds is defined by its squared form, ds2 = dxµdx

µ, which
is a scalar product of a line-element 4-vector dxµ with its covariant version dxµ =
ηµνdx

ν = (−c dt, dX1, dX2, dX3), where ηµν is the Minkowski metric, sometimes
called the Lorentz metric, defined by ηµν = ηµν = diag(−1, 1, 1, 1). Hence, we have
ds2 = dxµdx

µ = ηµν dx
µdxν = −c2dt2+|dX|2. The interval ds is a relativistic invariant,

i.e. invariant under the Lorentz transformation (see Appendix B of Kambe (2021a)).

Another relativistic invariant is the proper time τ . Its increment dτ is defined by
the time increment (multiplied by c) in the instantaneously rest frame where v = 0.
Squared interval of the proper time is defined by dτ 2 = −dxνdx

ν = −ds2. From this,
noting dXk = vk dt, we obtain

dτ = c dt
√

1− β2 , β ≡ v/c , v =
√
vkvk. (A.2)

Using the displacement dXν of a fluid particle P , its relativistic 4-velocity is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√
1− β2

), v = (vk) = (dXk/dt). (A.3)

This fluid particle P is moving with the 4-velocity uν relative to the frame xµ.

Relativistic formulation of the variational principle is presented for three fundamental
mechanical systems. We consider how covariant derivatives or gauge invariant equations
are deduced from the principle of least action, i.e. from the invariant variations.

Acknowledgments

Appendices

Appendix A. Some basics of linked 4d-spacetime in relativity theory

Appendix B. Relativistic formulation of action principle: three mechanical systems
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Appendix B.1. Free motion of a point mass

The action of a free material particle of rest mass m is given by

S(m) = −mc
∫ b

a

dτ ≡
∫

L(m) dt, (B.1)

(its derivation, see Landau & Lifshitz (1975, §8)), where the present dτ is equivalent to
the ds of Landau & Lifshitz owing to the difference of the metric tensor definitions.‡
Since dτ = c dt

√
1− β2 from (A.2) of the main text, the Lagrangian L(m) is

L(m) = −mc2
√
1− β2. (B.2)

Principle of least action requires vanishing of the variation δ S(m):

δ S(m) = −mc δ
∫

dτ = 0. (B.3)

Since dτ 2 = −ηµνdxνdxν (Appendix A), we obtain δ(dτ 2) = 2 dτ δdτ = −2 ηµνdx
ν δdxν .

Hence, we obtain the followings:

δdτ = −ηµν
dxν

dτ
δdxν = −uν δdxν = −uν d(δxν). (B.4)

δ S(m) = mc

∫ b

a

uν d(δx
ν) = mc

[
uν δx

ν
]b
a
−mc

∫ b

a

δxν
duν

dτ
dτ . (B.5)

where the integration limits of lower a and upper b are added.
To get the equation of motion, different trajectories are compared by assuming that

the variation δxν is arbitrary within the interval [a, b], but vanishes at a and b. Then,
the principle of least action determines the trajectory by δS(m) = 0. Thus we obtain

∇τu
ν ≡ d

dτ
uν = 0. (B.6)

Namely, the 4-velocity uν of the free particle is constant in time, as well-known.

Appendix B.2. Free motion of a perfect fluid

A perfect fluid is defined as a continuum object (a continuous matter) in the 4d-
spacetime xµ = (ct,x) = (x0, x1, x2, x3), characterized with a mass density ρ(xµ) in
motion with 3-velocity v = (v1, v2, v3) and without any internal mechanism of energy
dissipation. During its motion, the entropy change ∆s = T−1 (∆ϵ+ p∆V1) is assumed
to vanish, where s and ϵ are thermodynamic variables of entropy and internal energy per
unit mass with the volume element ∆V1 defined by 1/ρ. The pressure and temperature
are denoted by p and T . Flow variables such as ρ, p , v, etc. are represented by
continuous differentiable functions of the coordinates xµ = (ct,x).

‡ The negative sign is added in front of the integral
∫ b

a
dτ , because it takes its maximum value along

a straight geodesic line (see the text cited).

