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Abstract-

 

The influence of deposition conditions on the 
morphology and structure of the two-layer system 

                          

TiN /

 

Ni0.905W0.095

 

were studied. The effect of concurrent 
formation of cube texture both in substrate based on 
paramagnetic alloy Ni0.905W0.095

 

and TiN coating was detected 
by means of x-ray diffraction analysis.

 

Composition 

                       

TiN / Ni0.905W0.095

 

may be used as a substrate in the 
conductive architecture of 2G HTS

 

to improve its critical 
current density.
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I.

 

Introduction

 

esearch in the field of high-temperature 
superconductors of the second generation (2G 
HTS) based on YBCO textured films is of 

particular interest because it opens up new perspectives 
for creating coated conductors, which could operate in 
high magnetic fields at temperature of liquid nitrogen 
(77.4 K). [1 –

 

6]. First off all this refers to the transfer of 
electric current over long distances (in particular from 
the NPP to the consumer), the creation of powerful 
magnetic fields, etc [7, 8]. As known the architecture of 
2G HTS [9] with crucial current density above jc

 

~

 

106 

A/cm2 at liquid nitrogen temperature should consist of 
three main components [10 –

 

13]:

 

1.

 

Metallic substrate (thin flexible tape mostly of Ni –

 

W 
alloys with different compositions);

 

2.

 

Buffer layer/layers (oxides, nitrides, in particular TiN 
as seed layer);

 

3.

 

Quasi monocrystalline film of high temperature 
superconductor YBa2Cu3O7-δ

 

(Tc ~ 92 K [14]) with 
strongly reduced fraction of high angle grain 
boundaries.

 

Fabrication of high-jc, biaxially aligned HTS films 
can be achieved due to epitaxial growth on rolling-
assisted biaxially-textured substrates (RABiTS) [11, 15 -

 

18]. The texture (100)[100] of the metallic substrate is 
conferred to the superconductor by deposition of 

intermediate layers which serve as a chemical and a 
structural buffers [19]. The presence of a conductive 
layer acting as an electric shunt to prevent the effect of 
thermal destruction of superconductor in the case of 
over-current opens up prospects for use of titanium 
nitride as the main seed buffer layer in the complex 
architecture of 2G HTS [20 — 22]. 

Moreover metallic substrate must be in 
paramagnetic state at low temperatures to reduce 
losses during ac current transport [23 - 25]. The 
property of paramagnetism is provided by increasing 
the concentration of tungsten in the Ni(1-x)Wx alloy to x ~ 
0.095 [26, 27]. However, it hinders the formation of cube 
texture (100)[100] due to decreasing of stacking fault 
energy Es of cold-rolled alloy. The Esf decreases with 
increasing the content of alloying element in the alloy 
[28]. 

The main aim of this work is to find new ways to 
control properties of paramagnetic substrates based on 
Ni0.905W0.095 alloy for the creating of high-temperature 
superconductors with high current-carrying capacity (2G 
HTS). 
The following research program was implemented: 
1. Experimental study of the effect of nitrogen pressure 

during titanium evaporation on the structural 
features of both components of the two-layer 
system ТiN / Ni0.905W0.095. 

2. Experimental study of the influence of TiN 
deposition time on the structural features of the 
components of the ТiN / Ni0.905W0.095

 system at the 
optimal value of nitrogen pressure. 

3. Experimental study of the influence of TiN 
deposition geometry on the structural features of 
both components of the ТiN / Ni0.905W0.095

 system. 
Development of new ways to control the 

structure and properties of materials based on 
paramagnetic Ni-W alloys with TiN coating. 

II. MATERIALS AND METHODS 

Preparation of substrates was carried out 
according to the scheme which includes following steps 
[29, 30]: 1) synthesis of paramagnetic alloy Ni0.905W0.095; 
2) thin-layer tape production; 3) high-temperature 
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treatment of NiW tapes; 4) deposition of  titanium nitride  
on the surface of NiW tape; 5) XRD analysis of obtained 
samples. 

