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Gauge Symmetries in Physical Fields (Review)   
 By Tsutomu Kambe   

 University of Tokyo 

Abstract- Gauge invariance is one of the fundamental symmetries in theoretical physics. In this 
paper, the gauge symmetry is reviewed to see how it is working in fundamental physical fields: 
Electromagnetism, Quantum Electro Dynamics and Geometric Theory of Gravity. In the 19th 
century, the gauge invariance was recognized as a mathematical non-uniqueness of the 
electromagnetic potentials. Real recognition of the gauge symmetry and its physical significance 
required two new fields developed in the 20th century: the relativity theory for physics of the world 
structure of linked 4d-spacetime and the quantum mechanics for the new dimension of a phase 
factor in complex representation of wave function. Finally the gauge theory was formulated on 
the basis of the gauge principle which played a role of guiding principle in the study of physical 
fields such as Quantum Electrodynamics, Particle Physics and Theory of Gravitation. Fluid 
mechanics of a perfect fluid can join in this circles, which is another motivation of the present 
review. There is a hint of fluid gauge theory in the general representation of rotational flows of an 
ideal compressible fluid satisfying the Euler’s equation, found in 2013 by the author. In fact, law 
of mass conservation can be deduced from the gauge symmetry equipped in the new system of 
fluid-flow field combined with a gauge field, rather than given a priori. 

Keywords: gauge principle, covariant derivative, current conservation, maxwell equations, theory of 
gravitation. 

GJSFR-A Classification:  FOR Code:   029999p 
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Gauge invariance is one of the fundamental symmetries in modern theoretical physics.
The gauge invariance was recognized in the 19th century as a mathematical non-
uniqueness of potentials that exists despite the uniqueness of observable electromagnetic
fields E and B. In the 20th century, physical significance of the gauge symmetry was
recognized very fundamental and played a role of guiding principle in the study of
physical fields such as Electromagnetism, Particle physics and Theory of Gravitation.

It took almost a century to recognize its fundamental physical significance, resulting
in, finally, successful formulation of the Gauge Principle. In particular, the gauge theory
played vital roles in the remarkable development of modern particle physics which
was revolutionary (e.g. Aitchison & Hey (2013), Utiyama (1956)). In fact, historical
development of the gauge theory took gradual and zigzag processes.

In the present paper, firstly, historical developments of gauge theory are reviewed
from its initial gauge transformation to later theory of gauge principle taking a zigzag
way from one physical field to another, and secondly, possible application of the gauge
theory is envisaged to fluid-flow field although the field of fluid-flow is not listed in the
literature reviewed.

What is now generally known as a gauge transformation of the electromagnetic
potentials was discovered in 19th century in the process of formulation of classical
electrodynamics from mathematical point of view (rather than physics) by its pioneers
(Faraday, Neumann, Weber, Kirchhoff, Maxwell, Lorenz, Helmholtz, Lorentz and others:
according to Jackson & Okun (2001)). It was, in fact, non-uniqueness of a vector
potential A in mathematical representation of electromagnetic field that exists despite
the uniqueness of the electric field E and magnetic field B. This is now referred to
as local gauge invariance of Maxwell’s equations. The law of electromagnetic induction
discovered by Faraday (1831) is represented mathematically by the first of the following
pair of Maxwell equations:

Abstract- Gauge invariance is one of the fundamental symmetries in theoretical physics. In this paper, the gauge 
symmetry is reviewed to see how it is working in fundamental physical fields: Electromagnetism, Quantum 
ElectroDynamics and Geometric Theory of Gravity. In the 19th century, the gauge invariance was recognized as a 
mathematical non-uniqueness of the electromagnetic potentials. Real recognition of the gauge symmetry and its 
physical significance required two new fields developed in the 20th century: the relativity theory for physics of the 
world structure of linked 4d-spacetime and the quantum mechanics for the new dimension of a phase factor in 
complex representation of wave function. Finally the gauge theory was formulated on the basis of the gauge 
principle which played a role of guiding principle in the study of physical fields such as Quantum 
Electrodynamics, Particle Physics and Theory of Gravitation. Fluid mechanics of a perfect fluid can join in this 
circles, which is another motivation of the present review. There is a hint of fluid gauge theory in the general 
representation of rotational flows of an ideal compressible fluid satisfying the Euler’s equation, found in 2013 by 
the author. In fact, law of mass conservation can be deduced from the gauge symmetry equipped in the new 
system of fluid-flow field combined with a gauge field, rather than given a priori.
Keywords: gauge principle, covariant derivative, current conservation, maxwell equations, theory of 
gravitation.

Author: (Former Professor at) Department of Physics, University of Tokyo, Tokyo, Japan, (Home) Higashi-yama 2-11-3, Meguro-
ku, Tokyo, Japan. e-mail: kambe@ruby.dti.ne.jp

a) Historical development of gauge transformations
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Gauge Symmetries in Physical Fields (Review)

∂tB +∇×E = 0, ∇ ·B = 0. (1.1)

The second is an outcome of the fact that the magnetic field B is generated by electric
currents (Jackson (1999, Chap.5)), implying non-existence of magnetic monopoles. In
Maxwell’s electromagnetic theory (1856), the vector potential played an important role.
Introducing a 3-vector potential A = (A1, A2, A3) and a scalar potential Φem = −A0,
and defining E and B by

B = ∇×A, E = −c−1 ∂tA−∇Φem, (1.2)

the above pair of equations (1.1) are satisfied identically. This led to a finding that,
using an arbitrary differentiable scalar function Ψe, the following transformation of the
potentials A and Φem,

A → A+∇Ψe, Φem → Φem − ∂tΨ
e, (1.3)

revealed a significant property, what is now called the gauge transformation, of the
electromagnetic field. Maxwell (1873) noticed the invariance of B only by the first of
the transformation (1.3), but missed the second one because he relied on the gauge
condition ∇ ·A = 0. The simultaneous two transformations of (1.3) was established by
L. V. Lorenz (1867) on the basis of the following gauge condition,

∇ ·A+
1

c
∂tΦ

em = 0. (1.4)

It is remarkable that the observable fields E and B of (1.2) are invariant in spite of the
transformation (1.3). This was the invariance known in the electromagnetic theory of
the 19th century. In modern gauge theory, the gauge condition (1.4) is often referred
to as Lorentz condition, according to Dutch physicist H. A. Lorentz who was one of
the key figures in the final formulation of classical electrodynamics (1904) including the
condition (1.4), while the former Danish physicist L. V. Lorenz (1867) introduced first
the condition (1.4) (Jackson & Okun, 2001).

In the 19th-century classical electrodynamics, the transformation (1.3) was
understood as meaning simply non-uniqueness of the vector potential A and scalar
potential Φ in a mathematical sense. Its physical significance was not recognized until
the 20th-century physics was developed. In the relativity theory of Einstein (1905, 1915),
four dimensional (4d) spacetime xν = (x0, x1, x2, x3) with x0 = c t was introduced under
the Minkowski metric ηµν = diag(−1, 1, 1, 1) = ηµν .† The structure of electromagnetism
is most fitted to the 4d-spacetime. For example, the Lorenz condition (1.4) can be
represented compactly as ∂Aν/∂xν = 0 in the 4-d spacetime, where Aν = (Φ,A).
See (1.8) for the difference between the covariant (downstairs) vector Aµ and the
contravariant (upstairs) vector Aν . Scalar product in the Minkowski space is formed like
Aµ dx

µ = ηµνA
νdxµ by the pair of a covariant vector Aµ and a contravariant vector dxµ

((see 1.5)). [ Concerning the difference of transformation property between the covariant
and contravariant vectors, see the footnote to Appendix A.1. ]

Stimulated by Einstein’s relativity theory,
the same transformation (1.3) of electromagnetic 4-potentials Aν , but turned out to
be unsuccessful. The term gauge (actually the German term Eich) was used to this
transformation by Weyl (1918) first. He proposed to unify electromagnetism and gravity
geometrically by attaching a scale factor l of the form l ∝ exp[

∫
ϕk(x)dx

k] where its
variation is given by δl = lϕk δx

k. Although this received unfavorable response from
Einstein to be in disagreement with observation, after the advent of the quantum theory,
its interpretation was renewed by London (1927) that the Weyl’s proposal could be used
in quantum theory by changing the scale factor to a phase factor by attaching it to the
wave function (xν) of quantum mechanics in the form,

Weyl attempted in 1918 to reinterpret

𝜓𝜓



  
 

  
 

 
 

 

 
  

 
  

 
  

 
   

  
   
 

 
 

  

  
  
   
 

  
 

  
  

 

Ψ(xν) = exp
[
iγ

∫
Aµ(x)dx

µ
]
· (xν), (1.5)

where γ = e/ℏ with e a charge, and the function (xν) satisfies the Schrödinger equation:

iℏ ∂t = −(ℏ2/2m)∇2 + eV ψ, (1.6)

interpreted in and given by (2.29). Physical significance of the gauge invariance was
upheld later by H. Wyle in 1929, who proclaimed this invariance as a General Principle
and called it gauge-invariance (Eichinvarianz in German). The gauge invariance is a
symmetry rooted at the deepest level of physics, as interpreted next in

In quantum mechanics, the transformation (1.3) was understood as a phase
transformation of the wave function of Schrödinger’s equation. In the theory of
gravitation, on the other hand, the gauge transformation was generalized to such
transformations that the vectors or curvature tensors ‡ characterizing the gravitational
field as physical reality do not change (or satisfy associated transformation laws) in spite
of coordinate transformations, where the coordinate frames are taken arbitrarily by the

† Greek letters such as α, β, µ, ν, λ, · · · take the quartet (0, 1, 2, 3) to denote 4d-spacetime components,

whereas Latin letters such as i, j, k, · · · take the triplet (1, 2, 3) to denote 3-space components.
‡ In differential geometry, a vector (or a tensor) in an n-dimensional coordinate frame U is not a simple

n-tuple array (or a simple n × n matrix, respectively) of real numbers, but they must follow certain

transformation laws when mapped to another n-dimensional coordinate frame V .
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theory (its details are given in for weak gravitational field). In fluid
mechanics too, the convective derivative (following fluid motion) can be shown to satisfy
invariance with respect to generalized gauge-transformation, presented in

Historically, the gauge symmetry has been established through zigzag courses. Next
formulation may be a typical example. Observing the phase part of the extended wave
function Ψ(xν) of (1.5), the phase factor implies existence of the following one-form A
in the spacetime (xµ), defined by

A = Aµdx
µ = A0dx

0 + A1dx
1 + A2dx

2 + A3dx
3, (1.7)

Aµ = ηµνA
ν = (−Φem,A). Aν = (Φem,A). (1.8)

The extended wave function Ψ(xν) implies a certain geometrical structure in the
spacetime xµ, furnished with a field Aµ existing in the 4-d spacetime xν . The field
Aµ possesses an interesting property which is now presented.

The pair of fields E and B of (1.2) are derived from (1.7). In fact, taking exterior
differential d of A, we obtain the field strength two-form F :

F = dA =
∑ 1

2
Fνλ dx

ν ∧ dxλ, Fνλ = ∂νAλ − ∂λAν , (1.9)

F ⇔ (Fνλ ) =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (1.10)

where E = (Ek) and B = (Bk) are defined by (1.2). The pair of equations (1.1) are
also obtained from (1.9) by taking, once more, exterior differential of F = dA, yielding

b) A hint of gauge principle with the argument reversed

𝜓𝜓

𝜓𝜓𝜓𝜓

section II b)

section I b).

section III c) iii. and III d)

section IV c).
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Let us consider the gauge transformation concerning the one-form A, defined by

G : Aν ≡ A(old)
ν → A(new)

ν ≡ A′
ν = A(old)

ν − ∂νΘ , (1.11)

equivalent to (1.3), where Θ is an arbitrary differentiable function. Then, we have

A(new) = A
(new)
ν dxν = A

(old)
ν dxν − ∂νΘ dxν = A(old) − dΘ . From this, we find the

invariance F (new) = F (old) since d2Θ ≡ 0. Namely, the electromagnetic fields E and B
are invariant by this local gauge transformation. We will see in for QED that there
is local gauge invariance in quantum electrodynamics (QED) as well (e.g. Aitchison &
Hey (2013, Chap.2)). It is worth noting that the Maxwell equations are invariant under
the local gauge transformations (1.11). The details are given in the section

Suppose that we have a particular form of Aµ-field defined by Ãµ ≡ ∂µΘ with Θ

an arbitrary scalar function differentiable two times. Then the one-form Ã = Ãµdx
µ is

given by dΘ , and we have the expression Ψ = exp[iγΘ(xν)] · (xν), since
∫
Ãµdx

µ = Θ .

In addition, since Ã = dΘ , the field strength form F vanishes identically, because
F = dÃ = d2Θ ≡ 0. Namely, the observable fields E and B vanish identically, although
there exists non-vanishing one-form Ã in the background spacetime.

Quantum-mechanical probability density is given by |Ψ|2 = | |2. Namely the
probability of a quantum mechanical particle is unchanged formally by the existence
of Ãµ-field. It is well-known for the wave function = | | exp(iθ) that the current
conservation law ∂νj

ν
(q) = 0† is deduced from the equation (1.6):

∂νj
ν
(q) = 0, with j0(q) = ρ c, jk(q) = (ρ λ) ∂kθ (k = 1, 2, 3) (1.12)

where jν(q) = (j0(q), j
k
(q)) is a 4-current density with ρ ≡ | |2, λ ≡ ℏ/m and ∂0 = c−1∂t,

In the presence of Ãµ-field, the 3-current flux jk(q) is changed to ρ λ ∂k(θ + γΘ). Thus,

only effect of the extended phase factor is to change the 3-current jk(q) from θ to θ+γΘ .

In the gauge theory, global gauge transformation is defined by the following
transformation: Ãµ → Aµ = Ãµ + ϵµ for 4 arbitrary constants ϵµ. It is trivial to see
that the system is invariant with this global transformation, because the fields E and
B are given by derivatives of Aµ. Therefore, the present system is said to be invariant
globally. This is the first step of the gauge principle, examining whether the system
under consideration is equipped with desirable conditions. We will return to see what
is the desirable, after having seen the details of the local invariance given in

Essence of the gauge principle lies in requiring local gauge invariance. In the present
case, this is defined by Ãµ → Aµ = Ãµ+αµ(x

ν) for 4 arbitrary differentiable fields αµ(x
ν)

depending on spacetime coordinates xν . Since αµ is assumed to take a general form not
limited to the form ∂µΘ , the one-form A = Aµdx

µ does not necessarily take a form of
a total derivative dΘ . Hence, the field strength two-form F = dA does not vanish in
general. This means that we have non-vanishing observable fields of E and B, according
to (1.9) and (1.10). This changes drastically our battle field of study. Not only the
Maxwell equations (1.1) must be satisfied, but also the governing Schrödinger equation
should be reformed with partial derivatives ∂’s replaced by covariant derivatives ∇’s, as
given by (2.33) below. Thus, the so-called gauge-potential Aµ is taken into the equation
(2.32) to represent a new interaction force. In this way, a new force is introduced by
the local gauge invariance.

dF = d2A ≡ 0. Its detailed expressions are given in Thus, the definition
A = Aµdx

µ of (1.7) is sufficient for deriving the pair of Maxwell equations (1.1).
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From the example just mentioned above, it is seen that there is a crucial difference
between global invariance and local invariance of physical fields. Each invariance in its
own right composes the significance of the principle.

To understand the distinction between the two is vital to capture the physics of the
fields. In a global invariance, the same transformation is carried out at all spacetime
points of the field where current conservation (such as the form of (1.12)) is satisfied,
while in a local invariance different transformations are carried out at different individual
spacetime points. In general, a theory that is globally invariant will not be invariant
under locally varying transformations. This is understood to mean that a new field
is required in order to satisfy the local invariance. To that end, the system under
investigation must have a potential capacity receptive to, i.e. able to receive a new field.
In fact, the field Ãµ = ∂µΘ in the previous section played a diagnostic field to test
whether the system is receptive to a new field αµ(x

ν). By introducing a new general
field αµ(x

ν) in such a receptive system that interacts with the original field and which
also transforms the system physically acceptable ways under the local transformations,
a local gauge invariance is established.

Reflecting the above analysis of the gauge principle, consider what is the desirable
factor playing the role of a game-changer from vanishing-field state to the state of non-
vanishing fields of E and B equipped with a new force (electromagnetic, in this case).

† This is equivalent to ∂t| |2 + ∂k(ψ∂k
∗ − ∗∂k ) = 0, derived from (1.6).

It is reasonable to identify that most important factor is a geometrical one. Namely, the
one-formA = Aµdx

µ = ηµν A
νdxµ of (1.7) is vested to the spacetime (xµ) which is a most

important geometrical structure. In fact, the present gauge principle sets as a premise
the existence of one-form A in the 4-d spacetime equipped with the metric ηµν . With
this reasoning, one understands that the gauge principle is rooted on the fundamental
level of Physics and that the gauge principle works, as proposed by Utiyama (1956), not
only in quantum electrodynamics, but also in particle physics and theory of gravitation,
because one can define one-form A = Aµdx

µ. Almost needless to say, the field of fluid
flows in the 4-d spacetime is not excluded, to be presented in the accompanying paper.

In the gauge theory of particle physics, current conservation law is considered to be a
must. It is interesting philosophically to investigate how such a current conservation law
working in the physics of discrete particles compromises with the physics of continuum,
such as in the theory of gravitation (dealing with spacetime continuum) or in the theory
of fluid flows (dealing with material continuum with continuous distribution of mass
density ρ). The paper accompanying the present paper is concerned with the last
problem of fluid-flow fields.

Considering the key role played by the gauge invariance in modern theoretical
physics, it would be reasonable and useful to review how it is working in the fundamental
fields. On the reviews of historical facts of the initial stage of gauge theory, one can
refer two important articles of O’Raifeartaigh (1997) and Jackson and Okun (2001),
both of which describe how the modern gauge theory developed in its early days. It
took almost a century to formulate the non-uniqueness of potentials in the context of
theoretical physics, existing despite the uniqueness of the electromagnetic fields E and
B. In regard to the gauge condition (1.4), Lorenz’s contribution is noted again. In
fact, Lorenz (1859) introduced the so-called retarded potentials and showed that those

c)

d)

e)

Gauge Principle: global invariance and local invariance

Desirable factor for the gauge theory

Historical reviews
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satisfied the relation: ∇ · A + c−2 ∂tΦ = 0 (Jackson & Okun, 2001), which is now
almost universally known as the Lorentz condition, but founded originally by Ludvig V.
Lorenz (a Danish physicist) who preceded the Dutch physicist Hendrik A. Lorentz. The
English word gauge, a translation of German eichen, was not used in English until 1929
(Weyl, 1929a) for the transformations such as (1.3).

Taking two fundamental physical fields, Electromagnetism and Quantum Electro-
dynamics, we review the gauge symmetries and see how the gauge symmetry has been
captured historically.

: Gauge Invariance and Charge Conservation

Electromagnetic fields are represented with a 4-vector potential Aµ in the 4d
spacetime xµ = (x0, x1, x2, x3) (where x0 ≡ ct and µ = 0, 1, 2, 3):

Aµ = (Φ,A), A = (A1, A2, A3).

Covariant version of Aµ is Aµ defined by

Aµ = ηµνA
ν = (−Φ,A), where ηµν = diag(−1, 1, 1, 1) = ηµν , (2.1)

ηµν being the Minkowski metric of the Special Relativity. To represent electro-magnetic
fields, we begin with a frame-independent formulation. To this end, according to the
mathematical formalism of differential forms, an electromagnetic one-form A is defined:

A = Aνdx
ν = −Φdx0 + A1dx

1 + A2dx
2 + A3dx

3 (x0 = ct).

The pair of electromagnetic fields E and B are given by

E ≡ −c−1 ∂tA−∇Φ B ≡ ∇×A . (2.2)

Taking external differential d of A, we obtain the field strength two-form F :

F = dA =
∑ 1

2
Fνλ dx

ν ∧ dxλ, Fνλ = ∂νAλ − ∂λAν (2.3)

Matrix representation of the tensor Fνλ is given by (1.10). Once again, taking exterior
differential of F = dA, we obtain the following identity equation:

dF = d2A ≡ 0, d
(
Fνλ dx

ν ∧ dxλ
)
= (∂µFνλ) dx

µ ∧ dxν ∧ dxλ, (2.4)

dF =
∑

F[νλ,µ] dx
µ ∧ dxν ∧ dxλ = 0. Fνλ,µ ≡ ∂µFνλ. (2.5)

See the footnote for F[νλ,µ].† This reduces to the equation expressed compactly:

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (2.6)

From this, we obtain a pair of Maxwell equations (cf. (1.1)):‡

∇ ·B = 0, ∂tB +∇×E = 0, (2.7)

II. Gauge in Variances in Two Fundamental Physical Fields — A Review

a) Electromagnetic Field

i. Maxwell equations
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By the definitions (2.2) of the electric field E and magnetic field B, the two equations
of (2.7) are satisfied identically. In other words, in stead of using the pair of equations
(2.7), it is sufficient that the 4-potential Aµ = (Φ,A) is used with the understanding
that the electromagnetic fields E and B are given by the definitions (2.2).

The second pair of Maxwell equations are given by

∇ ·E = 4π ρe, − 1

c
∂tE +∇×B =

4π

c
je, (2.8)

(cf. Jackson (1999, §11.9)). This pair of equations are derived from the principle of least
action. The action integral S(em) is expressed by a linear combination of two terms with

a part S
(em)
emA representing an electromagnetic field by the potential Aα and another S

(em)
int

representing interaction between the field and 4-current j νe :

S(em) = S
(em)
emA + S

(em)
int

S
(em)
emA = − 1

16πc

∫
Fαβ F

αβdΩ , S
(em)
int =

1

c2

∫
j αe Aα dΩ , (2.9)

where dΩ = d4xν . From the variation δAα of the field Aα where Fαβ = ∂αAβ − ∂βAα,
the following equation is deduced in the form of tensor equation (Appendix D: (D.4)):

∂βF
αβ =

4π

c
j αe , (2.10)

where j αe = (ρec, je) with je = ρev, and F
αβ is given by F αβ = ηαµ Fµν η

νβ. Practically,
the matrix F αβ is obtained from Fνλ of (1.10) with simply replacing E by −E.

† F[νλ,µ] ≡ 1
3!

(
∂µFνλ + ∂νFλµ + ∂λFµν − ∂µFλν − ∂νFµλ − ∂λFνµ

)
with Fλν = −Fνλ etc. .

‡ The first is obtained with (α, β, γ) = (1, 2, 3), while the second is derived when one of α, β and γ

takes the suffix number 0.

Conservation law of electric charge can be derived from (2.10) by taking 4-
divergence of both sides:

0 = ∂α∂βF
αβ =

4π

c
∂αj

α
e . (2.11)

The left-hand side vanishes identically because the differential operator ∂α∂β is
symmetric with respect to α and β, while F αβ is antisymmetric. Total sum with respect
to α and β (taking indices 0, 1, 2, 3) vanishes identically. Thus, we have the charge
conservation equation with j βe = (ρec, je):

∂αj
α
e = ∂tρe +∇ · je = 0. (2.12)

This conservation law is closely related to the gauge symmetry of the electromagnetic
field. Let us consider the gauge transformation concerning the one-form A, defined by

G : Aν ≡ A(old)
ν → A(new)

ν ≡ A′
ν = A(old)

ν − ∂νΘ , (2.13)

equivalent to (1.3), where Θ is an arbitrary differentiable function. Then, we have

A(new) = A(new)
ν dxν = A(old)

ν dxν − ∂νΘ dxν = A(old) − dΘ .

From this, we find the invariance F (new) = F (old) as follows:

F (new) = dA(new) = dA(old) + d2Θ = dA(old) = F (old), (2.14)

ii. Conservation of electric charge and Gauge invariance
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since d2Θ = 0 identically. Thus it is found that the two-form F defined by (2.3) is
invariant with respect to the transformation G, called the gauge transformation by the
historical reasons explained in the Introduction. Therefore, the electromagnetic fields
E and B are invariant, said as gauge-invariant.

The gauge invariance (2.14) and the charge conservation (2.12) are connected
closely. In fact, the connection is inseparable, which can be shown as follows. In the
expression of Sint given in (2.9), we replace the factor Aα by Aα−∂αΘ . Then the action
Sint has an additional term, ∫

j αe
∂Θ

∂xα
dΩ . (2.15)

Using (2.12) expressing the charge conservation, one can rewrite the integrand in a form
of 4-divergence ∂(Θ j αe )/∂x

α. Then the above integral is transformed into vanishing
boundary integrals by the conditions of the variational principle.

Thus the gauge transformation has no effect on the equation of motion, so long
as the equation of charge conservation (2.12) is valid (cf. Landau & Lifshitz (1975)
§29). Namely, the charge conservation law ensures the gauge invariance. Conversely,
the gauge invariance requires the charge conservation equation ∂j αe /∂x

α = 0, because
the expression (2.15) is transformed to −

∫
Θ ∂αj

α
e dΩ , which is required to vanish to

any scalar function Θ by the gauge invariance.

In the previous subsection (i), it is remarked below (2.7) that the 4-potential
Aα = (Φ,A) can be used instead of the pair of Maxwell equations (2.7). Now the set
of four Maxwell equations are reduced to two equations of (2.8) when the 4-potentials

∂βF
βα = −(4π/c) j αe , where

∂βF
βα = ∂β(∂

βAα − ∂αAβ) = ∂β∂
βAα − ∂α(∂βA

β), (2.16)

∂α ≡ ∂

∂xα
= (∂0,∇); ∂α = ηαβ∂β = (−∂0,∇), (2.17)

and ∂0 = ∂/∂(ct) and ∇ = (∂1, ∂2, ∂3). Therefore, the tensor equation (2.10) becomes

∂β∂
βAα − ∂α(∂βA

β) = −4π

c
j αe , (2.18)

where ∂β∂
β is the differential operator of wave equation and ∂βA

β 4-divergence of Aβ:

∂β∂
β = −∂ 2

0 +∇2 = ∇2 − c−2∂ 2
t , ∂βA

β = c−1∂tΦ +∇ ·A. (2.19)

In the last section (ii), it is shown that there is freedom in the potential Aα. This
freedom enables choosing a set of potentials Aα = (Φ,A) to satisfy

Lorenz condition: ∂αA
α = c−1∂tΦ +∇ ·A = 0. (2.20)

Then, the equation (2.18) reduces to the wave equation with the source term (4π/c) j αe :

Wave equation: (∇2 − c−2∂ 2
t )A

α = −4π

c
j αe . (2.21)

iii. Electromagnetic wave under Lorenz gauge

Aα are used as dependent variables and the equation (2.2) for the definition of E
and B. The two equations of (2.8) are given by the single tensor equation (2.10): 
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Substituting Aα = (Φ,A) and j αe = (ρec, je), this represents uncoupled wave equations,
one for Φ and one for A:

∇2Φ− c−2∂ 2
t Φ = − 4π ρe, (2.22)

∇2A− c−2∂ 2
t A = − 4π

c
je, (2.23)

The wave equation (2.21) and the Lorenz condition (2.20) form a set of equations
equivalent to the Maxwell equations in vacuum. In a later section, we will see,
surprisingly, an analogous set of equations for gravitational waves in generalized form.
This implies that a sort of gauge symmetry exists as well in the theory of gravitation.

What is now known as a gauge transformation of the electromagnetic potentials was
discovered in the formulation process of classical electrodynamics in the 19th century.
However, real recognition of its physical significance required two new fields to be
developed: the relativity theory for the structure of 4d-spacetime, like a 4-potential
Aα = (Φ,A) and a current 4-vector j ν = (ρc, j), and the quantum mechanics (say) for
the new dimension of a phase factor exp [iχ(xν)] (see next . In fact, the notion of
gauge symmetry did not appear in the context of classical electrodynamics, but required
the invention of quantum mechanics in particular, according to Jackson & Okun (2001).

As mentioned above, the gauge invariance and charge conservation are connected
closely. In fact, the connection is inseparable. O’Raifeartaigh L (1997) cites the original
paper of Weyl (1918), in which Hermann Weyl commented in the postscript (1955) as

· · · , gauge-invariance corresponds to the conservation of electric charge in
the same way that coordinate-invariance corresponds to the conservation of
energy and momentum. Later the quantum theory introduced the Schrödinger-
Dirac potential (wave function) of the electron-positron field; it carried with
it an experimentally-based principle of gauge-invariance which guaranteed the
conservation of charge, · · · · · · · · · . (See O’Raifeartaigh (1997, p.36))

In fact, Noether’s theorem shows ∂νj
ν = 0 for 4-current jν of relativistic quantum

systems such as those governed by Klein-Gordon equation or Dirac equation in
Minkowski space (Aitchison & Hey (2013, Chap.3); Frankel (l997, §20.2)).

In the context of quantum theory, the attempt of Weyl (1918) is worth mentioning
first. He proposed to unify electromagnetism and gravity geometrically by attaching a
scale factor of the form l ∝ exp[

∫
ϕk(x

ν) dxk] with its variation given by δl = lϕk δx
k.

This received unfavorable response to be in disagreement with observation.
However, after the advent of the quantum theory, it was revived by London (1927)

that Weyl’s proposal could be used in quantum theory by changing the scale factor
exp [χ] (χ : real) to a phase factor exp [iχ] and attaching it to the wave function
of quantum mechanics. Suppose that 0 describes the zero-field wave function. Then
by the transformation from 0 to = 0 exp[iγ

∫
Aµ(x

ν)dxµ], the wave function
describes the state interacting with the electromagnetic potential Aµ (where γ ≡ e/ℏ).

Earlier than this work, Fock (1926) proposed extension of the freedom of potential
Aµ in the classical electrodynamics to the quantum mechanics of a particle with a charge
e interacting with the field Aµ. With the transformation of the potential,

Aµ → A′
µ = Aµ + ∂µχ, (2.24)

b)

i.

Quantum Electro-Dynamics (QED): Gauge Principle and Covariance

Gauge transformation in QED
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the wave functions is transformed correspondingly by a phase transformation:

→ ′ = exp[ iγχ]. (2.25)

What Fock discovered for the quantum mechanics was that, for the form of the quantum
equation to remain unchanged by these transformations, the wave function is required
to undergo the transformation,

0 → = 0(x
ν) exp[ iγ

∫
Aµ(x

ν) dxµ], (2.26)

whereby is multiplied by a local (space-time dependent) phase factor. Later, the
concept was declared a general principle by Hermann Weyl (1928, 1929a,1929b). The
invariance of a theory under combined transformations such as (2.24) and (2.25) is
known as a gauge symmetry or a gauge invariance and was a touchstone in developing
modern gauge theory. (Jackson & Okun)

A wave function of quantum mechanics evolves in time according to the equation
iℏ ∂t = Hψ, where ℏ is the Planck constant and H the Hamiltonian operator which is
defined, in the absence of the electromagnetic field, by

H(x, p) = p2/2m+ eV (x), (2.27)

where p is the canonical momentum, V the potential energy and e the charge of the
particle. In Schrödinger’s equation, the canonical momentum pk is represented by the
differential operator on the wave function expressed as

pk = −iℏ(∂/∂xk)ψ, (2.28)

while the potential V is a multiplicative operator on . From (2.27), Schrödinger’s
equation is given by

iℏ ∂t = −(ℏ2/2m)
∑
k

(∂/∂xk )2 + eV ψ. (2.29)

When there exists an external electromagnetic field and the particle has a charge e, the
Hamiltonian H of (2.27) should be replaced by

H(x,p) =
1

2m
(P − e

c
A)2 + eV + eΦ (2.30)

where the previous momentum p is replaced by an expression using the new canonical
momentum P = p + (e/c)A. Replacing Pk with −iℏ∂/∂xk, Schrödinger’s equation
becomes

iℏ ∂t =
1

2m

∑
k

(
− iℏ

∂

∂xk
− e

c
Ak

)2

+ eV ψ + eΦψ. (2.31)

This can be rewritten as　

iℏc∇0 = − ℏ2

2m

∑
k

∇k∇k + eV ψ, (2.32)

ii. SchrÖdinger’s equation and gauge principle in an electromagnetic field
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where ∇α = (∇0,∇k) are covariant derivatives (with x0 = ct) defined by

∇0 =
∂

∂x0
−

( ie
ℏc

)
A0, ∇k =

∂

∂xk
−
( ie
ℏc

)
Ak, (A0 = −Φ). (2.33)

The equation (2.32), equivalent to (2.31), is written compactly by using the covariant
derivatives ∇0 and ∇k to represent the effect of electromagnetic field Aµ.

Weyl’s principle of gauge invariance: If satisfied the Schrödinger’s equation (2.32)
involving the potential Aµ, then the transformed wave function,

′ = exp
[
iγ χ(xµ)

]
· (x) (2.34)

satisfies Schrödinger’s equation when A = Aνdx
ν is replaced by A+dχ. This is verified

if the wave function is represented as

(x) =
(
exp[ iγ

∫
Aµ(x) dx

µ]
)
· 0(x) (2.35)

In fact, with a transformation A → A+ dχ. Then the new function (new) is given by

(new)(x) = exp[ iγ

∫
(Aµ(x) + ∂µχ) dx

µ] · 0(x) = exp
[
iγ χ(xµ)

]
· (x).

Thus the form (2.34) is obtained. In the gauge symmetry of QED, the key elements are
summarized by the following set of covariant transformations (see the item (d) below):

Aµ → Aµ + ∂µχ, ψ → exp [ iγ χ ] · ψ. (2.36)

Here, the transformation of Aµ is equivalent to the pair of transformations A → A+∇χ
and Φ → Φ− ∂tχ, which keep the electromagnetic fields E and B invariant.‡

Thus, one can uphold the gauge principle to the following general guiding principle.

Global gauge invariance:
This is defined by invariance under a constant change in the phase of wave function

. Writing it explicitly, instead of the added phase factor exp[iγχ(xµ)] of (2.34)
depending on xµ, the global transformation is given by

(xµ) → ′(xµ) = exp[ i α ] (xµ), α = const , (2.37)

If this transformation does not cause any observable change, it is a global invariance.

Local gauge invariance:
This requires invariance with respect to the following local phase transformation:

(xµ) → ′(xµ) = exp[ i α(xµ) ] (xµ), α : dependent on xµ, (2.38)

If our system is not invariant under the local transformation, it is understood to mean
that a new field is required in order to satisfy the local invariance. By introducing
such a new field interacting with the original field and transforming the system under

‡ The covariant vector-potential (downstairs) is Aµ = (−Φ, Ak), while the upstairs vector-potential

Aν is (A0, Ak) = ηνµAµ where A0 = Φ, (Ak) = A and Ak = Ak. One-form A is defined by

A = ηµνA
νdxµ = Aµdx

µ = −Φdt + Akdx
k, where ηαβ = ηαβ = diag(−1, 1, 1, 1). Note that

∇0 = (∂/∂x0)− (ie/ℏc)A0.

iii. Generalized Gauge Principle
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investigation according to the local transformation, it is expected that local invariance
is established. This is a general scenario to find a new physical field.

In fact, the previous item (ii) of Schrödinger’s equation is a typical example. For
the new field to be received to satisfy the local invariance, the system must be receptive,
i.e. must have a potential capacity receptive to the new field. Firstly, one can say an
elementary aspect of the complex function. Every complex function has a phase factor
which absorbs the electromagnetic 4-potenial Aµ within the integral symbol as in (2.35).

Moreover, in the
partial derivatives ∂’s was reformed and replaced by (2.32) represented with covariant
derivatives ∇’s which are defined with (2.33) by taking account of the new field Aµ.
Simultaneously the wave function was transformed by (2.34). Thus, local invariance
has been established.

In mathematical point of view, the global transformation → eiα appears to
be a trivial transformation. But it is an important step to confirm a capacity which
is receptive to the (harmless) phase modification. In the context of physics, however,
it is understood to express the fact that once phase choice of α has been made at one
spacetime point, the same change of phase must be adopted at all other spacetime
points. This is unnatural from the view-point of causality.

It would be better if one can find other physically reasonable transformation.
In §1.2, for electromagnetic 4-potential Aµ, we saw a particular Aµ-field defined by

Ãµ ≡ ∂µΘ with Θ an arbitrary scalar function. When the Aµ-field is introduced in the
field. the wave function is transformed as → exp[iγΘ(xν)] · instead of the uniform
phase shift eiα. Nevertheless, the observable fields E and B vanish identically, although
there exists non-vanishing one-form Ã in the background spacetime. This signifies that
the system is receptive. It has a potential capacity receptive to the new field.

In the flow fields of a perfect fluid to be studied in the last section 5.2, there exists
an analogous structure in the fluid-flow field. Hence, the global invariance of the flow
field is strengthened by this property.

Next, consider the transformation Aµ → A′
µ = Aµ + ∂µχ from a different angle of

mathematical viewpoint. Let us represent this operation as g◦ with the symbol ◦ and
an element g of a certain continuous differentiable group G (a Lie g), such that we write
it as A′

µ = g ◦ Aµ. Then the new wave function ′ ≡ (new) is written as ′ = g ◦ ,
where is given by (2.35). The operation g and ′ are given by (2.36). Namely,

′ = g ◦ (x) = exp[ iγχ] · (2.39)

Next, using the covariant derivative ∇µ defined by (2.33), the covariant derivative of
is given by

∇µ = (∂µ 0) · exp
[
iγ

∫
Aµ(x)dx

µ
]
.

Its g-transformation is

g ◦ ∇µ = (∂µ 0) · exp
[
iγ

∫
g ◦ Aµ(x)dxµ

]
= (∂µ 0) · exp

[
iγ

∫
(Aµ + ∂µχ)dx

µ
]

= exp[ iγχ] · ∇µ (2.40)

Comparing (2.39) and (2.40), it is seen that the ”g ◦” operations on and ∇µ take
the same form, that is, simple multiplication of the same phase factor exp[iγχ]. In other
words, the two functions and∇µ by the operation g, that
is by the gauge transformation A → A+dχ. The covariance property of transformation

iv. Covariance with respect to the gauge transformation
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it later too.

The invariance by the transformation (2.37) or (2.38) is said the gauge symmetry
of the type of U(1) group. Multiplication by a phase factor like exp[iα] corresponds to a
kind of rotation of the state vector = | | exp[iθ] in the polar representation (| |, θ) of
in the complex plane. The group U(1) is an abelian group corresponding to the circle

group, consisting of all complex numbers with absolute value 1 under multiplication.
Imagine doing two successive such transformations: → ′ → ′′ , where

′′ = exp[iβ] ′, and the original one was ′ = exp[iα] = Uα with Uα = exp[iα]. So
we have ′′ = exp[i(α+ β)] = exp[iδ] , where δ = α+ β. This is a transformation of
the same form as the original. The set of all such transformations forms a group, in this
case called U(1)-group, meaning the group of all unitary (|Uα| = 1) one-dimensional
matrices ( , a single complex number). The transformations Uα and a subsequent
transformation Uβ are commutative. Namely,

Uβ Uα = Uα+β = Uα Uβ.