The action for free motion of a perfect fluid is given by

S(pf) =

∫ [ ∫
L(pf) ρ dV

]
dτ =

∫ [ ∫
L(pf)(x

ν) dV
]
cdt, (B.7)
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dτ = c dt
√
1− β2, ρ dV = ρ dV = dm, ρ = ρ

√
1− β2 , (B.9)

Lpf dV ≡ L(pf) ρ dV
√
1− β2 = −c−1(m1c

2 + ϵ(ρ))
√

1− β2 [ρ dV ], (B.10)

where the integration within the first bracket [ ] of (B.7) is done with respect to dV
of material location (dX1dX2dX3), and overlined values denote proper values (i.e. the
values in the comoving frame where the fluid is at rest). The terms ϵ and ρ denote the

proper internal energy and density, with dτ = c dt
√

1− β2 the proper time interval,

ρ dV denotes the proper mass element dm, and dV = dX1dX2dX3 is a volume element
associated with the mass dm. The m1 = 1 (unit mass) is added to clarify physical
meaning of the term (m1c

2 + ϵ(ρ)) as relativistic proper internal energy per unit mass
including the rest-mass energy m1c

2. (For the form of L(pf), see Kambe (2020), Dewar
(1977), or Salmon (1988b).)

The Lagrangian per a volume-element dV is given by Lpf = −c−1
√

1− β2 (m1c
2+

ϵ(ρ) ) ρ. This is the proper Lagrangian with respect to an inertial frame. Its non-

relativistic limit (as β → 0) per unit mass is given as c−1
(
−m1c

2+ 1
2 m1v

2−ϵ+· · ·
)
. The

first term m1c
2 denotes the mass energy (with negative sign attached) and neglected in

the non-relativistic limit. Subsequent two terms ( 12 m1v
2−ϵ) per unit mass is equivalent

to the traditional non-Relativistic Lagrangian ΛnR:

ΛnR = 1
2 v

2 − ϵ, S(nR) =

∫ [ ∫
ΛnR ρ dV

]
dt, (B.11)

where the front factor c−1 and the integration element c dt make the dt in the above
integral. Let us take variation of S(pf) of (B.7):

δ S(pf) =

∫ ∫ [
L
(pf)

δdτ + δL
(pf)

dτ
]
dm = δ S

(pf)
1 + δ S

(pf)
2 . (B.12)

Variation is taken keeping the mass element dm = ρ dV fixed and written as ∆m = ρ∆V .
Then the second term is, under the thermodynamic condition δϵ|s:fixed = −p δ(1/ρ),

(∆m) δL
(pf)

dτ = − c−1 ∆m δϵ(ρ) dτ = −c−1 ∆m
(
(ρ)−1δp− δ(p/ρ)

)
dτ

= − c−1 ∆m
1

ρ
∂νp δx

ν dτ + c−1 δ
(
ρ ∆V p

ρ

)
dτ ,

while for the first term, using the definition dτ =
√

−ηµνdxνdxν together with (B.4),

(∆m)L
(pf)

δdτ = c−1(c2 + ϵ(ρ))∆m uν dτ (δx
ν) dτ

= c−1(c2 + ϵ(ρ))∆m
(
− (

d

dτ
uν) δx

ν +
d

dτ
(uν δx

ν)
)
dτ. (B.13)

Thus, summing up both terms, we obtain

∆m
[
L
(pf)

δdτ + δL
(pf)

dτ
]
= − c∆m

( d

dτ
uν + c−2 1

ρ
∂νp

)
δxν dτ

+ c−1 δ
(
p ∆V

)
dτ + c (1 +O(β2))∆m dτ (uν δx

ν) dτ . (B.14)

L(pf) = −c−1(m1c
2 + ϵ(ρ) ) = −c (1 + c−2 ϵ(ρ) ) since m1 = 1, (B.8)
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Since the two terms of the second line (B.14) do not give any contribution to the variation
by the reasons explained below, we are concerned with the first line (B.14) only for the
variational analysis. For arbitrary variations δxk (k = 1, 2, 3 with δx0 = 0), vanishing
of the total variations requires the following equation, to the leading order of the series
with respect to the β2(≪ 1) expansion:

c2
d

dτ
uk +

1

ρ
∂kp = 0, (B.15)

where dτ = cdt
√
1− β2. We note that ρ = ρ

√
1− β2 (Kambe (2020) Appendix B.1)

and p = p (Agmon 1977). Hence using uk = (vk/[c
√

1− β2]) from (A.3), the above
becomes

1√
1− β2

D

Dt

vk√
1− β2

+
1

ρ
∂kp = 0, (B.16)

where (D/Dt) ≡ Dt = ∂t + v · ∇ is the convective derivative defined by (2.4).
Transforming this into a contravariant form by multiplying ηik (no change except the
change of indices from lower to upper), the leading order form of the equation becomes

∇(pf)
τ vk ≡ Dtv

k + ρ−1 ∂kp = 0, (B.17)

since 1/
√

1− β2 = 1 +O(β2) and ∂k = ∂k. This is nothing but the Euler’s equation of
motion in the form of (2.2).