The initial materials for obtaining the Ni – W 
alloys were Ni and W powders with 99.98 – 99.99 % 
purity (by metallic impurities). The following methods 
were used for the purification from gaseous impurities 
(the main impurity is oxygen represented as nickel and 
tungsten oxides): 1) the heat treatment at temperatures 
~850oC for purification of Ni powder; 2) for the 
refinement of W powder was applied the high-
temperature treatment (1000 – 1200oC) in reducing Ar + 
4 % H2 gaseous mixture flow. The paramagnetic alloy 
was synthesized be means of powder metallurgy in 
deep vacuum (p ~ 10-6 Torr) at T = 1200oC during t = 4 
hours. 

Obtained ingots were rolled up to 50 – 100 μm 
at room temperatures to perform metallic tapes. The 
total degree of cold-rolling deformation was about 95%. 
The resulting operation during the tape production was 
high-temperature annealing at T = 1150oC during t = 2 
hours. 

Thin layers of titanium nitride (TiN) on the 
surface of Ni - 9.5 at% W tapes were obtained by the 
method of ion-plasma deposition[31]. Specific 
parameters of the TiN buffer layer deposition varied 
within the following ranges: negative substrate potential 
U = 50 – 300 V; arc current I = 80 A; temperature of 
substrate ts ~ 450oC; nitrogen pressure in chamber pN = 
1.2 — 6.2 ∙ 10-2 Torr; deposition time τTiN = 0 – 900 s. 

XRD analysis (Cu Kα radiation) was carried out 
to solve the following tasks: determination of the phase 
composition of the system components both the 
substrate Ni0.905W0.095 and coating TiN; determination of 
lattice parameters; analysis of the texture of the 
substrate and the coating [31]; determination of the TiN 
coating thickness [32-34]. 

The method of determination the Tin-layer 
thickness is based on X-ray absorption. The intensity of 
the beam reflected from crystal plane (h k l) of a sample 
with the coating thickness h is as follows: 

                 (1) 

Ihkl (h) – the intensity of the beam reflected from the 
substrate with coating; 
Ihkl (0) – the intensity of the beam reflected from the 
substrate without coating; 
h – coating layer thickness; 
μTiN – the linear absorption coefficient of the coating 
material; 
θ – the Bragg angle. 

Equation (1) and mathematical modeling of the 
relative intensity of some X-ray interferences, in our case 
- the cubic plane (h 0 0) of the Ni - W substrate, makes it 
possible to determine the coating thickness hTiN within 
accuracy of about 10%. 

III. RESULTS 
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In the present study the TiN coating was 
deposited on the front (“face”) and the back (“shadow”) 
side i. e out of line of sight of the cathode beam of the 
Ni0.905W0.095 substrates. Two series of experiments were 
carried out:
− TiN deposition at constant time tTiN = 3 min in a 

wide range of pressures of nitrogen pN = 1.2 – 6.2 ∙
10-2 Torr.

− The deposition of TiN at constant (optimal) N2 

pressure of nitrogen at different times τTiN = 1 – 3 
min.

Fig. 1 and Fig. 2 present a set of diffraction 
patterns of the system TiN/Ni0.905W0.095 for the 
experimental series at different pressures for both face 
and shadow deposition geometries. There are two 
systems of diffraction lines, which belong to the FCC 
lattice of Ni0.905W0.095 alloy and TiN lattice of type NaCl. 
As the pressure of nitrogen growths, textures of the 
substrate and coating exhibit variations.

Fig. 1: Set of diffraction patterns of the system TiN / 
Ni0.905W0.095 for the experimental series at different 
pressures (“Shadow”): a) 0; b) 1.2, c) 1.8, d) 2.8, e) 3.8 
∙10 -2 Torr.

It is natural that the increase in pN leads to 
growth of the intensity of the diffraction lines of TiN, but 
at the same time there is a tendency to redistribute the 
intensities of the diffraction lines in the subsystem of 
Ni0.905W0.095



Fig.
 
2: Set of diffraction patterns of the system TiN / 

Ni0.905W0.095 
for the experimental series at different 

pressures (“face”): a) 0; b) 1.2, c) 1.8, d) 2.8, e) 3.8 ×10 
-2

 
Torr.