Such a group U(1) is called an Abelian group in mathematics where different
transformations commute.

The Electro-Weak theory and Quantum Chromodynamics (QCD) are described by
non-Abelian gauge symmetries of SU(2)× SU(1) group and SU(3) group, respectively
(see e.g. Aitchison & Hey (2013)). All of these theories form what is called today the
Standard Model, which is the basis of the theoretical physics except for gravity.

As seen above, the gauge symmetry plays a fundamental role something like a
touchstone of the theory, testing whether the theory is trustworthy or not. Gauge
symmetry exists in other fields too. Geometrical theory of gravitation and Fluid
Mechanics are considered below.

In this section we consider the geometric theory of gravity and the gauge symmetry
existing within the theory. Amazingly, there are analogous structures between the
quantum electrodynamics (QED) and the theory of gravity.
initial times of the gravity theory. Most obvious similarity resides in the covariant
derivatives of both theories, the former QED including the connection term of the EM
potential Aµ and the latter the connection term (Christoffel symbol) associated with
the gravity field.

Concerning the theory of gravity at the classic times of Galileo and Newton in the
17th century, a flat Euclidean absolute 3d-space xk = (x1, x2, x3) and an absolute time t
are two distinct physical objects, which are unlinked. A physical object of a point-mass
in free motion in an inertial frame in the absence of gravity moves uniformly along a
straight line. In the presence of gravitational potential Φ, free motion of a particle takes
curved trajectories in flat space. In Einstein’s theory of gravitation, world lines of free
particles (described by the geodesic equation) are a probe of structure of spacetime.

In Einstein’s theory, gravitational field is represented as an object of four-
dimensional continuum with curvature (Misner, Thorne & Wheeler (2017, §17.7)). In
the equation of gravitation (Einstein, 1915), curvature-tensors are equated to tensors of
source-term arising from material motion (mostly motion of fluids or gases), satisfying
the conservation laws of energy and momentum of the source material. In this geometro-
dynamics, geometry tells matter how to move, such as a free particle taking a curved
trajectory, while the matter tells geometry how to curve. Suppose that the source
material is a fluid. Being the source of gravity, the fluid tells geometry how to curve

v.

shared by both of and ∇µ can be generalized to other transformations. We will see

III. Geometric Theory of Gravitation

Transformation Group U(1)
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in the Einstein’s theory. Time t and 3d-space (x1, x2, x3) are two aspects of a single
continuum entity, which is an inseparable object of curved spacetime xµ = (x0, x1, x2, x3)
with x0 = ct. The 4d-spacetime is not flat because of the presence of matter’s energy
and momentum of the fluid motion.

Squared interval between an event at xµ and a nearby one at xµ + dxµ is given by

ds2 = gµν(P ) dx
µ dxν , P = xµ = (x0, x1, x2, x3), µ, ν = 0, 1, 2, 3 . (3.1)

where gµν is the metric tensor. The curved spacetime geometry of physical world is
founded by the metric tensor gµν . A special flat space is described by the Minkowski
metric ηµν = diag(−1, 1, 1, 1). This is the space of Special Relativity which is a theory
invariant under the Lorentz transformation. An important invariant object under the
transformation is the proper time τ (the time of comoving frame) defined by

dτ 2 = −ηµν dxµ dxν = (c dt)2 − |dx|2 = c2 (1− β2) (dt)2 , β ≡ |v|/c . (3.2)

where dx = vdt with v being a particle velocity. The τ is the time of comoving frame

A free particle of mass m moves along a world line. Its trajectory is determined as
an extremal of the action S(m) = −mc

∫
ds. The action principle is given by

δS(m) = −mc δ
∫ b

a

ds = 0. (3.3)

In the flat space of Special Relativity (Appendix B), the free motion takes a straight
path, while in gravitational field it is curved. Let us consider a free motion taking a
curved trajectory according to Newtonian mechanics.

Motion of a free particle in the Earth’s gravity potential ΦE(x
k) is described by

d

dt
vk +

∂ΦE

∂xk
= 0, vk ≡

dxkp
dt

, k = 1, 2, 3 , (3.4)

yielding a curved trajectory for the particle path xkp(t). In the modern view to take the
space and time linked to form a 4d-continuum, the curved trajectory of a free particle
is described as a geodesic curve in the linked space-time.

Let us take an illustrative example according to Utiyama (1987, §2.3), and consider
a free-falling elevator in the Earth’s gravitational field ΦE(x

ν). The free-falling elevator
provides a particular inertial system of spacetime, in which free motion of a particle is
described by

d2Xµ/dτ 2 = 0, (3.5)

where Xµ is the particle coordinates in the frame Fel fixed to the free-falling elevator.
The gravity effect does not appear apparently because the acceleration owing to the
gravity acting on both of the elevator and the particle are the same and cancel out in
the free-falling frame Fel. Thus, the particle takes a straight path Xµ = aµτ + bµ with
respect to Fel with a

µ and bµ being constants.
Let us observe the same motion from another general frame, and as an example

take the frame FE fixed to the Earth surface, where the coordinates are given by xµ.
The squared interval ds2 in the frame FE is given as (3.1). In the particular frame Fel,
the metric is given by the Minkowski metric ηµν = diag(−1, 1, 1, 1). Suppose that the
transformation between the two frames is connected according to Xµ = Xµ(xν). Under

a) An illustrative example: Free motion of a sigle particle and Equivalence Principle

with the particle (where is zero, hence  ),  while the time t is the time 

observed from other frame, which are related by d . Appendix C 
supplemts certain aspects of mathematics of this section c 
Theory of Gravitation.

v

τ = c
√
1− β2dt

dt c dt=

for the GeometriIII
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this transformation from Xµ to xν , the equation of free motion d2Xµ/dτ 2 = 0 in the
frame Fel is transformed to that of the frame FE as follows,

d

dτ

dXµ

dτ
=

d

dτ

[∂Xµ

∂xν
dxν

dτ

]
= Aµν

[d2xν

dτ 2
+ Γναβ

dxα

dτ

dxβ

dτ

]
= 0

Using the inverse A−1 ofAµ
ν and multiplying by (A−1)λµ ≡ ∂xλ/∂Xµ, this becomes

d2xλ

dτ 2
+ Γλαβ

dxα

dτ

dxβ

dτ
= 0, where Γλαβ =

∂xλ

∂Xσ

∂Xσ

∂xα ∂xβ
= Γλβα. (3.6)

This states that the particle trajectory is curved in general when Γλαβ ̸= 0.
The 4-velocity uν ≡ dxν/dτ of the particle is defined by

uν =
dxν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), x0 ≡ ct, v = (vk) = (dxk/dt). (3.7)

In the non-relativistic limit as β ≪ 1 for the particle velocity |v| is much less than the
light velocity c, this leads to uν = dxν/dτ → (1,v/c) in the limit. In this case, the
equation (3.6) becomes

d

dt
vλ + c2 Γλαβ v

α vβ = 0, in particular
d

dt
vk + c2 Γk00 · 1 · 1 = 0, (3.8)

where the second equation is given for λ = k = 1, 2, 3, (α, β) = (0, 0), and the factors
Γλαβ other than Γk00 are set to zero. Compare this with (3.4). By assuming the following
relation of equality,

c2 Γk00 = ∂ΦE/∂x
k , (3.9)

the second equation of (3.8) becomes equivalent to the equation (3.4). This implies an
interesting relation between the gravitational potential ΦE and the symbol Γλαβ (called
the Christoffel symbol). the same
symbol Γ and expresses the geodesic equation of a free particle in curved spacetime. By
replacing the proper time τ with an equivalent parameter λ, the equation (3.6) reduces
to (3.11). We will come back to this point at the item (ii) given below.

In fact, the above simplified example illustrates the conceptual aspects of the
geometrical theory of gravitation in three respects. (i) Any curved spacetime has a
flat space (the freely-falling elevator in the above case) at any point (locally tangent to
it). This is assured by a mathematical theorem, i.e. the local flatness theorem (Schutz,
1985, §6.2). One can always construct such a local inertial frame at any event.

(ii) Gravitational potential Φg is related to the metric tensor gµν . In fact, Einstein
had a view that there is a similarity between the gravitational field and Riemannian
geometry. This is based on the particular feature of the gravity which is distinguished
from other forces such as the electromagnetic force (say) and characterized by the fact
that all bodies are given same acceleration. The potential Φg is related to the tensor
gµν , and covariant derivatives depending on gµν are defined in the curved spacetime.

In the above example of a free particle moving in a weak gravitational field of
potential Φg, the squared interval ds2 defined by (3.1) is given by

ds2 = −(1 + 2Φg/c
2)(c dt)2 + (1 + 2Φg/c

2)−1 (dx2 + dy2 + dz2) , (3.10)

as a leading order representation (Misner et al. , 2017, §16.2), where only diagonal
elements gµν |µ=ν are non-vanishing. Noting x0 = c dt, the metric tensor g00 is given by
−1−2Φg/c

2. In the theory of weak gravitational field (Φg/c
2 ≪ 1), the metric tensor gµν

is set as gµν = ηµν+hµν by using the Minkowski metric ηµν on the assumption |hµν | ≪ 1.

Xµ
ν=

part b)The equation (3.11) of the next includes
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In the Earth’s gravitational field, the potential Φg is replaced by ΦE = −G0M/r and
h00 = −2ΦE/c

2, where M is the Earth’s mass and r the radial distance from its center.
Returning the equation (3.9): Γk00 = c−2 ∂ΦE/∂x

k again, the definition of the
Christoffel symbol Γ is given by (3.12) of the next section, leading to Γk00 = gkµΓµ00 ≈
ηkµΓµ00 = Γk00 = −1

2 ∂kh00 = c−2 ∂kΦE. Thus, the the equation (3.9) was confirmed by
the squared interval ds2 of (3.10).

(iii) Cornerstone of the Einstein’s theory is the Principle of equivalence between
gravity and acceleration. Consider a uniformly accelerating rocket moving in empty
space free of gravity (Schutz, 1985, §5.1). Viewed from an observer inside, it appears
that there is a gravitational field within the rocket. All objects released from the
observer are subjected to uniformly accelerating motion, just as in gravity field. A
frame falling freely within the ship is an inertial frame. It can be seen from this that
frames accelerating uniformly in empty space are equivalent to uniform gravitational
fields. This is a conceptual aspect of the equivalence principle.

Its technical aspect is stated as follows. Transition from the equation (3.5) in flat
space-time to the equation (3.6) in a curved spacetime is enabled by the Equivalence
Principle. The equation (3.5) can be written as duµ/dτ = uµ,τ = 0 where uµ ≡ dXµ/dτ ,
while the equation (3.6) can be written as ∇̂τu

µ ≡ duµ/dτ+Γµαβ u
α uβ ≡ uµ;τ = 0. Hence,

for the transition from flat spacetime to curved one, the comma of uµ,τ is replaced by a
semicolon like uµ;τ (§3.2(c). This is the technical aspect of the Equivlence Principle.

The metric gµν describing the geometry of space-time is a symmetric tensor having

The gravitational field considered in this paper is assumed to be weak so that the
formulation can be compared with the electromagnetic field presented in the previous
section and the fluid-flow field to be considered next in this paper.

Einstein’s theory of gravitation (Einstein 1915) is founded on the Riemannian
Geometry. Appendix A describes some of its basics.

In a gravitational field, its 4d-spacetime Kg is curved, and the line element ds is
represented in terms of the metric tensor gµν(x

α) of (3.1). A free particle in such a space
moves along a geodesic line xα(λ), governed by the following geodesic equation:

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0. (3.11)

where λ is an affine parameter defined as λ = aτ + b with τ the particle’s proper time
and a, b constants. The factors Γ’s are the Christoffel symbol, defined by

Γαβγ = gαµΓµβγ , Γµβγ =
1
2

(∂gµβ
∂xγ

+
∂gµγ
∂xβ

− ∂gβγ
∂xµ

)
. (3.12)

In such a curved space Kg, a covariant derivative of a vector field vα(xµ) along a curve
P (λ) with its tangent uβ = dxβ/dλ is defined by

(∇̂uv)
α ≡ d

dλ
vα + Γαβγ v

βuγ ≡ ∇̂λ. (3.13)

where ∇̂ denotes the nabla-operator in the 4-d spacetime. Using this definition, the
geodesic equation (3.11) can be written simply as

b)

i.

Review of Einstein’s Theory

Geodesics and Covariant derivative

ten independent components ) in 4-dimesional spacetime, functions of a 
world point P. Einstein’s geometrodynamics is governed by ten tensor equations of 
the form: . Among the ten equations, only six are effective. Its 
account is given in 3.2(e).

gµν(P

Gµν= 8πk Tµν detailed
§
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According to the differential geometry (Misner et al. 2017, Chap.8), this states that the
geodesic is a curve P (λ) which parallel-transports its tangent uα = dxα(P )/dλ. In the
flat space of special relativity where gµν is given by the metric ηµν = diag(−1, 1, 1, 1),
the geodesic takes a straight path d2xα/dλ2 = 0, since Γµβγ = 0 by (3.12).

Rα
βγδ

Equation of the geodesic deviation, that is now going to be presented, has a special
term which represents the gravitation with curvature tensors mathematically. Consider
a family of geodesics parameterized by λ, so that world points are expressed as xα(λ, n),
with each geodesic curve discriminated by a second parameter n.

Let us introduce the separation vector ηα defined by ηα = ∂xα/∂n, measuring the
separation (deviation) ∆xα = ηα∆n between the geodesic n and the nearby geodesic
n + ∆n at the same value of λ. In curved spaces, parallel lines when extended do not
necessarily remain parallel, which is formulated in terms of the Riemannian tensors.

To that end, we will make mathematical expressions more general than those of
the previous section and define a general derivative form D for a general vector field
v = vαeα where v is expanded in terms of unit basis vectors eα. Then the exterior
derivative of the vector v is given one-form expression as

Dv = (Dvα) eα + vα (Deα), (3.15)

where Dvα = (∂βv
α) dxβ is a one-form, and the term Deα is a vector-valued one-form

which is expanded by using the connection coefficient (Christoffel symbol) in the form,

D eα = eν Γ
ν

αµ dx
µ.

Thus, we have the expansion of D v represented as

Dv = eν

(∂vν
∂xβ

+ Γναβv
α
)
dxβ , = eν

(dvν
dλ

+ Γναβ v
αuβ

)
dλ. (3.16)

With these notations, we define

Dηα ≡
(∂ηα
∂λ

+ Γαβγη
βuγ

)
dλ,

D

dλ
ηα ≡ ∂ηα

∂λ
+ Γαβγ η

βuγ.

It is seen that the operator D is one-form expression of the covariant derivative ∇. Then,
the separation vector ηα is governed by the following equation of geodesic deviation:

D

dλ

D

dλ
ηα = Rα

βγδ u
β uγ ηδ, (3.17)

where ηα = ∂xα(λ, n)/∂n is the separation vector and uβ = ∂xβ/∂λ the tangent vector.
The covariant derivative of v with respect to the coordinate xµ is given by

(∇̂µv)
ν
(
=

Dvν

∂xµ

)
= ∂µv

ν + Γναµv
α ≡ ∇̂µv

ν , vν;µ = vν,µ + Γναµv
α. (3.18)

(See next (c) for the notations of the second equation). The equation (3.17) serves as a
definition of the Riemann curvature tensors Rα

βγδ, which are defined by

Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓανγΓ
ν
βδ − ΓανδΓ

ν
βγ . (3.19)

This can be represented in terms of the metric tensors gαβ and their derivatives (see
(C.7)). According to (3.17), geodesics in flat space where Rα

βγδ = 0 maintain their
separation, while those in curved spaces where Rα

βγδ ̸= 0 do not. This is said in the
beginning that geometry tells matter how to move.

Geodesic deviation and Riemann curvature tensorsii.

∇̂uu = 0, or ∇̂λu = 0, where uα ≡ dxα(P )/dλ. (3.14)
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How the matter influences the geometry for curving is the subject of subsequent
sections. In the present theory of geometro-dynamics, the matter is a perfect fluid.
Relativistic expressions of the stress-energy tensor of a perfect fluid are to be given in
the section by (4.25) and (4.26):

Tαβ = (ρ c2 + ρ ϵ(ρ) + p) uαuβ + p ηαβ, (3.20)

where uµ and ηµν are defined in (3.7) and (4.21) respectively.§
Conservation law of energy-momentum given by (4.24) is cited here,

∂βT
αβ = T αβ,β = 0. (3.21)

where the comma notation ’, β’ denotes the partial derivative with respect to xβ. This is
an expression in global Lorentz (Minkowski) frame of flat spacetime. For the transition
(to be considered next) from flat to curved spacetime, the comma is replaced by a

semicolon such as T αβ;β , i.e. the covariant derivative of T αβ.
From the equivalence principle explained in the same equation

is given in local Lorentz frame (Lf in short) of curved spacetime as well by

T αβ,β = 0 at origin of local Lorentz frame. (3.22)

In such a frame of local Lf, free particles are viewed to move along straight lines at least
locally. This means that the term Γαβγ of (3.11) must vanish at the origin in the local
Lf. Namely, all the laws of physics must take their forms known in the special relativity.
This is the Principle of Equivalence.

Because the Christoffel symbols Γ′s vanish at the origin of local Lf, the equation
(3.22) can be rewritten as

T αβ;β = 0 at origin of local Lorentz frame.

Thus the conservation law given by the form T αβ,β = 0 at origin of local Lorentz frame

is extended to curved spacetime of the form T αβ;β = 0 in any reference frame owing to
the definitive character of tensor. Thus, we have

T αβ;β = 0 : extended to any reference frame of curved spacetime. (3.23)

Equations of the gravitational field are obtained from the principle of least action
δ(Sg+Sm) = 0, where Sg and Sm are the actions of the gravitational field and matter field
respectively. Accordintg to the variational formulation of Appendix C.2, the variation
of Sg with respect to the metric field gαβ is

δSg = −Ag
∫ (

Rαβ − 1
2 gαβR̂

)
δgαβ

√
−g dΩ , Ag ≡

c3

16πG0

, (3.24)

where dΩ = dx0dx1dx2dx3 and
√
−g dΩ is the proper volume [dΩ ]prop in a local Lorentz

frame with g = det(gµν), and Rαβ is the Ricci curvature tensor (C.11), and R̂ ≡ gανRαν

is the scalar curvature, and G0 is the gravitational constant.

§ The expression of stress-energy tensor Tαβ given here is equivalent to the expression of (a) the

equation (133.2) of §133 of ”LL (1987)” and that of (b) Box 5.1 of §5.1 of ”Gravitation (2017)”, under

the understanding that ρ (m1c
2 + ϵ) + p (where m1 = 1) is equivalent to w = ρ e + p of (a) where

e = m1c
2 + ϵ, and to ρ + p of (b) where ρ is defined by ρ (1 + ϵ) since m1c

2 = 1 by the assumption

c = 1 of the text (b). Note that the present Minkowski metric ηαβ is equal to −gαβ of (a). Thus, all

the stress-energy tensors Tαβ of the three texts are equivalent under the above understanding.

Equivalence Principle: Transition from flat spacetime to curved one

Einstein field equations

iii.

iv.

IV, d)

the section III, a), (iii)
as (3.21)
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On the other hand, the variation of the action Sm of the matter field is

δSm =
1

2c

∫
Tαβ δg

αβ
√
−g dΩ . (3.25)

where Tαβ is the stress-energy tensor of the matter (i.e. the fluid in the present case).
Note that variation of the coordinates from xν to x′ν = xν + ξν results in variation of
the metric δgαβ ∥

From the action principle δSg + δSm = 0, we find the Einstein field equation:

Gαβ = 8πk Tαβ , k = G0/c
4, (3.26)

in view of the arbitrariness of the δgαβ. (See Appendix C.2 for its derivation). The
tensor Gαβ is defined by

Gαβ = Rαβ − 1
2 gαβR̂, (3.27)

called the Einstein curvature tensor, while Tαβ is the stress-energy tensor.

Einstein’s geometro-dynamics is governed by ten tensor equations (3.26): Gαβ =
8πk Tαβ. Among the ten equations, only six are effective. How can the ten equations
be in reality only six ? This is because, owing to the four Bianchi identities Gµν

;ν = 0,
the equations Gµν = 8π Tµν place four local conservation laws T µν;ν = 0 of energy and
momentum of the source fluid. Instead, four conditions become free, which enable four
coordinates chosen arbitrarily. Hence the geometry is constrained by the six independent
equations from (3.26).

It is worth emphasizing the ingenious composition of the theory by repeating the
concept with other words. The ten equations of Gαβ = 8πk Tαβ place four constraints
on the source motion in the form of the four conservation equations T µν;ν = 0, owing to
the four Bianchi identities Gµν

;ν = 0. This is exactly the meaning given in the beginning
as ”the geometry tells the matter how to move”. The four conditions, instead, enable
four coordinate frames chosen freely. Remaining six constraints from Gµν = 8π Tµν are
those meant by ”the matter tells geometry how to curve”.

The geometro-dynamics in vacuum space requires special attention. Because no
matter exists in the vacuum, the six constraints to be imposed by matters mentioned
above must be replaced by conditions of vacuum-space own. Here is the place where
the Lorentz gauge condition comes into play. This is presented next.

There exist various similarities between the gravity field of the present section and
field of quantum electrodynamics (QED) considered in Those are reviewed with
comparing corresponding mathematical expressions from three aspects here.

Covariant derivatives
The similarity is clearly seen in the form of the covariant derivatives of both fields.

In the gravity, the covariant derivative of v = vνeν with respect to xµ is given by (3.18):

(∇̂µv)
ν = ∂µv

ν + Γναµv
α. (3.28)

In QED, according to (2.33) of , corresponding form of its covariant
of wave function is given as

∇µ = ∂µ − iγAµ ψ, γ = e/ℏc. (3.29)

∥ δgαβ = −ξν∂νgαβ + gαν∂νξ
β + gβν∂νξ

α. See LL (1975) §94.

c) Similarity between Gravity Theory and QED

v. Degree of freedom of geometro-dynamics

i.

𝜓𝜓 𝜓𝜓

the
the section II.

the section II, b), (ii)
derivative
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The coefficients of second connection term of each covariant derivative are directly
connected to the source field of each case. The former Γναµ are given by derivatives
of metric tensors gµν including the gravity potential Φg (see (3.12) and (3.10)). The
latter γAµ is obvious since Aµ is the electromagnetic (EM) potential.

The covariant derivative ∇̂µv denotes the derivative in curved spacetime, leading
to curved geodesic lines. Analogously, the latter derivative ∇µ signifies curved motion
of microscopic particles because the term pk = −iℏ∂k of (2.28) denotes rectilinear
momentum in the absence of the EM field Aµ.

Equations of the gravitational field are obtained from the principle of least action
with total action defined by Stotal = Sg + Sm, where Sg and Sm are the actions of
gravitational field and matter field respectively. Variations of both actions δSg and δSm
are given in Appendix C.2. From the action principle δ(Sg + Sm) = 0, we obtain

δSg + δSm = −Ag
∫ (

Gαβ − 8πk Tαβ

)
δgαβ

√
−g dΩ = 0, (3.30)

where Gαβ is the Einstein’s curvature tensor defined by (C.19), Ag = c3/(16πG0) and
k = G0/c

4 with G0 the gravitational constant. The action principle requires invariance
of Sg+Sm, namely vanishing of δ(Sg+Sm ) for arbitrary variations of the metric tensor
δgαβ. Thus, we obtain the Einstein equation,

Gαβ = 8πk Tαβ , k = G0/c
4. (3.31)

The action principle, i.e. the invariant variation described above, yields the Einstein
field equation (3.31).

On the other hand, corresponding part of EM (electromagnetism) is the second
pair of Maxwell equations presented in derived from the electromagnetic

composed of two components S
(em)
emA and S

(em)
int defined in Hence,

principle δ(S
(em)
emA + S

(em)
int ) = 0, we obtain

δS(em) ≡ δ
(
S
(em)
emA + S

(em)
int

)
=

∫ (1
c

− 1

4π

∂F νλ

∂xλ

)
δAν dΩ = 0. (3.32)

The action principle requires invariance of S(em) ≡ S
(em)
emA + S

(em)
int , namely vanishing of

δS(em) for arbitrary variations of the potential δAν . Thus, we obtain

∂λF
νλ = (4π/c) j νe . (3.33)

This invariant variation yields the second pair of Maxwell equations (2.8).
Similarity between the gravity and the electromagnetism is seen not only in the form

of the action principle by comparing (3.30) and (3.32), but also remarkable similarity
is observed in the derived equations (3.31) and (3.33). Left-hand side of (3.31), Gαβ,
denotes the spacetime structure of gravity, while that of (3.33), ∂λF

νλ, denotes the
structure of electromagnetic field. Those are generated by the sources on the right-hand
side: Tαβ of (3.31) being the stress-energy tensor of the source perfect fluid, and j νe of
(3.33) being the source current flux.

In , we have seen electromagnetic waves governed by the wave
(2.21) for the electromagnetic 4-potential Aα. In vacuum space, this reduces to

(∇2 − c−2∂ 2
t )A

ν = 0. (3.34)

ii. Invariant variations

iii. Waves in vacuum space and gauge conditions

𝜓𝜓
𝜓𝜓 𝜓𝜓

the section II a) (i).

the action

action

from

the section II a) (i).

equation
the section II a) (iii)

j νe
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This can be derived from (3.33), which becomes, on substituting F νλ = ∂νAλ − ∂λAν ,

−∂λ∂λAν + ∂ν(∂λA
λ) = (4π/c) j νe (3.35)

Imposing the Lorenz gauge condition (2.20),

∂λA
λ = 0, (3.36)

setting j νe = 0 in the vacuum space, and noting −∂λ∂λ = c−2∂ 2
t − ∇2, the equation

(3.35) reduces to (3.34).
Similar structure is found in the gravitational waves as well to be presented in

the next In weak gravitational field, the metric tensor is represented as
gαβ = ηαβ+hαβ under the condition |hαβ| ≪ 1. Linearizing the Einstein equation (3.31),
the wave equation (3.47) is derived under the gauge condition (3.46), both of which are
cited here in advance for comparison purpose:

(∇2 − c−2∂ 2
t )h

µν
= − 16πk T µν , (3.37)

∂ν h
µν

= 0 , (3.38)

where h
µν

= hµν − 1
2 η

µν (hαα). One can recognize similar structures between EM and
Gravity, although there is an obvious difference
and tensorial fields of the latter Gravity. Inspite of such difference, their similarity is
remarkable.

and apply the divergence operator ∂ν on it,
then we obtain

(∇2 − c−2∂ 2
t )(∂νA

ν) = −(4π/c) (∂νj
ν
e ).

Hence, the gauge condition (3.36) requires the current conservation ∂νj
ν
e = 0.

Next, consider the gravitational wave equation (3.37) and apply the divergence
operator ∂ν on it, then we obtain

(∇2 − c−2∂ 2
t ) (∂νh

µν
) = −16πk (∂νT

µν) ,

It is consistent with the formulation of the theory that the gauge condition (3.38)
requires the conservation of stress-energy of dynamical motion of the source material
(fluid) ∂νT

µν = 0.
In vacuum space where both of the current flux j νe and the stress-energy of material

motion are absent. the gauge freedom resulting from the absence of materials is filled
up by the gauge conditions ∂νA

ν = 0 or ∂νh
µν

= 0. It is understood that the gauge
conditions play the role of filling in the blanks of degrees of freedom.

The spacetime is flat in the absence of gravity, and presence of a weak gravitational
field is one in which spacetime is curved but close to flat. In the spacetime continuum
object (manifold in mathematics), the metric components are represented as

gαβ = ηαβ + hαβ, (3.39)

where

|hαβ| ≪ 1 , ηαβ = diag(−1, 1, 1, 1), (3.40)

assuming small ripples in flat spacetime. Such spacetime is called nearly-Lorentz system
and studied by a linearized theory. Merits of linearized theory lie not only in its
manageability of analytic handling, but also in the fact that one can apply a gauge
transformation to the weak gravitational field as well.

d) Gravitational waves (weak gravitational field)

d).section

vectorial fields of the former EM field,

Consider the EM wave equation (2.21)  
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In fact, the weak field has a remarkable analogy with the electromagnetic field, as
seen in the previous , evidenced by the similarity of corresponding wave equations
(3.34) and (3.37). However, the difference is clearly recognized in the source terms on
the right-hand sides of the two wave equations. In the former field, the source is the
current density 4-vector jµe . while in the latter, it is the stress-energy tensor T µν of
fluid motion. Namely, the vector jµe and tensor T µν symbolize the difference of both
fields. However it is more important to have an insight (and recognize) that they share
a common physical mechanism for generation of each field despite their difference.

From the metric form (3.39) under the condition (3.40), one obtains a resulting
form of the Christoffel symbol Γαβγ from the definition (3.12), in which all three terms

are linear without approximation: Γαβγ =
1
2 (h

α
β,γ + hαγ,β − h ,α

βγ ). A linearized form of
Riemann tensor is

Rαµβν =
1
2

(
hαν,µβ + hµβ.να − hµν,αβ − hαβ,µν

)
, (3.41)

and the Ricci tensor is given by Rµν = Rα
µαν = ∂αΓ

α
µν − ∂νΓ

α
µα from (C.12). Then, the

linearized field equation is derived from the Einstein equation (3.26): Gµν = 8πk Tµν as

−h α

µν,α − ηµν h
αβ

αβ, + h
α

µα, ν + h
α

να, µ = 16πk Tµν , (3.42)

(Misner et al. (2017), Chap.18), where

hµν ≡ hµν − 1
2 ηµν h, h = hαα = ηαβhαβ. (3.43)

We are now in an important stage where one can conceive a gravitational gauge
transformation, which is quite analogous to the electromagnetic one. Let us consider
an infinitesimal transformation of the coordinates of a spacetime point P from old ones
(xµ) to new ones (x′µ), expressed as

x′µ(P) = xµ(P) + ξµ(P), (3.44)

where xµ(P) and x′µ(P) represent the same spacetime point P , and only their reference
frames are changed. Metric perturbations in the new (x′µ) and old (xµ) coordinate
frames are related to first order in small quantities by¶

hnewµν = holdµν − ξµ,ν − ξν,µ . (3.45)

This is regarded as a gravitational gauge transformation since the Riemannian tensors
are left unchanged by the transformation (3.45). This can be immediately verified by
substituting the expression of hnewµν into (3.41), finding Rnew

αµβν = Rold
αµβν . This is reasonable

because the change of reference frame only should not influence the physical world. Since
the the curvature tensor Rαµβν is unchanged, the Ricci tensor Rαβ, scalar curvature R̂,
Einstein tensor Gαβ are all unchanged. This is the gravitational gauge invariance, and
the geometrical tensors are essentially the same whether calculated in an orthonormal
frame ηµν , in the old frame goldµν , or in the new frame gnewµν .

In general, one can impose the following gauge condition:

h
µα

,α = 0, (3.46)

¶ Defining matrix element of transformation by Λα
β

≡ ∂xα/∂x′β = δαβ − ξα,β , neglecting higher

order terms of smallness, transformation of the metric tensor is given by gnewαβ = Λµ
αΛ

ν
β
goldµν =

Λµ
αΛ

ν
β
ηµν + Λµ

αΛ
ν
β
hµν = (ηµν − ξµ,ν − ξν,µ) + hµν .

i. Linearized theory and gravitational gauge transformation

part c
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called the Lorentz gauge for gravitational waves. Under this Lorentz gauge condition,
the linearized field equation (3.42) reduces to

−h α

µν,α = 16πk Tµν , or equivalently ∂α∂
α hµν = −16πk Tµν , (3.47)

since the second, third and forth terms on the left-hand side of (3.42) vanish, as follows:

h
αβ

αβ, = ηαµηβνh
µν,αβ

= h
µν

,µν = (h
µν

,ν)µ = 0, by (3.46),

h
α

µα, ν = ηµλh
λβ

,βν = ηµλ(h
λβ

,β)ν = 0, h
α

να, µ = ηνλh
λβ

,βµ = 0.

The equation (3.47) represents gravitational wave-generation by the source term on the
right-hand side, since the operator ∂α∂

α is nothing but that of wave equation:

∂α∂
α = −∂ 2

0 +∇2 = □, ∂α = (∂0,∇), ∂α = ηαλ∂λ = (−∂0,∇).

Thus, we have found the gauge condition (3.46) and wave equation (3.47) for
gravitational waves, which are equivalent to the equations (3.37) and (3.38) presented
already in §3.3(c). Note that the indices of hµν and Tµν are raised with the Minkowski

metrics ηαµ ηβν multiplied on both sides of (3.47), obtaining h
αβ

and T αβ. Since the
factors ηαµ ηβν are constant, they enter through the diffrential operators.

Suppose that the tensors hµν satisfy the equation (3.42), but do not satisfy the

condition (3.46). Then, one can apply a gauge transformation (3.45) to obtain (h
new

)µν

from (h
old
)µν , and demand that (h

new
)µν satisfies the gauge condition:

(h
new

)µα,α = 0 = (h
old
)µα,α − ∂α∂

α ξµ − ∂µ(∂αξ
α). (3.48)

Under the condition ∂αξ
α = 0 (compatible with the transversality of the waves), one

can find the perturbation ξµ satisfying the wave equation,

∂α∂
α ξµ

[
= (−c−2∂ 2

t +∇2)ξµ
]
= (h

old
)µα,α ( ̸= 0, assumed).

The new field (h
new

)µν satisfies the Lorentz condition (3.48), (h
new

)µα,α = 0 and the
wave equation (3.47).

Even the new metric (h
new

)µν satisfy the condition (3.48), there is arbitrariness.
To fix it, consider a restricted gauge transformation (h

new
)µν → (h

new
)′ µν :

(h
new

)′ µν = (h
new

)µν − ξµ,ν − ξν,µ + ηµνξ
α
α, (3.49)

derived from the form (3.43) and (3.45). Provided that ξµ satisfies the following wave
equation,

∂α∂
α ξµ = (−c−2∂ 2

t +∇2) ξµ = 0 [Restricting condition], (3.50)

the Lorentz condition (h
new

)′ µα,α = 0 is satisfied according to an equation equivalent
to (3.48). Namely, the restricted gauge transformation preserves the Lorentz gauge
condition. Therefore the Lorentz gauge is really a class of gauges.

Just as wavy deformations over sea surface propagate across the ocean, so small
ripples of the gravitational metric tensor propagate across spacetime. Propagation of
the latter gravitational wave in vacuum space (where Tµν = 0) is given by the wave
equation (3.47) under the gauge condition (3.46):

∂α∂
α hµν = (∇2 − c−2∂ 2

t )hµν = 0, (3.51)

iii. Gravitational waves in vacuum

ii. Justification of Lorentz gauge



 
 

 
 

 
 
 
 
 
 
 
 
 
 

∂α h
µα

= 0, (where ∂α h
µα

= ηµν ∂α hνα). (3.52)

Plane Wave: For simplicity reason, let us consider a plane wave, described by the
following monochromatic wave:

hµν = Aµν exp[i kαx
α],

(
k0 = −ω/c, k = (k1, k2, k3),

)
(3.53)

where xα = (ct, x1, x2, x3). Substituting this to the equation (3.51), one obtains

i2 kα k
α = k20 − |k|2 = 0, ∴ |k|2 = ω2/c2, (3.54)

which is referred to as the dispersion relation of the wave and kα is called the null vector.
The equation of gauge condition (3.52) requires the four (orthogonality) conditions:

kαA
µα = 0. (3.55)

Let us consider the degree of freedom of gravitational waves in vacuum space. Its
degree of freedom is found to be Two. The reason is as follows. The metric perturbation
hµν of a plane wave is given by (3.53), which is a solution to the field equation (3.51)
in the form of wave equation. Its wave amplitude Aµν has ten independent components
in general. The field equation (originally of the form Gαβ = 8πk Tαβ) is controlled by
four constraints due to the four Bianchi identities Gµν

;ν= 0, as mentioned at
The four conditions, instead, enable four frames of coordinate chosen freely. Those are

provided by the orthogonality gauge-conditions (3.55): kαA
µα = 0. Thus, the degree of

freedom of A
µν

is reduced to six.

Wave propagation in vacuum space requires special attention. Because of absence
of matters in the vacuum, the six constraints to be imposed by matters (if they existed)
must be replaced by conditions of vacuum-space own. Here is the place where another
gauge conditions come into play. However, even when the gauge condition (3.46) is
satisfied, there is arbitrariness. Namely without violating the gauge condition (3.55),
one can introduce the restricted gauge condition (3.50).

Let us express a solution to the restricted gauge condition (3.50) by another plane
wave:

ξα = Bα exp[i kµx
µ], (3.56)

where Bα is a constant and kµ is given by (3.54). Consequent change in hαβ is given

according to (3.49) as (h
new

)′αβ = (h
new

)αβ − ξµ,ν − ξν,µ + ηµνξ
α
α. From (3.56), this

gives

A
′(new)
αβ = A

(new)
αβ − iBαkβ − iBβkα + i ηαβB

µkµ, (3.57)

by removing the exponential factor. One can show (Schutz 1985, Chap.9) that Bα can

be chosen to impose two further restrictions on A
′(new)
αβ :

Aαα = 0 (traceless), (3.58)

Aαβ u
β = 0 (transverse), (3.59)

where uβ is any constant timelike unit vector.
Note that the condition (3.59) gives only three because kαAαβ u

β = 0 is valid
identically for any Bα. Hence, the constraints (3.55), (3.58) and (3.59) together give
the eight conditions, which are called the transverse-traceless (TT) gauge conditions.
The remaining two must be physically significant. Namely, the degree of freedom of the
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iv. Degree of freedom of gravitational waves

section III b)
(v)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

wave is found to be Two. The gravitational wave has two dynamic degrees of freedom,
which is analogous to the electromagnetic waves propagating in vacuum space.

The TT-gauge is based on the vector uβ. Let us take the frame of background
vacuum Minkowski spacetime (through which the wave is propagating) defined by the

time basis set along the vector uβ = δβ0. Then, the condition (3.59) implies Aα0 = 0
for all α. In this frame, we take the spatial x3-axis parallel to the direction of wave
propagation. Then we have kα = (−k, 0, 0, k) from (3.54), and the equation (3.55)
implies Aα0 + Aα3 = 0. Hence we have Aα3 = −Aα0 = 0 for all α.

Thus, using the symmetry of Aαβ and the traceless condition A11 + A22 = 0, we
can write the coefficient matrix Aαβ in the TT-gauge (transverse-traceless gauge) as

ATTαβ =


0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0

 . (3.60)

In Fluid-Mechanics of a perfect fluid, the fluid medium is assumed as a continuum (i.e.
a continuous distribution of mass) in the spacetime xν = (t,x) = (ct, x1, x2, x3). Flow
variables such as the mass density ρ, pressure p or flow velocity v are represented
by continuously differentiable functions of xν . Dynamical motion of fluid flows is
characterized by the presence of convective derivative in the equation of motion. It
is a derivative following the fluid motion, also called sometimes the advective derivative,
Lagrange derivative or material derivative, but most importantly it is gauge-invariant
covariant derivative under local gauge transformations. A fluid flow is a smooth
sequence of diffeomophisms of particle configuration, which is a continuous sequence
of transformations from one time to another, and two different sequences are not
commutative. This is contrasted with the commutative U(1) gauge transformations
of QED, seen in §2.2.