The equation (C.10) is a geodesic equation of free motion of perfect fluid of a

constant density ρ∗, expressed as ∇̂t u ≡ ∂tu + (u · ∇)u + ∇(p/ρ∗) = 0. Here we

used the symbol ∇(pf)
τ to denote the covariant τ -derivative of perfect fluid, because the

leading term of (B.14) can be written as

∆m
[
L
(pf)

δdτ + δL
(pf)

]
= − 1

c
√

1− β2
∆m

(
∇(pf)
τ vk

)
dτ δxk = 0, (B.18)

with the second line of (B.14) deleted.
In regard to the second line of (B.14), the factor dτ (uν δx

ν) dτ of the last term can
be integrated with respect to τ . Hence the last term does not give any contribution to
the variation, while the remaining first term leads to total variation of the integration
I ≡

∫
p dV in the rest frame, which is fixed for the variation, i.e. δI = 0. In fact, the

kinetic theory of statistical mechanics implies that
∫
p dV denotes 2/3 of total kinetic

energy E of particles composing an ideal gas, which is invariant in free state. Thus, the
second line of (B.14) does not give any contribution to the variation,

Appendix B.3. Free motion of a perfect fluid under interaction action Sint

According to the sections in the main text, one can define a composite
action Sc by using the action S(pf) of a perfect fluid of (B.7) and the action S(int) of (2.6)
for interaction of current jν and the gauge field aν . Let us define

Sc ≡ S(pf) + S(int), dΩ ≡ d4x = dV dtc (B.19)

S(pf) ≡ − c

∫
ρ dV

∫ (
1 + c−2 ϵ(ρ)

)
dτ =

∫
L(pf) d4x, (B.20)

S(int) ≡
∫

L(int) d4x, L(int) ≡ c−1 jµ aµ, jµ = ρ vµ , (B.21)

where L(pf) ≡ −c ρ (1 + c−2 ϵ)
√

1− β2, and vµ = dXµ/dt.
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To find the equations of motion, the action principle is applied to the composite
action Sc, by assuming the gauge potential aν given and vary only the position coordinate
Xk
p of fluid particles moving with the velocity DtX

k
p along their trajectories. On the

other hand, to find the equations governing the aν , we vary only the gauge-potential
aν with assuming the fluid motion given and fixed. However, to carry out the latter
variation, we have to define a third action to characterize the background field aν and
add it to Sc, (which is postponed to the next Appendix B.4), Here, we carry out the
former variation, then the action principle applied to the varied Sc should yield the
equation of fluid motion.

By the way, under the requirement of invariance of S(int) to the gauge transformation
of potential aν , the current conservation law ∂νj

ν = 0 is deduced in Hence,
we assume the invariance of the mass element dm ≡ ρ dV of a fluid particle during
the motion along its trajectory when variations are taken with respect to the particle
position Xk

p .
Regarding the action S(pf) of (B.7). Its variation is given by (B.14), and its

variation-integrand δJ (pf) is found as follows:

δ J (pf) = −c∆m
( d

dτ
uν + c−2 1

ρ
∂νp

)
δxν dτ + higher order terms of O(β2). (B.22)

Before taking variation of the interaction action S(int) =
∫ ∫

J (int), we rewrite its

integrand J (int) as follows (since d4x = c dt dV):

J (int) = (ρ dV) vν aν dt = (dm)
dXν

dt
aν dt = (dm) aν dX

ν , (B.23)

where (2.9) and vµ = dXµ/dt are used with dm = ρ dV . Its variation is given by

δJ (int) = (∆m)
(
aν d(δx

ν) + δaν dx
ν
)
= ∆m

(
− daν δx

ν + δaν dx
ν + d(aν δx

ν)
)

= ∆m
[
− ∂aν
∂xµ

dxµδxν +
∂aν
∂xµ

δxµdxν + d(aν δx
ν)
]

= ∆m
(∂aµ
∂xν

− ∂aν
∂xµ

)dxµ
dτ

δxν dτ + c∆m
d(aν δx

ν)

dτ
dτ

= ∆mfνµ u
µ δxν dτ +∆m

d(aν δx
ν)

dτ
dτ, (B.24)

fµν ≡ ∂µaν − ∂νaµ = −fνµ . (B.25)

Thus, summing up the two variations (B.22) and (B.24), we obtain

δJ (fl+a) ≡ δ J (pf) + δJ (int) = −c−1 ∆m
[
c2

d

dτ
uν +

1

ρ
∂νp − c fνµ u

µ
]
dτ δxν (B.26)

by neglecting higher order terms and vanishing integrals with respect to τ . Requiring
δJ (fl+a) = 0 for arbitrary variation δxν , this leads to

c2
d

dτ
uν +

1

ρ
∂νp− c fνµ u

µ = 0. (B.27)

Remembering that the first two terms reduced to (B.16) in the Appendix B.2, we find
that the above equation reduces to the following (ν = 0, 1, 2, 3; k = 1, 2, 3):

1√
1− β2

D

Dt

vk√
1− β2

+
1

ρ
∂kp− fkν v

ν = 0, (B.28)
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where uk = (vk/[c
√
1− β2]) is used from (A.3), Extending the reasoning of Appendix

B.2, leading order form of this equation becomes

∇(pfa)
τ vk ≡ Dtv

k + ρ−1 ∂kp− fkν v
ν = 0, (ν = 0, 1, 2, 3). (B.29)

since 1/
√

1− β2 = 1 + O(β2). Thus we have found an extended equation of Euler’s
equation in the presence of background field aµ giving rise to new third term.