 
The Fig. 3 clearly shows considerable growth of 

intensity from Ni-W “cubic” plane I(200) 
at pN 

~ 1.8 ∙
 
10-2

 Torr, indicating the sharpening of cube texture of 
metallic component. The ratio of the cubic I(200) 

and 
diagonal I(220) 

diffraction lines intensity was chosen as a 
“texture parameter”.

 

Fig.
 
3: Values of the ratio I(200) 

/ I(220) 
of the Ni0.905W0.095 substrate after TiN deposition

 
The Fig. 4 shows dependences of TiN lattice 

constant aTiN 
on the

 
pressure of N2 

for different coating 
deposition geometries.

 

Fig. 4: The lattice parameters change of the TiN coating 
deposited onto the both sides of the Ni0.905W0.095

 

substrate at different pressures of nitrogen depending 
on the coating geometry: a) face; b) shadow. 

As can be seen, in the case of “shadow” 
geometry, the curve a is weakly dependent on the pN, 
while for “face” curve b decreases monotonically in the 
whole range of nitrogen pressures. Dynamics of 
variation of the TiN lattice parameter during crystalline 
phase formation in the coating can be associated with 
the change in the flux densities of titanium atoms and 
atoms of nitrogen  depending on the coating geometry. 

 
  

 
 

   
 

 

Fig.
 
5: XRD patterns of Ni0.905W0.095

 
alloy tapes with TiN 

coating (“Face”) at pN

 
= 1.8 ·

 
10-2

 
Torr in the range of 0 

–
 
3 min (from the bottom up)
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The above data (see. Fig. 1 - 4) give reason to 
believe that at pressures pN ~ 1.8 · 10-2 Torr there are 
implemented the most favorable conditions for the 
formation of cube texture of substrate in TiN / Ni0.905W0.095

system. The evolution of diffraction pattern depending 
on the TiN deposition time at optimized pN = 1.8 · 10-2

Torr = const is plotted in the Fig. 5.



 

 
 

 
 

 

 
Fig. 6: XRD patterns of Ni0.905W0.095 alloy tapes with TiN 
coating (“Face”) at pN = 1.8 · 10-2 Torr in the range of 0 
– 3 min (from the bottom up). XRD patterns of 
Ni0.905W0.095 alloy tapes with TiN coating obtained at 
optimized conditions at different coating geometry a) 
Original sample, b) Face, c) Shadow. 

The Fig. 7 shows the dependency of texture 
parameter for Ni0.905W0.095 versus TiN coating deposition 
time. 

 
Fig. 7: Dependency of I(h00) / I(220) ratio from Ni0.905W0.095 
substrate on deposition time. Inset: Dependency I(200)(τ) 
for titanium nitride coating 

As can be seen it exhibits strong maximum at 
τTiN = 2 min that corresponds to hTiN ~1 μm. Process of 
cubic texture formation is also observed in the coating 
layer of TiN. This is proved by the presence of only 
(200)TiN diffraction line, which belong to cubic plane of 
the TiN lattice. The inset in the Fig 7 indicates that I(200) 
from TiN monotonically increases in the whole range of 
τTiN. 

In order to determine fine variations of texture in 
the TiN / Ni0.905W0.095 system the algorithm of circular 
diagrams was used as a supplementation to the 
classical ways. This method is based on the 
construction and analysis of diagrams of the angular 
distribution of the intensity from crystallographic planes. 
In order to study the density of normals to (h k l) planes 
in various directions, a sample need to be rotated by 
angle φ about the normal to its surface. 

As a criterion for the validity of the initial 
hypothesis regarding the realization of perfect cubic 
texture was chosen the known statistical method χ2. To 
calculate it n = 23 degrees of freedom were considered. 
Of course in the case of forming an ideal cubic texture, 
the value of “Chi - square” tends to be zero. 

By way of illustration the Fig. 8 shows circular 
diagram from plane of type (h 0 0) for TiN coating at                 
τ = 2 min, where texture effects at which texture effects 
are most pronounced. The Fig. 9 shows circular 
diagrams from (2 0 0) plane related to Ni0.905W0.095 
subsystem before (Fig. 9a) and after coating (Fig. 9b) at 
optimized parameters: 

hTiN = 1 µm, pN = 1.8 · 10-2 Torr.