To capture dynamical motion of fluids, we have two distinct kinds of specification:
Eulerian type and Lagrangian type. With respect to each specification, one finds a
gauge symmetry associated with the fluid mass in motion. In the first Eulerian type of
specification, the mass density, pressure or flow velocity are represented by differentiable
field variables of ρ(t,x), p(t,x) or v(t,x) respectively. Fluid motions are governed by
two kinds of equations, the continuity equation and Euler’s equation of motion:

∂tρ+∇ · (ρv) = 0, (4.1)

∂tv + (v · ∇)v = −1

ρ
∇ p, (4.2)

In the second Lagrangian type of specification, as in particle mechanics, flow variables
such as mass-density ρ or velocity v are defined by functions of three parameters
a = (a1, a2, a3) identifying each fluid particle (a piece of material element of fluid) and
time ta, like ρ(ta, a

1, a2, a3) or v(ta, a
1, a2, a3). In this specification, the quartet members

(ta, a
1, a2, a3) play as independent variables x0, x1, x2, x3)

of the Eulerian type. For example, the spatial position of a fluid particle at a time ta

Gauge Symmetries in Physical Fields (Review)

       

               

                          

                   

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

25

  
 

( A
)

© 2021 Global Journals

V
er
sio

n
I

iv. Fluid Mechanics: Smooth Sequence of Non-Commutative

Diffeomorphisms

a) Euler’s equation of motion

the spacetime coordinates (replacing
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specified by the parameter a = (a1, a2, a3) is described by Xa(ta, a
1, a2, a3) = Xa(ta,a).

However, to denote a point in Euclidian 3-space, we keep the symbols (xk) = (x1, x2, x3).
In the case of Lagrangian type of specification, local gauge transformation (LGT)

is considered with respect to the specification of position coordinate of a fluid particle
identified with the Lagrange-parameter a. To describe the particle motion, a convective
derivative Dt is defined by

Dt ≡ ∂t + (v · ∇) , (4.3)

in addition to partial derivatives such as ∂t ≡ ∂/∂t or ∂k ≡ ∂/∂xk.
The convective derivative Dt is a generalization of the time derivative ∂t having a

remarkable property of invariance with respect to an LGT transformation defined below.
This property is investigated in the section as another kind of gauge invariance,
and also investigated as a covariant derivative in curved space-time. In fact, using Dt,
the above Euler’s equation of motion (4.2) can be rewritten as

Dtv + ρ−1 ∇ p = 0. (4.4)

This is viewed as a generalization of Newton’s equation of motion to a continuous matter
of a perfect fluid, because the term Dtv is regarded as an acceleration of a fluid particle
of a unit mass identified with a fixed parameter a.

A fluid flow is a smooth sequence of diffeomorphisms of particle configuration
on a spacetime manifold M4 with a point x = (xν) = (t,x) ∈ M4 (x = (xk) with
k = 1, 2, 3). Suppose that a vector field U(x) = U ν eν = ∂t + Uk∂k is given at every
point x ∈ M4 (with U0 = 1) as a vector operator U . With such a vector field, one
can associate a particular flow, i.e. one-parameter sub-group of diffeomorphisms ξt with
ξ0 = I (identity). This is a transformation of the particle configuration at the initial
moment ξ0(x) = Ix = (0,X0) to the particle configuration ξt(x) = (t,X t) at time t.
The initial velocity field at t = 0 is given by (d/dt) ξt(x)|t=0 = Uξt(x)|t=0 = U ν eν =
∂t + Uk∂k. where U is an operator on ξ0(x). In this flow, the initial material point
X0 = σ ≡ (σ1, σ2, σ3) in 3-space is transformed to a 3-space pointX t(σ) at t (> 0). The
transformation ξt is, as it were, an infinite-dimensional diffeomorphisms from X0 = σ
to X t(σ). (See, e.g. Kambe (2010) Chap.1 and its Appendix C).

On such a group (a Lie group) of diffeomorphisms, one-parameter subgroup with a
tangent vector U at the origin I is represented by

ξt = I + tU +
1

2!
t2U2 +O(t3). (4.5)

With a second vector field V (x) = V k ek, a second flow of one-parameter subgroup
ηs(x) is generated analogously by V with η0 = I. Noting that the composition ηsξt(x)
is understood as ηs(ξt(x)), we have

ηs ξt − ξt ηs = st [U, V ] +O(st2, s2t), (4.6)

[U, V ] ≡
(
Uk∂kV

i − V k∂kU
i
)
∂i (4.7)

The commutator [U, V ] signifies the degree of non-commutativity of the two flows
of diffeomorphisms represented by ξt and ηs. This non-commutativity signifies the
spacetime being curved.

b) Fluid flow: Sequence of non-commutative diffeomorphisms
i. One-parameter sub-group of diffeomorphisms

IVc)
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With respect to a flow ξ(t), consider a trajectory Xµ(t) of a fluid particle on a
Riemannian manifold M4 with its tangent vector defined by T (xµ) = dξ/dt. The curve
is said to be a geodesic if its tangent is displaced parallel along the curve ξ(t), i.e. if

∇T T = 0 . (4.8)

See (A.17) of Appendix A, where general interpretation of geodesic equation and
covariant derivative are given (cf. Kambe (2010) Chap.3, say). In local coordinates,
we have T ≡ dξ/dt = T αeα = (dXα/dt) eα.

Same geodesic equation ∇T T = 0 is also given by the action principle, i.e. by
the equation deduced from the extremum of an action integral (cf. Appendix A.6).
Relativistic form of the action integral of a perfect fluid is given as

S(pf) = −c
∫

ρ dV
∫ (

1 + c−2 ϵ(ρ)
)
dτ (4.9)

This is an extended form of the relativistic action integral of a single particle of mass m,
S(m) = −cm

∫
dτ , to the perfect fluid, where the overlined value ϵ denote proper value

of the internal energy ϵ of the perfect fluid (the value in the rest frame, i.e. comoving
frame where the fluid is at rest). Comparison of S(pf) with S(m) and considering

∫
ρ dV

equivalent to m of S(m), one can see that the term c−2 ϵ is a small correction term to
the fluid medium in non-relativistic case.

From the variation analysis, the geodesic equation of a perfect fluid is given as

Dtv
k + ρ−1 ∂kp = 0, (4.10)

for non-relativistic limit of ordinary fluid flows (Kambe 2020, §2). This coincides with
the Euler’s equation of motion (4.4) of ordinary fluid mechanics.

The convective derivative Dt = ∂t + (v · ∇) has a special property which is
invariant with respect to a group of transformations like the gauge invariance of the
electromagnetic fields E and B. Hence the following transformation may be a fluid
version of the gauge transformation. The derivative Dt is also regarded as the covariant

Suppose that we have two coordinate frames F and F ′ which are overlapping and
each fluid particle is identified by the Lagrange-parameter α. Let us denote the position
of the same particle α with the coordinate Xa in the frame F and X ′

a in the frame F ′.
Relaltive motion of the two frames is not assumed to be time-independent. Hence the
frames are not necessarily inertial. We consider the relation between the two coordinates
to be a transformation between Xa(t,α) and X ′

a(t
′,α), which is given by the following

local gauge transformation (dependent on α) at t′ = t:

LGT : X ′
α(t

′,α) = Xα(t,α) + ξ(t,x)|x=Xα
, t′ = t, (4.11)

This is rewritten in the form of transformation acted by an element g of the group G
defined by G = LGT :

X ′
α|t′=t = g(t,α) ◦Xα, g ∈ G. (4.12)

This LGT is considered as a local transformation between two coordinates (of the same
particle identified by α) specified in the two non-inertial reference frames F and F ′. In
fact, the same particle α has a spatial position coordinate Xα(t,α) in the frame F and
another one X ′

α = Xα + ξ(t,α) in the frame F ′. Therefore, its velocity at x ∈ F ,

(b) Geodesic equation of a fluid-flow

i. Local gauge transformation

c) Convective derivative Dt and its Gauge invariance

derivative analogously with the electromagnetic case. The operator D is also 
invariant with respect to the Lorent z transformation, i. e. a relativistic invariant  
(see Sec. I, d) of Kambe T (2021), Fluid Gauge Theory, GJSFR, vol. 21, iss.4).

t
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is transformed to the velocity at x′ = X ′
α ∈ F ′ and t′ = t:

v′(t′,x′)|α = ∂tX
′
α(t,α) = v(t,Xα) + (d/dt)ξα, (4.14)

ξα = ξ(t,Xα), (d/dt)ξα = ∂tξ + (v · ∇)ξ|x=Xα
. (4.15)

One may rewrite the equation (4.14) in a form analogous to (4.12) as

v′
α(X

′
α) = g(t,α) ◦ vα(Xα). (4.16)

This is a transformation of motion of the same particle between two different reference
frames F and F ′. Physically speaking, two vectors Xα andX ′

α denote the same material
point, represented by the common Lagrange parameter α. Namely, we are considering
a gauge transformation between two reference frames.

According to the transformation (4.11), the time derivative ∂t and space derivative
∂k = ∂/∂xk in the frame F are related to the derivatives ∂′t and ∂

′
k = ∂/∂x′k of F ′ as

follows:

∂t = ∂t′ + (∂tξ) · ∇′, ∇′ = (∂′k), (4.17)

∂k = ∂′k + (∂kξl) ∂
′
l, ∂′k = ∂/∂x′k . (4.18)

Gauge invariance of the convective derivative D t

The convective derivative Dt ≡ ∂t + (v · ∇) is invariant with respect to LGT: i.e.
Dt = D′

t. In fact from (4.14) and (4.18), we have

v · ∇ = v · ∇′ + (v · ∇ξ) · ∇′ = v′(x′) · ∇′ + (− (dξ/dt) + v · ∇ξ) · ∇′,

where v = v′ − dξ/dt is used. The last term is rewritten as

(− (dξ/dt) + v · ∇ξ) · ∇′ = −∂tξ · ∇′ = ∂t′ − ∂t, (4.19)

by using (4.15) and (4.17). Hence, we have

Dt = ∂t + v · ∇ = ∂t′ + v′ · ∇′ = D′
t. (4.20)

This means that the operator Dt satisfies the invariance with respect to LGT.
In addition, it can be shown that the operator Dt is a covariant derivative in

the sense of gauge theory. As shown in (a), under the transformation by g ∈ G, the
expression (4.12) gives Xα → X ′

α = g ◦ Xα = Xa + ξ, and its derivative (velocity)
v(Xa) = DtXa is transformed as

v′(X ′
a) = D′

tX
′
a = Dt(Xa + ξ) = v(Xa) + Dtξ = gv = g ◦DtXa,

where the equality v+Dtξ ≡ gv is consistent with (4.13) and (4.14). The above sequence
of equalities states that DtXa is transformed to g ◦ DtXa in the same way as Xa is
transformed to g ◦Xα. Therefore, the operator Dt has the covariance property and is
reasonably called Covariant Derivative.

One can see that the equation of motion (4.4) of a perfect fluid is expressed in
terms of the time derivative Dt. The fact that the covariant derivative Dt plays a role
of time derivative in place of the partial time derivative ∂t implies that the free motion
according to (4.4) is like a motion in curved space. Rewriting it as Dtv = −ρ−1 ∇ p, the
equation has a pressure force −ρ−1∇p, which is not an external force, but an internal
force. In fact, each fluid particle does not take a straight trajectory but a curved one,
in general, owing to the internal pressure force.

v(t,x)|α = ∂tXα, (4.13)

ii.
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Let us investigate how the fluid mechanics of a perfect fluid is formulated according to
the theory of special relativity, which is based on the Minkowski space equipped with

Minkowski metric : ηαβ = diag(−1, 1, 1, 1). (4.21)

In the space, a world element ds and an element of proper time dτ/c are defined by

ds2 ≡ − dτ 2 = dxµdx
µ = ηµνdx

µxν = −(1− β2) c2dt2,

c−1 dτ =
√

1− β2 dt, β ≡ v/c, v = |v|, (4.22)

where dx0 = c dt, and c the light speed, and v = (vk) is the particle velocity, with its
3-space displacement dXk = vkdt (k = 1, 2, 3). Relativistic 4-velocity uν is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), X0 ≡ ct, v = (vk) = (dXk/dt). (4.23)

Relativistic form of the action integral of a perfect fluid is already given by (4.9).
Relativistic equations of conservation of energy-momentum are expressed in the form,

∂

∂xν
T µν = 0 (µ, ν = 0, 1, 2, 3), (4.24)

where the stress-energy tensor T µν is given by Kambe (2020) for a perfect fluid+ as

T µν ≡ H uµuν + p ηµν . H ≡ ρ ε+ p = ρ c2 + ρ ϵ+ p, (4.25)

ε ≡ c2 + ϵ(ρ), H ≡ ρ c2 + ρ h, h ≡ ϵ(ρ) + p/ρ, (4.26)

(cf. Landau & Lifshitz (1987) calling T µν as energy-momentum tensor), where ε ≡
m1c

2+ϵ = c2+ϵ (with m1 = 1) is the relativistic internal energy per unit mass including
the mass energy m1c

2. The thermodynamic variables like ϵ(ρ) (internal energy) denote
the proper value (i.e. the value in the comoving frame where the fluid is at rest).† The
term ρ c2 in H denotes the relativistic energy of rest-mass ρ per unit volume.

The above stress-energy tensor T µν of (4.25) was derived from the Lagrangian
density L ≡ −c (ρ dV) (1 + c−2 ϵ(ρ)) in the action S(pf) of (4.9) under the mass
conservation condition ρ dV = const (see Kambe 2020, §2.2). Present study to be
carried out below (and the accompanying paper) does not assume the mass conservation
a priori (from the outset), but it is deduced from the formulation under a pertinent
symmetry. Therefore, the stress-energy tensor T µν should be derived with taking a
different way, which is given in Landau & Lifshitz (1987, §133) and presented here now.

The derivation is as follows. The momentum flux through a surface element dσk is
just the force acting on the element. Hence T ikdσk is the i-th component of the force
acting on the surface element (i, k = 1, 2, 3). Let us take a certain volume element
within the fluid in which it is at rest (the local rest frame). In this frame, Pascal’s law
is valid, that is, the pressure force exerts independently of the direction of the surface
element dσk and is everywhere perpendicular to the surface on which it acts. Therefore,
one can write T ikdσk = p δik dσi, whence T

ik = p δik.

+ Note: There is no energy dissipation in the present case of perfect fluid, hence no entropy change.

Assuming the entropy is uniform throughout the fluid, the internal energy ϵ depends only on ρ.
† Some textbooks such as Misner et al. (2017), etc. use the definition Tµν ≡ (ρ+ p)uµuν + pηµν where

ρ is understood to denote ρε = ρ(c2 + ϵ) including the internal energy ρϵ with c = 1 in their unit.

d) Relativistic formulation of a perfect fluid
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In the local rest frame, then, the energy-momentum tensor has the form

T µνrest =


ρε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (4.27)

where ε is the relativistic internal energy per unit mass including the mass energy m1c
2,

hence ρε denotes the energy per unit volume. In order to find the expression of the tensor
T µν in arbitrary reference system, we introduce the 4-velocity uν defined by (4.23) for
the motion of the fluid. In the rest frame of the particular fluid particle, we have vk = 0
and uν = (1, 0, 0, 0). The expression to be sought for T µν must be such a form that it
takes the form (4.27) when transformed to this rest frame. Such a second-rank tensor
T µν must be

T µν = (ρε+ p) uµuν + p ηµν . (4.28)

for the 4-velocity uµ of (4.23) and the metric ηµν of (4.21). This can be shown as follows,
by using the Appendix B.

In the current unprimed frame xµ, the particles are in motion with the velocity
of (4.23). Lorentz transformation from this unprimed frame xµ to the primed frame
x′α comoving with the particle P (i.e. β = |v|/c ) is carried out by the transformation
matrix Λα

′
µ defined with (B.6) and (B.7). By this transformation, the second rank tensor

T µν in the unprimed frame xµ is transformed to that in primed frame as follows:

T µν ⇒ T α
′β′

rest = Λα
′

µ Λ
β′

ν T
µν = (ρε+ p) (Λα

′

µ u
µ) (Λβ

′

νu
ν) + p (Λα

′

µ Λ
β′

ν) η
µν

= diag(ρε+ p, 0, 0, 0) + diag(−p, p, p, p). (4.29)

by using the transformation u′α = Λα
′
ν u

ν and (B.9) of Appendix B. The last expression
(4.29) reduces to the matrix of (4.27).

This is a wonderful derivation of T µν of (4.28) for a perfect fluid by Landau &
Lifshitz (1987). From the point of view of the present study, however, there exists a
crucial aspect to be remarked now. In regard to the momentum flux, the isotropic
expression p δik (Pascal’s law) is taken at the rest frame and Lorentz-trandformed to
arbitrary inertial systems of reference, i.e. from the rest frame to frames of arbitrary
high velocity, even turbulent, or close to the light velocity. If the medium is solid, then it
may be one of choices. However, the fluid is receptive of diffeomorphic transformations
among constituent fluid particles in infinitely different ways. Its degree of freedom is
infinte (say). It is very likely that tensor form of momentum flux may be quite complex.
The paper accompanying the present study, Fluid Gauge Theory, intends to present one
of possible structures of a perfect fluid.

A symmetry implies a conservation law (Noether’s theorem). However it is shown
below that, from a single relativistic energy equation of fluid motion, two conservation
equations are obtained in the non-relativistic limit according to the current formulation
of fluid mechanics: one is the mass conservation and the other is the traditional form
of energy equation. This is a riddle. We are concerned particularly with the mass
conservation equation and investigate what symmetry implies the mass conservation,
and conversely what symmetry the mass conservation implies. A key to resolve this
Riddle is hinted by the general representation of rotational flows of an ideal compressible
fluid satisfying the Euler’s equation, derived by Kambe (2013). This gives us a hint

v. Motivations for Fluid Gauge Theory
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of existence of a set of gauge fields, suggesting that our physical system should be a
combined system consisting of a fluid flow field and a set of background gauge fields.
The gauge symmetry of the latter ensures the law of mass conservation. Conversely as
far as the mass conservation law is valid, the gauge invariance is ensured for the action
representing interaction between the two components of the combined fields.

It is well-known that the energy conservation is associated with the symmetry
to

state motivation by raising a question of what physical symmetry implies the mass
conservation law. This query is raised in regard to the relativistic equation of energy
conservation of fluid flows when its non-relativistic limit is taken. In the ordinary fluid-
mechanics valid in non-relativistic limit, the mass conservation law is given as valid a
priori. However, let us see what happens in relativistic mechanics.
the relativistic energy-momentum tensor has been given in the previous section

The equation (4.24) represents four conservation equations. The space components
of the equation (4.24) are given by ∂νT

kν = 0 with µ = k = 1, 2, 3, representing the
momentum conservation of the k-th component.

On the other hand, its time component (∂νT
0ν = 0) is the equation of energy

conservation. In order to see its explicit representation in terms of flow variables in the
non-relativistic limit (β ≡ v/c → 0), the stress-energy tensors T µν are now written by
leading-order terms of expansion with respect to small β in a matrix form:

Tαβ =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 ,

T 00 = ρc2 + 1
2 ρv

2 + ρϵ + · · · ,
T 0k = cρvk + c−1ρvk(12 v

2 + h) + · · · ,
T k0 = cρvk + c−1ρvk(12 v

2 + h) + · · · ,
T ik = ρvivk + p δik + · · · = T ki

h ≡ ϵ+ p/ρ.

(5.1)

where matrix elements are given together with flow variables on the right-hand part
of the expression (5.1). The term T 00 is the energy density, while T 0k (k = 1, 2, 3) is
the energy flux density. The underlined terms ρc2 in T 00 and cρvk in T 0k came from
the rest-mass energy part of the tensor T αβ, which do not appear in the ordinary fluid
mechanics. There exists the symmetry of T 0k = T k0 in the relativistic expression of
(5.1). This symmetry is lost in the non-relativistic ordinary fluid mechanics when the
underlined terms are removed.

The equation ∂νT
0ν = 0 of energy conservation can be written down now as,

c−1∂tT
00
+ ∂kT

0k
= c

(
∂tρ+ ∂k(ρv

k)
)
+

1

c

(
∂t(ρÊ) + ∂k(ρv

kĤ)
)
+O(β3) = 0, (5.2)

Ê =
1

2
v2 + ϵ, Ĥ =

1

2
v2 + h. (5.3)

(see (2.17) for ∂ν). In the non-relativistic limit as β → 0, we obtain the mass
conservation equation from the first term,

∂tρ+ ∂k(ρv
k) = 0. (5.4)

Then, deleting it, the remaining expression reduces to the energy equation of ordinary
fluid mechanics in the non-relativistic limit. Thus, we obtain the energy conservation
equation of fluid flow (Landau & Lifshitz (1987), Eq.(6.1)):

∂t(ρÊ) + ∂k(ρv
kĤ) = 0. (5.5)

a) A riddle: By what symmetry the mass conservation law is implied?

Main object ofof time translation of mechanical systems. isthis section

It is reminded that
IV, d).
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Here we have obtained two conservation equations (5.4) and (5.5) from the single energy
equation ∂νT

0ν = 0. However, the Noether’s theorem (Noether 1918) of theoretical
physics states ’A symmetry implies a conservation law’, as noted in §1 (Introduction).
Therefore, we must ask a question whether the above analysis is satisfactory, and we

A hint to resolve the Riddlementioned in the previous section is found in the general
representation of rotational flows given by by Kambe (2013) for an ideal compressible
flow solution satisfying the Euler’s equation. Its expression in details is cited in Kambe
(2020, §3). This solution was derived from the action principle with the action

S(Eul−rot) = S(nR) + S(Ga−inv) =

∫
ρ dV

[ ∫
ΛnR dt+

∫
ΛGi dt

]
, (5.6)

ΛnR = 1
2 v

2 − ϵ, ΛGi = −Dt −Dt⟨U , Z⟩ (5.7)

∇ · (ρZ) = 0, ∇ · U = 0, (5.8)

L[Z] ≡ ∂tZ + (v · ∇)Z − (Z · ∇)v = 0, (5.9)

for non-relativistic flow fields, where ΛnR is nothing but the ordinary non-relativistic
Lagrangian density, while ΛGi is a gauge-invariant Lagrangian newly introduced in the
study of Kambe (2013). Actually, this study had double aims. One was an attempt
to obtain general representation of rotational flow field with non-zero helicity (Kambe
2012). Second aim was more fundamental, striving to establish equivalence between
two formulations of Eulerian and Lagrangian specifications under the action principle.
Each term of the Lagrangian densities ΛnR and ΛGi satisfies local gauge invariance with
respect to translation and rotation, hence it is consistent with the gauge theory.

As discussed in details in Kambe (2020, §1 and 3.1), this new formulation introduced
four independent fields. In fact, regarding the 3-vector potentials U and Z, each
has three components. Those six fields have two invariance conditions of (5.8),
i.e. divergence-free condition in 3-space. In addition, from (5.9) and the equation,
(L∗

t [U ])i ≡ ∂tUi+ vk∂kUi+Uk∂iv
k = 0 obtained from the variational analysis of Kambe

(2013), we have the third invariance condition:

Dt⟨U , Z⟩(t,x) ≡ ⟨L∗[U ], Z⟩+ ⟨U , L[Z]⟩ = 0. (5.10)

Hence, the value of scalar product ⟨U , Z⟩ is invariant along the particle path x =
Xp(t,x), keeping its initial value along each trajectory. This is the third invariance
imposed on the potentials U and Z. Therefore we have only three independent fields
remaining among the six components of U and Z. Furthermore, if we add the scalar
field which is also unconstrained, we have four independent fields in this solution.

Thus, four independent background fields are newly introduced in this solution.
Those must be either given externally or determined internally within the framework of
theory. In this paper, we take the latter approach, and the general solution given here is
understood to predict existence of a new field, which is to be introduced according to the
fluid gauge theory proposed in
partial success, because we are lead to unavoidable circumstances which take us to a new
step in two respects. First, owing to the existence of four components of background
field, a set of new gauge fields must be introduced in the 4-spacetime according to the
gauge-theoretic scenario. Second, it is understood that the newly introduced action
S(Ga−inv) ≡ S(int) of (5.12) given below represents interaction of the flow field with
unknown background fields. Amazingly this action is analogous to the interaction form

b) Hint to resolve the riddle: General solution of Euler’s equation with helicity

propose a resolution to this query in a separate paper. (Kambe 2021, “Fluid Gauge 
Theory",GJSFR).

Hence, the present section describes aKamle (2021).

𝜓𝜓
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What is the hint to resolve the riddle mentioned in ? It is as follows. We
rewrite the part of action S(Ga−inv) of gauge-invariant terms of (5.6) as S(int), since this
term is considered to describe interaction between the flow-current jν and background
vector-potentials U and Z, and . In addition to S(int), we denote the scalar product
⟨U , Z⟩ by W , and define a 4-current jν as follows:

S(int) =

∫
ρ dV

∫
ΛGidt, jν ≡ (ρ c, ρv), W ≡ ⟨U , Z⟩. (5.11)

Then the interaction part of action is expressed by

S(int) = −
∫ ∫ (

ρDt + ρDtW
)
dV dt =

∫ ∫
jν ãν dV dt. (5.12)

where ãν = −∂ν( +W ) and ∂ν is the same as ∂α of (2.17).
Note that the field ãν = −∂ν( +W ) is analogous to the particular field Ãν = ∂νΘ

considered in where all the fieldsE and B vanish identically, In other words, those
fields are potentially existing, but vanish in this particular potential form of Ãν = ∂νΘ .
Same can be said that new potential field ãν can exist. But with the particular form
ãν = −∂ν( +W ), the potentially existing new field does not show in observable world.

Based on this observation, new Fluid Gauge Theory is developed in the
accompanying paper

Gauge invariance is one of the fundamental symmetries in modern theoretical
physics. In this paper, the gauge symmetry is reviewed to see how it is working
in fundamental physical fields: Electromagnetism, Quantum ElectroDynamics and
Geometric Theory of Gravity. In the 19th century, the gauge invariance was recognized
as a mathematicl non-uniqueness of the electromagnetic potentials, existing despite
the uniqueness of observable electromagnetic fields E and B. In the 20th century,
physical significance of the gauge symmetry was recognized but in zigzag ways. Real
recognition of its physical significance required two new fields: the relativity theory for
recognizing the structure of linked 4d-spacetime xµ = (ct,x) together with, say, a 4-
potential Aν = (Φ,A) and a current 4-vector j ν = (ρc, j), and the quantum mechanics
for the new dimension of a phase factor exp [iχ(xν)] (§2.2). Finally the gauge symmetry
was understood to be very fundamental, and the gauge invariance played a role of
guiding principle in the study of physical fields such as Quantum Electrodynamics,
Particle Physics and Theory of Gravitation.

There exist similarities in mathematical formulation of physical fields between
the quantum electrodynamics (QED, and the gravity theory Those

consequences of gauge-invariance property of each field more or less. For example, the
covariant derivative of wave function is ∇µ = ∂µ − iγAµ , while in the gravity
the covariant derivative of a vector v = vνeν is represented as (∇µv)

ν = ∂µv
ν +Γναµv

α.
Second terms in each expression represent the effects from the electromagnetic potential
Aµ in the former and from the gravity through the factor Γναµ in the latter.

Fundamental governing equations of both fields are derived from the action principle
(i.e. the action should be invariant for arbitrary variations). A (second) pair of Maxwell
equations (3.33) is the one for the electromagnetic field, while the Einstein equation
(3.31) is the corresponding equation for the gravitational field, which are, respectively,

∂λF
νλ = (4π/c) j νe . (6.1)

Gαβ = 8πk T αβ . (6.2)

VI. Summary

𝜓𝜓

𝜓𝜓
𝜓𝜓

𝜓𝜓

𝜓𝜓 𝜓𝜓 𝜓𝜓 𝜓𝜓

Section II, b)
are

section III, c)

(Kambe 2021).

Section I, b)

Sem(int)of (2.9) in the case of Electromagnetism This implies a possible approach,
by the formulation analogous to that of Electromagnetism.

section II, a).

section V, a)
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The terms on the right hand side are the sources of each field. Taking 4-divergence ∂ν
of the first equation, the left hand side vanishes identically: ∂ν∂λF

νλ ≡ 0, ensuring the
current conservation: ∂νj

ν
e = 0. This is an outcome of the gauge symmetry of the field

strength tensor F νλ, which is anti-symmetric: F νλ = −F λν . On the other hand, taking
4-divergence ∂α of the second equation, the right hand side vanishes : ∂αT

αβ = 0 which
is the conservation laws of stress-energy deduced as the Noether’s theorem from the
invariance of the action integral with respect to variations of 4-spacetime coordinates.
Corresponding left hand side vanishes by the Bianchi identity of the gravitational field
(Misner et al. (2017, Chap. 15)).

Waves in vacuum space and gauge conditions (there) are also seen to be similar
between the two fields. Electromagnetic waves propagating in vacuum space are
governed by the wave equation (3.34) for the potential Aν under the gauge condition:

(∇2 − c−2∂ 2
t )A

ν = 0. ∂νA
ν = 0. (6.3)

In weak gravitational field, a linearized theory gives the wave equation (3.37) for the
modified metric h

µν
under the gauge condition (3.38). In vacuum space, we have

(∇2 − c−2∂ 2
t )h

µν
= 0 , ∂ν h

µν
= 0 , (6.4)

In vacuum space where both of the current flux j νe and the stress-energy tensor T αβ are
absent. the gauge freedom resulting from the absence of materials is filled up by the
gauge conditions ∂νA

ν = 0 or ∂νh
µν

= 0. Namely, the gauge conditions play the role of
filling in the blanks of degrees of freedom.

The section describes why the gravitational waves propagating in vacuum
space have only two dynamic degrees of freedom, analogous to the electromagnetic
waves, although in general, the metric perturbation h

µν
has ten independent

components.
Present review on the gauge symmetry is motivated from the previous study of

Kambe (2020) having arrived at the conclusion that there exists a new gauge field within
flow fields of a perfect fluid, and that the new field ensures the mass conservation. The
gauge field is not recognized so far in the framework of mechanics of a perfect fluid.

This was an endeavor to resolve a riddle, which is presented in as follows.
A symmetry implies a conservation law (Noether 1918). However it can be shown that,
from a single relativistic energy equation of fluid motion, two conservation equations
are obtained in the non-relativistic limit according to the current formulation of fluid
mechanics: one is the mass conservation and the other is the traditional form of
energy equation. We are concerned particularly with the mass conservation equation
and investigate what symmetry implies the mass conservation, and conversely what
symmetry the mass conservation implies. A key to resolve this Riddle is hinted by the
general representation of rotational flows (Kambe 2012, 2013) of an ideal compressible
fluid satisfying the Euler’s equation, described in This gives us a hint of existence
of a set of gauge fields, suggesting that our physical system should be a combined system
consisting of a fluid flow field and a set of new gauge fields (Kambe 2017). From the
gauge symmetry of the latter field, the law of mass conservation is deduced, rather
than given a priori. As far as the mass conservation law is satisfied conversely, gauge
invariance is ensured for the action representing interaction between the two components
of the combined field.

For writing the present review paper motivated from the previous study (Kambe 2020),
the author is grateful to Professor Yasuhide Fukumoto (Kyushu University) who is not
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only interested in the subject itself, but encouraged to contemplate on writing a review
paper covering the gauge symmetry lying in the background of Physics.

Gauge theory of physics is formulated on the basis of Riemannian geometry. To help
the formulations in the main text, basics of Riemannian geometry are summarized here.

Appendix A.1. Tangent vectors and inner product

We consider the inner geometry of a Riemannian manifold M which is not a part of
an Euclidean space. If a manifold M under consideration were a part of an Euclidean
n-dimensional space En, it would inherit a local Euclidean geometry (such as the length)
from the enveloping Euclidean space, as is the case of a 2-d surface in E3. The manifold
Mn under consideration is not a part of an Euclidean space, so the existence of a local
geometry must be postulated. Let Mn be an n-dimensional manifold. The problem is
how to define a tangent vector X when we are constrained to the manifold Mn. Let us
introduce a local coordinate frame (x1, · · · , xn), and define a tangent vector X ∈ TxM

n

at each point x of Mn by

X = X i ∂

∂xi
= X i ∂i ,

where ∂i = [∂/∂x1, · · · , ∂/∂xn] is a natural frame associated with the coordinate system.
Furthermore, we define a vector-valued one-form by ω = ∂i ⊗ dxi, where ∂i and dxi

are bases of vector and covectors.† From the calculus of differential forms, we have
ω[X] = ∂i ⊗ dxi[X] = X i∂i = X where dxi(X) = X i. By eating a vector X, the 1-form
ω yields the same vector X, i.e. vector-valued one-form.

We consider intrinsic geometry of the manifold Mn. It is supposed that an inner
product ⟨· , ·⟩ is given in the tangent space TxM

n. If X and Y are two smooth tangent
vector fields of the tangent bundle TxM

n, then ⟨X, Y ⟩ is a smooth real function on Mn.

On a Riemannian manifold Mn, an inner product ⟨· , ·⟩ is defined on the tangent space
TxM

n at x ∈M and assumed to be differentiable. For two tangent fields X = X i(x)∂i,
Y = Y j(x)∂j ∈ TxM

n (tangent bundle), the Riemannian metric is given by‡

⟨X, Y ⟩(x) = gij X
i(x)Y j(x) ,

where the metric tensor, gij(x) = ⟨∂i, ∂j⟩ = gji(x), is symmetric and differentiable
with respect to xi. This bilinear quadratic form is called the first fundamental form.
In terms of differential 1-forms dxi, this is equivalent to I ≡ gij dx

i ⊗ dxj. Eating two
vectors X = X i(x)∂i and Y = Y j(x)∂j, this yields

I (X,Y ) = gij dx
i(X) dxj(Y ) = gij X

iY j . (A.1)

The inner product is said to be non-degenerate,

if ⟨X, Y ⟩ = 0, ∀Y ∈ TMn, only when X = 0 . (A.2)

† These define symbols independent of local coordinate frames. If u1, · · · , un is another frame, then we

have transformation from ∂i to ∂/∂u
i = (∂xl/∂ui)(∂/∂xl) and from dxi to dui = (∂ui/∂xk)dxk, Then,

their combination is (∂/∂ui)⊗dui = (∂xl/∂ui)(∂/∂xl)⊗(∂ui/∂xk)(dxk) = δlk (∂/∂x
l)⊗dxk = ∂k⊗dxk.

Also, inner product is independent of frames: UiU
i = (∂xl/∂ui)Xl (∂u

i/∂xk)Xk = δlkXlX
k = XkX

k.
‡ If the inner product is only non-degenerate rather than positive definite, the resulting structure on

Mn is called a pseudo-Riemannian.

Appendix A.2. Riemannian metric

Appendix A. Riemannian Geometry
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As an example, consider a manifold of one-sphere S1 of continuous interval of real
numbers, S1 ≡ M∞

[0,2π] : [0, 2π]. Its dimension is infinite, because the real number

x ∈ M∞
[0,2π] distributes continuously within the section [0, 2π]. Suppose that two fields

X = u(x) ∂x and Y = v(x) ∂x are given in the tangent space TxM
∞
[0,2π] at a point x ∈ S1.

Their inner product is defined by

⟨X, Y ⟩ ≡
∫ 2π

0

u(x) v(x) dx .

This kind of metric is used for electromagnetic fields or flow fields of a fluid.

We introduce an additional structure to the manifold Mn that allows to form a
covariant derivative. In mathematics, general definition is given to a covariant derivative
(called a connection) on a Riemannian curved manifold Mn. Let two vector fields X, Y
defined in the neighborhood of a point p ∈ Mn and two vectors U and V defined at
p. A covariant derivative (or connection) is an operator ∇. The operator ∇ assigns a
vector ∇U X at p to each pair (U, X) and satisfies the following relations:

( i ) ∇U (aX + bY ) = a∇UX + b∇UY ,

( ii ) ∇aU+bV X = a∇UX + b∇VX ,

(iii ) ∇U(f(x)X) = (Uf)X + f(x)∇UX ,

 (A.3)

for a smooth function f(x) and a, b ∈ R, where U = U j∂j and Uf = U j∂jf ≡ df [U ].
Using the representations, X = X i ∂i and Y = Y j ∂j, and applying the above properties
(i)∼(iii), we obtain

∇XY = ∇Xi∂i(Y
j∂j) = X i∇∂i(Y

j∂j)

= (X i∂iY
k)∂k +X iY j Γkij ∂k = (∇XY )k ∂k , (A.4)

∇∂i∂j := Γkij∂k , (A.5)

where Γkij is called the Christoffel symbol. The i-th component of ∇XY is

(∇XY )i = Xj ∂Y
i

∂xj
+ ΓijkX

jY k = dY i(X) + (ΓijkY
k) dxj(X) := ∇Y i(X), (A.6)

∇Y i = dY i + Γijk Y
k dxj , ∇jY

i = ∂jY
i + ΓijkY

k, (A.7)

where ∇Y i is called a connection one-form. On a manifold Mn, a coordinate frame
consists of n vector fields ek = ∂k (k = 1, · · · , n), which are linearly independent and
furnish a basis of the tangent space at each point p. Writing (A.5) and (A.6) in the form
of vector-valued one-forms, we have ∇ej = ek Γ

k
ijdx

i, and∇Y = (dY k) ek+Y
j Γkijdx

i ek.
The operator ∇ is called the affine connection, and we have the following representation,

∇Y (X ) =∇XY . (A.8)

There is one connection that is of special significance, having the property that
parallel displacement preserves inner products, and the connection is symmetric.

Definition: There is a unique connection ∇ on a Riemannian manifold M called the
Riemannian connection or Levi-Civita connection that satisfies

(i) Z ⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X, ∇ZY ⟩ (A.9)

(ii) ∇XY −∇YX = [X, Y ] (torsion free), (A.10)

Appendix A.4. Riemannian connection

Appendix A.3. Covariant derivative (Connection)
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for vector fields X, Y, Z ∈ TM , where Z ⟨·, ·⟩ = Zj∂j ⟨·, ·⟩. The property (i) is a
compatibility condition with the metric. The torsion-free property (ii) requires the
following symmetry, Γkij = Γkji, with respect to i and j. In fact, writing as X = X i ∂i
and Y = Y j ∂j, the definitive expression (A.4) leads to

(∇XY −∇YX)k = (XY − Y X)k + (Γkij − Γkji)X
iY j . (A.11)

Christoffel symbol :
The Christoffel symbol Γkij can be represented in terms of the metric tensor g = (gij)

by the following formula:

Γkij = gkαΓij,α, Γij,α = 1
2 (∂i gjα + ∂j gαi − ∂α gij) , (A.12)

where gkα denotes the inverse g−1, gkα = (g−1)kα, satisfying gkαgαl = glαg
αk = δkl . The

symmetry Γkij = Γkji follows immediately from (A.12) and gij = gji.