Appendix B.4. Free motion of a perfect fluid :

in the presence of gauge field re-ensuring mass conservation

To make the fluid system self-contained, we need a third action S(F) =
∫
L(F) dΩ in

addition to S(pf) and S(int) of Appendix B.3, to govern free-state of the background field
aν, describing only on the property of the field itself. According to a possible

form of the free-Lagrangian L(F) is proposed to be quadratic in ∂µaν or fµν , because the
variation of S(F) reduces the degree by one with resulting equation becoming linear to
∂µaν . The only Lorentz-invariant quadratic form is a multiple of fµνf

µν . This satisfies
the requirement (i) of namely, the fluid Maxwell fields e and b should be
ensured to vanish when the background field aν takes the special form ãν = ∂µΨ. This
means that the original Euler’s equation of motion (2.2) is valid in spite of the existence
of the field aν .

Following the propositions of Kambe (2017, 2020), our fluid system is a combined
system of two fields: a fluid-current field ȷν and a background field aν ensuring the
continuity equation. Accordingly, the Lagrangian density L consists of three terms:
Lagrangians of (i) perfect fluid L(pf), (ii) back-ground field L(F) and (iii) their mutual

interaction L(int). Total Lagrangian is expressed as L(total) = L(pf) + L(int) + L(F).

(a) Total action
The total action S(total) is given by

S(total) =

∫ ∫ (
L(pf) + L(int) + L(F)

)
c dt dV , (B.30)

where d4x = dΩ = c dt dV , and dV = dx1dx2dx3 = dV
√

1− β2. Since ρ
√

1− β2 = ρ,

the mass element dm = ρ dV is invariant, i.e. ρ dV = ρ dV .
The Lagrangian densities are defined by

L(pf) = −c−1 ρ (c2 + ϵ(ρ)), L(int) = c−1jν aν , L(F) = − 1

4µc
f νλ fνλ, (B.31)

where jν ≡ ρvν = ρ
√

1− β2 vν = ρ dXν/dt is the 4-current density and vν is the
relativistic 4-velocity, defined by

vν = c
dXν

dτ
=

( c√
1− β2

,
v√

1− β2

)
≡ c uν , jν = ρ

dXν

dt
= ρ (c, v). (B.32)

The tensor fνλ is field-strength tensor of background field, defined by

fνλ = ∂νaλ − ∂λaν , (B.33)

where aν = (−ϕ/c, ak) is a 4-potential of the background field. Here in the present
fluid system, we use lower-case letters to denote field variables corresponding to
Electromagnetic variables where upper-case letters are used in of Kambe (2021a).

To find the equations governing the background field aν , we apply the principle
of least action to the action S(total), by assuming the fluid motion given and vary the
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potential aν only. On the other hand, to find the equations of fluid motion, we assume
the field potential aν given and vary only the trajectory of the fluid particle (X or
v = ∂tX). The latter variation is equivalent to what is done in Appendix B.3. The
equation (B.29) derived there is cited as the equation (B.36) at the end of this section.

We carry out the former variation, anticipating to deduce the current conservation
∂νj

ν = 0 of fluid flows.

(b) Variation with respect to aν
We have two Lagrangian densities which include the field aν : L(int) = c−1vν aν and

L(F) = − 1
4µc
f νλ fνλ. First, we note δ

(
f νλ fνλ

)
= 2f νλ (δfνλ). This is because

(δf νλ) fνλ = (δf νλ) ηναηλβf
αβ = fαβ (δfαβ).

Therefore, variation of L(int) + L(F) is given by

c δL(int) + c δL(F) = jν δaν −
1

2µ
f νλ δfνλ = jν δaν −

1

2µ
f νλ

∂

∂xν
δaλ +

1

2µ
f νλ

∂

∂xλ
δaν

=
(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν . (B.34)

where the term −(1/2µ)f νλ∂ν(δaλ) next to the last on the upper line can be equated
to the last term (1/2µ)f νλ∂λ(δaν) by using the anti-symmetric property, −f νλ = fλν ,
and interchanging the indices ν and λ, and the last two terms on the upper line are
combined to give (1/µ)f νλ∂λ(δaν), and finally carrying out integration-by-parts leads
to the second line of (B.34) with omitting the term of the form ∂λ[(1/µ)f

νλ δaν ], which
is transformed to vanishing boundary integrals in the original action integral.