 

Fig.
 
8: Circular diagram of (2 0 0) plane for TiN coating 

layer
 

It is worth to mention that for crystals 
belonging to cubic symmetry, the polar absorption 
tensor does not depend on the direction. Thus, any 
change in the intensity of the diffracted beam can be 
solely attributed to the processes of texture formation 
occurring in a two-layer system “substrate –

 
coating”.
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As the deposition time τTiN increases up to 2 
min, in other words as the coating thickness growths, 
the relative intensity of (h 0 0) type diffraction lines 
increases, while the intensities of reflections from the 
diagonal (h k 0) and other FCC lattice planes decreases. 
Such behavior of the evolution of diffraction pattern 
indicates qualitatively substantial intensification of 
degree of the cubic texture component in Ni0.905W0.095

paramagnetic alloy tape. According to Fig. 6, that shows 
diffraction patterns of TiN / NiW systems obtained at 
different geometry of TiN deposition, mentioned above 
effect of texture enhancing is more apparent for the 
“face” coating geometry.



One can see from the graphs above that the 
deposition of the TiN coating leads to the improvement 
of the cubic texture (χtape = 0.11 → χcoated = 0.07) in the 
metal component (Ni-W) of the two-layer system TiN / 
Ni0.905W0.095 as well as to formation of strong texture in 
coating layer (χTiN = 0.005). 

IV. DISSCUSSOION 

The subject of discussion in this paper
 
is a set 

of observed effects related to the peculiarities of cubic 

texture formation in the thin-film system TiN / Ni0.905W0.095 
(see Fig. 3 – 9): 
1. Qualitative changes in the variation of the crystal 

lattice parameter dependencies of titanium nitride 
on the nitrogen pressure by varying the “geometry” 
of deposition during the experiment. 

2. The formation of rather strong cubic texture in 
metallic layer of the thin-layer system                             
TiN/ Ni0.905W0.095. 

3. The formation of quasi mono crystalline structure  of 
TiN buffer layer in the system TiN / Ni0.905W0.095.  

 
 

Fig. 9: Circular diagram of (2 0 0) plane from a) original tape based on alloy Ni0.905W0.095 and b) subsystem  

The identified differences in the dependences of 
the lattice parameters of titanium nitride may be caused 
by differences in the mechanisms and kinetics of the 
phase formation of TiN titanium nitride during deposition 
on different sides of the Ni-W tape. Dependence on the 
“front” side reflects the increase in the proportion of 
atoms with low atomic radius. On the “shadow” side the 
dependence reflects the mechanical reduction of 
titanium ion flux density due to deposition on the 
opposite side of the substrate. It is possible

 
that the 

order of the reaction of the interaction of Ti and N ions 
may change.

 
The set of data presented in the figures 5 -

 
7

 
clearly indicates the processes of texture formation

 
in 

substrate based on the paramagnetic alloy 
Ni0.905W0.095.under influence of TiN layer.

 
This is clearly 

supported by the change of shape of intensity 
distribution from (200)NiW 

crystal plane as shown in the 
Fig. 9.

 
The effect of an anomalous increase in the 

degree of cubic texture of the substrate, as well as the 
formation of a biaxial texture in the coating layer, is 
obviously associated with the process of reorientation of 
crystallites of both components of the TiN / Ni0.905W0.095 
system under the influence of interfacial stresses arising 
at the interface of materials with different values of the 
lattice parameters. 

V. CONCLUSION 

Ways to control the architecture of two-layer 
system TiN / Ni0.905W0.095 based on the change of 
nitrogen pressure during titanium evaporation, 
deposition time, and coating geometry were developed. 

The conditions for creating two-layer “substrate 
– coating” compositions are optimized, which provide 
the possibility of obtaining strong cubic texture in the TiN 
coating layer deposited on the surface of the tape 
based on paramagnetic alloy Ni0.905W0.095. 

The main result of the work is the experimental 
detection of the effect of correlated formation of a cubic 
texture in both components of the two-layer system TiN / 
Ni0.905W0.095, which should provide a significant increase 
in critical current density of 2G HTS coated conductors. 
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