Consider a curve x(t) on Mn passing through a point p whose tangent at p is given by

T = T k ∂k =
dx

dt
= ẋ = ẋk ∂k ,

and let Y be a tangent vector field defined along the curve x(t). According to (A.4) or
(A.6), the covariant derivative ∇TY is given by

∇TY :=
∇Y
dt

=
[
dY i(T ) + Γikj T

kY j
]
∂i =

[
d

dt
Y i + Γikj ẋ

kY j

]
∂i , (A.13)

since T k = ẋk. When Y i is a function of xk(t), then (d/dt)Y i = ẋk(∂Y i/∂xk). The
expression ∇Y/dt emphasizes the derivative along the curve x(t) parameterized with t.

Parallel translation :
On the manifold Mn, one can define parallel displacement of a tangent vector

Y = Y i∂i along a parameterized curve x(t). Parallel displacement is given by (A.15)
below. Mathematically, this is defined by

∇Y
dt

= ∇TY = 0 ; namely, ẋk(∂Y i/∂xk) + Γikjẋ
kY j = 0 . (A.14)

For two vector fields X and Y translated parallel along the curve, we obtain

⟨X, Y ⟩ = constant (under parallel translation), (A.15)

because the scalar product is invariant by (A.9) and (A.14):

T ⟨X, Y ⟩ = ⟨∇TX, Y ⟩+ ⟨X, ∇TY ⟩ = 0 . (A.16)

One curve of special significance in a curved space is the geodesic curve. A curve
γ(t) on a Riemannian manifold Mn is said to be geodesic if its tangent T = dγ/dt is
displaced parallel along the curve γ(t), i.e. if

∇T T =
∇
dt

(
dγ

dt

)
= 0 . (A.17)

In local coordinates γ(t) = (xi(t)), we have dγ/dt = T = T i∂i = (dxi/dt)∂i. By setting
Y = T in (A.13), we obtain

Appendix A.6. Geodesic equation

Appendix A.5. Covariant derivative along a curve



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Thus the geodesic equation ∇T T = 0 is expressed by local coordinates as

dT i

dt
+ Γijk T

j T k = 0, or
d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0. (A.19)

Parallel translation again : Parallel translation of a tangent vector X along a geodesic
γ(s) with unit tangent T is defined by (A.14) as ∇TX = 0. By setting Y = Z = T in
the second property (A.9) of the Riemannian connection, we obtain

d

ds
⟨X, T ⟩ = T ⟨X, T ⟩ = ⟨∇TX, T ⟩ , (A.20)

since ∇TT = 0 by the definition of a geodesic. Hence, the inner product ⟨X, T ⟩ is kept
constant by the parallel translation.

: A geodesic curve denotes a path of shortest distance
connecting two nearby points, or globally of an extremum for all variations with fixed
end points. Let C0 : γ0(s) be a geodesic curve with a length parameter s ∈ [0, L]. A
varied curve is denoted by Cα : γ(s, α) with γ(s, 0) = γ0(s), where α ∈ (−ε,+ε) is a
variation parameter and s the arc length for γ0(s). The arc length of the curve Cα is

L(α) =

∫ L

0

∥∥∥∂γ(s, α)
∂s

∥∥∥ ds = ∫ L

0

⟨T (s, α), T (s, α) ⟩1/2 ds, T =
∂γ

∂s
.

Its variation is given by L′(α) =
∫ L
0
∂α < ∂sγ, ∂sγ >

1/2 ds. In case that the variation
vanishes at both ends of s = 0 and L, the first variation L′(0) at α = 0 is given by

L′(0) = −
∫ L

0

⟨J, ∇TT ⟩ ds, ⟨J, ∇TT ⟩ = 0 for 0 < s < L , (A.21)

where J = ∂αγ((s, 0) is the variation vector. Thus, the geodesic curve ∇TT = 0 takes
the extremum of arc length among nearby curves having common endpoints, in particular
characterized by a path of the shortest distance if endpoints are sufficiently near.

Suppose that a material particle or fluid particles are moving with high velocities in
an inertial frame K: (c t, x1, x2, x3) with c the light velocity. In a time interval dt, the
position of a particle changes with time and its displacement is given by a 4-vector:

dxµ = (c dt, dX1, dX2, dX3), dXk = vk dt (k = 1, 2, 3), (B.1)

where µ = 0, 1, 2, 3, and the upper-case notation dXk denotes material displacement
with vk being components of 3-velocity v. In the relativity theory, an infinitesimal
interval ds is defined by its squared form, ds2 = dxµdx

µ, which is a scalar
product of a line-element 4-vector dxµ with its covariant version dxµ = ηµνdx

ν =
(−c dt, dX1, dX2, dX3), where ηµν is the Minkowski metric, sometimes called the
Lorentz metric, defined by

ηµν = ηµν = diag(−1, 1, 1, 1) (B.2)

Hence, we have ds2 = dxµdx
µ = ηµν dx

µdxν = −c2dt2 + |dX|2.†

† Note that the metric gµν used by Landau & Lifshitz (1975) is defined by gµν = diag(1,−1,−1,−1) =

−ηµν . Hence, dτ2 [present] = −ηµν dxµdxν = gµν dx
µdxν = ds2 [Landau & Lifshitz] = −ds2 [present].
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∇T T =

[
dT i

dt
+ Γijk T

j T k
]
∂i = 0 , where T i =

dxi

dt
. (A.18)

Appendix B. Basics of Special Relativity

Extremum  of  arc  length



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The interval ds is a relativistic invariant, i.e. invariant under the Lorentz
transformation now defined. Suppose that the coordinate transformation is expressed
by xµ → x′α = Λα

′
µ x

µ with Λα
′
µ a matrix of Lorentz transformation. Then we have

ds′ 2 = ηα′β′ dx′α dx′β = ηα′β′ Λα
′

µΛ
β′

ν dx
µ dxν = ηµν dx

µ dxν = ds2 ,

where Λα
′

βΛ
β
γ′ = δα

′

γ′ is required for the Lorentz transformation. The equalities,

ηµν = ηα′β′ Λα
′

µΛ
β′

ν = (ΛT) α′

µ ηα′β′ Λβ
′

ν = (ΛT η′Λ )µν ,

define the Lorentz invariance, or relativistic invariance.
Another relativistic invariant is the proper time τ . Its increment dτ is defined by

the time increment (multiplied by c) in the instantaneously rest frame where v = 0.
Squared interval of the proper time is defined by dτ 2 = −dxνdx

ν = −ds2. From this,
noting dXk = vk dt, we obtain

dτ = c dt
√

1− β2 , β ≡ v/c , v =
√
vkvk. (B.3)

Using the displacement dXν of a fluid particle P , its relativistic 4-velocity is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√

1− β2
), v = (vk) = (dXk/dt). (B.4)

This fluid particle P is moving with the 4-velocity uν relative to the frame xµ.
Consider the following useful transformation defined by the matrix components Λα

′
µ:

v1/c = β n1, v2/c = β n2, v3/c = β n3, γ ≡ 1/
√
1− β2, (B.5)

Λ0′

0 = γ, Λ0′

j = Λj
′

0 = −β γ nj, (B.6)

Λj
′

k = Λk
′

j = (γ − 1)nj nk + δjk, (B.7)

where the condition of unit 3-vector (n1)2 + (n2)2 + (n3)2 = 1 defines β2 = |v|2/c2.
With the matrix Λα

′
µ of (B.6) and (B.7), the unprimed frame xµ is transformed to

the primed frame x′α by the coordinate transformation law: x′α = Λα
′
µ x

µ at the instant
when the origins of both frames coincide instantaneously. However, the primed frame
x′α is moving with the velocity vk/c = β nk as seen in the unprimed frame xµ.

It is remarkable that the 4-velocity uν is transformed by the same law: u′α = Λα
′
ν u

ν .
Suppose that the particle P is comoving with the unprimed frame, hence its 4-velocity
being uν = (1, 0, 0, 0), and that the primed frame x′α is moving with the velocity
vk=−|v|nk as seen in the unprimed frame xµ (i.e. β = |v|/c ). It is not difficult to

show that the 4-velocity u′α = Λα
′
ν u

ν in the primed frame coincides with (B.4). Thus,

uν = (1, 0, 0, 0) ⇒ u′α = γ
(
1, |β|nj

)
=

( 1√
1− β2

,
v

c
√
1− β2

)
, (B.8)

Conversely, suppose that the particle P is moving in the unprimed frame with the 4-
velocity uν of (B.4), and that the primed frame x′α is comoving with the particle P (i.e.
β = +|v|/c ), hence moving with the velocity vk = |v|nk relative to the unprimed frame
xµ. Under the Lorentz transformation of (B.6) and (B.7), the 4-velocity u′α = Λα

′
ν u

ν

transformed from the uν of (B.4) is found as
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Appendix C.1. Useful formulae of gravity theory
• Covariant derivatives:

F : scalar : F ;γ = F ,γ , (C.1)

V α: vector : V α
;γ = V α

,γ + ΓαµγV
µ, (C.2)

Uα: 1-form : Uα ;γ = Uα ,γ − ΓµαγUµ, (C.3)

T αβ : tensor : T αβ ;γ = T αβ ,γ + ΓαµγT
µ
β − ΓµβγT

α
µ (C.4)

• Curvature tensors and symmetry properties:

Riemann tensor : Rα
βγδ =

∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓανγΓ
ν
βδ − ΓανδΓ

ν
βγ , (C.5)

Rαβγδ = gανR
ν
βγδ (C.6)

Rαβγδ =
1
2 (∂α∂δ gβγ + ∂β∂γ gαδ − ∂α∂γ gβδ − ∂β∂δ gαγ)

+ gµν(Γ
µ
βγΓ

ν
αδ − ΓµβδΓ

ν
αγ), (C.7)

Rαβγδ = −Rβαγδ = −Rαβδγ (C.8)

Rαβγδ = Rγδαβ (C.9)

Rαβγδ +Rαδβγ +Rαγδβ = 0. (C.10)

Ricci tensor : Rµν ≡ Rα
µαν (C.11)

= ∂αΓ
α
µν − ∂νΓ

α
µα + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα, (C.12)

Scalar curvature : Rsc ≡ gανRαν

(C.13)

Appendix C.2. Variational formulation
Equations of the gravitational field are obtained from the principle of least action

δ(Sg + Sm) = 0, where Sg and Sm are the actions of the gravitational field and matter
field respectively. The action for the gravitational field is defined by

Sg = − Ag

∫
gαβRαβ

√
−g dΩ , g ≡

c3

16πG0

dΩ = dx0dx1dx2dx3, (C.14)

where
√
−g dΩ is the proper volume [dΩ ]prop in a local Lorentz frame with g = det(gµν),

and Rαβ is the Ricci curvature tensor (C.11), and gαβRαβ = Rα
α ≡ Rsc is the scalar

curvature. The variation of Sg with respect to the metric field gαβ is given by

δSg = −Ag
∫ (

Rαβ − 1
2 gαβR

ν
ν

)
δgαβ

√
−g dΩ . (C.15)
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uν = γ
(
1, β nj

)
⇒ u′α = Λα

′

ν u
ν = (1, 0, 0, 0), (B.9)

where γ ≡ 1/
√

1− β2, β ≡ |v|/c and j = 1, 2, 3.

Appendix C. Supplements to the Gravity Theory of Main Text

A ,



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(Landau & Lifshitz (1975) Eq.(94.5)), where Tαβ is the stress-energy tensor defined by

1
2

√
−g Tαβ =

∂
√
−g Λ
∂q

− ∂

∂xν
∂
√
−g Λ

∂(∂νq)
, q ≡ gαβ. (C.18)

From the action principle δ(Sg + Sm) = 0, we find

−Ag
∫ (

Rαβ − 1
2 gαβRsc − 8πk Tαβ

)
δgαβ

√
−g dΩ = 0,

where k = G0/c
4. In view of the arbitrariness of the δgαβ, we obtain the Einstein field

equation:

Gαβ = 8πk Tαβ , k = G0/c
4, Gαβ ≡ Rαβ − 1

2 gαβR
ν
ν . (C.19)

where Gαβ is the Einstein curvature tensor.

Appendix C.3. Bianchi identity

The Bianchi identity is deeply rooted in geometrical structure of physical fields. But
superficially, it is just expressed by a linear combination of three terms, each of which
is given by covariant-derivative of a component of Riemann curvature tensor:

Rαβµν;λ +Rαβλµ;ν +Rαβνλ;µ = 0. (C.20)

This can be easily verified in the local Lorentz frame by using the representation obtained
from (C.7) with all Γ’s (but not derivatives) set to 0. The equation thus obtained is
the identity like (C.20) but the ”;”-operator replaced by ”,”. Namely, the equation is
verified only for the local Lorentz frame. Finally, transition to any frame of curved
spacetime can be done just by replacing ”comma” by ”semicolon”.

Physical significance of the Bianchi identity
From the viewpoint of physics, the set of curvature tensors Rαβµν has a remarkable

geometrical property, and surprisingly shows a striking analogy to the electromagnetic
field. First we spotlight the relevant part of Electromagnetic field

In terms of the electromagnetic four-potentials Aµ, one-form A = Aµdx
µ was

defined (see §2.1 (a)). Out of this one-form, a two-form F = dA is derived by taking its
exterior differentiation dA. The two-form field F satisfies the identity dF ≡ 0, because
d2A ≡ 0, i.e. ∂ ∂ = 0 by the language of differential geometry, in other words by the
principle ”boundary of a boundary is zero”. This yields the identity equation (2.5):
∂αFβγ +∂βFγα+∂γFαβ = 0, giving rise to a pair of Maxwell equations of (2.7). The last
can be rewritten as

Gauge Symmetries in Physical Fields (Review)
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On the other hand, the action Sm of the matter field is

Sm =
1

c

∫
Λm

(
q,
∂q

∂xν

)√
−g dΩ . (C.16)

where the Lagrangian density Λm contains only the tensors q = gαβ and their first
derivatives ∂νq = ∂νgαβ. Noting that variation of the coordinate from xν to xν + ξν

results in variation of the metric δgαβ, we obtain the variation of action Sm given after
some analyses as

δSm =
1

2c

∫
Tαβ δg

αβ
√
−g dΩ , (C.17)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(Misner et al. (2017), §14.5, eq.(14.17)), where Rµ
ν is the curvature 2-form defined by

Rα
β ≡ d(Γαβνdx

ν) + Γαλµ Γ
λ
βν dx

µ ∧ dxν (C.25)

= Rα
βµν dx

µ ∧ dxν (µ < ν).

where the summation of the last line is taken over µ, ν with µ < ν, and Rα
βµν is the

Riemann curvature tensor of (C.5).
In order to take our last step, we consider the curvature two-form Rα

β in the local
Lorentz frame where the second term of (C.25) drops as is done in the proof of Bianchi-
id. Then we have Rα

β = d(Γαβνdx
ν). Taking exterior differentiation again, we obtain

0 = dRα
β = d2(Γαβνdx

ν) = Rα
βµν,λ dx

λ ∧ dxµ ∧ dxν ,

because d2 = 0. From this we find, with cyclic permutation of (λ, µ, ν):

Rα
βµν,λ +Rα

βλµ,ν +Rα
βνλ,µ = 0.

in the local Lorentz frame. Final transition to any frame of curved spacetime can be
done by replacing ”comma” by ”semicolon”, obtaining the Bianchi identity (C.20).

Second pair of Maxwell equations (2.8) for the fields E and B can be derived from

the action principle. The total action S(em) is expressed as S(em) = S
(em)
emA + S

(em)
int , where

S
(em)
emA is represented with a free-field Lagrangian of Lorentz-invariant quadrutic form of

the field strength tensor, Fµν = ∂µAν − ∂νAµ, and S
(em)
int represents interaction between

the field and 4-current j νe , defined by

S
(em)
emA = − 1

16πc

∫
Fµν F

µνdΩ , S
(em)
int =

1

c2

∫
j νe Aν dΩ , (D.1)

with dΩ = c dt dV , and F µν = ηµαηνβFαβ. We vary only the Aν (serving as the
coordinates) with the material 4-current j νe assumed given (Landau & Lifshitz, 1975).
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Using the exterior derivative D defined by (3.16), the vector-valued one-form Dv is

Dv = eµ

(Dvµ
dxβ

+ Γµαβv
α
)
dxβ . (C.23)

Now differentiate this once again to get D2v:

D2v = eµRµ
ν v

ν , (C.24)

Fαβ ,γ + Fβγ ,α + Fγα ,β = 0, in short F[αβ,γ] = 0. (C.21)

The symbol [αβ, γ] denotes cyclic permutation of the parameters of three anti-symmetric
pairs [αβ], [βγ] and [γα]. It is amazing to find that the equation (C.20) can be written
analogously as

Rαβ[µν;λ] = 0. (C.22)

This is a startling coincidence. In fact, there exists a common structure in their
backgrounds, which is now highlighted.

Appendix D. Second Pair of Maxwell Equations



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Since the variation δAν is arbitrary, the coefficient of δAν must vanish:

∂F νλ

∂xλ
=

4π

c
jν , (D.4)

where j ν = (ρec, je) with je = ρev, The field strength tensor Fνλ is defined by (1.9),
and its matrix representation by (1.10), while F νλ is defined by gνα Fαβ g

βλ.
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We interchange the indices ν and λ in the middle term. Using the antisymmetry of the
matrix F λν , one can replace the factor F λν by −F νλ. Then we obtain

δS =
1

c

∫ (1
c
jν δAν +

1

4π
F νλ ∂

∂xλ
δAν

)
dΩ ,

To the second term, we perform integration by parts. Since the surface integral thus
obtained vanishes by the imposed boundary conditions. Thus, the principle of least
action leads to ∫ (1

c
jν − 1

4π

∂F νλ

∂xλ

)
δAν dΩ = 0. (D.3)

Thus, we have the action variation caused by the variation of Aν :

δS(em) =
1

c

∫ (1
c
jν δAν −

1

8π
F νλ δFνλ

)
dΩ = 0, (D.2)

where we used the equality Fνλ δF
νλ = F νλ δFνλ. In S

(em)
int , we must not vary jν which

is a material current, not the field. Substituting Fνλ = ∂Aλ/∂x
ν − ∂Aν/∂x

λ, we have

δS =
1

c

∫ (1
c
jν δAν −

1

8π
F νλ ∂

∂xν
δAλ +

1

8π
F νλ ∂

∂xλ
δAν

)
dΩ ,
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S-Existence: There is another Existence of 
Everything 

Sumeru Ray (Maharshi Maha Manas) 

Abstract- ‘S-Existence’ is another existence of everything. Lack 
of appropriate word has caused to mark or name this 
unearthly existence– ‘Sumeru-Existence’, briefly– ‘S-Existence’. 
This ‘S-Existence’ identity is too much subtle –unperceived –
unfelt. 

From fundamental particle to every element, – matter 
and energy have two different existences in its form. The 

formations of matter or element, components, quality, energy 
etc all are present in its ‘S-Existence’. Generally, this ‘S-
Existence’ is inseparable mixed with material existence. 
Keywords: s-existence, another existence, contrary 
existence, sumeru-existence, theoretical physics.  

I. S-Existence and its Contrary Existence 

‘S-Existence’ is another existence of
Lack of appropriate word has caused to mark or name 
this unearthly existence– ‘S-Existence’. This ‘S-
Existence’ identity is too much subtle –unperceived –
unfelt. 

From fundamental particle to every element, – 
matter and energy have two different existences in its 
form. The formations of matter or element, components, 
quality, energy etc all are present in its ‘S-Existence’. 
Generally, this ‘S-Existence’ is inseparable mixed with 
material existence. 
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 In case of living body it is same; it also has ‘S-
Existence’ –unearthly body or supernatural body. ‘S-
Existence’ of mind, –

 
vital energy and sense etc are also 

present in the supernatural body.
 With matter and energy, their ‘S-Existence’ is 

also mixed inseparably. With support of material body or 
matter, mixed with it–

 
its ‘S-Existence’ is present. 

Without ‘S-Existence’ any matter–
 
anything cannot be 

there. If there is change in matter or body’s shape –
quality, similar change takes place in its ‘S-Existence’. 
This supernatural body or matter is a true copy of 
material body or matter, which is not a known matter –is 
an unknown and different matter –is made of unearthly 
matter.
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When there is an action and reaction between a 
matter and other matter, then there takes place similar 
action and reaction and change between their ‘S-
Existence’. When a matter comes into contact with its 
antimatter, –both the matters as soon as the union of 
their ‘S-Existences’ –both loses their independent 
existence. As a result of this union, can occur the 
dispersion of energy, and can be created different kinds 
of particles, new matters –elements and energy –
depending on the condition and velocity of the union. 

When any matter or particle of matter has 
repeated collisions with other matter or matter-particle, 
then their S-Existences will put a contrary impression* 
on each other’s ‘S-Existence’. Everyone’s ‘S-Existence’ 
will carry the contrary impression of other ‘S-Existence’, 
till the time– the carrier matter or matter-particle and 
along with their S-Existence’s disorder– deformity or 
change takes place. 

* This contrary impression is not like two dimensional 
stamp-print or reverse-print. This contrary impression is 
a thorough –three (or more) dimensional impression of 
super (natural) existence which is externally inactive and 
just opposite impression existence of ‘S-Existence’ of 
any material thing. 

From that contrary impression of ‘S-Existence’ 
(CISE) which is a burden to the matter’s ‘S-Existence’, 
many more copy of that can be produced, –then only if 
repeated collisions takes place with the matter or 
element-particle carrying that impression and similar or 
other matters or element particles. But in this case, 
contrary impression of that impression of ‘S-Existence’ 
will not be made. Depending on other matter’s ‘S-
Existence’, this contrary impression of ‘S-Existence’ 
(CISE) is merely a (material or supernatural) bodiless 
impression. As it is not having its own body, it is unable 
to impress any contrary impression on others. As a 
result of collisions, from that– many similar copies can 
be made, but gradually those copies will get more and 
more fineness or subtlety. From one particle to other 
particle, from that to other –if in this way gradually that 
copy is made, then gradually the copy of ‘CISE’ will 
become finer to finest. 

Usually this ‘CISE’ is inactive –quality less. But 
anyhow if this ‘CISE’ enters the living body, then by the 
help of the software of bio-system, is able to get a 
supernatural body. 

The ‘CISE’ on entering the living body, reaches 
the particular center of brain with help of nervous 
system. There with the special work capability of the 
software of bio-system, that copy of impression (CISE) 
gets the supernatural body. That is to say, ‘CISE’ turns 
into contrary super (natural) body or existence. Then it is 
not merely inactive impression, an active supernatural 
(body or matter) existence –endowed with quality and 
character –properties. The birth that it took from matter 

or element as ‘CISE’, and then it becomes contrary S-
Existence of that matter or element. 

Then, that contrary S-Existences spread 
through the circulatory system and nervous system– 
throughout the creature’s whole body –similar to 
defense force. In search of enemy– culprit or evildoer 
those who are causes of diseases, –thoroughly 
searching the whole body, meeting its contrary 
existence –immediately it jumps on that. As a result, 
disappear the identity of both. 

The subject is absolutely new, so let’s repeat in 
short, –when the CISEs come into contact with the 
body’s nervous system, –in electrical speed, they reach 
a particular center of the brain. There, with the help of 
bio-system’s software, the CISEs get supernatural 
bodies or ‘S-Existence’ –according to their quality –
nature –property, everyone. From there, following the 
defense system of the living body, –they spread out the 
sickly parts of the body or throughout the body –in 
search of alike-contrary thing which are poisonous –
harmful for body. 

If the nervous system and the software of the 
body is weak, undisciplined or incapable, that ‘CISE’ 
may not be able to get a super (natural) body or 
existence and not be able to follow its working role 
properly. 

After entering of ‘CISE’ (of anything) in the body, 
if that ‘CISE’ converts to ‘S-Existence’ with the help of 
body-mechanism and if that ‘S-Existence’ does not 
meet the contrary existence in the body, –in that case if 
the number of S-Existences are too many, then they are 
the contrary existence of which matter or element, who 
were able to create as like action of poisoning in the 
body, these (contrary) S-Existences are able to create 
contrary or opposite symptom of poisoning of that thing. 
For example, if main thing or matter is able to create 
constipation, then its contrary ‘S-Existence’ (about which 
is discussing) will create diarrhea. 

But if these S-Existences’ number or amount is 
less in poisonous limit, then they will do similar activity, 
but it will be not so acute –not be unhealthy. Rather 
relieving constipation –will help to clear the bowels. That 
will work like mild purgative. 

This action will not be stable. The cause which 
created the constipation, that cause will not be stopped 
in this case. 

If the number of (contrary) ‘S-Existence’ is too 
low, then any action may not be felt. Except it, cause 
behind the constipation (or other incident) if there is 
present any strong reason or poison, in that case, the 
‘CSE’ may not be successful in its work. But if this ‘CSE’ 
comes in contact with a thing which is similar in every 
respect (form –quality –character etc) in the body, then 
action of poisoning can be created depending on their 
number or amount. 

In the body, when ‘CSE’s are able to do their 
own work, at the end of work –end their longevity. But 
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those who do not get the opportunity of work, they 
slowly go out from the body through different paths or 
outlets. But everyone has its own life period. 

Matter is material form of its ‘S-Existence’. Any 
matter can never be without its ‘S-Existence’. In case of 
energy, it is same. But the ‘S-Existence’ in some cases, 
without its material form, that is without the material 
body– able to remain, depending on some unearthly 
things. If any ‘S-Existence’ meets with its (exact) 
contrary ‘S-Existence’, the identity of both disappears. 
Along with that, if they have the material identity or 
existence, that also destroys. 

Just like its material body, this ‘S-Existence’ is 
made by combination of quality-full unearthly particles. 
Atom and its inner energies and particles, fundamental 
particle and all other particles have ‘S-Existence’. Every 
particle of matter or element has the similar ‘S-
Existence’ –present in it. 

The ‘CISE’ that entering the body– after getting 
the similar ‘S-Existence’, connecting with the harmful 
contrary existence, –both disappeared and destroyed. –
This is the principle of ‘MahaPathy’ medicine’s recovery 
procedure. I shall make an acquaintance with 
‘MahaPathy’ next time.  MahaPathy (briefly MPathy) –the 
super excellent system of medicine came into existence 
based on this theory.  

If repeated collisions takes place between two 
molecules or particles of similar nature and quality –for 
some times, –does not produce contrary impression on 
each others ‘S-Existence’. No particle accepts its 
contrary impression –does not accept its contrary 
impression on it. Here we have to keep in mind, 
(contrary) impression of ‘S-Existence’ (CISE) and ‘S-
Existence’ –not same. 

Now what will happen, if bodily enemy or 
poisonous matter or anything causing the action of 
poisoning –instead of being exact contrary of medicine if 
it is partly contrary –then?

 

Contrary ‘S-Existence’ (CSE) in medicine form 
(produced from CISE), after searching in the body, if 
does not meet its exact contrary existence, meets any 
partly (largely) contrary existence, then also it jumps to 
get united –in extreme attraction of union. In that case–

 

depending on both’s energy, amount, quality and 
strength along with body’s condition of that time, can 
cause various incidents. Can occur partly alleviation or 
partly cure. If capable, the rest of part–

 
body can 

manage oneself. Result of union can create–
 

new 
matters –particles, and dispersion of rays can take place 
at different levels.

 

Except it, if any harmful poisonous germ is 
present in body and be attacked by that medicine, then 
it, for the self-defence, can assume very violent angry-
looking, and can create indiscipline in bodily system. Or 
by escaping, can go exterior portion of the body like skin 
eruption. Or can try to self-hide, just like the snail.

 

Another thing is, if contrary impression (CISE) of 
any matter or element is applied repeatedly on any 
sensitive person, in that case, action of poisoning can 
take place and symptom of that poisoning can be seen. 
Those (medicine form) CISEs after becoming ‘S-
Existence’ in the person’s body, if they do not meet the 
contrary impression or contrary ‘S-Existence’, then also 
they (because of their majority) can create action of 
poisoning by themselves. 

After any poison enters the body, medicine 
(CISE) prepared from that poison, at many times– is 
incapable of making that poison inactive. One of 
reasons of this is– many times, after any poison enters 
the body, connecting with other poisons or things 
present in the body, –that poison takes different form. 
For this reason, same poison takes different form in 
different bodies. As a result, the medicines (CISE) 
created from that poison is incapable of making inactive 
–the same poison. Then that has to be made inactive by 
any other medicine. 

But anyhow, if the (mixed or unmixed) poison, is 
collected from body, and medicine (CISE) is made from 
that, –if that medicine is entered into the body, then that 
poison becomes inactive. 

Except that, any poison, after entering the body, 
gradually changes take place in its form –quality –nature 
etc with the passing of time. The contrary ‘S-Existence’ 
of that changed condition’s poison can make this 
changed poison– appropriately inactive (within the 
body). 

The noticeable thing is– due to eating some 
amount of calcium –along with other symptoms, the 
secretion of bile from gall bladder will increase and with 
it– the temperature of the body will increase. But the 
medicine (CISE) prepared from that calcium, as a result 
of eating a lot of that medicine repeatedly, –the 
symptoms appeared in the body, that is opposite 
(symptoms) to material calcium. How it happens? 

The happening is–, in the body, the particles of 
contrary ‘S-Existence’ (CSE) of calcium destroy the 
equal amount of calcium particles of the body. As a 
result, deficiency of calcium takes place, in the body. 
The contrary S-Existences (in a large amount) of calcium 
particles– create that kind of action of poisoning– in the 
body that is just opposite symptom of material calcium.  

If that CSEs are not able to meet with similar or 
almost similar minute– contrary existence (matter or 
element), in the body, or remain some quantity –after 
meeting with contrary existence, then they create action 
or action of poisoning of different degrees –depending 
on their existing amount in the body. 

If there is present –from before, any matter or 
element –endowed with similar action of poisoning, –
that is to say, if similar action of poisoning is all ready 
present in the body, in that case, by their united action 
of poisoning– intense action of poisoning takes place –
in the body. In such a condition, to remedy this intense 
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action of poisoning, the defense system of the body– 
creates more quantity of antidotes or antitoxins. As a 
result of that, the poison produced from medicine, along 
with former poison –both are destroyed or disappeared. 
Besides, as medicine form ‘CSE’ has no material body, 
–the span of its life is finished in a short time. 

II. Evidence 

 

III.

 

Conclusion

 

The nanoparticle medicine or nanomedicine 
that is now in vogue, if the nanomedicine is prepared in 
a special process, by repeated mixing and friction then it 
becomes superior to ordinary nanomedicine. This 
method will create S-existence and it's contrary 
existence. If nanomedicine is made in this way from 
diseased cells or toxins in the body, the nanomedicine 

reaches the body and combines with the toxin or 
diseased cell, destroying both. In this way we can 
benefit through the practical application of S-existence. I 
am hopeful that the successful use of this S-existence in 
the future will enable people to benefit in many more 
ways.
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If Kirlian photography is true then evidence of 
this theory can be found largely in Kirlian photography. 
The whole picture of a leaf can be seen in Kirlian 
photography even after the leaf of a tree has been cut in 
half. Homeopathic medicine is another significant 
evidence of S-Existence.
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In conventional spin theory [1],[2],[3],[4],[5], each spin particle has its own spin

space; one particle possesses one spin space; two spin particles, two spin

spaces,...... and n particles, n spin spaces. These spaces are independent each

other. To couple two or more angular momentums and then obtain the angular

momentum of the combined system. The spin space of the combined system can

be expressed as the direct product of two or more single spin particles

V  V1  V2  V3 . . .  Vn (0.1)

The way the dimensionalities, an example of two spin-1/2 fermions, work out is

as follows:

V  1/2  1/2  1  0 (0.2)

(V11/2, V21/2) The decomposition of the direct product V1  V2 space into a

sum of space 1 and space 0 above. The dimensionality of each spin -1/2 is

2 1
2
12, spin-1 is 2113 and spin-0 is 2011. The total dimensionality is

22314.

Now if suppose V1V2V, What will happen to their spin angular momentum

couple (0.2)? The analysis shows: an amusing spin angular momentum picture,

so-called Spin Topological Space, STS [6],[7],[8],[9] is introduced. The spin space

dimensionalities of the two spin-1/2 fermions V1, V2 and V, mentioned before, all

become to be infinite.

One of the achievements is that STS could invest spin-zero particle with math

constructive constituent of angular momentum such as other bosons and fermions

in the conventional spin theory. In STS math frame, spin-zero particle is no longer

a " point-particle ".

ShaoXu Ren

Abstract- In this paper, a hypothesis is proposed, that something similar to what happen to the puzzle of the 
energy losing in decay of neutron may also occur to the puzzle of the sum losing of the z-components of spin 
angular momenta in the synthetic course of spin coupling in Spin Topological Space. The former puzzle is related 
to hidden neutrial antineutrino that carries a small amount of energy away, the latter puzzle is related to hidden 
"constructive" zero-spin particle playing the role of a force-mediator that carries some amount of spin angular 
momentum, which just offsets the same amount of angular momentum losing in the formation of spin coupling.
Keywords: spin angular momentum coupling, Spin Topological Space, STS, spin-0 particle, Force-
Mediating Particle, angular momentum losing, excited states of the C-G Coefficients.
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But on the other hand, STS in itself always encounters with troubles for

angular momentum z-component addtion of many single spin particles, some types

of z-component addtion, in which the total z-components of the combined system

are always less than the those that should be, that is so-called the puzzle of spin

angular momentum losing, from the point of view of common sense for math and

physice world today.

But if the spin-zero particle mentioned previously is supposed to be viewed as

an invisible boson, a force-mediating mediator, which actually interacts with the two

spin-1/2 fermions, is participanting in the synthetic course of z-component addition

of the two fermioms, the problem of losing with z-component addition of angular

momentums would be solved. It will be lucky, spin-zero boson particle will

eliminate the faults of z-component addtion in STS.

Using the above peculiar ideas and new concepts, the matrix representations of

C-G Coefficients of two spin-1/2 fermions coupling in STS are worked out, which

predict many "excited states" of C-G Coefficients that have not been obverserd

so far.

We work with systems made up of two angular momenta, j1 and j2

j1  j1  i j1, j2  j2  i j2, (1)

If an interaction between j1 and j2 is such as to have the coupling of two

angular momenta

j  j1  j2

Then j  j  j1  j2  j1  j2  i j1  j2  j1  j2  j2  j1 (2)

Suppose j1  Space Vj1 , j2  Space Vj2

It will allow the following two cases of (2) to happen:

【1】If both j1 and j2 attribute to different space

Vj1  Vj2 (3)

【2】If j1 and j2 all attribute to one same space

Vj1  Vj2  V, (4)

Next we give the math construction of physics reality in cases of【1】and【2】

 【1】Obviously, [ j1, , j2, ]  0, ,   1, 2, 3

we have j1  j2  j2  j1  0 (5)

II. Spin Topological Space, STS
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And obtain angular momentum commutation rules:

 j1  j2  j1  j2  i j1  j2 (6)

where j  j  i j , j  j1  j2 (7)

As j1, m1, j2, m2 and j, m are the eigenvalues of j1, j2 and j respectively,

by unitary transformation with Wigner or Clebsch-Gordan coefficients, we can have

some matrix relationships among j1, m1, j2, m2 and j, m.

Continue to discuss the example (0.2), let j1 and j2 be two spin-1/2 fermions,

we can get formula below

1/2  1/2  1  0 (8)

Casimir operator 32

4
32

4
22 02

Here, reducible 2j112j214 dimensional representation of rotation group is

denoted with multiplication 1/2  1/2, by unitary transformation, reduce it to its

irreducible representation, a triplets, a 3 dimension of spin-1 and a singlet, one

dimension, labelled addition 1  0. (8) called direct product of two spin -1/2

Hilbert spaces is a direct sum of a spin-1 space and a spin-0 space.

Here: spin-1 space is spanned by a triplet state of two symmetric fermions with

Casimir operator eigenvalue 1(11)22. And spin-0 space, by a singlet state of

two antisymmetric fermions with Casimir operator eigenvalue 0(01)02.

Formula (8), due to spin angular momentum couple, is based on the restriction

(5) of case 【1】. We wonder what will happen to (8) in case【2】

if j1  j2  j2  j1  0 (9)

that is: how can we deal with the angular momentum coupling between the

two spin-1/2 fermions if they all attribute to one same spin space V ?

 【2】 Call j, k, r, s Spin Topological Coordinate in real region of STS, and

now sign  is used to represent spin angular momentum.

Giving following two definitions

1; j,k  1
2
j  k (10.1)

2; j,k  1
2i

j  k (10.2)

After calculations obtain

3; j,k  1; j,k2; j,k  2; j,k1; j,k  1
2
jk  kj (10.3)

From above three formulas, it can be shown 1; j,k, 2; j,k and 3; j,k satisfy
angular momentum rule.
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 j,k   j,k  i j,k (10)

The similar results to

1; r,s  1
2
r  s (11.1)

2; r,s  1
2i

r  s (11.2)

3; r,s  1; r,s2; r,s  2; r,s1; r,s  1
2
rs  sr (11.3)

 r,s   r,s  i r,s (11)

Instesd of sign j , making the substitutions

j1  j1 j,k  1   j,k  1; j,k, 2; j,k, 3; j,k (12)

j2  j2r,s  2   r,s  1; r,s, 2; r,s, 3; r,s (13)

Then the lefthand of (9) becomes to

j1  j2  j2  j1   j,k   r,s   r,s   j,k (14)

After the primordial representations introduced above, the raising operator j

can be defined by j0 and I1 as (15). Similarly the lowering operator k defined
by k0 and I1 as (16)

j   j0I1 (15)

k   I1k0 (16)

Where j0  00  jI0, k0  00  kI0 (17)

Here: Subscript, " 0 " of I0, represents the unit principle diagonal in STS.

Subscripts, " 1 " and " 1 " the first up unit principle diagonal and the first down

unit principle diagonal.