Requiring vanishing of the varied Lagrangian δL(int) + δL(F) = 0 for arbitrary
variation δaν , we obtain

∂

∂xλ
f νλ = µ jν . (B.35)

From this, the current conservation equation can be derived, that is directly connected
with the gauge invariance of the system of main text).

(c) Variation with respect to xν

To find the equations of fluid motion, we assume the field potential aν given and
vary only the trajectory of the fluid particle (X or v = ∂tX). In this case, the third

Lagrangian L(F) of (B.31) is kept unchanged because it depends only on the field aν .
Therefore, the variation under consideration is equivalent to what is done in Appendix
B.3. The equation (B.29) derived there is rewritten here:

∇(pfa)
τ vk ≡ Dtv

k + ρ−1 ∂kp− fkl v
l = 0. (B.36)

Thus we find an extended equation of Euler’s equation in the presence of background
field aµ giving rise to new third term.

In Appendix C, we see that the equation (C.10) is a geodesic equation of free motion

of perfect fluid of a constant density ρ∗, expressed as ∇̂t u ≡ ∂tu+(u·∇)u+∇(p/ρ∗) = 0.
An analogous equation (B.17) is given for a perfect fluid in Appendix B.2. Just above,
we have obtained another analogous equation (B.36). Now we have introduced a new

symbol ∇(pfa)
τ to denote the covariant τ -derivative of perfect fluid in the presence of

background field aµ. In fact, the leading term of (B.26) can be written as

δ J (PFA) = − 1

c
√

1− β2
∆m

(
∇(pfa)
τ vk

)
dτ δxk = 0. (B.37)
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for the action principle concerned with the geodesic equation of free motion of a perfect
fluid in the presence of the background field aµ.

Appendix C.1. Two free physical systems described by curved geodesics

(a) Free motion of a particle in gravity field by Newtonian mechanics
To begin with, consider free motion of a test particle of a unit mass in the Galilean

rectangular space (xk) with a universal absolute time t. The particle in free motion
in a gravitational field takes a curved trajectory in general according to Newtonian
mechanics. By the equation of motion, the particle motion in the Earth’s gravity
potential ΦE(x

k) is described by

d

dt
vk +

∂ΦE

∂xk
= 0, vk ≡

dxkp
dt

, k = 1, 2, 3 , (C.1)

where the particle takes a curved trajectory xkp(t) and v
k is the k-th component of its

velocity. In the modern view to take the space and time linked to form a 4d-continuum,
the curved trajectory of a free particle is described as a geodesic curve in the linked
space-time. Let us take an illustrative example according to Utiyama (1987, §2.3), and
consider a free-falling elevator in the Earth’s gravitational field ΦE(x

ν). The free-falling
elevator provides a particular inertial system of spacetime, in which free motion of a
particle is described by

d2Xµ/dτ 2 = 0, (C.2)

where Xµ is the particle coordinates in the frame Fel fixed to the free-falling elevator.
The gravity effect does not appear apparently because the acceleration owing to the
gravity acting on both of the elevator and the particle are the same and cancel out in
the free-falling frame Fel. Thus, the particle takes a straight path Xµ = aµτ + bµ with
respect to Fel with a

µ and bµ being constants.
According to the section §3 of Part I, let us observe the same motion from another

frame, which is the frame FE fixed to the Earth surface, where the coordinates are given
by xµ. Suppose that the relation between the two frames Fel and FE is given by the
transformation function Xµ = Xµ(xν). Under this transformation from Xµ to xν , the
equation of free motion d2Xµ/dτ 2 = 0 in the free-falling frame Fel (where τ is the proper
time defined by (A.2)) is transformed to that of the frame FE as follows,

d

dτ

dXµ

dτ
=

d

dτ

[∂Xµ

∂xν
dxν

dτ

]
= Aµν

[d2xν

dτ 2
+ Γναβ

dxα

dτ

dxβ

dτ

]
= 0

where A = (Aµν ) is a transformation matrix. Using the inverse A−1 of Aµν and multiplying
by (A−1)σµ ≡ ∂xσ/∂Xµ, the above equation becomes

d2xσ

dτ 2
+ Γσαβ

dxα

dτ

dxβ

dτ
= 0, where Γσαβ =

∂xσ

∂Xσ

∂Xσ

∂xα ∂xβ
= Γσβα. (C.3)

This states that the particle trajectory is curved in general when Γσαβ ̸= 0, where Γσαβ is
playing the role of Christoffel symbol of covariant derivatives of Riemannian geometry.