Substitute (15) and (16) into (10.3), and the same means into (11.3), we obtain

3; j,k  00  1
2
j  k  1 (18.1)

3; r,s  00  1
2
r  s  1 (18.2)

00  diag{ , 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, , }0 (19)

00 is the spin basic state of all bosons, called the vacuum background of

spin angular momentum.
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Now back to (14), for convenience, we are referred to the third component of

(14)

 j,k   r,s3   r,s   j,k3 (20)

Firstly calculate

 j,k   r,s3  1; j,k2; r,s  2; j,k1; r,s  i
2
js  kr (21.1)

 r,s   j,k3  1; r,s2; j,k  2; r,s1; j,k  i
2
rk  sj (21.2)

Then combine the two above expressions, yield

 j,k   r,s3   r,s   j,k3

 i
2
js  kr  rk  sj  i3; j,s  3; r,k

 i3; j,k  3; r,s  i j,k   r,s3 (22)

it allows the following to happen:

  j,k   r,s   j,k  r,s 3

  j,k   j,k3   r,s   r,s3   j,k   r,s3   r,s   j,k3

 i j,k3  i r,s3  i j,k   r,s3  2i j,k   r,s3 (23)

Finally approaching to commutation rule of the third component of (14)

1
2
 j,k   r,s3  1

2
 j,k   r,s3  i 1

2
 j,k   r,s3 (24.3)

Proceeding similarly as the above discussion, we can get:

1
2
 j,k   r,s1  1

2
 j,k   r,s1  i 1

2
 j,k   r,s1 (24.1)

1
2
 j,k   r,s2  1

2
 j,k   r,s2  i 1

2
 j,k   r,s2 (24.2)

And 1
2
1  2  1

2
1  2  i 1

2
1  2 (24)

 Summary:

a Angular momentum coupling between two spin particles 1 and 2 in STS

    i (25)
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3  1
2
3; j,k  3; r,s (27)

 00  1
2
 1

2
j  k  r  s  1  (28)

b The extension of the spin coupling among three spin particles 1, 2 and
3 in STS

    i (28)

  1
3
1  2  3 (29)

3  1
3
3; j,k  3; r,s  3; u,v (30)

 00  1
2
 1

3
j  k  r  s  u  v  1  (31)

First using a (27) (28) to discuss coupling of two spin-1/2 fermions 1 and 2
in STS.

(A) Put j  k  r  s  0 (32)

Get

3,   1
2
m1  m2  1

2
 

2
  

2
  

2
  

2
 

2
 1  (33)

(B) Put j  k  0, r  s  2 (34)

Get

3,   1
2
m1  m2  1

2
 

2
  

2
  0 (35)

(C) Put j  k  2, r  s  0 (36)

Get

3,   1
2
m1  m2  1

2
 

2
  

2
  0 (37)

(D) Put j  k  r  s  2 (38)

Get

3,   1
2
m1  m2  1

2
 

2
  

2
  

2
  

2
 

2
 –1  (39)

Where m1 and m2 are the eigenvalues of 3; j,k and 3; r,s.

  1
2
1  2 (26)

III. Puzzles of Spin Angular Momentum Addition of the Third Components
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We see there are some amusing phenomenons in the above spin addition of

the third components of two spin-1/2 particles:

Results (35) and (37) are the those we expected: " positive 
2

plus negative

2
equal to zero" that agree with current angular theory (8). Unfortunately, for

caculation (33): " positive 
2
plus positive 

2
equal to positive 

2
", this result

conflicts with (8) and physics common sense in lab ! actually, (33) shoud be

1, which now loses its half value. Similar puzzles for (39), which should be

–1. This type of puzzles also exist in three body coupling b (30) (31) . The

sum values of the spin third components of coupled-spin particles would always be

less than that should be, except when the sum values is zero, such as cases of

(35) (37)

If we still want, in STS math world, to obtain the same results, which

correspond with current angular momentum theory such as (8) do, some new

concepts should be required to be introduced, even if the ideas of physics

background of those new phenomenons are truly impossible to understand.

 The purpose of this paper is to use three-body coupling b (30) (31) to

research the spin angular momentum coupling of two spin-1/2 particles 1, 2. We
suggest there may exist a seclusive hidden spin particle 3  u,v, that actually
and stealthily is participating the formation process of spin coupling between 1
and 2. 3 is a spin particle, a spin-force-mediating particle. 3 can interact with
1 and 2 through spin angular momentum coupling, then to solve the puzzles.

Obviously, zero spin particle, with Casimir operator eigenvalue 32  0  0(01)2,
may seems to be the perfect candidate, because spin-0 particle possesses the

following advantages of its properties of spin-dual-role: " nothing " and " everything ".

In current spin angular momentum couple theory frame, zero spin particle is a

trivial spin particle, it is a "point spin", no spin effect with any other spin

particeles. Zero spin particle is "nothing" , all for naught, superfluous in spin

addition.

But on the other hand, in Spin Topological Space STS frame, zero spin

particle turns to be "constructive", that is, has spin ability to interact with other

spin particles, at this time the zero spin is " everything ", a physical reality as an

invisible mediator, actually is participating the spin couple between the

two spin-1/2 fermions .
Next, we enter zero spin territory where no one has gone before. Apply the

third component 3; u,v or m3 of zero spin particle u,v to explore the puzzles of
(33),(39) and (35),(37). Using 3; u,v to offset the defects, to throw away what we

dislike and obtain what we appreciate. Further the coupling of two-body of two

spin-1/2 particles in fact turns into those of three-body spin particles.

From (30), write down (40)

3  1
3
3; j,k  3; r,s  3; u,v  1

3
{ m1  m2  m3 } (40)

Hence, obtain next four expressions which are the extension of spin angular

momentum coupling from the current math frame (8) to math STS frame. The

realm of latter is much beyond that of the former.
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(a) 3  m  1
3
{ m1  m2  m3 }  1

3
{ 

2
 

2
 2 }  1 (40.1)

(b) 3  m  1
3
{ m1  m2  m3 }  1

3
{ 

2
 

2
 0 }  0 (40.2)

(c) 3  m  1
3
{ m1  m2  m3 }  1

3
{ 

2
 

2
 0 }  0 (40.3)

(d) 3  m  1
3
{ m1  m2  m3 }  1

3
{ 

2
 

2
 2 }  –1 (40.4)

Here m3  0 in (40.2) and (40.3) are the eigenvalues of the ground state of

zero spin particle, and m3  2 (40.1), 2 (40.4) are the those of the

positive-second excited state, the negative-second exicted state in STS.

The following formulas are the essential in spin complex region of STS, we will

use them and zero spin particle to explore the puzzle addition of the third

components of two spin-1/2 particles mentioned previously. With this aim in mind.

1) Single-body spin particle

3 ; j,b , k,d  00  1
2
j  k  1  1

2
i b  d  (41)

j,b , k,d2  1
4
{ j  k2   b  d 2  1 } i 1

2
j  kb  d  (42)

2) Two-body spin couple

3 ; j,b , r,a ; k,d , s,c  00  1
2
 1
2
j  k  r  s  1

 1
4
i b  d  a  c  (43)

j,b , r,a ; k,d , s,c
2  1

16
{ j  k  r  s 2  b  d  a  c2  4 }

i 1
8
j  k  r  s(b  d  a  c (44)

3) Three-body spin couple

3 ; j,b , r,a ; k,d , s,c ; u,e , v,f  00  1
2
 1
3
j  k  r  s  u  v  1

 1
6
i b  d  a  c  e  f  (45)

 j,b , r,a ; k,d , s,c ; u,e , v,f
2

 1
36
{ j  k  r  s  u  v 2  b  d  a  c  e  f2  9 }

i 1
18

j  k  r  s  u  v(b  d  a  c  e  f (46)

IV. Fundamental Formulas in Spin Complex Region of STS
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Using Spin Topological Coordinates (, ) (, ) of a spin particle in complex

region in STS, two arrays are given

S, T    ,    (47)

A, B    ,    (48)

array S, T is related to Casimir operator of spin particle, and array A, B to

the spin third component respectively. apply (47) and (48) to discuss the

three-body spin couple among two spin-1/2 fermions 1j, k ; b, d, 2r, s ; a, c
and spin-0 boson 3u, v ; e, f below

spin-1/2 1 S1, T1  j  k, b  d, (47.1)

spin-1/2 2 S2, T2  r  s, a  c, (47.2)

spin-0 3 S3, T3  u  v, e  f, (47.3)

spin-1/2 1 A1, B1  j  k, b  d, (48.1)

spin-1/2 2 A2, B2  r  s, a  c, (48.2)

spin-0 3 A3, B3  u  v, e  f, (48.3)

Spin Topological Coordinates, STC

spin-1/2 1 j, k   1
2

A1S1, 1
2

A1–S1  (49.1)

b, d   1
2

B1T1, 1
2

B1–T1  (50.1)

spin-1/2 2 r, s   1
2

A2S2, 1
2

A2–S2  (49.2)

a, c   1
2

B2T2, 1
2

B2–T2  (50.2)

spin-0 3 u, v   1
2

A3S3, 1
2

A3–S3  (49.3)

e, f   1
2

B3T3, 1
2

B3–T3  (50.3)

Now, for the implement of { (a),(b),(c),(d)} of (40), the above formulas

mentioned in section 4. need to be simplified, so we confine ourself to condition

(51), for which the calculations are straightforward.

For z components, we take:

B1  B2  B3  0 (51)

V. Puzzles Solving



 
 

 
 

 
 
 
 
 
 
 
 
 
 

then the imaginaries of 3; j,b , k,d, 3; r,a , s,c and 3; u,e , v,f all vanish, (41) become

3 ; j,b , k,d  00  1
2
A1  1 (52.1)

3; r,a , s,c  00  1
2
A2  1 (52.2)

3; u,e , v,f  00  1
2
A3  1 (52.3)

further (45) turns into

3  00  1
2
 1

3
A1  A2  A3  1  (53)

For deepper understanding of the role of zero spin particle in the spin angular

momentum coupling of two identical spin-1/2 fermions, more detailed processes of

calculations (a),(b),(c),(d) of the third components 3 and 3 are demostrated

below.

Pay attention to the following correspondence

{ (A),(B),(C),(D) |  section 5 }  { (a),(b),(c),(d) |  section 3}

(A)

A1, B1  0, 0 (54.1)

A2, B2  0, 0 (54.2)

A3, B3  3, 0 (54.3)

3A1, B1  00  1
2
0  1  1

2
i 0   00  1

2
(55.1)

3A1, B1  00  1
2
0  1  1

2
i 0   00  1

2
(55.2)

3A3, B3  00  1
2
3  1  1

2
i 0   00  2 (55.3)

3  00  1
2
 1

3
0  0  3  1   1

6
i 0  0  0   00  1 (56)

Formular (55.3) is the second positive excited eigenvalue of zero spin particle,

which is like an invisible force-mediating particle, to make (56) to be in accord

with (40.1).
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Similar to (A), we get：

(B)

A1, B1  0, 0 (57.1)

A2, B2  2, 0 (55.2)

A3, B3  1, 0 (55.3)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

3A1, B1  00  1
2
0  1  1

2
i 0   00  1

2
(58.1)

3A1, B1  00  1
2
2  1  1

2
i 0   00  1

2
(58.2)

3A3, B3  00  1
2
1  1  1

2
i 0   00  0 (58.3)

3  00  1
2
 1

3
0  2  1  1   1

6
i 0  0  0   00  0

(59)

Formular (58.3) is the lowest eigenvalue, based state, of zero spin particle, to

make (59) to be in accord with (40.2).

The same one as (B), we get:

(C)
A1, B1  2, 0 (60.1)

A2, B2  0, 0 (60.2)

A3, B3  1, 0 (60.3)

3A1, B1  00  1
2
2  1  1

2
i 0   00  1

2
(61.1)

3A2, B2  00  1
2
0  1  1

2
i 0   00  1

2
(61.2)

3A3, B3  00  1
2
1  1  1

2
i 0   00  0 (61.3)

3  00  1
2
 1

3
2  0  1  1   1

6
i 01  0  0   00  0

(62)

Formular (61.3) is the lowest eigenvalue, based state, of zero spin particle, to

make (62) to be in accord with (40.3).

Almost same as (A), we get:

(D)

A1, B1  2, 0 (63.1)

A2, B2  2, 0 (63.2)

A3, B3  5, 0 (63.3)

3A1, B1  00  1
2
2  1  1

2
i 0   00  1

2
(64.1)

3A1, B1  00  1
2
2  1  1

2
i 0   00  1

2
(64.2)

3A3, B3  00  1
2
5  1  1

2
i 0   00  2 (64.3)

3  00  1
2
 1

3
2  2  5  1   1

6
i 01  0  0   00  1

(65)

Formular (64.3) is the second negative excited eigenvalue of zero spin particle

to make (65) to be in accord with (40.4).

Force-Mediating Particle of Coupling of Spin Angular Momenta
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For Casimir operators, we take:

T1  T2  T3  0 (66)

further (46) turns into

2  1
36
{  S1  S2  S3 2  9 } (67)

Considering two cases of (67)

IF S1  S2  S3  9 (68)

get 2  1
36
{ 9 2  9 } 72

36
 2  1112 (69)

IF S1  S2  S3  3 (70)

get 2  1
36
{ 3 2  9 } 0

36
 0  0012 (71)

Now, we present the explicit datas of two arrays S, T, (72)1 and (77)2 ,

which satisfy the math requirements of the above two cases of (67)

1 Array (72) for case (69), which construct the irreducible j  1 representation

of (8)

S1, T1  2 6 , 2 5  (72.1)

S2, T2  2 6 , 2 5  (72.2)

S3, T3  9, 4 5  (72.3)

Then apply (72) to (42), we get:


S1,T1
2 fermion1  3

4
– i2 30  j1 1

2
(73.1)


S2,T2
2 fermion2  3

4
 i2 30  j2 1

2
(73.2)

Because

S1  S2  S3  2 6  2 6  9  9 (74)

T1  T2  T3  2 5  2 5  4 5  0 (75)

Obtain Casimir operator

2  1
36
{81  0  9 }  1112  j  1 (76)

Force-Mediating Particle of Coupling of Spin Angular Momenta
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VI. Casimir Operators of Spin Particles

S3,T3
2 spin-zero3  0  i18 5  j30 (73.3)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

2 Array (77) for case (71), which construct the irreducible j  0 representation

of (8)

S1, T1   6 ,  2  (77.1)

S2, T2   6 ,  2  (77.2)

S3, T3  3, 2 2  (77.3)

Then apply (77) to (42), we get:


S1,T1
2 fermion1  3

4
 i 3  j1 1

2
(78.1)


S2,T2
2 fermion2  3

4
 i 3  j2 1

2
(78.2)

S3,T3
2 spin-zero3  0  i3 2  j30 (78.3)

Because

S1  S2  S3   6  6  3  3 (79)

T1  T2  T3   2  2  2 2  0 (80)

Obtain Casimir operator

2  1
36
{ 9  0  9 }  0012  j  0 (81)

1
2
 1

2
 1 0

Instead of using the matrices of C-G Coefficients in conventional spin theory to

depict the spin couple, the results of section 4, 5 and section 6 could be used to

build some other new matrix represention pictures of spin angular momentum

addtion in STS. Some matrix tables are given below. Among those Table1 is

so-called "based state represention" , which is just the incarnation of matrices

represention of 1
2

 1
2

 1  0 in Spin Topological Space. Table2 and Table3

are " excited state representions " of C-G Coefficients, which are the extensions of

Table1.

Block 1, Block 2 and Block 3 in Table2, which are the based states of

C-G Coefficients with quantum number j 1 in Table1, carry the based state

z-components quantum numbers m whose values equal to 1, 0, 1 respectively.

The rest blocks are excited states of j 1

Block 4 in Table3, is the based state of C-G Coefficients with quantum

number j 0 in Table1, carries the based state z-components quantum number m

whose value equals to 0. The rest blocks are excited states of j 0

Arrays Ai, Bi and Si, T i or Spin Topological Coordinates (j, k) (b, d), (r, s)

(a, c), and (u, v) (e, f) are the characteristic quantum numbers of schematics of spin

angular momentum couple.

Force-Mediating Particle of Coupling of Spin Angular Momenta
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VII. Matrix Representions of in STS



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Based State Representation of the C-G Coefficients of 1
2

 1
2

 1  0
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Table 1:

j  1 1 0 1

m  1 0 0 1

j11/2, S1, T1  2 6 ,–2 5   2 6 ,–2 5   6 ,– 2   2 6 ,–2 5 

j21/2, S2, T2  2 6 ,–2 5   2 6 ,–2 5   6 ,– 2   2 6 ,–2 5 

j3 0, S3, T3  9, 4 5   9, 4 5  3, 2 2   9, 4 5 

mi, Ai, Bi

i  1, 2, 3




j, k, r, s, u, v  j, k, r, s, u, v j, k, r, s, u, v  j, k, r, s, u, v

||
1
2
, 0, 0 0 6 ,0– 6  

1
2
, 0, 0 0– 6 ,0 6   0 0  0

2, 3, 0 6, –3 

                            

1
2
, 0, 0  0 6 , 0– 6  0 6

2
, 0– 6

2


1
2
, 2, 0 0  1– 6 , 1 6  2– 6

2
, 2 6

2
 0

0, 1, 0  4, –5 1, –2 

 
1
2
, 2, 0  1 6 , 1– 6  2 6

2
, 2– 6

2


1
2
, 0, 0 0  0– 6 , 0 6  0– 6

2
, 0 6

2
 0

0, 1, 0  4, –5 1, –2 

                             
1
2
, 2, 0   1 6 ,  1– 6 

1
2
, 2, 0 0  0 0  1– 6 ,  1 6 

2, 5, 0   2, –7

m 
m1m2m3

3

 1 0 0 1

b , d  – 5 , – 5   – 5 , – 5   – 2
2
, – 2

2
  – 5 , – 5 

a , c  – 5 , – 5   – 5 , – 5   – 2
2
, – 2

2
  – 5 , – 5 

e , f  2 5 , 2 5   2 5 , 2 5   2 ,  2   2 5 , 2 5 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

j  1, Based States & Excited States of 1
2

 1
2

 1  0
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Table 2:

j 1 1  1  1 1

excited state excited state  based state  excited state excited state

m 3 2  1  0 1

m1, A1, B1 1
2
, 0, 0 1

2
, 0, 0  1

2
, 0, 0  1

2
, 0, 0 1

2
, 0, 0

m2, A2, B2 1
2
, 0, 0 1

2
, 0, 0  1

2
, 0, 0  1

2
, 0, 0 1

2
, 0, 0

m3, A3, B3 8, 15, 0 5, 9, 0  2, 3, 0  1, 3, 0 4, 9, 0

 1 

j , k1 0 6 ,0– 6 0 6 ,0– 6  0 6 ,0– 6  0 6 ,0– 6 0 6 ,0– 6

r , s2 0– 6 ,0 6 0– 6 ,0 6  0– 6 ,0 6  0– 6 ,0 6 0– 6 ,0 6

u , v3 12, 3 9, 0  6, –3  3, –6 0, –9

                             

m 2 1  0  1 2

m1, A1, B1 1
2
, 0, 0 1

2
, 0, 0  1

2
, 0, 0  1

2
, 0, 0 1

2
, 0, 0

m2, A2, B2 1
2
, 2, 0 1

2
, 2, 0  1

2
, 2, 0  1

2
, 2, 0 1

2
, 2, 0

m3, A3, B3 6, 11, 0 3, 5, 0  0, 1, 0  –3, 7, 0 –6, 13, 0

 2 

j , k1 0 6 ,0– 6 0 6 ,0– 6  0 6 ,0– 6  0 6 ,0– 6 0 6 ,0– 6

r , s2 –1– 6 ,–1 6 –1– 6 ,–1 6  –1– 6 ,–1 6  –1– 6 ,–1 6 –1– 6 ,–1 6

u , v3 10, 1 7, –2  4, –5  1, –8 2, –11

                             

m 1 0  1  2 3

m1, A1, B1 1
2
, 2, 0 1

2
, 2, 0  1

2
, 2, 0  1

2
, 2, 0 1

2
, 2, 0

m2, A2, B2 1
2
, 2, 0 1

2
, 2, 0  1

2
, 2, 0  1

2
, 2, 0 1

2
, 2, 0

m3, A3, B3 4, 7, 0 1, 1, 0  –2, 5, 0  –5, 11, 0 –8, 17, 0

 3 

j , k1 –1 6 ,–1– 6 –1 6 ,–1– 6  –1 6 ,–1– 6  –1 6 ,–1– 6 –1 6 ,–1– 6

r , s2 –1– 6 ,–1 6 –1– 6 ,–1 6  –1– 6 ,–1 6  –1– 6 ,–1 6 –1– 6 ,–1 6

u , v3 8, –1 5, –4  2, –7  1, –10 4, –13

  

  

S1, T1

S2, T2

S3, T3

  

  

2 6 ,-2 5

2 6 ,-2 5

9, 4 5

  

  

  

  

  

  

b, d 

a, c 

e, f 

  

  

– 5 ,– 5

– 5 ,– 5

2 5 ,2 5



 
 

 
 

 
 
 
 
 
 
 
 
 
 

j  0, Based States & Excited States of 1
2

 1
2

 1  0
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VIII. Conclusions

Table 3:

j 0 0  0  0 0

 

excited state excited state  based state  excited state excited state

m 2 1  0  1 2

m1,A1, B1 1
2
, 0, 0 1

2
, 0, 0  1

2
, 0, 0  1

2
, 0, 0 1

2
, 0, 0

m2,A2, B2 1
2
, 2, 0 1

2
, 2, 0  1

2
, 2, 0  1

2
, 2, 0 1

2
, 2, 0

m3,A3, B3 6, 11, 0 3, 5, 0  0, 1, 0  –3, 7, 0 –6, 13, 0

 4 

j , k1
0  6

2
,
0 – 6

2

0  6

2
,
0 – 6

2


0  6

2
,
0 – 6

2


0  6

2
,
0 – 6

2

0  6

2
,
0 – 6

2

r , s2
2– 6
2

, 2 6
2

2– 6
2

, 2 6
2

 2– 6
2

, 2 6
2

 2– 6
2

, 2 6
2

2– 6
2

, 2 6
2

u , v3 7, 4 4, 1  1, –2  2, –5 5, –8

                              

S1 , T1   6 ,  2   b , d   – 2
2
, – 2

2


S2 , T2   6 ,  2   a , c   – 2
2
, – 2

2


S3 , T3  3, 2 2   e , f   2 ,  2 

In STS, Spin-zero particle possesses non-trivial angular momentum property,

with which it could be thought as a force-mediating boson that holding the

two spin-1/2 fermions to be coupled together each other, then to form a spin

system as a whole. Subsequently, the matrix representions of 1
2

 1
2

 1  0 in

STS are given.

The works that are the continuation of this paper about the matrix

representions of 1  1
2

 3
2

 1
2

and 1  1  2  1  0 in STS are accomplished.

The existence of so-called " based states " may be believed to be math

reasonable, after all from Table1, we can obtain what the same informations of

the C-G Coefficients just what from the conventional spin theory do. Are there

any so-called "excited states" in nature, which appear in Table2 and Table3 ?,

we are well not aware of as yet.

As an example of possible " excited states ": If the two spin-1/2 fermions all

keep to be stay in based states, that is m1,A1, B1 and m2,A2, B2 stay in their

own based states, when spin-zero particle is excited to jump out of its based state

m3,A3, B3  0, 1, 0, then the based state quantum number m  0, of the spin

combined system ( for both j 1 and j  0), would turn to be the excited states

m  1, 2, 3, . . .
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In this paper, models of non-arbitrage markets are constructed on the basis of the
invariance of a set of spot measures with respect to a certain class of evolution
of risky assets. In the first part of the paper, models of complete non arbitrage
markets are built on the basis of an analysis of conditions under which there is only
one martingale measure. In the second part of the work, models of incomplete non-
arbitrage realistic market models are built based on the same principles as in the first
part of the work. For the introduced parametric models of the markets, estimates
of parameters were obtained based on the observed real values of the evolution of
risky assets. This opens up wide opportunities for hedging risks.

Historically the first model evolution of risky assets was suggested in Bachelier’s
work [4]. Then, in the famous works of Black F. and Scholes M. [5] and Merton R.
S. [6] the formula was found for the fair price of the standard call option of Euro-
pean type. The absence of arbitrage in the financial market has a very transparent
economic sense, since it can be considered reasonably arranged. The concept of non
arbitrage in financial market is associated with the fact that one cannot earn money

Abstract- In the first part of the paper, we construct the models of the complete non-arbitrage financial 
markets for a wide class of evolutions of risky assets. This construction is based on the observation that for a 
certain class of risky asset evolutions the martingale measure is invariant with respect to these evolutions. 
For such a financial market model the only martingale measure being equivalent to an initial measure is built. 
On such a financial market, formulas for the fair price of contingent liabilities are presented. A multi-
parameter model of the financial market is proposed, the martingale measure of which does not depend on 
the parameters of the model of the evolution of risky assets and is the only one.

In the second part of the paper, a model of an incomplete non-arbitrage financial market is 
proposed. As in the first part of the paper, we use the fact that the family of spot martingale measures is 
invariant with respect to a certain class of evolutions of risky assets. The set of all martingale measures being 
equivalent to an initial measure is completely described. Each martingale measure is a linear convex 
combination of the finite number of spot measures whose structure is completely described. For a wide class 
of models for the evolution of risky assets, a formula is found for the fair price of a super-hedge, as well as an 
interval of non-arbitrage prices for any contingent liability. A multi-parameter model of the incomplete 
financial market is proposed, the martingale measures of which do not depend on the parameters of the 
model of the evolution of risky assets. For the parameters of the models of the evolution of risky assets, 
statistical estimates are found for both complete and incomplete non-arbitrage markets.
Keywords: random process; spot set of measures; optional doob decomposition; super-
martingale; martingale; assessment of derivatives; non-arbitrage markets.

Author: Bogolyubov Institute for Theoretical Physics of NAS of Ukraine. e-mail: mhonchar@i.ua

without risking, that is, to make money you need to invest in risky or risk-free as-
sets. The exact mathematical substantiation of the concept of non arbitrage was
first made in the papers [7], [8] for the finite probability space and in the general
case in the paper [9]. In the continuous time evolution of risky asset, the proof of

of arbitrage possibility see in [11]. The value of the established Theorems
is that they make it possible to value assets. They got a special name ”The First
and The Second Fundamental Asset Pricing Theorems.” Generalizations of these
Theorems are contained in papers [12], [13], [14].

1 This work was partially supported by the Program of Fundamental Research of the Department of Physics and Astronomy 
of the National Academy of Sciences of Ukraine (project No 0117U000240).
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Non-Arbitrage Models of Financial Markets

This work is a continuation of the works [1], [19], [20], [21]. In paper [1], a
new method for constructing and describing a family of martingale measures was
proposed. This made it possible to build models of non-arbitrage markets. The
construction of a realistic model of non-arbitrage markets has been an urgent prob-
lem since the moment when the concept of the absence of arbitrage appeared in
the scientific literature as the most equitable model of the functioning of financial
markets. What could be more attractive than a realistic model that can be built on
the basis of observations of the evolution of the financial market. The main obstacle
to this was the limited possibilities of constructing a risk-neutral martingale mea-
sure for a given evolution of risky assets in the case of a complete market and their
complete description in the case of incomplete markets. In the case of discrete evolu-
tion of risky assets, the theoretical possibility of the existence of such non-arbitrage
markets was established in [7], [8], [9], [10], [11], [12], [13], [14]. But, there were
no practically regular methods for constructing such non-arbitrage market models,
although such attempts were made for some kind of models of the evolution of risky
assets [13], [14]. With the appearance of the work [1], which proposes a regular
method for describing all martingale measures for a wide class of evolutions of risky
assets [22], [23], [24] that capture the phenomenon of price memory and clustering,
it became possible to construct realistic models of non-arbitrage markets. Note that
such efforts have been made in this direction, and more about this can be found in
the monograph [13], [14]. Valuable is the fact that there is a wide range of models
for the evolution of risky assets for which it is possible to build parametric models
of non-arbitrage markets whose parameters can be estimated based on statistical
data. Problems of risk estimates was considered in papers [15], [16], [17], [18].

This work is the first step in constructing parametric models of non-arbitrage
markets whose parameters can be estimated based on empirical data. In this paper,
models of the evolution of risk assets on a discrete probabilistic space are considered.
Such models can be used to approximate realistic models of the evolution of risky
assets. The value of this model is that in this case the structure of the set of
martingale measures is relatively simple.

In the case of incomplete non-arbitrage markets, the set of equivalent martingale
measures has the cardinality of the continuum, but since they are a linear convex
combination of a set of spot measures whose number is finite, this allows calculat-
ing the required characteristics using a finite number of operations. This allows a
computer to be used to simulate non-arbitrage markets.

In the third section of the work, the necessary and sufficient conditions for the
uniqueness of a martingale measure are established in terms of the law of evolution of
risky assets, and the only martingale measure is found. Using the results of Section
3 in Section 4, a multi-parameter model of the complete financial market is built and
parameter estimates are obtained through empirical data of the financial market.
This will allow the model to be adapted to realistic financial markets to estimate
the fair price of European-type derivatives with different payment functions.

Section 5 establishes the general structure of the family of equivalent martingale
measures for a wide class of risky asset evolutions. The structure of spot measures is
completely described, the formulas for the fair price of the super hedge and the range
of non-arbitrage prices are established. Based on the results of Section 5, Section
6 builds a multi-parameter model of the incomplete non-arbitrage market. The
estimates of the parameters of the model are obtained through empirical observations
of the financial market. This will allow the computer to be used to model the
financial market.

In this section, a class of evolutions of risky assets is described which is used in this
paper. This class is fairly wide and includes well known in the literature evolutions
of risky assets. Let {ΩN ,FN , PN} be a direct product of the probability spaces

{Ω0
i ,F0

i , P
0
i }, i = 1, N, ΩN =

N∏
i=1

Ω0
i , PN =

N∏
i=1

P 0
i , FN =

N∏
i=1

F0
i , where the σ-

II. Evolutions of Risky Assets

https://doi.org/10.1080/17442%20509008833613�
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algebra FN is a minimal σ-algebra, generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i . On the

measurable space {ΩN ,FN}, under the filtration Fn, n = 1, N, we understand the

minimal σ-algebra generated by the sets
N∏
i=1

Gi, Gi ∈ F0
i , where Gi = Ω0

i for i > n.

We also introduce the probability spaces {Ωn,Fn, Pn}, n = 1, N, where Ωn =
n∏
i=1

Ω0
i ,

Fn =
n∏
i=1

F0
i , Pn =

n∏
i=1

P 0
i . There is a one-to-one correspondence between the sets

of the σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-

algebra Fn =
n∏
i=1

F0
i of the measurable space {Ωn,Fn}, n = 1, N. Therefore, we don’t

introduce new denotation for the σ-algebra Fn of the measurable space {Ωn,Fn},
since it always will be clear the difference between the above introduced σ-algebra
Fn of filtration on the measurable space {ΩN ,FN} and the σ-algebra Fn of the
measurable space {Ωn,Fn}, n = 1, N.

We assume that the evolution of risky asset {Sn}Nn=0, given on the probabil-
ity space {ΩN ,FN , PN}, is consistent with the filtration Fn, that is, Sn is a Fn-
measurable. Due to the above one-to-one correspondence between the sets of the
σ-algebra Fn, belonging to the introduced filtration, and the sets of the σ-algebra
Fn of the measurable space {Ωn,Fn}, n = 1, N, we give the evolution of risky assets
in the form {Sn(ω1, . . . , ωn)}Nn=0, where Sn(ω1, . . . , ωn) is an Fn-measurable random
variable, given on the measurable space {Ωn,Fn}. It is evident that such evolution
is consistent with the filtration Fn on the measurable space {ΩN ,FN , PN}.

Further, we assume that

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0) > 0,

Pn((ω1, . . . , ωn) ∈ Ωn, ∆Sn < 0) > 0, n = 1, N, (1)

where ∆Sn = Sn(ω1, . . . , ωn)− Sn−1(ω1, . . . , ωn−1), n = 1, N.

Let us introduce the denotations

Ω−n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn ≤ 0}, Ω+
n = {(ω1, . . . , ωn) ∈ Ωn, ∆Sn > 0}, (2)

∆S−n = −∆SnχΩ−
n

(ω1, . . . , ωn), ∆S+
n = ∆SnχΩ+

n
(ω1, . . . , ωn), (3)

Vn(ω1, . . . , ωn−1, ω
1
n, ω

2
n) = ∆S−n (ω1, . . . , ωn−1, ω

1
n) + ∆S+

n (ω1, . . . , ωn−1, ω
2
n),

(ω1, . . . , ωn−1, ω
1
n) ∈ Ω−n , (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (4)

In this paper we assume that

Ω+
n = Ωn−1 × Ω0+

n , Ω−n = Ωn−1 × Ω0−
n , Ω0+

n , Ω0−
n ∈ F0

n, Ω0−
n ∪ Ω0+

n = Ω0
n. (5)

Further, in this paper, we assume that P 0
n(Ω0−

n ) > 0, P 0
n(Ω0+

n ) > 0, n = 1, N.
We also assume some technical suppositions: there exist subsets B0−

n,i ∈ F0
n, i =

1, In, In > 1, and B0+
n,s ∈ F0

n, s = 1, Sn, Sn > 1, satisfying the conditions

B0−
n,i ∩B0−

n,j = ∅, i 6= j, B0+
n,s ∩B0+

n,l = ∅, s 6= l, n = 1, N,

Non-Arbitrage Models of Financial Markets
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P 0
n(B0−

n,i ) > 0, i = 1, In, P
0
n(B0+

n,s) > 0, s = 1, Sn, n = 1, N,

Ω0−
n =

In⋃
i=1

B0−
n,i , Ω0+

n =
Sn⋃
s=1

B0+
n,s, n = 1, N. (6)

Below, we give the examples of evolutions {Sn(ω1, . . . , ωn)}Nn=1 for which the
representations (5) are true.

Suppose that the random values ai(ω1, . . . , ωi), ηi(ωi) satisfy the inequalities

ai(ω1, . . . , ωi) > 0, sup
{ω1,...,ωi}∈Ωi

ai(ω1, . . . , ωi) <
1

sup
ωi∈Ω0

i ,ηi(ωi)<0

η−i (ωi)
,

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (7)

If Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), n = 1, N, (8)

then

{ωi ∈ Ω0
i , ηi(ωi) ≤ 0} = Ω0−

i , {ωi ∈ Ω0
i , ηi(ωi) > 0} = Ω0+

i ,

Ω−i = Ωi−1 × Ω0−
i , Ω+

i = Ωi−1 × Ω0+
i , i = 1, N. (9)

Let us note that not only the evolutions given by the formula (8) provide the rep-
resentation (5). In this work, we use the evolutions of the kind (8). Below we give
examples of the evolution of risky assets that have the form (8). For example, if

Sn(ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (10)

where the random values σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and P 0

i (εi(ωi) < 0) >
0, P 0

i (εi(ωi) > 0) > 0, then such an evolution has the form (8) with

ai(ω1, . . . , ωi) =
eσi(ω1,...,ωi−1)εi(ωi) − 1

eσ
0
i εi(ωi) − 1

, ηi(ωi) = eσ
0
i εi(ωi) − 1, i = 1, N.

satisfying needed conditions.

In this section, the necessary and sufficient conditions in terms of the evolution of
risky assets are obtained relative to the uniqueness of martingale measure. Under
the fairly wide assumptions about the evolution of risky assets, an expression for
a single martingale measure is found . Based on the explicit construction of the
martingale measure and its invariance with respect to a certain type of evolutions,
it is possible to construct the models of non arbitrage markets, both complete and
incomplete.

Non-Arbitrage Models of Financial Markets

III. Uniqueness of the Martingale Measure
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In this and section 4, we put that Ω0
i = {ω1

i , ω
2
i }. Denote by F0

i the σ-algebra
of all subsets of the set Ω0

i . Let P 0
i be a probability measure on F0

i . We assume
that P 0

i (ωsi ) > 0, i = 1, N, s = 1, 2. As before, we put that the probability space
{ΩN ,FN , PN} is a direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, N,

and we put N <∞. We also consider the probability spaces {Ωn,Fn, Pn}, n = 1, N,
being the direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, n. We assume

that the evolution of a risky asset is given by the formula

Sn(ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi)), {ω1, . . . , ωn−1, ωn} ∈ Ωn, n = 1, N, (11)

where the random values an(ω1, . . . , ωn−1, ωn), ηn(ωn), n = 1, N, given on the
probability space {Ωn,Fn, Pn}, satisfy the conditions

an(ω1, . . . , ωn−1, ωn) > 0, max
{ω1, ...,ωn−1}∈Ωn−1

an(ω1, . . . , ωn−1, ω
1
n) <

1

η−n (ω1
n)
,

ηn(ω2
n) > 0, ηn(ω1

n) < 0. (12)

So, for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the representation

∆Sn(ω1, . . . , ωn−1, ωn) =

Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ωn)ηn(ωn) =

dn(ω1, . . . , ωn−1, ωn)ηn(ωn), dn(ω1, . . . , ωn−1, ωn) > 0, n = 1, N, S0 > 0, (13)

is true, From these conditions, we obtain Ω−n = Ωn−1 × Ω0−
n , Ω+

n = Ωn−1 × Ω0+
n ,

where Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0}, Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0}.
From the suppositions above, it follows that P 0

n(Ω0−
n ) > 0, P 0

n(Ω0+
n ) > 0. The

measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n = Ω0−

n ∩ F0
n,

P 0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩ F0
n.

Let us introduce the following denotation. For every point {ω1, . . . , ωn−1, ωn} ∈
Ωn, we introduce the set A(ω1, . . . , ωn−1, ωn) ∈ ΩN , where

A(ω1, . . . , ωn−1, ωn) =
2⋃

in+1=1,...,iN=1

{ω1, . . . , ωn−1, ωn, ω
in+1

n+1 , . . . , ω
iN
N }.

For fixed indexes i1, . . . , in we also use the denotation

A(ωi11 , . . . , ω
in−1

n−1 , ω
in
n ) = Ai1,...,in .

It is evident that every set Ai1,...,in has the form

Ai1,...,in =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ωinn , ω
in+1

n+1 , . . . , ω
iN
N },

Non-Arbitrage Models of Financial Markets
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where indexes is takes only one value from the set {1, 2}. Then, Ai1,...,in−1 =
Ai1,...,in−1,1 ∪ Ai1,...,in−1,2 ∈ Fn−1, where

Ai1,...,in−1,1 =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ω
in−1

n−1 , ω
1
n, ω

in+1

n+1 , . . . , ω
iN
N } ∈ Fn,

Ai1,...,in−1,2 =
2⋃

in+1=1,...,iN=1

{ωi11 , . . . , ω
in−1

n−1 , ω
2
n, ω

in+1

n+1 , . . . , ω
iN
N }} ∈ Fn.

If PN is a measure on FN , then

PN(A(ω1, . . . , ωn−1, ωn)) =
2∑

in+1=1,...,iN=1

PN({ω1, . . . , ωn−1, ωn, ω
in+1

n+1 , . . . , ω
iN
N }).

We give an evident construction of martingale measure for risky assets evolution,
given by the formula (11). Below, we assume that measures P 0

n is concentrated
at points ω1

n, ω
2
n ∈ Ω0

n, where ω1
n ∈ Ω0−

n , ω2
n ∈ Ω0+

n and we have the representation
Ω−n = Ωn−1 × Ω0− and Ω+

n = Ωn−1 × Ω0+. So, we have ηn(ω1
n) < 0, ηn(ω2

n) > 0.

Let us put P 0
n(ω1

n) = pn, P
0
n(ω2

n) = 1 − pn, where 0 < pn < 1. Then, to satisfy
the conditions (14 - 16), (see [1]) we need to put

αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}) =

1

pn(1− pn)
, n = 1, N, (14)

and to require that

∆S−n (ω1, . . . , ωn−1, ω
1
n) <∞, (ω1, . . . , ωn−1, ω

1
n) ∈ Ω−n ,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) <∞, (ω1, . . . , ωn−1, ω

2
n) ∈ Ω+

n . (15)

The next Lemma 1 is a consequence of results in [1].

On the probability space {ΩN ,FN , PN}, being the direct product of the
probability spaces {Ω0

i ,F0
i , P

0
i }, for the evolution of risky asset given by the formula

(11) only one spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) exists, where {ω1

i , ω
2
i } ∈ Ω0

i , i =

1, N. For it the representation

µ0(A) = µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (16)

is true. This measure is martingale measure for the considered evolution of risky
asset, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (17)

Non-Arbitrage Models of Financial Markets
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1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (18)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (19)

Next Theorem 1 appeared first in [2] (Theorem 1.4.1), where it was proved under
the less general conditions.

On the probability space {ΩN ,FN , PN}, being the direct product
of the probability spaces {Ω0

i ,F0
i , P

0
i }, suppose that the evolution of risky asset

{Sn(ω1, . . . , ωn)}Nn=1 is given by the formula (11). The necessary and sufficient con-
ditions of the uniqueness of martingale measure µ0(A), A ∈ FN , are the inequalities

Sn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n) 6= Sn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n), n = 1, N, (20)

for every set of indexes i1, . . . , in−1. For any martingale {mn(ω1, . . . , ωn−1, ωn)}Nn=0

relative to the unique measure µ0(A) the representation

mn(ω1, . . . , ωn−1, ωn) =

n∑
k=1

Ck(ω1, . . . , ωk−1)[Sk(ω1, . . . , ωk−1, ωi)− Sk−1(ω1, . . . , ωk−1)]+

m0, n = 1, N, (21)

is true, where

Ck(ω1, . . . , ωk−1) =
2∑

i1=1,...,ik−1=1

di1,...,ik−1
χAi1,...,ik−1 (ω1, . . . , ωk−1). (22)

di1,...,ik−1
=

mk(ω
i1
1 , . . . , ω

ik−1

k−1 , ω
1
k)−mk(ω

i1
1 , . . . , ω

ik−1

k−1 , ω
2
k)

Sk(ω
i1
1 , . . . , ω

ik−1

k−1 , ω
1
k)− Sk(ω

i1
1 , . . . , ω

ik−1

k−1 , ω
2
k)
, k = 1, N. (23)

Proof. The necessity. Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of the risky
asset on the probability space {ΩN ,FN , PN} is such that the martingale measure
µ0(A), A ∈ FN , being equivalent to the measure PN , is unique. Then, for every
attainable contingent liability mN(ω1, . . . , ωN) the representation (21) is true [11]
for some Fk−1-measurable finite valued random value Ck(ω1, . . . , ωk−1), k = 1, N,
where mn(ω1, . . . , ωn−1, ωn) = Eµ0{mN(ω1, . . . , ωN)|Fn}. For mn(ω1, . . . , ωn−1, ωn)
and Sn(ω1, . . . , ωn−1, ωn) the representations

Non-Arbitrage Models of Financial Markets
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mn(ω1, . . . , ωn−1, ωn) =

2∑
i1=1,...,in=1

χAi1,...,in−1,in (ω1, . . . , ωn)

µ0(Ai1,...,in−1,in)

∫
Ai1,...,in−1,in

mN(ω1, . . . , ωN)dµ0, n = 1, N, (24)

Sn(ω1, . . . , ωn−1, ωn) =

2∑
i1=1,...,in=1

χAi1,...,in−1,in (ω1, . . . , ωn)

µ0(Ai1,...,in−1,in)

∫
Ai1,...,in−1,in

SN(ω1, . . . , ωN)dµ0, n = 1, N, (25)

are true. From the representation (21) and the equality (22) for {ω1, . . . , ωn−1} ∈
Ai1,...,in−1 we obtain the equality

χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn−1)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn−1)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

 , (26)

where di1,...,in−1 is finite. Since ∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

Non-Arbitrage Models of Financial Markets
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∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0, (27)

we have

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

[µ0(Ai1,...,in−1,1) + µ0(Ai1,...,in−1,2)]

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

 ∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 =

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0. (28)

Further,

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

[µ0(Ai1,...,in−1,1) + µ0(Ai1,...,in−1,2)]

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

 ∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0 +

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 =

Non-Arbitrage Models of Financial Markets
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−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

 . (29)

If to put

Rm
1 (ωi11 , . . . , ω

in−1

n−1 ) = µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0, (30)

RSN
1 (ωi11 , . . . , ω

in−1

n−1 ) = µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0. (31)

Then, the equality (26) is transformed into the equality

Rm
1 (ωi11 , . . . , ω

in−1

n−1 ) = di1,...,in−1R
SN
1 (ωi11 , . . . , ω

in−1

n−1 ). (32)

Due to that Sn(ω1, . . . , ωn) and mn(ω1, . . . , ωn) are martingales relative to the mea-
sure µ0 and Ai1,...,in−1,1, Ai1,...,in−1,2 ∈ Fn we have∫

Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,1

Sn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,1)Sn(ω1, . . . , ω
1
n), (33)∫

Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,2

Sn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,2)Sn(ω1, . . . , ω
2
n), (34)

∫
Ai1,...,in−1,1

mN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,1

mn(ω1, . . . , ωn)dµ0 =

-
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µ0(Ai1,...,in−1,1)mn(ω1, . . . , ω
1
n), (35)

∫
Ai1,...,in−1,2

mN(ω1, . . . , ωN)dµ0 =

∫
Ai1,...,in−1,2

mn(ω1, . . . , ωn)dµ0 =

µ0(Ai1,...,in−1,2)mn(ω1, . . . , ω
2
n). (36)

Since di1,...,in−1 is finite, then RSN
1 (ωi11 , . . . , ω

in−1

n−1 ) 6= 0. The last means that in-
equality (20) takes place. This proves the equality

di1,...,in−1 = (37)

mn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n)−mn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n)

Sn(ωi11 , . . . , ω
in−1

n−1 , ω
1
n)− Sn(ωi11 , . . . , ω

in−1

n−1 , ω
2
n)
,

n = 1, N,

which means that (23) is true, where we introduced the denotation

mn(ω1, . . . , ωn) = Eµ0{m(ω1, . . . , ωN)|Fn} =

2∑
in+1=1,...,iN=1

m(ω1, . . . , ωn, ω
in+1
n , . . . , ωiNN )µ0({ω1, . . . , ωn, ω

in+1
n , . . . , ωiNN }), (38)

Sn(ω1, . . . , ωn) = Eµ0{SN(ω1, . . . , ωN)|Fn} =

2∑
in+1=1,...,iN=1

SN(ω1, . . . , ωn, ω
in+1
n , . . . , ωiNN )µ0({ω1, . . . , ωn, ω

in+1
n , . . . , ωiNN }). (39)

This proves the necessity.
Proof of the sufficiency. Suppose that the inequalities (20) are true. Let us prove

that the martingale measure µ0 is unique. For this purpose, we prove that for every
martingale the representation (21) is true with validity of equalities (22), (23).

Let us note that the equality (26) is true if for di1,...,in−1 to choose (37) since the
equalities 

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,1)
−

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)

×


∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,1)
−

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)


−1

=
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∫

Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,2)
−

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)

×


∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1,2)
−

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

µ0(Ai1,...,in−1)


−1

=

di1,...,in−1 (40)

are valid.
Taking into account the equality (26) and the equalities

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

SN(ω1, . . . , ωN)dµ0+

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

SN(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

SN(ω1, . . . , ωN)dµ0

 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1)×

2∑
j1=1,...jn−1=1

χAj1,...,jn−1,1(ω1, . . . , ωn)

µ0(Aj1,...,jn−1,1)

∫
Aj1,...,jn−1,1

SN(ω1, . . . , ωN)dµ0+

χAj1,...,jn−1,2(ω1, . . . , ωn)

µ0(Aj1,...,jn−1,2)

∫
Aj1,...,jn−1,2

SN(ω1, . . . , ωN)dµ0−

χAj1,...,jn−1 (ω1, . . . , ωn)

µ0(Aj1,...,jn−1)

∫
Aj1,...,jn−1

SN(ω1, . . . , ωN)dµ0

 = (41)

we have

χAi1,...,in−1,1(ω1, . . . , ωn)

µ0(Ai1,...,in−1,1)

∫
Ai1,...,in−1,1

m(ω1, . . . , ωN)dµ0+

-
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di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)],



 
 

 
 

 
 
 
 
 
 
 
 
 
 

χAi1,...,in−1,2(ω1, . . . , ωn)

µ0(Ai1,...,in−1,2)

∫
Ai1,...,in−1,2

m(ω1, . . . , ωN)dµ0−

χAi1,...,in−1 (ω1, . . . , ωn)

µ0(Ai1,...,in−1)

∫
Ai1,...,in−1

m(ω1, . . . , ωN)dµ0 =

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)]. (42)

Summing over all indexes i1, . . . , in−1 left and right hand sides of the equality (42)
we obtain the equality

mn(ω1, . . . , ωn)−mn−1(ω1, . . . , ωn−1) =

Cn(ω1, . . . , ωn−1)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)], (43)

Cn(ω1, . . . , ωn−1) =
2∑

i1=1,...,in−1=1

di1,...,in−1χAi1,...,in−1 (ω1, . . . , ωn−1). (44)

We proved that for every martingale the representation (21) is true, due to the
conditions (20). Let us prove that the martingale measure is unique. Suppose that
there are at most two martingale measures µ1

0 and µ2
0. If to put m(ω1, . . . , ωN) =

χA(ω1, . . . , ωN), then

χA(ω1, . . . , ωN) =
N∑
n=1

Cn(ω1, . . . , ωn−1)[Sn(ω1, . . . , ωn−1, ωn)− Sn−1(ω1, . . . , ωn−1)] + c0. (45)

From this representation, we obtain the equalities µ1
0(A) = µ2

0(A) = c0, A ∈ FN .
Contradiction. The last proves Theorem 1.

heorem is concerned the case as the set of martingale measures consists of
one measure.

On the probability space {ΩN ,FN , PN}, being the direct product of the
probability spaces {Ω0

i ,F0
i , P

0
i }, suppose that the evolution of risky asset is given

by the formula (11), then the set of martingale measures, being equivalent to the
measure PN , consists of one point

µ0(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN . (46)

The fair price of contract with option ϕ0 of European type with the payoff function
ϕ(ω1, . . . , ωN) is given by the formula

ϕ0 =
2∑

i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕ(ωi11 , . . . , ω

iN
N ), (47)

-

Theorem 2. 
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where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (48)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (49)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (50)

Proof. Since

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, (ω1, . . . , ωn−1) ∈ Ωn−1, (51)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, (ω1, . . . , ωn−1) ∈ Ωn−1, (52)

we have

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn) > 0, (ω1, . . . , ωn) ∈ Ωn. (53)

From this, it follows that µ0(A) > 0 for every A ∈ FN . It means that µ0(A) is
equivalent to PN . The inequality

Sn(ω1, . . . , ωn−1, ω
1
n) =

n−1∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi))(1 + an(ω1, . . . , ω
1
n)ηi(ω

1
n)) 6=

Sn(ω1, . . . , ωn−1, ω
2
n) =

n−1∏
i=1

(1 + ai(ω1, . . . , ωi)ηi(ωi))(1 + an(ω1, . . . , ω
2
n)ηi(ω

2
n)), n = 1, N, (54)

is true, since

(1 + an(ω1, . . . , ω
1
n)ηi(ω

1
n)) 6=

-
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(1 + an(ω1, . . . , ω
2
n)ηi(ω

2
n)), n = 1, N, (55)

due to the suppositions relative to the evolutions of risky asset, given by the formula
(11). Thanks to Theorem 1, the martingale measure µ0 is unique.

To prove the rest statement of Theorem 2, we need to construct the self-financing
strategy π such that the capital corresponding this strategy on (B, S) market satisfies
the condition

Xπ
N = ϕ(ω1, . . . , ωn−1, ωN).

Let us consider the martingale

mn(ω1, . . . , ωn−1, ωn) = Eµ0{ϕ(ω1, . . . , ωn−1, ωN)|Fn}.

Due to Theorem 1, for the finite martingale {mn(ω1, . . . , ωn−1, ωn)}Nn=0 relative
to the the measure µ0(A) the representation

mn(ω1, . . . , ωn−1, ωn) =

n∑
i=1

Ci(ω1, . . . , ωi−1)[Si(ω1, . . . , ωi−1, ωi)− Si−1(ω1, . . . , ωi−1)]+

m0, n = 1, N, (56)

is true, where Ci(ω1, . . . , ωi−1) is Fi−1 measurable random value, and m0 =
Eµ0ϕ(ω1, . . . , ωn−1, ωN).

If to put π = {βn, γn}Nn=0, where

γn = Cn(ω1, . . . , ωn−1), βn = mn−1(ω1, . . . , ωn−1)− γnSn−1(ω1, . . . , ωn−1),

then it easy to see that π is self-financed strategy. Really,

∆βnBn−1 + γn∆Sn−1 = ∆βn + ∆γnSn−1 =

mn−1 − γnSn−1 −mn−2 + γn−1Sn−2 + (γn − γn−1)Sn−1 =

mn−1 −mn−2 − γn−1(Sn−1 − Sn−2) = 0.

Fn−1-measurability of (βn, γn) is evident.
It is easy to show that

Xn(ω1, . . . , ωn) = βnBn + γnSn = mn(ω1, . . . , ωn).

Therefore,

X0 = m0 = Eµ0ϕ(ω1, . . . , ωn−1, ωN), XN = ϕ(ω1, . . . , ωn−1, ωN).
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In this section, the securities market is constructed, the evolution of which occurs
in accordance with Formula (11). Possible for this was the observation that with
respect to a certain class of evolutions of risky assets, the family of martingale
measures is invariant. This fact turned out to be crucial for the construction of
models of non-arbitrage markets. In papers [10], [11], such a possibility of the
existence of non-arbitrage markets is established on the basis of the Hahn-Banach
Theorem. This beautiful result has the disadvantage that it does not provide an
algorithm for constructing models of non-arbitrage markets. How to build them
having the evolution of risky assets is practically a difficult problem.

In Proposition 1, we establish the form of measurable transformations relative
to which the only measure is invariant. Using that, a model of the securities market
is built, which is complete. This result is constructive in contrast to the existence
theorem from [10], [11]. Our denotations in this section are the same as in the
previous section. We consider the evolution of risky assets given by the formula (11)
on the same probability space.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (11), with ai(ω1, . . . , ωi) = bi(ω1, . . . , ωi−1)fi(ω1, . . . , ωi), where the random
variables fi(ω1, . . . , ωi), bi(ω1, . . . , ωi−1), satisfy the inequalities

fi(ω1, . . . , ωi) > 0, bi(ω1, . . . , ωi−1) > 0, max
{ω1,...,ωi−1}∈Ωi−1

bi(ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ωi−1, ω1
i )η
−
i (ω1

i )
, i = 1, N. (57)

For such an evolution, the unique martingale measure µ0 does not depend on the
random variables bi(ω1, . . . , ωi−1), i = 1, N, and it is given by the formula

µ0(A) = µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (58)

where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (59)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (60)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

IV. Complete Market Hedging

Proposition 1. 

© 2021 Global Journals
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Proof. Due to the representation (46) for the measure µ0, to prove Proposition 1
it needs to prove that all n(ω1, . . . , ωn), n = 1, N, do not depend on the random
variables bi(ω1, . . . , ωi−1), i = 1, N, where

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (62)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (63)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (64)

But,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
2
n)η+

n (ω2
n), (65)

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
1
n)η−n (ω1

n). (66)

Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (67)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (68)

(ω1, . . . , ωn−1) ∈ Ωn−1.

The equalities (67), (68) prove Proposition 1.

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
. (61)
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Suppose that the market consists of d assets the evolutions of which are given
by the law

Sn((ω1, . . . , ωn) = {S1
n((ω1, . . . , ωn), . . . , Sdn((ω1, . . . , ωn)}, n = 1, N, (69)

where

Skn((ω1, . . . , ωn) = Sk0

n∏
i=1

(1 + bki (ω1, . . . , ωi−1)fi(ω1, . . . , ωi)ηi(ωi)), k = 1, d, (70)

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, not depend on k, and
satisfy inequalities

fi(ω1, . . . , ωi) > 0, bki (ω1, . . . , ωi−1) > 0, max
{ω1,...,ωi−1}∈Ωi−1

bki (ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ωi−1, ω1
i )η
−
i (ω1

i )
, k = 1, d, i = 1, N. (71)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, if the evolution of d risky assets is given by the

formula (69), (70), then such a market is complete non arbitrage one. The unique
martingale measure does not depend on the random variables bki (ω1, . . . , ωi−1), k =
1, d, i = 1, N, and it is determined by the formula (58). For the contingent claims
ϕi(ω1, . . . , ωN), i = 1, d, the fair prices ϕi0 are given by the formulas

ϕi0 =
2∑

i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕi(ω

i1
1 , . . . , ω

iN
N ), i = 1, d. (72)

(Cox, Ross, Rubinstein, see [3]) On the probability space {ΩN ,FN , PN},
being the direct product of the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of

risky asset is given by the formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (73)

where the random values ρi(ωi), i = 1, N, are such that ρi(ω
1
i ) = a, ρi(ω

2
i ) = b, and

let the bank account evolution be given by the formula

Bn = B0(1 + r)n, r > 0, B0 > 0 n = 1, N. (74)

Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0(1 + r)n
, n = 1, N, (75)

the martingale measure µ0 is unique if a < r < b. It is a direct product of measures
µi0(A), A ∈ F0

i , i = 1, N, given on the measurable space {Ω0
i ,F0

i }, where µi0(ω1
i ) =

Proposition 2. 

Corollary 1.

© 2021 Global Journals
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b−r
b−a , µ

i
0(ω2

i ) = r−a
b−a . The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN)

given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

ϕN(ωi11 , . . . , ω
iN
N )

N∏
k=1

µk0(ωikk ). (76)

Proof. For the discount evolution (75), the representation

Sn((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ηi(ωi)) , n = 1, N, (77)

is true, where ηi(ωi) = ρi(ωi))−r
(1+r)

. Due to Theorems 1, 2, since ηi(ω
1
i ) = a−r

1+r
< 0,

ηi(ω
2
i ) = b−r

1+r
> 0, then the measure µ0 is unique.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (78)

where the random values ρi(ωi), i = 1, N, are such that ρi(ω
1
i ) = b1

i , ρi(ω
2
i ) =

b2
i , i = 1, N, and let the bank account evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (79)

where the random values ri(ωi), i = 1, N − 1, are such that ri(ω
1
i ) = r1

i , ri(ω
2
i ) =

r2
i , i = 1, N − 1, r0 > 0. Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (80)

the martingale measure µ0 is unique, if b1
1 < r0 < b2

1, b
1
i < r1

i−1 < r2
i−1 < b2

i , i =

2, N. It is determined by the formula (58) with

η1(ω1) = ρ1(ω1)− r0, ηi(ωi) = ρi(ωi)− r2
i−1, i = 2, N,

f1(ω1) =
1

1 + r0

, fi(ω1, . . . , ωi) =

ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− r2
i−1)(1 + ri−1(ωi−1))

, i = 2, N. (81)

Theorem 3.        
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The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (82)

Proof. To prove Theorem 3 it is necessary to prove the existence of unique spot
measure. The discount evolution (80) can be represented in the form

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (83)

where

η1(ω1) = ρ1(ω1)− r0, ηi(ωi) = ρi(ωi)− r2
i−1, i = 2, N,

f1(ω1) =
1

1 + r0

, fi(ω1, . . . , ωi) =

ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− r2
i−1)(1 + ri−1(ωi−1))

, i = 2, N, (84)

It is evident that ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0. Therefore, from the rep-

resentation (83), (84) it follows that we can construct only one spot measure, which
is martingale measure being equivalent to the initial measure PN . In accordance
with Theorem 1, since Sn(ω1, . . . , ω

1
n) 6= Sn(ω1, . . . , ω

2
n), {ω1, . . . , ωn−1} ∈ Ωn−1

such a measure is unique. Theorem 3 is proved.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (85)

where the random values εi(ωi), i = 1, N, are such that εi(ω
1
i ) < 0, εi(ω

2
i ) > 0,

σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and let the bank account evolution be given by

the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (86)

where the random values ri(ωi), i = 1, N − 1, are such that ri(ω
1
i ) = r1

i , ri(ω
2
i ) =

r2
i , i = 1, N − 1, r0 > 0. Then, for the discount evolution of risky asset

Theorem 4. 

© 2021 Global Journals
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Sn((ω1, . . . , ωn) =

S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi)

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (87)

the martingale measure µ0 is unique, if

exp{σ0
1ε1(ω1

1)} < r0 < exp{σ0
1ε1(ω2

1)},

exp{σ0
i εi(ω

1
i )} < r1

i−1 < r2
i−1 < exp{σ0

i εi(ω
2
i )}, i = 2, N. (88)

It is determined by the formula (58) with

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − r2

i−1, fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − r2

i−1)(1 + ri−1(ωi−1))
, {ω1, . . . , ωi} ∈ Ωn, i = 2, N. (89)

The fair price ϕ0 of the contingent liability ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 =

∫
ΩN

ϕN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (90)

Proof. For the discount evolution (87), the following representation

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (91)

is true, where

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − r2

i−1, fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − r2

i−1)(1 + ri−1(ωi−1))
, {ω1, . . . , ωi} ∈ Ωn, i = 2, N. (92)

It is evident that ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0. From this, we obtain

that the spot measure exists and it is unique. Theorem 4 is proved.
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On the probability space {ΩN ,FN , PN}, being the direct product of probability
spaces {Ω0

i ,F0
i , P

0
i }, suppose that the market consists of d assets the evolution of

which is given by the law

Sn((ω1, . . . , ωn) = {S1
n((ω1, . . . , ωn), . . . , Sdn((ω1, . . . , ωn)}, n = 1, N, (93)

where

Skn((ω1, . . . , ωn) = Sk0

n∏
i=1

(1 + aki fi(ω1, . . . , ωi)ηi(ωi)), k = 1, d, (94)

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, and constants aki satisfy the
inequalities

ηi(ω
1
i ) < 0, ηi(ω

2
i ) > 0, fi(ω1, . . . , ωi) > 0,

0 < aki <
1

max
{ω1,...,ωi−1}∈Ωi−1

fi(ω1, . . . , ω1
i )η
−
i (ω1

i )
, i = 1, N, k = 1, d. (95)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky assets be given by the

formulas (93), (94), where constants aki i = 1, N, k = 1, d, satisfy the inequalities
(95). For such an evolution of risky asset the martingale measure µ0 does not depend
on aki and is unique. It is determined by the formula (58). For the contingent claims
ϕiN(ω1, . . . , ωN), i = 1, d, the fair prices ϕi0 are given by the formulas

ϕi0 =
2∑

i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕiN(ωi11 , . . . , ω

iN
N ), i = 1, d. (96)

If fi(ω1, . . . , ωi) = 1, i = 1, N, the unique martingale measure is a direct product of
measures µi0(A), A ∈ F0

i , given on the measurable space {Ω0
i ,F0

i }, i = 1, N, where

µi0(ω1
i ) =

η+
i (ω2

i )

(η−i (ω1
i ) + η+

i (ω2
i ))

, µi0(ω2
i ) =

η−i (ω1
i )

(η−i (ω1
i ) + η+

i (ω2
i ))

. (97)

The fair prices ϕi0, i = 1, N, of the contingent liabilities ϕiN(ω1, . . . , ωN), i = 1, N,
are given by the formula

ϕi0 =

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ0 =

2∑
i1=1

. . .

2∑
iN=1

ϕiN(ωi11 , . . . , ω
iN
N )

N∏
k=1

µk0(ωikk ). (98)

Suppose that {gik(XN)}Nk=1, i = 1, d, are the mappings from the set [0, 1]N into
itself, where XN = {x1, . . . , xN}, 0 ≤ xk ≤ 1, k = 1, N. If Si0, S

i
1, . . . , S

i
N , i =

1, d, are the samples of the processes (93), (94) let us denote the order statis-
tics Si(0), S

i
(1), . . . , S

i
(N), i = 1, d, of this samples. Introduce also the denotation

gik ([Si]N) = gik

(
Si
(0)

Si
(N)

, . . . ,
Si
(N−1)

Si
(N)

)
, k = 1, N, i = 1, d.

Proposition 3. 

© 2021 Global Journals
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Suppose that Si0, S
i
1, . . . , S

i
N is a sample of the random processes

(93), (94). Then, for the parameters ai1, . . . , a
i
N the estimation

ai1 =

[
1− τ i0

Si
(0)

Si
0
gi1 ([Si]N)

]
f1η
−
1 (ω1

1)
, 0 < τ i0 ≤ 1, i = 1, d,

aik =

[
1− gik([Si]N)

gik−1([Si]N )

]
fkη

−
k (ω1

k)
, k = 2, N, i = 1, d, (99)

is valid, if for giN([Si]N) > 0, [Si]N ∈ [0, 1]N , the inequalities gi1([Si]N) ≥
gi2([Si]N) ≥ . . . ≥ giN([Si]N) are true. If τ i0 = 0, then aik = 1, k = 1, N, i = 1, d.

In the formulas (99) we put that fk = max
{ω1,...,ωk−1}∈Ωk−1

fk(ω1, . . . , ωk−1, ω
1
k), k =

1, N.

This section presents all the necessary results for constructing a non-arbitrage in-
complete market on a discrete probability space. The conditions under which the
entire family of martingale measures is described for the considered class of evolu-
tion of risky assets are minimal. In particular, conditions are presented under which
the family of martingale measures considered is equivalent to the original measure.
They are minimal. The entire set of equivalent martingale measures is a convex
combination of a finite number of spot martingale measures. On this basis, new
formulas were found for the fair price of the super hedge.

In this section, we put that Ω0
i = {ω1

i , . . . , ω
M
i }, i = 1, N, and we assume that

2 < M < ∞, the σ-algebra F0
i consists from all subsets of Ω0

i . We suppose that
P 0
i (ωki ) > 0, ωki ∈ Ω0

i , k = 1,M. As before, the probability space {ΩN ,FN , PN}
is a direct product of probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, N. Sometimes, any

elementary event ωki ∈ Ω0
i it is convenient to denote by ωi not indicating the index

k. Further, we use the both denotations. As in section 2, we introduce filtration
Fn on the probability space {ΩN ,FN , PN}. As before, it is convenient to introduce
the family of probability spaces {Ωn,Fn, Pn}, n = 1, N, being a direct product of
probability spaces {Ω0

i ,F0
i , P

0
i }, i = 1, n.

The evolution of risky assets is given by the formula (8) with the assumptions
given in the section 2. In this case

Ω−n = Ωn−1 × Ω0−
n , Ω+

n = Ωn−1 × Ω0+
n , (100)

where Ω0−
n = {ωn ∈ Ω0

n, ηn(ωn) ≤ 0},Ω0+
n = {ωn ∈ Ω0

n, ηn(ωn) > 0},
P 0
n({ωn, ηn(ωn) > 0}) > 0, P 0

n({ωn, ηn(ωn) < 0}) > 0. Further, we also use the
measurable space with measure{

N∏
i=1

[Ω0−
i × Ω0+

i ],
N∏
i=1

[F0−
i ×F0+

i ],
N∏
i=1

[P 0−
i × P 0+

i ]

}
. (101)

Proposition 4. 

V. Martingale Measures on Discrete Probability Space
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The measure P 0−
n is a contraction of the measure P 0

n on the σ-algebra F0−
n =

Ω0−
n ∩F0

n, P
0+
n is a contraction of the measure P 0

n on the σ-algebra F0+
n = Ω0+

n ∩F0
n.

Additionally, we assume

P 0
n({ωn ∈ Ω0

n, |ηn(ωn)| <∞}) = 1. (102)

In this case, Lemma 1 (see [1]) is formulated as follows

Suppose that for Ωa
n, a = −,+, n = 1, N, the representations (100) are

true. If the conditions

B0−
n,i ∩B0−

n,j = ∅, i 6= j,

B0+
n,s ∩B0+

n,l = ∅, s 6= l, k = 1, Nn,

Ω0−
n =

Nn⋃
i=1

B0−
n,i , Ω0+

n =
Nn⋃
i=1

B0+
n,i ,

P 0
n(Ω0−

n \B
0,−
n,i ) > 0, i = 1, In, In > 1, n = 1, N,

P 0
n(Ω0+

n \B0,+
n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,

P 0
n(B0,−

n,i ) > 0, i = 1, In, In > 1, n = 1, N,

P 0
n(B0,+

n,s ) > 0, s = 1, Sn, Sn > 1, n = 1, N,∫
ΩN

∆S−n (ω1, . . . , ωn−1, ωn)dPN <∞, n = 1, N, (103)

are true, then the set of bounded strictly positive random values αn({ω}1
n; {ω}2

n),
satisfying the conditions (14) - (16),(see [1]) is a nonempty set.

Suppose that the conditions of Lemma 2 are true. For the measure
µ0(A), A ∈ FN , constructed by the recurrent relations (23) - (25),(see [1]) the
representation

µ0(A) =

∫
ΩN

N∏
n=1

n(ω1, . . . , ωn)χA(ω1, . . . , ωN)
N∏
i=1

dP 0
i (ωi) (104)

is true and µ0(ΩN) = 1, that is, the measure µ0(A) is a probability measure being
equivalent to the measure PN , where we put

n(ω1, . . . , ωn) = χΩ0−
n

(ωn) 1
n(ω1, . . . , ωn)+

χΩ0+
n

(ωn) 2
n(ω1, . . . , ωn), (105)

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0+
n

(ω2
n)αn({ω1, . . . , ωn−1, ωn}; {ω1, . . . , ωn−1, ω

2
n})×

Lemma 2.

Lemma 3.

© 2021 Global Journals
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∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n), (ω1, . . . , ωn−1) ∈ Ωn−1, (106)

2
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0−
n

(ω1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ωn})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n), (ω1, . . . , ωn−1) ∈ Ωn−1. (107)

Proof. We only need to prove that n(ω1, . . . , ωn) > 0, n = 1, N. Suppose that

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = α1

n(ω1
n)α2

n(ω2
n),

where

α1
n(ω1

n) > 0, ω1
n ∈ Ω0−

n , α2
n(ω2

n) > 0, ω2
n ∈ Ω0+

n .

Since

∆S−n (ω1, . . . , ωn−1, ω
1
n) = Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ω

1
n)η−n (ω1

n),

where

η−n (ωn) = −χΩ0−
n

(ωn)ηn(ωn), η+
n (ωn) = χΩ0+

n
(ωn)ηn(ωn),

Therefore,

1
n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0+
n

(ω2
n)αn({ω1, . . . , ωn−1, ωn}; {ω1, . . . , ωn−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω2
n) =

Sn−1(ω1, . . . , ωn−1)α1
n(ωn)

∫
Ω0

n

χΩ0+
n

(ω2
n)α2

n(ωn)×

an(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω2

n) > 0, (ω1, . . . , ωn) ∈ Ωn−1 × Ω0−
n . (108)
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∆S+
n (ω1, . . . , ωn−1, ω

2
n) = Sn−1(ω1, . . . , ωn−1)an(ω1, . . . , ωn−1, ω

2
n)η+

n (ω2
n),

an(ω1, . . . , ωn−1, ω
1
n) > 0, an(ω1, . . . , ωn−1, ω

2
n) > 0.
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Analogously,

(109)

(110)

From these inequalities, we obtain

n(ω1, . . . , ωn−1, ωn) > 0, (ω1, . . . , ωn) ∈ Ωn.

This proves the equivalence of the measures PN and µ0.

Suppose that the conditions of Lemma 2 are true. Then, the set of
strictly positive random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (111)

is a nonempty one and the convex linear span of the set of measures (104), de-
fined by the random values αn({ω1

1, . . . , ω
1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, satisfying the

conditions (111), is a set of martingale measures being equivalent to the measure
PN .

Proof. All bounded random values αn({ω1
1, . . . , ω

1
n}; {ω2

1, . . . , ω
2
n}), n = 1, N, con-

structed in Lemma 2 satisfy the conditions (111), since |∆Sn(ω1, . . . , ωn−1, ωn)| takes
only finite values. The fact that the measures (104) are martingale ones is proved
as early (see [1]).

Suppose that the conditions of Lemma 2 are valid. If, on the probability
space {Ωn−1,Fn−1, µ

n−1
0 }, for each B ∈ Fn−1, µ

n−1
0 (B) > 0, the nonnegative random

value fn(ω1, . . . , ωn−1, ωn) satisfies the inequality

1

µn−1
0 (B)

∫
B

∫
Ω0

n

n∏
i=1

i(ω1, . . . , ωi)fn(ω1, . . . , ωn)
n∏
i=1

dP 0
i (ωi) ≤ 1, B ∈ Fn−1, (112)

Theorem 5. 

Lemma 4. 

© 2021 Global Journals
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n(ω1, . . . , ωn−1, ωn) =∫

Ω0
n

χΩ0−
n

(ω1
n)αn({ω1, . . . , ωn−1, ω

1
n}; {ω1, . . . , ωn−1, ωn})×

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
dP 0

n(ω1
n) =

Sn−1(ω1, . . . , ωn−1)α2
n(ωn)

∫
Ω0

n

χΩ0−
n

(ω1
n)α1

n(ω1
n)×

an(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n) > 0, (ω1, . . . , ωn) ∈ Ωn−1 × Ω0+
n .

𝜓𝜓
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then the inequality ∫
Ω0

n

n(ω1, . . . , ωn)fn(ω1, . . . , ωn)dP 0
n(ωn) ≤ 1,

{ω1, . . . , ωn−1} ∈ Ωn−1, n = 1, N, (113)

is true.

Proof. The proof see in [1].

Suppose that for ∆Sn(ω1, . . . , ωn−1, ωn), n = 1, N, the representation
(13) is valid and Lemma 4 conditions are true. Then, for the nonnegative random
value fn(ω1, . . . , ωn−1, ωn) the inequalities

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)

[
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

1
n)+

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
fn(ω1, . . . , ωn−1, ω

2
n)

]
≤ 1,

(ω1, . . . , ωn−1) ∈ Ωn−1, (ω1
n, ω

2
n) ∈ Ω0−

n × Ω0+
n , n = 1, N, (114)

are true.

Proof. The proof see in [1].

Suppose that the conditions of Theorem 6 are true. Then, the non-
negative random values fn(ω1, . . . , ωn−1, ωn), n = 1, N, satisfy the inequalities

fn(ω1, . . . , ωn−1, ωn) ≤

(1 + γn−1(ω1, . . . , ωn−1)∆Sn(ω1, . . . , ωn−1, ωn)), n = 1, N, (115)

where γn−1(ω1, . . . , ωn−1) is a bounded Fn−1-measurable random value.

Proof. It is evident that there exists ω1
n ∈ Ω0−

n and ω2
n ∈ Ω0+

n such that the inequal-
ities

max
(ω1,...,ωn−1)∈Ωn−1

1

∆S−n (ω1, . . . , ωn−1, ω1
n)
<∞,

max
(ω1,...,ωn−1)∈Ωn−1

1

∆S+
n (ω1, . . . , ωn−1, ω2

n)
<∞, n = 1, N, (116)

are true. This proves Theorem 7 (see [1]).

Suppose that the evolution {Sn(ω1, . . . , ωn)}Nn=1 of risky asset satisfies
the conditions of Theorems 5, 6, 7, then for every nonnegative super-martingale
{f 1

n(ω1, . . . , ωn)}Nn=0 relative to the set of martingale measure M, described in The-
orem 5, the optional decomposition is true.

Theorem 6. 

Theorem 7. 

Theorem 8. 
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Proof. The proof see in [1]. More detail about optional decomposition see in [25],
[26], [28] [27], [29].

Let us consider the random values

n(ω1, . . . , ωn) = χΩ0−
n

(ωn) 1
n(ω1, . . . , ωn)+

χΩ0+
n

(ωn) 2
n(ω1, . . . , ωn), (117)

where

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (118)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, n = 1, N. (119)

Let the evolution of risky assets be given by the formula (8). On
the measurable space {ΩN ,FN}, being the direct product of the measurable spaces

{Ω0
i ,F0

i }, for every point {{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i ×Ω0+

i ] let us introduce

the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (120)

where n(ω1, . . . , ωn) is determined by the formulas (117) - (119).

The spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A), given by the formula (120), is a

martingale measure for the evolution of risky asset given by the formula (8) for every

point {{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i ×Ω0+

i ]. If the point {ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}

is such that ∆Sn(ω1, . . . , ωn−1, ω
1
n) < 0, ∆Sn(ω1, . . . , ωn−1ω

2
n) > 0, {ω1, . . . , ωn−1} ∈

Ωn−1, n = 1, N, then the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a martingale measure

being equivalent to the measure PN .

Proof. Let us prove that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a probability measure. Let us cal-

culate

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j ) = j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j ) + j(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

Definition 1. 

Lemma 5. 

© 2021 Global Journals
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χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
i
j−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω1
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

+

χΩ0−
j

(ω2
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω2
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

=

χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )
∆S+

j (ωi11 , . . . , ω
ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

+

χΩ0+
j

(ω2
j )χΩ0−

j
(ω1

j )
∆S−j (ωi11 , . . . , ω

ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

= χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j ) = 1.

that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) = 1 for every point

{{ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N}} ∈

N∏
i=1

[Ω0−
i × Ω0+

i ]. Further,

2∑
ij=1

j(ω
i1
1 , . . . , ω

ij
j )∆Sj(ω

i1
1 , . . . , ω

ij
j ) =

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
1
j )+

j(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
2
j )∆Sj(ω

i1
1 , . . . , ω

ij−1

j−1 , ω
2
j ) =

χΩ0−
j

(ω1
j )χΩ0+

j
(ω2

j )×
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χΩ0−
j

(ω1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0−
j

(ω1
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0+
j

(ω1
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
1
j )+

χΩ0−
j

(ω2
j )

1
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j )+

χΩ0+
j

(ω2
j )

2
j (ω

i1
1 , . . . , ω

ij−1

j−1 ω
2
j ) =

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

The last equalities prove



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let us prove that the set of measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a set of martingale

measures. Really, for A, belonging to the σ-algebra Fn−1 of the filtration we have

A = B ×
N∏
i=n

Ω0
i , where B belongs to σ-algebra Fn−1 of the measurable space

{Ωn−1,Fn−1}. Then, ∫
A

∆Sn(ω1, . . . , ωn)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

[
−

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

2
j )

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )+

∆S−j (ωi11 , . . . , ω
ij−1

j−1 , ω
1
j )

Vj(ω
i1
1 , . . . , ω

ij−1

j−1 , ω
1
j , ω

1
j )

∆S+
j (ωi11 , . . . , ω

ij−1

j−1 , ω
2
j )

]
= 0, j = 1, N. (121)

2∑
i1=1

. . .