The 4-velocity uν ≡ dxν/dτ of the particle is defined by (A.3) as uν =

(1,v/c )/
√
1− β2 . In the non-relativistic limit as β ≪ 1 for the particle velocity |v|

much less than the light velocity c, this yields uν = dxν/dτ → (1,v/c) = vν/c in the
limit (dτ → c dt). In this case, the equation (C.3) becomes

d

dt
vσ + Γσαβ v

α vβ = 0, in particular
d

dt
vk + Γk00 · 1 · 1 = 0, (C.4)

Appendix C. Free motion of physical systems and curved geodesics
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where vσ = dxσ/dt, the second equation is given for σ = k = 1, 2, 3, (α, β) = (0, 0), and
the factors Γσαβ other than Γk00 are set to zero. Compare this with (C.1). By assuming

the following relation of equality: Γk00 = ∂ΦE/∂x
k, the second equation of (C.4) becomes

equivalent to the equation (C.1). From the context of physics of the gravity theory, this
is very important because it implies a relation which equates the geometrical term Γk00
(called the Christoffel symbol) to a space derivative of the gravity potential ∂kΦE.

More precisely in mathematics, it is known of Kambe (2021a)) that a free
particle moving in curved spacetime is governed by the geodesic equation of the form

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0. (C.5)

Replacing the affine parameter λ with an equivalent proper time τ , the equation (C.5)
reduces to (C.3). Since the equations (C.1) and (C.4) have the form of the geodesic
equation (C.5), one can read off

Γk00 = ∂ΦE/∂x
k (k = 1, 2, 3); all other Γαβγ vanish. (C.6)

According to of Part I, in a curved 4d spacetime, a covariant derivative of a
vector field vα(xµ) along a curve P (λ) with its tangent uβ = dxβ/dλ is defined by

(∇̂uv)
α ≡ d

dλ
vα + Γαβγ v

βuγ ≡ ∇̂λ. (C.7)

where ∇̂ denotes the nabla-operator in the 4d spacetime. Using this definition, the
geodesic equation (C.5) can be written simply as

∇̂uu = 0, or ∇̂λu = 0, where uα ≡ dxα(P )/dλ. (C.8)

According to the differential geometry (Misner et al. 2017, Chap.8), this states that the
geodesic is a curve P (λ) which parallel-transports its tangent uα = dxα(P )/dλ. In the
flat space of special relativity where gµν is given by the metric ηµν = diag(−1, 1, 1, 1),
the geodesic takes a straight path d2xα/dλ2 = 0, since Γαβγ = 0 (see the footnote†).

The equation (C.5) can be written in the form of a geodesic equation, by taking
the specification of λ = t, uα = (1, vk) with vk = dxk(P )/dt and the equation (C.6):

(∇̂uu)
k ≡ d

dt
uk + Γk00 u

0u0 = 0, u0 = 1, uk ≡ dxk(P )

dt
= vk, (C.9)

where the operator ∇̂ is defined by (C.7). This implies that the free motion of a test
particle in a gravitational potential field ΦE(x

k) is described by a geodesic trajectory
which is curved in a linked space-time. A geodesic curve is a generalization of a straight
line in flat spacetime to a curved spacetime.

With a simplified potential Φ = gz of a uniform value g of gravity in a cartesian
(x, y, z)-space, one finds a trajectory of a point-mass: z(t) = 1

2 gt
2+w0t, x(t) = u0t and

y(t) = v0t where (u0, v0, w0) denote the initial velocity. Thus it is seen that the parabolic
trajectory of free motion of a point-mass in the gravity field Φ = gz is a geodesic in the
linked spacetime (t, x, y, z), which is curved in a geometrical sense.

(b) Free motion of a perfect fluid in a flat space
Let us consider free motion of a perfect fluid of constant density under pressure

field in a flat space. This case is worth given a particular remark, because this is a free
motion characterized with curvature tensors that occurs in a flat 3-space for a perfect

† The equation (3.12) of Part I paper: Γα
βγ = gαµΓµβγ , Γµβγ = 1

2

(∂gµβ

∂xγ +
∂gµγ

∂xβ − ∂gβγ

∂xµ

)
.
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fluid under pressure field. This is formulated mathematically with an exact analysis by
Arnold (1966).

In §2.1, we have seen that free motion of a perfect fluid can be described by the
Euler’s equation of motion of the form (2.2), which is analogous to the Newton’s equation
of motion (C.4) rewritten in the geometrical language, transformed from the original
Newton equation (C.1).

This implies that the Euler’s equation of motion too may be further transformed
to the form of geodesic equation (C.9), because both equations are descriptions of free
motion. This is true. In fact, it is already down by the mathematician V.I. Arnold (1966)
for a perfect fluid of constant density satisfying the condition of incompressibility by
applying the differential geometry of Lie groups of infinite dimensions.