2∑
in=1

n∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )∆Sn(ωi11 , . . . , ω
in
n ) =

2∑
i1=1

. . .

2∑
in−1=1

n−1∏
j=1

j(ω
i1
1 , . . . , ω

ij
j )χB(ωi11 , . . . , ω

in−1

n−1 )×

2∑
in=1

n(ωi11 , . . . , ω
in
n )∆Sn(ωi11 , . . . , ω

in
n ) = 0, A ∈ Fn−1. (122)

To prove the last statement it needs to prove that n(ω1, . . . , ωn) > 0, n = 1, N.
But,

n(ω1, . . . , ωn) = χΩ0−
n

(ωn)
∆S+

n (ω1, . . . , ωn−1, ω
2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

+

χΩ0+
n

(ωn)
∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
> 0, n = 1, N. (123)

The last means the needed statement.

We remind that the evolution of risky asset is given by the formula (8). Therefore,
in this case the condition (16) (see [1]) is formulated, as follows:∫

Ω0
n×Ω0

n

χΩ0−
n

(ω1
n)χΩ0+

n
(ω2

n)αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

© 2021 Global Journals
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dP 0
n(ω1

n)dP 0
n(ω2

n) = 1, n = 1, N. (124)

Below, we describe the convex set of equivalent martingale measures.

The measure µ0(A), constructed by the strictly positive finite valued
random values αn({ω}1

n; {ω}2
n), n = 1, N, satisfying the conditions (124), is a mar-

tingale measure for the evolution of risky asset, given by the formula (8). Every
measure, belonging to the convex linear span of such measures, is also martingale
measure for the considered evolution of risky asset. They are equivalent to the mea-
sure PN .

Proof. Since the set of strictly positive finite valued random values αn({ω}1
n; {ω}2

n), n =
1, N, satisfies the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N, (125)

then the set of measures µ0(A), given by the formula (111), is a non empty one.
This proves Theorem 9.

We use for αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N}) the denotation αN({ω}1

N ; {ω}2
N).

Let the evolution of risky asset be given by the formula (8). On the

measurable space with measure {
N∏
i=1

[Ω0−
i × Ω0+

i ],
N∏
i=1

[F0−
i × F0+

i ],
N∏
i=1

[P 0−
i × P 0+

i ]},

suppose that the random value αN({ω}1
N ; {ω}2

N), satisfies the conditions

αN({ω}1
N ; {ω}2

N) > 0, {ω1
1, ω

2
1}, . . . , {ω1

N , ω
2
N} ∈

N∏
i=1

[Ω0−
i × Ω0+

i ], (126)

∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=1

dP 0
i (ω1

i )dP
0
i (ω2

i ) = 1. (127)

The measure µ0(A), given by the formula

µ0(A) =∫
N∏
i=1

[Ω0−
i ×Ω0+

i ]

αN({ω}1
N ; {ω}2

N)µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A)d

N∏
i=1

[P 0−
i × P 0+

i ], (128)

is a martingale measure, being equivalent to the measure PN .

Theorem 9. 

Theorem 10. 
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Proof. Let us note that µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(ΩN) = 0 if {{ω1

1, ω
2
1}, . . . , {ω1

N , ω
2
N}} does

not belong to the set
N∏
i=1

[Ω0−
i × Ω0+

i ]. Let us introduce the denotations

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) = (129)

∫
N∏

i=n+1
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n+1

dP 0
i (ω1

i )dP
0
i (ω2

i )

∫
N∏

i=n
[Ω0−

i ×Ω0+
i ]

αN({ω1
1, . . . , ω

1
N}; {ω2

1, . . . , ω
2
N})

N∏
i=n

dP 0
i (ω1

i )dP
0
i (ω2

i )

, n = 1, N.

Since the random values αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n}) are finite val-

ued, then ∫
Ω0−

n ×Ω0+
n

αn({ω1
1, . . . , ω

1
n−1, ω

1
n}; {ω2

1, . . . , ω
2
n−1, ω

2
n})×

∆S+
n (ω1, . . . , ωn−1, ω

2
n)∆S−n (ω1, . . . , ωn−1, ω

1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

dP 0
n(ω1

n)dP 0
n(ω2

n) <∞,

(ω1, . . . , ωn−1) ∈ Ωn−1. (130)

It is evident that the set of strictly positive finite valued random values
αn({ω}1

n; {ω}2
n), n = 1, N, given by the formula (129), satisfy the conditions

Eµ0|∆Sn(ω1, . . . , ωn−1, ωn)| =

∫
ΩN

N∏
i=1

i(ω1, . . . , ωi)|∆Sn(ω1, . . . , ωn−1, ωn)|
N∏
i=1

dP 0
i (ωi) <∞, n = 1, N. (131)

Moreover, for the measure (128) the representation (104) is true, meaning that it is
equivalent to the measure PN . The last proves Theorem 10.

Let us define the integral for the random value fN(ω1, . . . , ωN−1, ωN) relative to
the measure µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) by the formula

∫
ΩN

fN(ω1, . . . , ωN−1, ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )fN(ωi11 , . . . , ω

iN
N ). (132)
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Let the evolution of risky asset be given by the formula (8). If the
conditions of Theorem 10 are true, then the fair price of super-hedge for the non-
negative payoff function f(x) is given by the formula

f0 = sup
P∈M

EPf(SN) = max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}. (133)

Proof. Let us prove the formula (133). Denote M the set of all martingale measures,
being equivalent to PN . If an equivalent martingale measure P0 ∈ M, then αP0 +
(1− α)µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N} ∈M for arbitrary 0 < α ≤ 1. We have the inequality

αEP0f(SN) + (1− α)

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

Since α > 0 is arbitrary, we obtain the inequality∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

From here, we obtain the inequality

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ sup

P∈M
EPf(SN).

The inverse inequality follows from the representation (128) for any martingale mea-
sure being equivalent to the measure PN .

Using the construction of the family of spot measures introduced in the previous
section, this section presents the conditions under which the considered family of
spot measures is invariant with respect to a certain class of evolutions of risky
assets. For a certain class of contingent liabilities including a standard call option,
the fair price of the super hedge is shown to be less than the spot price of the
underlying asset. Specific applications of the results obtained for the previously
known evolutions of risky assets are considered. New formulas
arbitrage price range. A model of a non-arbitrage incomplete market is proposed
and estimates are obtained in the case of a multi-parameter model of a non-arbitrage
market.

On the probability space {ΩN ,FN , PN}, let us assume that the random values
bi(ω1, . . . , ωi−1), fi(ω1, . . . , ωi), ηi(ωi), i = 1, N, satisfy the inequalities

bi(ω1, . . . , ωi−1) > 0, fi(ω1, . . . , ωi) > 0,

max
{ω1,...,ωi−1}∈Ωi−1

bi(ω1, . . . , ωi−1) <

1

max
{ω1,...,ωi−1}∈Ωi−1

max
{ωi,ηi(ωi)<0}

fi(ω1, . . . , ωi)η
−
i (ωi)

,

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (134)

Theorem 11. 

VI. Models of Non-Arbitrage Incomplete Financial Markets
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As before, we put Ω0−
i = {ωi ∈ Ω0

i , ηi(ωi) ≤ 0}, Ω0+
i = {ωi ∈ Ω0

i , ηi(ωi) > 0}. We
assume that the evolution Sn(ω1, . . . , ωn) of risky asset is given by the formula

Sn(ω1, . . . , ωn) = S0

n∏
i=1

(1 + bi(ω1, . . . , ωi−1)fi(ω1, . . . , ωi)ηi(ωi)), n = 1, N. (135)

With every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V , where V =

N∏
i=1

[Ω0−
i × Ω0+

i ], we

connect the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .

2∑
iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN . (136)

Let us denote νv(A) =
N∏
i=1

νω1
i ,ω

2
i
(Ai), A =

N∏
i=1

Ai,∈ FN , the direct product of the

measures νω1
i ,ω

2
i
(Ai), Ai ∈ F0

i , i = 1, N, where v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V ,

V =
N∏
i=1

[Ω0−
i × Ω0+

i ], and

νω1
i ,ω

2
i
(Ai) = χAi

(ω1
i )

η+
i (ω2

i )

η−i (ω1
i ) + η+

i (ω2
i )

+ χAi
(ω2

i )
η−i (ω1

i )

η−i (ω1
i ) + η+

i (ω2
i )
, (137)

for ω1
i ∈ Ω0−

i , ω2
i ∈ Ω0+

i , Ai ∈ F0
i . Then, there exists a countable additive function

νv(A), A ∈ FN , on the σ-algebra FN for every v ∈ V .

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). For every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} ∈ V , the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) given by the formula (136) does not depend on the random

values bi(ω1, . . . , ωi−1), i = 1, N. In the case as fi(ω1, . . . , ωi) = 1, i = 1, N, the
formula

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) = νv(A) (138)

is true. For the evolution of risky asset (135), the set of martingale mea-
sures being equivalent to the measure PN does not depend on the random values
bi(ω1, . . . , ωi−1), i = 1, N.

Proof. Since the spot measures µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) are given by the formula (136),

to prove Theorem 12 it needs to prove that any n(ω1, . . . , ωn), n = 1, N, does not
depend on the random values bi(ω1, . . . , ωi−1), i = 1, N. Really,

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (139)

1
n(ω1, . . . , ωn−1, ωn) =

Theorem 12. 
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∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (140)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1. (141)

But,

∆S+
n (ω1, . . . , ωn−1, ω

2
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
2
n)η+

n (ω2
n), (142)

∆S−n (ω1, . . . , ωn−1, ω
1
n) =

Sn−1(ω1, . . . , ωn−1)bn(ω1, . . . , ωn−1)fn(ω1, . . . , ω
1
n)η−n (ω1

n). (143)

Therefore,

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (144)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (145)

(ω1, . . . , ωn−1) ∈ Ωn−1.

From this, all the rest statements of Theorem 12 follow.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 ≤ x <∞ satisfies the inequality 0 ≤ f(x) < x. Then, the inequalities

f(S0) ≤ sup
P∈M

EPf(SN) =

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} < S0 (146)

are true.

Theorem 13. 
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Proof. Since the set of points v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} in the set V is finite then

the

min
ω1,...,ωN

[SN(ω1, . . . , ωN)− f(SN(ω1, . . . , ωN))] = d > 0 (147)

is reached at a certain point v0 = {(ω1,0
1 , ω2,0

1 ), . . . , (ω1,0
N , ω2,0

N )}. Therefore, the in-
equality

SN(ω1, . . . , ωN)− f(SN(ω1, . . . , ωN)) ≥ d, {ω1, . . . , ωN} ∈ ΩN , (148)

is true

Integrating left and right parts of inequality over the measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A),

we have ∫
ΩN

SN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}−

∫
ΩN

dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}f(SN(ω1, . . . , ωN)) ≥ d. (149)

Since ∫
ΩN

SN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} = S0 (150)

we obtain the needed. It is evident that from the convexity down of payoff function
f(x) and Jensen inequality we obtain the inequality∫

ΩN

f(SN(ω1, . . . , ωN))dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≥ f(S0). (151)

Theorem 13 is proved.
Let us note that the interval of non arbitrage prices for a certain processes was

found in the papers [30], [31].

For the standard call option of European type with payoff function
f(x) = (x − K)+, K > 0, the conditions of Theorem 13 are true. Therefore, the
inequalities (146) are valid.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula (135). Suppose that the nonnegative convex down payoff function f(x) on
the set 0 ≤ x < ∞ satisfies the inequality 0 ≤ f(x) ≤ K, K > 0. Then, the
inequalities

f(S0) ≤ sup
P∈M

EPf(SN) = max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ≤ K (152)

are true.

Proof. The proof is evident.

Corollary 2.

Theorem 14. 

© 2021 Global Journals
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For the standard put option of European type with payoff function
f(x) = (K − x)+, K > 0, the conditions of Theorem 14 are true. Therefore, the
inequalities (152) are valid.

For the standard
f(x) = (x − K)+, K > 0, the interval of non arbitrage prices coincide with the
interval  min

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 . (153)

For the standard put option of European type with payoff function
f(x) = (K − x)+, K > 0, the interval of non arbitrage prices coincide with the
interval  min

ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i ,ω2
i ∈Ω0+

i ,i=1,N

∫
ΩN

f(SN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 . (154)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset is given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (155)

where the random value ρi(ωi) is given on the probability space {Ω0
i ,F0

i , P
0
i }, i =

1, N, and let the bank account evolution be given by the formula

Bn = B0(1 + r)n, r > 0, B0 > 0, n = 1, N. (156)

Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0(1 + r)n
, n = 1, N, (157)

the set of martingale measure is nonempty one if the following conditions are true

P 0
i (ρi(ωi)− r < 0) > 0, P 0

i (ρi(ωi)− r > 0) > 0,

P 0
i (ρi(ωi)− r < 0) + P 0

i (ρi(ωi)− r > 0) = 1, i = 1, N.

Corollary 3. 

Corollary 4. 

Corollary 5. 

Corollary 6. 
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For every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)} in the set V the spot measure

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a direct product of measures µi0(Ai), Ai ∈ F0

i , i = 1, N,

given on the measurable space {Ω0
i ,F0

i }, where µi0(Ai) = νω1
i ,ω

2
i
(Ai), and νω1

i ,ω
2
i
(Ai)

is given by the formula (137) with ηi(ωi) = ρi(ωi)−r
1+r

, i = 1, N. The fair price ϕ0 of
super-hedge of the nonnegative contingent liability ϕN(ω1, . . . , ωN) is given by the
formula

ϕ0 = max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv.

The interval of non-arbitrage prices is written in the formmin
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv, max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dνv

 .

On the probability space {ΩN ,FN , PN} being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

(1 + ρi(ωi)), n = 1, N, (158)

where the random value ρi(ωi), is given on the probability space {Ω0
i ,F0

i , P
0
i },

P 0
i ({ρi(ωi) < 0}) > 0, P 0

i ({ρi(ωi) > 0}) > 0, i = 1, N, and let the bank account
evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (159)

where the strictly positive random values ri(ωi) are given on the probability
{Ω0

i ,F0
i , P

0
i }, i = 1, N. Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

(1 + ρi(ωi))

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (160)

the set of martingale measure is nonempty one if the following conditions are true

max
ωi−1∈Ωi−1

ri−1(ωi−1) < min
ωi∈Ωi,ρi(ωi)>0

ρi(ωi),

min
ωi−1∈Ωi−1

ri−1(ωi−1) > 0, i = 2, N

0 < r0 < min
ω1∈Ω1,ρ1(ω1)>0

ρ1(ω1). (161)

The fair price ϕ0 of super-hedge of the nonnegative contingent liability ϕN(ω1, . . . , ωN)
is given by the formula

ϕ0 = max
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}.

Theorem 15. 
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The interval of non-arbitrage prices is written in the form min
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N},

max
ω1
i ∈Ω0−

i , ω2
i ∈Ω0+

i , i=1,N

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 .

Proof. The discount evolution (160) can be represented in the form

Sn(ω1, . . . , ωn) =

S0

B0

(
1 +

(ρ1(ω1)− r0)

1 + r0

) n∏
i=2

(
1 +

ρi(ωi)− ri−1(ωi−1)

1 + ri−1(ωi−1)

)
=

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , (162)

where

f1(ω1) =
1

1 + r0

, η1(ω1) = ρ1(ω1)− r0, (163)

fi(ω1, . . . , ωi) =
ρi(ωi)− ri−1(ωi−1)

(ρi(ωi)− min
ωi−1∈Ωi−1

ri−1(ωi−1)(1 + ri−1(ωi−1))
,

ηi(ωi) = ρi(ωi)− min
ωi−1∈Ωi−1

ri−1(ωi−1) i = 2, N. (164)

Since

fi(ω1, . . . , ωi) > 0, i = 1, N, (165)

P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N, (166)

it means that the set of martingale measures being equivalent to RN is a
nonempty set. Theorem 15 is proved.

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky asset be given by the

formula

S1
n((ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (167)

where the random values εi(ωi), i = 1, N, are such that

Theorem 16. 
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P 0
i (εi(ωi) < 0) > 0, P 0

i (εi(ωi) > 0) > 0,

P 0
i (εi(ωi) < 0) + P 0

i (εi(ωi) > 0) = 1,

σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N,

and let the bank account evolution be given by the formula

Bn = B0

n∏
i=1

(1 + ri−1(ωi−1)), B0 > 0, n = 1, N, (168)

where the random values ri(ωi), i = 1, N − 1, are strictly positive ones, r0 > 0.
Then, for the discount evolution of risky asset

Sn((ω1, . . . , ωn) =

S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi)

B0

n∏
i=1

(1 + ri−1(ωi−1))
, n = 1, N, (169)

the set of martingale measure is nonempty one, if

exp{σ0
1 max
{ω1,ε1(ω1)<0}

ε1(ω1)} < r0 < exp{σ0
1 min
{ω1,ε1(ω1)>0}

ε1(ω1)},

exp{σ0
i max
{ωi,εi(ωi)<0}

εi(ωi)} < min
{ωi−1∈Ωi−1}

ri−1(ωi−1) <

max
{ωi−1∈Ωi−1}

ri−1(ωi−1) < exp{σ0
i min
{ωi,εi(ωi)>0}

εi(ωi)}, i = 2, N. (170)

Then, the fair price of super-hedge ϕ0 of the nonnegative contingent liability
ϕN(ω1, . . . , ωN) is given by the formula

ϕ0 = max
v∈V

∫
ΩN

ϕN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} =

max
v∈V

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )ϕN(ωi11 , . . . , ω

iN
N ). (171)

Proof. For the discount evolution (169), the following representation

Sn((ω1, . . . , ωn) =

S0

B0

n∏
i=1

(1 + fi(ω1, . . . , ωi)ηi(ωi)) , n = 1, N, (172)

© 2021 Global Journals
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is true, where

η1(ω1) = exp{σ0
1ε1(ω1)} − r0, f1(ω1) =

1

1 + r0

,

ηi(ωi) = exp{σ0
i εi(ωi)} − max

{ωi−1∈Ωi−1}
ri−1(ωi−1),

fi(ω1, . . . , ωi) =

eσi(ω1,...,ωi−1)εi(ωi) − ri−1(ωi−1)

(exp{σ0
i εi(ωi)} − max

{ωi−1∈Ωi−1}
ri−1(ωi−1))(1 + ri−1(ωi−1))

> 0,

{ω1, . . . , ωi} ∈ Ωi, i = 2, N. (173)

In this case, the spot measures

µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) =

2∑
i1=1

. . .
2∑

iN=1

N∏
n=1

n(ωi11 , . . . , ω
in
n )χA(ωi11 , . . . , ω

iN
N ), A ∈ FN , (174)

figuring in the formula (171), are determined by the formulas

n(ω1, . . . , ωn) = χΩ−
n

(ω1, . . . , ωn−1, ωn) 1
n(ω1, . . . , ωn)+

χΩ+
n

(ω1, . . . , ωn−1, ωn) 2
n(ω1, . . . , ωn), (175)

1
n(ω1, . . . , ωn−1, ωn) =

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (176)

2
n(ω1, . . . , ωn−1, ωn) =

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)
, (ω1, . . . , ωn−1) ∈ Ωn−1, (177)

where

∆S+
n (ω1, . . . , ωn−1, ω

2
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=

fn(ω1, . . . , ωn−1, ω
2
n)η+

n (ω2
n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (178)

∆S−n (ω1, . . . , ωn−1, ω
1
n)

Vn(ω1, . . . , ωn−1, ω1
n, ω

2
n)

=
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fn(ω1, . . . , ωn−1, ω
1
n)η−n (ω1

n)

fn(ω1, . . . , ωn−1, ω2
n)η+

n (ω2
n) + fn(ω1, . . . , ωn−1, ω1

n)η−n (ω1
n)
, (179)

(ω1, . . . , ωn−1) ∈ Ωn−1.

and the random values ηi(ωi), fi(ω1, . . . , ωi), i = 1, N, are given by the formulas
(173). The obtained representation (172) proves Theorem 16.

Suppose that the random values ηk(ωk), fk(ω1, . . . , ωk), k = 1, N, and constants
aik satisfy the inequalities

0 < aik <
1

max
{ω1,...,ωk−1}∈Ωk−1

max
{ωk,ηk(ωk)<0}

fk(ω1, . . . , ωk)η
−
k (ωk)

, k = 1, N, i = 1, d,

fi(ω1, . . . , ωi) > 0, P 0
i (ηi(ωi) < 0) > 0, P 0

i (ηi(ωi) > 0) > 0, i = 1, N. (180)

We assume that the evolutions of d risky assets Sn(ω1, . . . , ωn) is given by the formula

Sn(ω1, . . . , ωn) = {Sin(ω1, . . . , ωn)}di=1, (181)

where

Sin(ω1, . . . , ωn) = Si0

n∏
k=1

(1 + aikfk(ω1, . . . , ωk)ηk(ωk)), n = 1, N, i = 1, d. (182)

On the probability space {ΩN ,FN , PN}, being the direct product of
the probability spaces {Ω0

i ,F0
i , P

0
i }, let the evolution of risky assets be given by the

formulas (181), (182), where the random values ηk(ωk), fk(ω1, . . . , ωk) and constants
aik, k = 1, N, i = 1, d satisfy the inequalities (180). For such an evolution of risky
assets the set of martingale measures µ0 does not depend on aik.
µ{ω1

1 ,ω
2
1},...,{ω1

N ,ω
2
N}(A) are determined by the formulas (174) - (179). The fair price

ϕi0 of super-hedge of the nonnegative contingent liability ϕiN(ω1, . . . , ωN) is given by
the formula

ϕi0 = max
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}, i = 1, d.

The interval of non-arbitrage prices is written in the formmin
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N} ,

max
v∈V

∫
ΩN

ϕiN(ω1, . . . , ωN)dµ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}

 , i = 1, d.

Proposition 5.

© 2021 Global Journals
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In the case fk(ω1, . . . , ωk) = 1, k = 1, N, for every point v = {(ω1
1, ω

2
1), . . . , (ω1

N , ω
2
N)}

in the set V the spot measure µ{ω1
1 ,ω

2
1},...,{ω1

N ,ω
2
N}(A) is a direct product of measures

µi0(Ai), Ai ∈ F0
i , i = 1, N, given on the measurable space {Ω0

i ,F0
i }, where µi0(Ai) =

νω1
i ,ω

2
i
(Ai), and νω1

i ,ω
2
i
(Ai) is given by the formula (137).

Suppose that {gik(XN)}Nk=1, i = 1, d, are the mappings from the set [0, 1]N into
itself, where XN = {x1, . . . , xN}, 0 ≤ xk ≤ 1, k = 1, N. If Si0, S

i
1, . . . , S

i
N , i = 1, d,

are the samples of the processes (181), (182), let us denote the order statis-
tics Si(0), S

i
(1), . . . , S

i
(N), i = 1, d, of this samples. Introduce also the denotation

gik ([Si]N) = gik

(
Si
(0)

Si
(N)

, . . . ,
Si
(N−1)

Si
(N)

)
, k = 1, N, i = 1, d.

Let us introduce the denotations

f 1
k = max

{ω1,...,ωk−1}∈Ωk−1, ω
1
k∈Ω0−

1

fk(ω1, . . . , ωk−1, ω
1
k), k = 1, N.

Suppose that Si0, S
i
1, . . . , S

i
N is a sample of the random processes

(181), (182). Then, for the parameters ai1, . . . , a
i
N the estimation

ai1 =

[
1− τ i0

Si
(0)

Si
0
gi1 ([Si]N)

]
f 1

1 max
ω1
1∈Ω0−

1

η−1 (ω1
1)

, 0 < τ i0 ≤ 1, i = 1, d,

aik =

[
1− gik([Si]N)

gik−1([Si]N )

]
f 1
k max
ω1
k∈Ω0−

k

η−k (ω1
k)
, k = 2, N, i = 1, d, (183)

is valid, if for giN([Si]N) > 0, [Si]N ∈ [0, 1]N , the inequalities gi1([Si]N) ≥
gi2([Si]N) ≥ . . . ≥ giN([Si]N) are true. If τ i0 = 0, then aik = 1, k = 1, N, i = 1, d.

In this section, we discuss the issue of applying the results obtained to real calcu-
lations of the range of non-arbitrage prices in the case of incomplete non-arbitrage
markets. The first question that arises is what should be the evolution of risky assets
when describing non-arbitrage markets. In this case, we must rely on the study of
the evolution of stock index proposed in [22], [23], [24], that is,

Sn(ω1, . . . , ωn) = S0

n∏
i=1

eσi(ω1,...,ωi−1)εi(ωi), n = 1, N, (184)

where the random values σi(ω1, . . . , ωi−1) ≥ σ0
i > 0, i = 1, N, and P 0

i (εi(ωi) < 0) >
0, P 0

i (εi(ωi) > 0) > 0, then such an evolution has the form (8) with

fi(ω1, . . . , ωi) =
eσi(ω1,...,ωi−1)εi(ωi) − 1

eσ
0
i εi(ωi) − 1

, ηi(ωi) = eσ
0
i εi(ωi) − 1, i = 1, N.

satisfying needed conditions. Here, the random values σi(ω1, . . . , ωi−1), i = 1, N, are
conditional volatilities, εi(ωi), i = 1, N, are identically distributed random values.

Proposition 6.

VII. Applications
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Therefore, when modeling non-arbitrage securities markets, the evolution of the
stock index should be described by formula (167). The evolution of shares quoted
on the exchange should be described by parametric processes described by formulas
(181), (182). The parameters of such a process are determined in accordance with
the Proposition 6.

Section 3 contains the results related to the uniqueness of the set of martingale
measures. In Lemma 1 it is shown that in the case of evolution of risky assets
given by formula (11) there is only one spot martingale measure for the considered
class of risky assets. A wide class of risky asset evolutions has been identified
for modeling real processes in the financial market. In Theorem 1, necessary and
sufficient conditions are given for the evolution of risky assets under which the
martingale measure is the only one, and in Theorem 2 it is shown that it coincides
with a point martingale measure.

In section 4, Proposition 1 formulates the conditions for the evolution of risky
assets under which the martingale measure is the same for a wide class of evolutions
of risky assets. Proposition 2 states that the considered securities market in Propo-
sition 1 is complete and non-arbitrage and provides formulas for the fair values of
the contingent liabilities.

A direct consequence of the considered results is Corollary 1 known as the Cox,
Ross, Rubinstein model and Theorem 3 being the direct generalization of the above
mentioned model. In Theorem 4, the conditions are found under which the dis-
counted evolution can be represented in the form considered in the work. A formula
is found for the fair price of the super-hedge in this realistic case. In Proposition 3,
a parametric model of the complete non-arbitrage market is proposed and formulas
for the fair prices of contingent liabilities are written out. Proposition 4 provides
an assessment of the parameters of a complete non-arbitrage market model, which
opens up opportunities for modeling processes in financial markets.

Section 5 presents the theoretical foundations of the incomplete non-arbitrage
market model. In Lemmas 2 and 3, conditions for the evolution of risky assets are
formulated for which the family of martingale measures is equivalent to the original
one. It is shown in Theorem 5 that the family of measures constructed in Lemma 2
is a family of martingale measures equivalent to the original measure. In Lemma 4
and Theorems 6 and 7, estimates are found for nonnegative random variables that
ensure the validity of the optional decomposition for nonnegative super-martingales
with respect to all martingale measures presented in Theorem 8. In contrast to
earlier results, the optional decomposition can be found explicitly here. Lemma 5
contains a result that introduced in Definition 1 the spot measure is a martingale
one (see also in [1]).

Theorems 9 and 10 describe all martingale measures equivalent to the original
measure. In the case under consideration, the conditions of Theorems 9 and 10 are
not restrictive. In Theorem 11, a formula is found for the fair price of the super-
hedge for random claims, which allows it to be calculated using a finite number of
operations.

Section 6 presents possible models of incomplete non-arbitrage markets. For this,
Theorem 12 shows that the set of spot measures does not depend on a certain type
of evolution of risky assets and is one and the same set. Under certain simplified
conditions, each spot measure is a direct product of the spot measures indicated in
the theorem. Due to the finiteness of the set of spot measures in Theorem 13, it
was found that for a certain class of contingent liabilities the super-hedge price is
less than the initial price of the underlying asset. The range of non-arbitrage prices
is found. Among these contingent liabilities is the standard European call option.
Non-arbitrage price interval is found. Corollaries 6 and 15 provide examples of the
evolution of risky assets.

VIII. Conclusions

© 2021 Global Journals
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Theorems 15 and 16 consider realistic models of the evolution of both risky and
non-risky assets for which there is a finite family of point measures.

Proposition 5 presents a realistic parametric model of an incomplete non-
arbitrage market and also presents formulas for the fair price of the super hedge
and the range of non-arbitrage prices. In Proposition 6, estimates of the parameters
of the incomplete non-arbitrage market model are found.
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Abstract- According to the general gauge principle, Fluid Gauge Theory is presented to cover a 
wider class of flow fields of a perfect fluid without internal energy dissipation under anisotropic 
stress field. Thus, the theory of fluid mechanics is extended to cover time dependent rotational 
flows under anisotropic stress field of a compressible perfect fluid, including turbulent flows. 
Eulerian fluid mechanics is characterized with isotropic pressure stress fields. The study is 
motivated from three observations. First one is experimental observations reporting large-scale 
structures coexisting with turbulent flow fields. This encourages a study of how such structures 
observed experimentally are possible in turbulent shear flows, Second one is a theoretical and 
mathematical observation: the ”General solution to Euler’s equation of motion” (found by Kambe 
in 2013) predicts a new set of four background-fields, existing in the linked 4d-spacetime. Third 
one is a physical query, ”what symmetry implies the current conservation law ?”. The latter two 
observations encourage a gauge-theoretic formulation by defining a differential one-form 
representing the interaction between the fluid-current field jμ and a background field aμ.   
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Background of present research
Gauge invariance is one of the fundamental symmetries in modern theoretical

physics. It took almost a century for transition from the 19th-century recognition
of a mathematical invariance existing in classical electromagnetic theory to the 20th-
century recognition of its fundamental physical significance. Real recognition of the
gauge symmetry and its physical significance required two new fields developed in the
20th century: the relativity theory for physics of the world structure of linked 4d-
spacetime and the quantum mechanics for the new dimension of a phase factor in
complex representation of wave function. The 20th-century recognition resulted in
the naming of the invariance as gauge invariance and in successful formulation of the
Gauge Principle. Its historical development is reviewed by Kambe (2021a) concerning
its gradual and zigzag developmental processes in quantum electrodynamics (QED). The
gauge theory played vital roles in modern particle physics which was revolutionary (e.g.
Aitchison & Hey (2013), Utiyama (1956)). The same paper (Kambe 2021a) presents also
reviews of the gauge invariances existing in the two theories of the weak gravitational
field and the electromagnetic theory with emphasizing the similarity between them. In
addition, its last section 5 presents ”Motivations for Fluid Gauge Theory”. Thus, on the
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a)

basis of these backgrounds of gauge theories reviewed in the article (Kambe 2021a), the
present paper proposes possible application of the gauge theory to fluid flows although
the field of fluid-flow is not listed in the literatures reviewed.

Abstract- According to the general gauge principle, Fluid Gauge Theory is presented to cover a wider class of flow 
fields of a perfect fluid without internal energy dissipation under anisotropic stress field. Thus, the theory of fluid 
mechanics is extended to cover time dependent rotational flows under anisotropic stress field of a compressible 
perfect fluid, including turbulent flows. Eulerian fluid mechanics is characterized with isotropic pressure stress 
fields. The study is motivated from three observations. First one is experimental observations reporting large-
scale structures coexisting with turbulent flow fields. This encourages a study of how such structures observed 
experimentally are possible in turbulent shear flows, Second one is a theoretical and mathematical observation: 
the ”General solution to Euler’s equation of motion” (found by Kambe in 2013) predicts a new set of four 
background-fields, existing in the linked 4d-spacetime. Third one is a physical query, ”what symmetry implies the 
current conservation law ?”. The latter two observations encourage a gauge-theoretic formulation by defining a 
differential one-form representing the interaction between the fluid-current field and a background field . A 
known relativistic action of a perfect fluid is introduced together with the interaction action just mentioned, and 
furthermore, a third gauge invariant action is defined to govern the field linearly in its free-state. The general
gauge principle is applied to the combined system of the three actions to describe general time-dependent 
rotational flow fields of an ideal compressible fluid. The combined system can be shown to be invariant under 
both global and local gauge transformations of variations of . The global gauge transformation is a diagnostic
test whether the system is receptive to a new field .  Since the test is cleared, a new internal stress field 

is introduced into the flow field of a perfect fluid, together with the current conservation = 0, where 
the stress is an anisotropic stress field which is an extension added to the Eulerian isotropic pressure-stress 
field

jµ aµ

aµ

aµ
aµ(x

ν (

Mik(x
ν ( ∂µj

µ

Mik

p δik.



   
   

 

   

  

 

 
 

  
 
 

 

 
 

 
 

 
 

 

  
  

 
  

 
 

  
 

    
    
  

 
 

  
  

 
   

 
    

 
    

 
  

 
 

  
 

  
 

From the aspects of fluid flows, recent studies of wall turbulence and shear flow
turbulence recognize existence of large scale structures. It is known from experimental
studies that periodic waves exist robustly in the background irregularly fluctuating flow
field, and streak structures are observed to coexist with turbulent field. The streaks in
turbulence are wavy streamwise vortices surrounded by a sea of incoherent turbulent
motions. The observed large scale structures are characterized by streamwise streaks
and long meandering vortical structures. Concerning these experimental studies, see
Reynolds & Hussain (1972); Kim & Adrian (1999); Del Álamo & Jiménez (2006); Monty
et al. (2007); Hutchins & Marusic (2007); Smits et al. (2011).

Related mathematical aspect was investigated by Scofield and Huq (2014), stating
that the conservation law of current flux implies existence of a wavy field governed by
Maxwell-type equations, proposing that this might be applied to transverse travelling
waves observed in turbulent internal flows along a spiral pipe. The theory is based on
four conservation equations of energy and momentum of the whole system.

In order to highlight such aspects of large-scale structures coexisting with irregularly
fluctuating flow field and contemplate how such structures observed experimentally are
possible in turbulent shear flows, Kambe (2017) proposed a new scenario of turbulence
theory, based on the view that the entire physical system is composed of two fields:
fluid-flow field and transverse-wave field. General formalism of theoretical physics is
applied to the study of whole system consisting of a flow field and a wave field, with
two Lagrangian densities corresponding to each component and additional Lagrangian
expressing their interaction. This approach yielded good results that are consistent with
observations.

In particular, it is remarked that the ”fluid gauge theory to be presented here
supports the above theoretical approach proposed by Kambe (2017). In addition, the
most recent research of Kambe (2020) sheds light on physical mechanism how and why
the entire physical system has a structure composed of two fields: a flow field and a
wavy gauge field. The underlying key is the inseparable relation between the mass
conservation law and a gauge symmetry. Namely, the current conservation must be

© 2021 Global Journals
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satisfied at every point and every time by the flow field, which is to be ensured by a
background gauge field. This is the physical idea requiring the system to be composed
of two fields of a flow and a background gauge field.

The new system consisting of a fluid-flow and a background field ensuring current
conservation is powerful. It is likely that this enables to resolve an issue historically
unresolved, that is the problem of ”Dust striations observed in the resonance-tube
experiment” by August Kundt (1866), where there exists two different length scales with
their ratio more than fifty. The larger one correponds to the wavelength of the resonant
acoustic wave. A recent numerical test study based on the present new system gives
encouraging outputs on the smaller scales (see the section §4 Summary and discussions).

As investigated in Kambe (2020), according to the current formulation of fluid
mechanics, from a single relativistic energy equation of fluid motion, two conservation
equations are obtained in the non-relativistic limit : one is the mass conservation and
the other is the traditional form of energy equation. This is a riddle (see below at

from the physics point of view. We are particularly concerned with the mass
conservation equation and investigate what symmetry implies the mass conservation. A
key to resolve this Riddle is provided by the general representation of rotational flows
of an ideal compressible fluid satisfying the Euler’s equation ( ), derived by Kambe
(2013). This gives us a hint of existence of a set of gauge fields, giving rise to anisotropic
stress fields within the flows which are time-dependent and rotational flow fields.

In the present study, the Euler’s equation of motion is still valid, but it is remarked
that the equation is characterized intrinsically by the pressure stress which is represented

the part c)

the part d
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by isotropic stress fields. The present study of Fluid Gauge Theory predicts that the
perfect fluid (i.e. a fluid without dissipative internal mechanism) can accommodate
anisotropic stress field as well which can exist in unsteady shear flow fields.

This suggests that our physical system should be a combined system consisting of
a fluid flow field and a set of background gauge fields. This aspect and its significance
have been already investigated by Kambe (2017, 2020). The gauge symmetry of the
new background gauge fields ensures the law of mass conservation.

Section composition of the paper and mathematical structure of the theory

In the present paper, Fluid Gauge Theory is presented for a perfect fluid according
to the general gauge principle. Section is a preparative section collecting necessary
articles for the theory with the section title: An approach aiming at a fluid gauge
theory. Section presents the main theory with the title, Fluid Gauge Theory and
adds a remark section supplementing insufficient parts of the presentation.

On a mathematical point of view, more must be commented on the present approach
of the Fluid Gauge Theory. When new fields are taken into consideration, those should
be implemented (or absorbed) into the structure of covariant derivatives as connection
terms like the terms of Christoffel symbol in the gravity theory or the gauge potentials
in the electromagnetic theory. The concept of connection in the mathematics is an
essential ingredient of the physical gauge theory. It is a challenging work to implement
connection terms in the structure of fluid gauge theory. This is left to the Appendices
B and C, because sufficient mathematical expressions and concepts must be presented
to arrive at the goal.

Another aspect of the present system of a perfect fluid must be noted. Our system
is free from external forcing and in addition free from any internal mechanism of energy
dissipation. From mechanical point of view, free fluid motions are not always described
by straight trajectories of time evolution of the mechanical system as a whole, namely
their geodesics describing the whole system are curved in general.

In fact, we will see in Appendix C.2 that the free motion of a perfect fluid under a
background field aν can be described by a geodesic equation representing a curved free
dynamics. This is derived by the variational principle that makes the action integrals
invariant. Namely the new field of the fluid gauge theory has been taken into the
structure of covariant derivatives as connection terms and the free dynamics of a perfect
fluid under a background field aν is described by the geodesic equation.

These mathematical concepts would make the structure of theory complicated
easily. In order to make the storyline of the theory clear and as much as simple,
those complicating mathematical factors are left to Appendices B and C. However,
the mathematical concepts such as geodesic, covariant derivative, connection, etc. . are
absolutely necessary for the theory of Fluid Gauge Theory. It is the reason why the
appendices to the present paper get massive.