According to Arnold, it is found on the basis of Riemannian geometry and Lie group
theory that the Euler’s equation of motion for flows of a perfect fluid of uniform density
on a bounded flat space-time M is a geodesic equation on a group of volume-preserving
diffeomorphisms with the metric of the kinetic energy (see also Kambe (2010, Chap. 8)
for some details, in addition to Arnold (1966) ). Here, we consider the fluid motion in
flat space.

Defining u(x) as the 3-velocity field for x ∈M (a bounded 3-space) satisfying the
divergence-free condition divxu(x) = 0 for a constant density ρ∗, the geodesic equation
is given by

∇̂t u ≡ ∂tu+∇uu = 0, ∇uu ≡ (u · ∇)u+∇(p/ρ∗), (C.10)

(eq. (8.42) of Kambe (2010)), where ∇ is a divergence-free connection satisfying

div
(
∇uu

)
= div

(
(u · ∇)u+∇(p/ρ∗)

)
= 0. (C.11)

This ensures divu = 0 at any time from (C.10) if it is satisfied initially. The equation
(C.11) constrains the pressure field p to satisfy ∇2p = −ρ∗ ∂j∂k(ujuk). The geodesic
equation (C.10) is nothing but the Euler’s equation of a perfect fluid of constant density:

∂tu+ (u · ∇)u+∇(p/ρ∗) = 0. (C.12)

Using the operator Dt of (2.4), this can be rewritten in the form of equation-of-motion
of a fluid particle analogous to (2.2) as Dtu +∇P = 0, where P ≡ p/ρ∗. Since this is
analogous to (C.1), it is suggested that the geodesic equation (C.12) can be rewritten

in the form of an equation using a covariant derivative ∇̂ of 4-spacetime in terms of
Christoffel symbol Γ’s.

For that purpose, we define the 4-velocity by vν = dXν/dt = ( c, u ), in the non-
relativistic limit (β → 0) with dXν = (c dt, dX). Then, the equation (C.12) can be
rewritten in the following form of geodesic equation:

(∇̂vv)
k ≡ D

Dt
vk + Γk00 v

0v0 = 0, for k = 1, 2, 3 , (C.13)

v0 = c, Γk00 = c−2(∂/∂xk)P , all other Γαβγ vanish.

Appendix C.2. Free dynamics and action principle of invariant variations
Free motion of a perfect fluid under a pressure field p(xν) and a background field aµ(x

ν)
in a flat space was studied in , where modified Euler’s equation of motion
(2.11) was derived in the former and the equation (2.32) governing the background
field was derived in the latter. In particular, the set of latter equations re-ensures the
continuity equation. The same continuity equation was required already in from
the invariance of the interaction action S(int) to the gauge transformation of aµ(x

ν).
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By the scenario of Utiyama’s gauge principle, the new field aµ should be incorpo-
rated as a connection term in a covariant derivative. To that end, physical and mathe-
matical formulation are presented by geometrical language in this section enabling the
generalization. As a matter of fact, this section aims to conclude the fluid gauge theory.

The Euler’s equation (2.2) can be written as Dtv + ρ−1 ∇ p = 0 in the form of an
equation of motion of a fluid particle and describes free motion of a perfect fluid. In
principle, free motion is given by a geodesic equation. Appendix B.2 derives the same
equation (B.17) as a geodesic equation deduced from the action principle. In mechanical
systems, the variational principle of action integrals yields a geodesic equation.

Naively speaking, a geodesic is a curve representing the shortest (or extremum) path
between two points in a Riemannian manifold. More generally, a geodesic is defined to
be a curve whose tangent vector T remain parallel if they are transported along it,

i.e. if ∇̂T T = 0 (see Kambe (2021a): Eq.(4.8) and Appendix A.6). This recovers the
statement mentioned above that the arc length between two points in a Riemannian

manifold takes the extremum length when ∇̂T T = 0. This fact is seen transparently in
the definition of action integral of a point mass of Eq.(B.1) of Appendix B.1:

S(m) = −cm
∫

dτ, dτ ≡
√

−dxνdxν = c dt
√

1− β2, β ≡ v

c
, (C.14)

where dτ is the relativistic infinitesimal time-like interval, invariant by Lorentz

transformation. Vanishing variation of the integral, δ
∫ b
a
dτ = 0, signifies the extremum

of the time-like interval between the end points a and b. Hence there is no doubt that

a geodesic equation such as ∇̂T T = 0 plays a role in the variation.

(a) Free particle of mass m
In the Appendix B, it is found that the variation of S(m) is given by (B.5):

δ S(m) = −cm
∫ b

a

duν

dτ
δxν dτ ,

under the condition that the variation δxν vanishes at end points. Requiring δ S(m) = 0
for arbitrary variation δxν , we obtain the geodesic equation:

duν

dτ
= ∇τu

ν = uν∂νu
ν = 0,

d

dτ
= ∇τ = uν∂ν , (C.15)

Note that a tangent vector T is defined as T = T ν∂ν = uν∂ν = (dxν/dτ)(∂/∂xν) = d/dτ ,

and that the above equation can be written also in the form, ∇̂T T = 0 with ∇̂T = T ν∂ν .
Thus, it is found that a free particle is governed by the geodesic equation: ∇τu

ν = 0.

(b) Free motion of a perfect fluid
The action of a perfect fluid is given by (B.7) and (B.8) as

S(pf) = −c
∫ ∫

(ρ dV)
(
1 + c−2 ϵ(ρ)

)
dτ, ρdV = dm. (C.16)

Comparing this action for a perfect fluid (of continuum material of density ρ) with the
action S(m) of (C.14) for a single particle of mass m, one finds that the mass energy mc2

is replaced by an integral of the energy ρ (c2 + ϵ) per a volume element dV , where ϵ is
the specific internal energy in the rest frame of the fluid. Namely, the internal energy
is added to the mass energy because the fluid has its own thermal energy in addition to
the rest-mass energy. This is the difference of the two systems.

In the Appendix B.2, the integrand of variation δS(pf) is given by (B.14). Deleting
vanishing terms, its dominant leading order term is given by

δ J (pf) = −c (∆m)
( d

dτ
uν + c−2 1

ρ
∂ν p

)
δxν dτ, ∆m = ρ∆V .
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For the invariance of the action S(pf), it is required that δ J (pf) = 0 is satisfied for
arbitrary variation δxν . Thus, we obtain the following geodesic equation:

∇(pf)
τ uν ≡ d

dτ
uν + c−2 1

ρ
∂ν p = 0,

d

dτ
= uν∂ν =

1

c

(
(∂t + vk∂k) +O(β2)

)
.(C.17)

This reduces to the Euler’s equation of motion of (2.2), which is the same as Eq. (B.17)
deduced in Appendix B.2. As the above derivation shows clearly, the equation (C.17)

defines the covariant derivative ∇(pf)
τ uν of the perfect fluid. The derivative may be called

more appropriately as an invariant derivative (Utiyama (1987) Chap.11), because the
invariance of the action S(pf) is ensured by (C.17).

(c) Free motion of perfect fluid under a background field aν
The action of this system is given in by (2.28):

S(total) = S(pf) + S(int) + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (C.18)

where L(pf), L(int) and L(F) are defined by (2.27).
(i) To find the equations governing the background field aν , we take variation of the
total action S(total) by assuming the fluid motion given and vary the potential aν only.
Expressing the integrand of variation of S(int) and S(F) by J (int) and J (F) respectively,
and using (2.31) in §2.6, their variations are given by

δJ (int) + δJ (F) =
(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν dτ c

−1dV , dV = dV
√

1− β2. (C.19)

Vanishing of δJ (int) + δJ (F) = 0 for arbitrary variation δaν is given in §2.6 as

∂

∂xλ
f νλ = µ jν , (C.20)

(see (2.29) for the 4-current jν). This includes two important messages inside.
Firstly, the equation yields the law of current conservation ∂νj

ν = 0 of (2.33), which
is rewritten in the following equation of continuity

∂νj
ν = 0 ⇒ ∂tρ+∇ · j = 0, (C.21)

for jν = (ρc, ρv) with j = ρv. Secondly, the equation (C.20) represents a pair of fluid
Maxwell equations. Using the definition (3.14) of the fields e and b and the matrix
representation (3.15) of f νλ, the equation (C.20) represents the followings:

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j, where ε = 1/(c2 µ). (C.22)

(ii) Next, to find the equations of fluid motion, we assume the field potential aν given
and vary only the trajectory of the fluid particle (X or v = ∂tX). This is done in

Appendix B.3 or in with the integrand variation δJ (fl+a)given by (2.10) or by

(B.26). For the invariance of the action, vanishing of δ J (fl+a) = 0 is required for
arbitrary variation δxν . Thus, we obtain the following geodesic equation:

∇(fl+a)
τ uν ≡ d

dτ
uν + c−2 1

ρ
∂νp − c−1 fνµ u

µ = 0. (C.23)

For the definition of d/dτ, see (C.17). In , it is already shown that this reduces to
the modified Euler equation (3.16) with additional term of fluid Lorentz force fa:

Dtv + ρ−1 ∇p− fa = 0, fa ≡ e+ v × b. (96)
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