By what symmetry the mass conservation law is implied ?
It is well-known that the energy conservation is associated with the symmetry of

time translation of mechanical systems. One of the motivations for proposing a fluid
gauge theory is stated by the following question: ”What physical symmetry implies the
mass conservation law ?” This query is raised in regard to the relativistic equation of
energy conservation of fluid flows when its non-relativistic limit is taken (Kambe 2020).
In the ordinary fluid-mechanics valid in non-relativistic limit, the mass conservation
law is given as valid a priori. However, in the fluid-mechanics of relativity theory,
fluid motions are governed by four relativistic conservation equations of energy and

b)

c)

Fluid Gauge Theory
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momentum ∂νT
µν = 0 , where T µν is the stress-energy tensor for µ, ν = 0, 1, 2, 3,

∂ν ≡ ∂/∂xν and xν = (x0, xk) with x0 ≡ c t for t the time. (see [Kambe (2020) §2.2,
2.3] or [Landau & Lifshitz, 1987, §133] ). Its space components for µ = 1, 2, 3 represent
momentum conservation of three components.

On the other hand, its time component ∂νT
0ν = 0 represents an energy conservation

equation. In the non-relativistic limit as a representative flow velocity v is much less
than the light velocity c (β ≡ v/c→ 0), the equation for a perfect fluid of mass density
ρ and specific internal energy ϵ‡ can be written in the following form:

0 = c−1∂tT
00
+ ∂kT

0k
= c

(
∂tρ+ ∂k(ρv

k)
)
+

1

c

(
∂t(ρÊ) + ∂k(ρv

kĤ)
)
+O(β3), (1.1)

Ê =
1

2
v2 + ϵ, Ĥ =

1

2
v2 + h. (1.2)

where vk is the k-th component of fluid velocity for k = 1, 2, 3. In the non-relativistic
limit as β → 0, we obtain the mass conservation equation from the first term:

∂tρ+ ∂k(ρv
k) = 0. (1.3)

Then, deleting it, the remaining expression reduces to the energy equation of ordinary
fluid mechanics in the limit as β → 0. Thus, we obtain the energy conservation equation
of fluid flow (Landau & Lifshitz (1987), Eq.(6.1)):

∂t(ρÊ) + ∂k(ρv
kĤ) = 0. (1.4)

Here we have obtained two conservation equations from the single energy equation
∂νT

0ν = 0. But, the Noether’s theorem (Noether 1918) of theoretical physics states ’A
symmetry implies a conservation law’. This is a riddle. We must ask a question whether
the above is satisfactory. In this paper, we try to propose a resolution to this query.

A hint to resolve the riddle: General solution of Euler’s equation with helicity
A hint to resolve the Riddlementioned above is found in the general representation of

rotational flows given by Kambe (2013) for an ideal compressible flow solution satisfying

‡ There is no energy dissipation in the perfect fluid, hence no entropy change. Assuming uniform

entropy throughout, the internal energy ϵ depends only on ρ. Hence ϵ = ϵ(ρ), and h ≡ ϵ(ρ) + p/ρ.

the Euler’s equation. This solution was derived from the action principle for the action
S(Eul−rot) of non-relativistic flow fields:

S(Eul−rot) = S(nR) + S(g−inv) =

∫
ρ dV

[ ∫
ΛnR dt+

∫
ΛGi dt

]
, (1.5)

ΛnR = 1
2 v

2 − ϵ, ΛGi = −Dt −Dt⟨U , Z⟩ (1.6)

∇ · (ρZ) = 0, ∇ · U = 0, Dt ≡ ∂t + v ·∇, (1.7)

L[Z] ≡ ∂tZ + (v · ∇)Z − (Z · ∇)v = 0, (1.8)

where v = (vk) is the 3-velocity vector, a scalar function to be determined, and ΛnR

is nothing but the ordinary non-relativistic Lagrangian density, while ΛGi is a gauge-
invariant Lagrangian newly introduced in the study (Kambe, 2013). Regarding the
two 3-vectors Z and U , see the paragraph below. Actually, this study had double
aims. One was an attempt to obtain general representation of rotational flow with non-
zero helicity (Kambe 2011). Second aim was more fundamental, striving to establish

d)

Fluid Gauge Theory
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equivalence between two formulations of Eulerian specification of field variables and the
Lagrangian specification under the action principle. Each term of the Lagrangians ΛnR

and ΛGi satisfies local gauge invariance with respect to translation and rotation, hence
it is consistent with the gauge theory.

As discussed in details in Kambe (2020, §1 and 3.1), this new formulation introduced
four independent fields. In fact, regarding the 3-vector potentials U and Z, each
has three components. Those six fields have two invariance conditions of (1.7), i.e.
two divergence-free conditions in 3-space. In addition, from (1.8) and the equation,
(L∗

t [U ])i ≡ ∂tUi+ vk∂kUi+Uk∂iv
k = 0 obtained from the variational analysis of Kambe

(2013), we have the third invariance condition:

Dt⟨U , Z⟩(t,x) ≡ ⟨L∗[U ], Z⟩+ ⟨U , L[Z]⟩ = 0. (1.9)

Hence, the value of scalar product ⟨U , Z⟩ is invariant along the particle path x =
Xp(t,x), keeping its initial value along each trajectory. This is the third invariant
imposed on the potentials U and Z. Therefore we have only three independent fields
remaining free among the six components of U and Z. Furthermore, if we add the scalar
field which is also unconstrained, we have four independent fields in this solution.

Thus, four independent background fields are newly introduced in this solution.
Those must be either given externally or determined internally within the framework of
theory. In the recent study Kambe (2020), the latter approach was taken, and the general
solution of Kambe (2013) is understood to predict existence of new fields ãν . Four
independent fields ãν existing in the 4d-spacetime enables a gauge-theoretic formulation
in terms of one-form. On the basis of this perspective, the present study proposes a set
of new fields to be introduced according to the gauge principle, which may be called a
fluid gauge theory.

Another perspective is as follows. What is the hint to resolve the riddle mentioned in

since this term is considered to describe interaction between the flow-current jν and
background vector-potentials U and Z, and . Corresponding to the new name S(int),
we rename the scalar product ⟨U , Z⟩ with W , and newly define a 4-current jν and a
background field ãν as

jν ≡ (ρ c, ρv) = c ρ uν , ãν ≡ −∂ν( +W ). (1.10)

(See (A.3), (B.9) for the definition of ρ, uν .) The interaction part S(int) is expressed by

S(int) = −
∫ ∫ (

ρDt + ρDtW
)
dV dt =

∫ ∫
jν ãν dV dt, (1.11)

jν∂ν = ρ (∂t + v ·∇) = ρDt , (1.12)

where ∂ν ≡ ∂/∂xν = (c−1∂t, ∇). The 4-current jν is defined by

jν = ρ vν = ρ (c, v) = ρ (dXν
p /dt), dXν

p = (c dt, dXp) = (c,v) dt. (1.13)

where dXµ
p is 4-spacetime notation of displacement of a fluid particle p, and dXp = v dt

is 3-space displacement of the particle p moving with 3-velocity v during an infinitesimal
time interval dt. Denoting Ψ ≡ +W , the field ãν is given by

ãν = −∂νΨ. (1.14)

Fluid Gauge Theory

𝜓𝜓

is as follows. We rewrite the part of action S(g−inv) of (1.5) as S(int)≡
∫
ρdV

∫
ΛGidt,the part c)
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is analogous to the particular field Ãµ = ∂µΘ considered in the recent review paper
(Kambe 2021a, ), where all the fields E andB vanish identically. In other words,
those fields E and B are potentially existing, but vanish in the particular form of
Ãµ = ∂µΘ . Same can be said that our new potential field ãν does exist. But with
the particular form ãν = −∂νΨ, the potentially existing new field does not show in
observable world. From this observation, new Fluid Gauge Theory is proposed in this
paper, according to the theory of general gauge fields proposed by Utiyama (1956, 1987).

In particular, the following is important in the context of our problem. Gauge
invariance applied to the action S(int) yields the current conservation law:

∂νj
ν = ∂ν(c ρ u

ν) = (c−1∂t, ∇) · (ρ c, ρv) = ∂tρ+∇ · (ρv) = 0. (1.15)

(See (2.24) in §2.5.) This equation is understood showing a potentiality of the fluid
gauge theory. It is remarkable that the two scalar products, ∂νj

ν and

jν∂ν = c ρ uν∂ν = (ρ c, ρv) · (c−1∂t, ∇) = ρ (∂t + v ·∇) ≡ ρDt, (1.16)

are represented relativistically, and that both of them are invariant with respect to the
Lorentz transformation. Thus the above two expressions (1.15) and (1.16) show us a
glimpse of structures of linked 4d-spacetime existing in fluid mechanics.

A motivation for fluid gauge theory
From these observations, we set out toward a new approach of fluid gauge theory.

Gauge transformations and gauge principle:
system under investigation is examined whether the system is invariant with respect to
both global and local transformations. The global gauge transformation is defined by the
transformation: ãµ → aµ = ãµ + ϵµ for ãµ of (1.14) and ϵµ being 4 arbitrary constants.
Firstly, the system must be shown to be invariant with this global transformation. This
is the first step toward the fluid gauge theory, examining whether the system under
consideration is equipped with desirable receptive property.

A next essential step of the gauge principle lies in requiring local gauge invariance.
This is defined by ãµ → aµ = ãµ + αµ(x

ν) for 4 arbitrary differentiable fields αµ(x
ν)

depending on spacetime coordinates xν . Once the local invariance is established, the
so-called gauge-potential aµ is taken into the system which represents a new interaction
force. This is the scenario of the gauge principle to introduce a new force into the system
under consideration by the local gauge invariance.

Important factor for the gauge theory: From the gauge principle and
reflecting on the form of the interaction action S(int) of (1.11), one realizes that an
important factor is the linked 4d-spacetime structure. In order to see it, let us remind
of the general solution of Euler’s equation of motion considered in This corresponds
to a vanishing-field state, because, considering one-form Ã defined by Ã = ãµdx

µ with
ãν = −∂νΨ of (1.14), one obtains

Ã = ãµdx
µ = −∂µΨdxµ = −dΨ.

This represents the vanishing-field state since dÃ = −d2Ψ ≡ 0. This is the case of the
general solution to the Euler’s equation of The field ãµ itself exists, but does not
show in the observable world (see Only the Euler’s flow field is observed. In
this case, the stress field is given by the isotropic pressure field p δik,

e)

i. In the principle, thegauge

ii.

Fluid Gauge Theory

Section I b

the partd).

the part d)
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On the other hand, existence of the new field aµ(x
ν) = ãµ + αµ(x

ν) changes the
flow field drastically. Consider the 4d-spacetime (xν) of fluid flows that is structured
with the one-form A ≡ aµdx

µ, from which one obtains non-vanishing field strength,
F = dA ̸= 0. This gives rise to anisotropic stress field within the flow field, as given in
later sections (see ). Thus, the main factor is the one-form defined by

A = aµdx
µ, (1.17)

that plays the role of a game-changer from vanishing-field state of ãµ to non-vanishing
state of the new field aµ(x

ν). With this fact, the gauge principle is rooted on the
fundamental of Physics. This is the central theme of the present paper.

Euler’s equation of a perfect fluid in the absence of background field

Relativistic form of the action integral of a perfect fluid is given in Appendix B.2 as

S(pf) = −c
∫

ρ dV
∫ (

1 + c−2 ϵ(ρ)
)
dτ . (2.1)

where τ the proper time. Its increment dτ is defined by the time increment (multiplied
by c) in the instantaneously rest frame where v = 0. The relativistic action S(pf) is
defined as an extension to the perfect fluid from that of a single particle of mass m
represented by S(m) = −cm

∫
dτ , which is given in Appendix B.1. The overlined ϵ

in (2.1) denotes proper value of the internal energy ϵ (the value in the rest frame, i.e.
comoving frame where the fluid is at rest). Comparing S(pf) with S(m) and considering
the quantity

∫
ρ dV corresponding to the mass m of S(m), one can see that the second

correction term c−2 ϵ in the parenthesis is a small correction for the fluid medium in
non-relativistic case.

Non-relativistic limit (asβ→ 0, ) of the integrand Λ(pf) of S(pf)(multiplied by
c) per unit mass is given as Λ(pf) = −m1c

2 + 1
2 m1v

2 − ϵ+ · · · with m1 = 1. Neglecting
the first term m1c

2 of the rest-mass energy, the Lagrangian density Λ(pf) reduces to

the non-relativistic form of Λ(nR) of (1.6). Hence it is seen that the action S(pf) is a

relativistic version extended from the classic non-relativistic action S(nR) of (1.5).
From the variation analysis of S(pf) carried out in Appendix B.2, the action principle

yields the following Euler’s equation of motion (B.17) as a geodesic equation:

Dtv
k + ρ−1 ∂kp = 0, k = 1, 2, 3 (2.2)

in the non-relativistic limit of ordinary fluid flows. Noting that the factor ∂kp of the
second term can be replaced by ∂j(p δjk), one can rewrite the equation (2.2) as

ρDtv
k = −∂j(p δjk) k = 1, 2, 3 (2.3)

where

Dt ≡ ∂t + v · ∇ k = 1, 2, 3 (2.4)

is the convective derivative, which is invariant with respect to local gauge transformation
(Kambe (2020), Appendix A2).

II. An Approach Aiming at a Fluid Gauge Theory

a)

Fluid Gauge Theory

Sections III, c) ii.
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New action S(int) including a field aµ ensuring current conservation
In the local gauge transformation considered in the field αµ is assumed to take
a general form not limited to the particular gradient form ∂µΨ, i.e. not like (1.10),
the interaction action S(int) of (1.11) should be extended to general 4-potential aµ by
replacing the particular field ãµ. Hence now, the action S(int) is re-defined by

S(int) =

∫ ∫
jµ aµ dV dt =

∫
ρ dV

∫
vµ aµ dt =

∫
ρ dV

∫
aµ dX

µ , (2.5)

where jν = ρ vµ and see (1.13). This action S(int) was already introduced in Kambe
(2020) at its §4.2. This is rewritten here as an additional action to be added to the
main part S(pf), in order to constrain the conservation of current jµ:

S(int) =

∫ ∫
jν aν dV dt =

∫
ρ dV

∫
aν dx

ν . (2.6)

The one-form structure aν dx
ν in the last integral reminds us of the similar structure

considered in the previous section Similar structure is known in quantum
electrodynamics ( of Kambe (2021a)). There, the wave function is required
to undergo the transformation = 0(x

ν) exp[ iγ
∫
Aν(x

ν) dxν ] in the presence of
electromagnetic field of 4-potential Aν from the zero-field wave function 0, where the
Aν field is the gauge-potential representing a new interaction force of electromagnetism.

Our case is based on the gauge principle such that the action S(int) thus introduced
represents the interaction between the current field jν(xλ) and a background (gauge-
potential) field aν(x

λ) and is receptive to the gauge principle requiring local gauge
invariance. The new field aν(x

ν) thus introduced ensures the mass conservation (2.25)
shown in under the requirement of gauge invariance of the new field.

In addition, in the Maxwell system described in of the review article (Kambe
2021a), the interaction action is given by S

(em)
int = c−2

∫
j νe Aν dΩ of eq.(2.9) of the same

article. Amazingly, the analogy with the present system is obvious.

Composite action Sc and modified Euler’s equation of motion

According to the previous sections one can define a composite action Sc
by using the action S(pf) of a perfect fluid of (2.1) and the action S(int) of (2.6) for the
interaction of jν and aν . Let us define

Sc ≡ S(pf) + S(int), dΩ ≡ d4x = dV dtc, tc = c t, (2.7)

S(pf) ≡ − c

∫
ρ dV

∫ (
1 + c−2 ϵ(ρ)

)
dτ =

∫
L(pf) d4x, (2.8)

S(int) ≡
∫

L(int) d4x, L(int) ≡ c−1 jν aν , (2.9)

where L(pf) ≡ −c ρ (1 + c−2 ϵ)
√

1− β2. To find the equations of motion, the action
principle is applied to the composite action Sc, by assuming the gauge potential aν
given and vary only the position coordinate Xk

p of fluid particles moving with the velocity

DtX
k
p along their trajectories. On the other hand, to find the equations governing the

aν , we vary only the gauge-potential aν with assuming the fluid motion given and fixed.
However, to carry out the latter variation, we have to define a third action to characterize
the background field aν and add it to Sc. Here, we carry out the former variation (in
which the third action is kept fixed), then the action principle applied to the varied Sc
should yield the equation of fluid motion.

b)

c)

Fluid Gauge Theory

Section I, e) i.

I, e) ii.
Section II, b)
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Note that, under the requirement of invariance of S(int) to the gauge transformation
of potential aν considered in the current conservation law ∂νj

ν= 0 is deduced.
Therefore, when variations are taken with respect to the particle position Xk

p , the
invariance of the mass dm ≡ ρ dV is assumed for a fluid particle during the motion
along its trajectory.

Modified Euler’s equation of motion in the presence of new field aν
The variational analysis of the composite action Sc is given in Appendix B.3.

The equation (B.26) summarizes the variation analyses with respect to the particle
coordinate δXν of fluid element ∆m,

δJ (fl+a) ≡ δ J (pf) + δJ (int) = −c∆m
[ d

dτ
uν + c−2 1

ρ
∂νp − c−1 fνµ u

µ
]
dτ δXν (2.10)

as leading order terms in the expansion with respect to the very small parameter β = v/c.

The action principle requires δJ (fl+a) = 0 for arbitrary variation δXν . This leads to the
equation: (duν/dτ) + c−2 (1/ρ)∂νp− c−1 fνµu

µ = 0. Its non-relativistic limit (as β → 0)
is expressed by the equations:

Dtv
k = −ρ−1 ∂kp+ fkν v

ν , (k = 1, 2, 3; ν = 0, 1, 2, 3), (2.11)

fµν = ∂µaν − ∂νaµ. (2.12)

This is the Euler’s equation (2.2) modified by the effect of a background field aν expressed
by the third term fkν v

ν . Section gives details concerning the significance of the
new tensor field fµν by the section title, Background field: Fluid Maxwell fields.

Scenario of general gauge principle according to Utiyama
In the previous section we have derived the modified Euler equation (2.11) from
the composite action Sc (= S(pf)+S(int)) of (2.7). The first term −ρ−1 ∂kp on the right-
hand side of (2.11) represents the pressure force caused by the isotropic stress tensor
−p δkl, while the second term fkν v

ν represents a new force caused by an anisotropic
stress field, as explained in a later section It is remarkable that the tensor
components fµν of (2.12) all are linear with respect to space-time derivatives of the
background potential aµ. This is essential for the gauge principle to be given now.

Suppose that our basic undisturbed state is described by the equation (2.11) and
by the composite action Sc of (2.7), and in addition that the background field aµ is given
a special form, i.e. a potential field expressed by ãµ = ∂µΨ with Ψ(xν) a scalar field.
Note that this field form ãµ = ∂µΨ is a special class among general background fields.

As described in the next section in details, all the components fµν associated
with the background potential ãµ = ∂µΨ vanish identically. Hence the equation (2.11)
reduces to the Euler’s equation (2.2). Namely, the basic undisturbed state is assumed
to be governed by the Euler’s equation. In addition, from the action Sint, the continuity
equation (2.14) was derived in

In this case, the action S(int) does not give any mechanical effect on the system
(see ). Therefore, the mechanical effect of the composite action Sc is equivalent
to that of the term S(pf) of perfect fluid only, not different from the state without the
field aµ. Therefore, for the potential fields of ãµ = ∂µΨ, the basic undisturbed state is
represented by that of the perfect-fluid action Spf only. Namely, the state is nothing
but the Euler field.

According to Utiyama (1956, 1987), the general gauge principle states as follows.
”If both of the composite action Sc and the equation of motion (2.11) are invariant under

d)

Fluid Gauge Theory

Section II, e),

III c), ii.

II c),

III c), iii.

e),II ii.

e),II iii.
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a global transformation defined by ãµ → ã′µ = ãµ + δaµ for uniformly constant value of
δaµ = ϵµ, then the system is said invariant globally for the aµ-transformation.”

The invariance of the governing equation (2.11) is almost trivial because the field
ãµ is included only in fµν where all the components ãµ are expressed in derivative forms,
as seen from (2.12). Hence, constant variation ϵµ of ãµ does not give any effect on the
equation (2.11). Concerning the action S(int), its invariance by the global transformation
ãµ → ãµ + ϵµ is investigated in the section below the line (3.11), and the system
is invariant mechanically with this global transformation. Thus, the system is globally
invariant for the uniform ãµ-variation.

The gauge principle reads furthermore, ”Even if the global invariance of the system
is satisfied, one may consider local transformation with δaµ(x

ν) varying with the space-
time coordinates xν, for which neither the action integral nor the equation of motion are
invariant locally under such a local gauge transformation.”

Here, we have to remind that the interaction action S(int) of (2.9) is already defined
by using general aµ(x

ν) field depending on the space-time coordinates xν . In the previous
using this S(int), we have derived the equation of motion (2.11). For the particular

form of potential ãµ = ∂µΨ considered above in the global transformation, the new
tensor field fµν vanishes identically (verified immediately by substitution). Then, the
equation (2.11) reduces to the Euler’s equation (2.2). Under the local transformation,
however, the tensor field fµν does not vanish in general, then the equation (2.11) deviates
from the Euler’s equation (2.2). In other words, the equation (2.11) is not invariant for
the local transformation: aµ → aµ + δaµ(x

ν). This fact is interpreted as follows.
There may exist a background field aµ in the flow field vµ(xν), which interacts with

the flow under the action of the stress field fµνv
ν . The last is a new stress field. Thus,

the general gauge principle predicts existence of a certain background field aµ and an
internal stress field fµνv

ν generated by aµ. The original basic state was the one governed
by the Euler’s equation. The equation (2.3) states that its stress field is given by an
isotropic stress tensor −p δik. In the present context, corresponding equation (2.11) can
be rewritten as

ρDtv
k = −∂j(p δjk) + ρ fk vν, (k = 1, 2, 3; ν = 0, 1, 2, 3), (2.13)

Later in the second term on the right ρ f vν is rewritten −∂νM νk

which represents anisotropic stress field.
It is essential in the scenario of the general gauge principle of Utiyama that the

background field aµ ensures the current conservation ∂µ j
µ = 0, by the gauge invariance

property of the background field aµ itself. In the author’s previous paper (Kambe,
2020), this action S(int) was already introduced at its section 4.2 ”Gauge invariance and
mass conservation”, where invariance of S(int) was required to the gauge transformation
aµ → aµ− ∂µΨ∗ for arbitrary scalar field of Ψ∗(x

ν). The close connection between the
gauge invariance and the law of mass conservation has been established there.

In the next section requiring the invariance of the action S(int) under the
gauge transformation for arbitrary scalar field of Ψ(xν), the mass conservation equation
is deduced:

∂µj
µ = ∂tρ+∇ · (ρv) = 0. (2.14)

This is the scenario of the general gauge principle of Utiyama.
According to the scenario of Utiyama’s general gauge principle, we have to show

one more, which is as follows. The new field aµ should be incorporated as a connection
term in a covariant derivative. This is done in the Appendix B.4 where physical and
mathematical formulations for curved space are presented and applied to flow fields of
a perfect fluid.

Fluid Gauge Theory

II e) iii.

b)III

c)IISection

section III c) ii.
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This enables to introduce a general notion of covariant derivatives (connections).
Its mathematical formulation is applied to free evolution of physical systems (free from
external actions) but exhibiting non-straight motion even in flat space. Mathematical
formulation by geometrical language enables us to formulate this generalization, namely
enabling to conclude the fluid gauge theory.

Background field aν ensuring current conservation ∂µ j
µ = 0

Background field aν represented by A, F and fa
Using the background field aν , one can define a one-form A ≡ aν dx

ν . Taking its
exterior differential d, a field strength two-form F is given by

F ≡ dA =
∑
ν<λ

fνλ dx
ν ∧ dxλ, fνλ ≡ ∂νaλ − ∂λaν = −fλν . (2.15)

where ∂ν ≡ ∂/∂xν = (c−1∂t, ∇), the tensor fνλ is anti-symmetric.
Representing the 4-potential aν with a (1+3)-expression given by aν = (−ϕ/c,a)

where a0 = −ϕ/c and a = (ak) = (a1, a2, a3), one can define

b = (bk) ≡ ∇× a; fij = ∂iaj − ∂jai = εijkbk, bk = εklm∂lam, (2.16)

e = (ek) ≡ −∂ta−∇ϕ; fk0 = ∂ka0 − ∂0ak = c−1ek ≡ ek. (2.17)

where each of i, j and k takes the number of either 1, 2, or 3.
The modified Euler equation (2.11) includes the term of internal stress field fµνv

ν ,
which can be given a 3-vector form by using 3-vectors e, b and v as

fa = (fa,i) ≡ e+ v × b, fa,i = fiνv
ν = fi0v

0 + fikv
k. (2.18)

fa,i = fiνv
ν = fi0v

0 + fijv
j = c−1ei c+ (εijkbk) v

j = (e+ v × b)i, (2.19)

where vν = (v0,v) = (c, v) from (1.13).

Special background field ãµ = ∂µΨ implies Eulerian field

Using ãµ = ∂µΨ, let us define a one-form by Ã = ãν dx
ν = (∂νΨ) dxν = dΨ. Then

the field strength two-form F̃ ≡ dÃ vanishes identically since d2Ψ ≡ 0, which can be
shown alternatively by using the vanishing components fνλ:

F̃ = dÃ =
∑
ν<λ

fνλ dx
ν ∧ dxλ ≡ 0, i .e. fνλ = ∂ν∂λΨ− ∂λ∂νΨ = 0.

Hence, the background field of the type ãµ = ∂µΨ constitutes a special class in the flow
field, and that, for this type of field, the modified Euler equation (2.11) reduces to the
original Euler’s equation (2.2), because all the fields fµν derived from ãµ = ∂µΨ vanish
identically. In other words, the tensor fields fµν are potentially existing, but vanish for
the particular form ãµ = ∂µΨ, where Ψ(xν) is an arbitrary twice differentiable scalar
field in the spacetime xν . The ãµ field does exist, but with the particular form ãν = ∂νΨ,
the potentially existing fields do not show in observable world. Thus, the potential form,
ãµ = ∂µΨ, constitutes a special class of background field.

Hence, the modified Euler equation (2.11) reduces to the original Euler equation
(2.2). In addition, regarding the composite action Sc = S(pf)+S(int), the interaction part
S(int) does not give any mechanical effect on the system with the special field ãµ = ∂µΨ.
The field ãµ is included only in the interaction action S(int) of (2.9).

The variational principle requires that variation of the action Sc must vanish
with respect to the variation ãµ given by δãµ = ∂µ(δΨ) where δΨ is the variation

e)
i.

ii.

Fluid Gauge Theory



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

of Ψ. Substituting the ãµ-variation into S(int), its resulting variation δS(int) owing to
δãµ = ∂µ(δΨ) is given by

δS(int) =

∫
jµ (∂µδΨ)dΩ = −

∫
(∂µj

µ) δΨdΩ +

∫
∂µ

(
jµ δΨ

)
dΩ , (2.20)

where dΩ = dV dt. The invariance requires the integral on the left-hand side to vanish.
The last integral of 4-divergence ∂(Ψjν)/∂xν on the right-hand side is transformed
to vanishing integrals over bounding hypersurfaces (where the imposed function Ψ is
assumed to vanish, or irrelevant because the variational analysis is carried out only at
internal points). Vanishing of the first integral for arbitrary variation δΨ (at internal
points) leads to the following equation of the mass conservation:

∂νj
ν = ∂τ (ρc∗) + ∂k(ρv)k = ∂tρ+∇ · (ρv) = 0. (2.21)

Thus, the mechanical effect of the composite action Sc reduces to that of the term
S(pf) of perfect fluid without the background field aµ. Therefore, for potential fields of
ãµ = ∂µΨ, the basic undisturbed state is equivalent to the Eulerian field constrained
with the mass conservation equation.

Gauge invariance of S(int) requires the mass conservation
It is essential in the scenario of the general gauge principle of Utiyama that the

background field aµ ensures the current conservation ∂µ j
µ = 0, by the gauge invariance

property of the background field aµ itself. Likewise the transformation done in Kambe
(2021a; we define a one-formA ≡aν dxνand introduce an arbitrary scalar field
Θ(xν). Then, we carry out a gauge transformation, G: aν → a′ν = aν − ∂νΘ , and we
have

A′ ≡ a′ν dx
ν = (aν − ∂νΘ) dxν = aνdx

ν − ∂νΘ dxν = A− dΘ . (2.22)

From this, we find the invariance of the field strength two-form F ≡ dA as follows:

F ′ ≡ dA′ = dA+ d2Θ = dA ≡ F , (2.23)

since d2Θ = 0 identically. Thus it is found that the two-form F is invariant with respect
to the gauge transformation G.

Matrix elements of F represented by fνλ = ∂νaλ − ∂λaν are also gauge-invariant.
The expressions of (3.15) give matrix-form representations of fνλ and its contravariant
form f νλ. In these matrix forms, the 4-potential aν is expressed by (−ϕ/c,a), together
with b = (bk) ≡ ∇× a and e = (ek) ≡ −∂ta−∇ϕ. Thus, the background field matrix
fνλ can be represented by components of b and e, which are also gauge-invariant.

Next, let us require invariance of the action S(int) under the gauge transformation
G for arbitrary scalar field of Θ(xν). By replacing aµ with aµ − ∂µΘ . Then, the action
S(int) of (2.9) has an additional term (which is required to vanish),

−
∫
jµ (∂µΘ) dΩ =

∫
(∂µj

µ)Θ dΩ −
∫
∂µ

(
jµΘ

)
dΩ , (2.24)

The gauge invariance requires the integral on the left-hand side to vanish. The last
integral of 4-divergence ∂(Θjν)/∂xν is transformed to vanishing integrals over bounding
surfaces where the imposed function Θ is assumed to vanish. Vanishing of the above
integral for arbitrary Θ at internal points leads to the current conservation ∂µj

µ = 0.
Namely, the following mass conservation equation must be satisfied:

∂µj
µ = ∂tρ+∇ · (ρv) = 0. (2.25)

Hence, the invariance of S(int) under the transformation G requires the mass conservation
equation to be satisfied.
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Action S(F) of the background Field aν
Up to now, the action formulation on our fluid system is not completed. To make

the fluid system self-contained, we need a third action S(F) =
∫
L(F)dΩ governing free-

state of the background field aν , describing only on the property of the field itself. To
establish the form of the Lagrangian density L(F) of the field, we start from the following
observation and requirements:
(i) The tensor field fνλ should be ensured to vanish when the background field aν takes
the special form ãν = ∂µΨ with Ψ(xν) a twice differentiable scalar field. This means
the following. According to the item (i.) of this section, the original Euler’s equation of
motion (2.2) is valid in spite of the existence of the field aν .

(ii) The Lagrangian density L(F) is a Lorentz scalar, i.e. invariant with respect to the
Lorentz transformation (Appendix).
(iii) In the subsections (i.)∼ (iii.) of this section we have already defined the
field strength tensor fµν = ∂µaν − ∂νaµ, which is gauge-invariant and also satisfies the
condition (i), namely fµν = 0 for aµ given by ãν = ∂µΨ. This representation of fµν was
derived from the one-form A = aµdx

µ defined by (1.17) in

Under these conditions, we expect the free-Lagrangian L(F) to be quadratic in
∂µaν or fµν , because the variation of S(F) reduces the degree by one with resulting
equation becoming linear to ∂µaν . The only Lorentz-invariant quadratic form is a
multiple of fµνf

µν (see Landau & Lifshitz (1975, §27), or Jackson (1999, §12.7), for
the corresponding Lagrangian of electromagnetic field).

Thus, the Lagrangian density L(F) for the background Field aν should be
represented as

S(F) =

∫
L(F)dΩ , L(F) ≡ C fµνf

µν . C : a constant. (2.26)

New field equations re-ensuring current conservation

According to the observations of on the actions of the present fluid system,
it is proposed that total Lagrangian density L consists of three terms: Lagrangians of
(i) a perfect fluid L(pf), (ii) a background field L(F) and (iii) their mutual interaction

L(int). Hence, the total Lagrangian is L = L(pf) + L(int) + L(F):

L(pf) = −c ρ (1 + c−2 ϵ); L(int) = c−1 jµ aµ; L(F) = − 1

4µc
fµνf

µν . (2.27)

where the constant C is rewritten as C = −(4µc)−1 with using another constant µ for
later convenience.

Action principle
We define the total action S(total) by

S(total) = Sc + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (2.28)

where the Lagrangian densities L(pf), L(int) and L(F) are defined by (2.27), dΩ = c dt dV ,
dV = dx1dx2dx3 and ρ dV = ρ dV .† Relativistic 4-current is defined by jν ≡ ρvν , in
addition by

jν = ρ
dXν

dt
= ρ vν

√
1− β2 = ρ ( c, v ). (2.29)

† dτ = cdt
√
1− β2, dV = dV/

√
1− β2 and ρ = ρ

√
1− β2. Hence dV dτ = dV c dt.

iv.

f)
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The tensor fνλ ≡ ∂νaλ − ∂λaν in the expression L(F) is a field strength tensor, and
aν ≡ (−ϕ/c,a) is a 4-potential.

To find the equations governing the background field aν , the principle of least action
is applied to the action S(total). We must assume the fluid motion a given field, hence
fixed. We vary only the potential field aν . In regard to the fluid motion, its equation
of motion is already found from the composite action Sc in the section whereaν is
assumed to be a given field. The equation of motion is given by (2.11). Citing it,

Dtv
k + ρ−1 ∂kp− fkν v

ν = 0, (k = 1, 2, 3; ν = 0, 1, 2, 3). (2.30)

We aim that the continuity equation of fluid flows is deduced also from this variational
analysis. Since the first Lagrangian L(pf) does not include the field aν to be varied, we
consider variations of the other two Lagrangians L(int) and L(F).

Variation with respect to aν
The two Lagrangians L(int) and L(F) include the background field aν . First, we note

δ
(
f νλ fνλ

)
= 2f νλ (δfνλ). This is because

(δf νλ) fνλ = (δf νλ) ηναηλβf
αβ = fαβ (δfαβ).

See Appendix A for the Minkowski metric ηνα.
Therefore, variation of L(int) + L(F) is given by

c (δL(int) + δL(F) ) = jν δaν −
1

2µ
f νλ δfνλ = jν δaν −

1

2µ
f νλ

∂

∂xν
δaλ

+
1

2µ
f νλ

∂

∂xλ
δaν =

(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν . (2.31)

where the term −(1/2µ)f νλ∂ν(δaλ) of the last term on the upper line can be equated to
(1/2µ)f νλ∂λ(δaν) by using the anti-symmetry, −f νλ = fλν . On interchanging the indices
ν and λ, this term can be combined with its next term to give (1/µ)f νλ∂λ(δaν). Finally
carrying out integration-by-parts leads to the second term of (2.31), with omitting the
term of divergence-form ∂λ[(1/µ)f

νλ δaν ] which vanishes on integration.

Requiring vanishing of δL(int) + δL(F) = 0 for arbitrary variation δaν , we obtain

∂

∂xλ
f νλ = µ jν . (2.32)

where the 4-current jν is defined by (2.29). This is the equation governing the
background field f νλ derived from the principle of least action. Thus,

the system of field equations (2.30) and (2.32) have been derived by the
invariant variation of the total action S(total) of (2.28).

Current conservation
The equation of current conservation can be derived from this, which is directly

connected with the gauge-invariant property of the Lagrangian L(F). This is analogous
to the electromagnetic fields (Kambe (2021a) . In fact, applying the divergence
operator ∂ν on the equation (2.32), one obtains

0 = ∂ν∂λf
νλ = µ ∂νj

ν . (2.33)

The left-hand side vanishes because of the anti-symmetry of f νλ and the symmetry of
∂ν∂λ. Total sum with respect to ν and λ (taking indices 0, 1, 2, 3) vanishes identically.
Hence, we find the current conservation equation:

ii.

Fluid Gauge Theory
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for jν = (ρc, ρv). Thus it is found that the newly added Lagrangian L(F) ensures the
mass conservation.

All the analyses, concerning the field potential aν , the differential forms and the
variations, are exactly analogous to the electromagnetic case (Kambe (2021a) §2.1 (a)).
Only differences are the letters used, whether those are lower-case or upper-case, and
the material constants are different between the two cases. Thus for our fluid system, we
obtain the same form of Maxwell-type equations with the field vectors e ≡ −∂ta−∇ϕ
and b ≡ ∇× a with two field constants, µ and ε = 1/(c2 µ):

∂tb+∇× e = 0, ∇ · b = 0. (2.35)

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j. (2.36)

A road to fluid gauge theory
More than sixty years ago, Utiyama (1956) proposed a general approach to the gauge
theory and called it General Gauge Theory. He extended the Weyl’s gauge principle
(described in Kambe (2021a)) to general Lie groups and included the theory of gravity
(O’Raifeartaigh 1997, Chap.10). He realized already the broad analogy between the
two theories of gravitational field and electromagnetic field, which is reviewed in Kambe
(2021a) too. According to the scenario of the general gauge theory, new fields are
introduced in the systems under investigation which are carrying interaction forces such
as gravity force or electromagnetic force.

How the fluid-flow field is required to be improved or reformed by the fluid gauge
theory ? The answer is that the isotropic pressure stress field is extended to general
anisotropic stress field in the flow of perfect fluid if its motion is time-dependent
and rotational. This is required by the constraint to the current conservation under
background gauge fields. However, the Euler’s equation of motion is still valid as far as
the stress field is constrained to be isotropic.

On a mathematical point of view, more must be added according to the Utiyama’s
approach of the General Gauge Theory. The new fields should be taken (or absorbed)
into the structure of covariant derivatives as connection terms like the terms of
Christoffel symbols in the gravity theory or the gauge potentials in the electromagnetic
theory. The concept of connection in the mathematics of Riemannian geometry is an
essential ingredient in the physical gauge theory. It is a challenging work to implement
connection terms in the structure of fluid gauge theory. This is left to Appendix B
(Relativistic formulation of three mechanical systems) and Appendix C (Free motion of
physical systems and curved geodesics), because sufficient mathematical expressions and
concepts must be presented to arrive at the goal.

We are going to propose and present a new formulation of Fluid Gauge Theory
in this section §3 by the help of Appendix B and Appendix C. In fact, before giving
the final conclusion, we have to examine that free motions are not always described by
straight trajectories of time evolution of mechanical systems, namely their geodesics are
curved in general. In Appendix C.2, we will see that the free motion of a perfect fluid
under a background field aν can be described by the geodesic equation representing a
curved free dynamics. This is derived by the variational principle that makes the action
integrals invariant. Namely the new field of the fluid gauge theory has been taken into
the structure of covariant derivatives as connection terms and the free dynamics of a
perfect fluid under a background field aν is described by the geodesic equation.

Thus, the Fluid Gauge Theory is concluded now.

∂νj
ν = 0 ⇒ ∂tρ+∇ · (ρv) = 0, (2.34)

III. Fluid Gauge Theory

a)

Fluid Gauge Theory
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Fluid Gauge Theory summarized
According to the scenario of the general gauge principle, the last section has concluded
that the flow field of a perfect fluid is supported with a background field aµ ensuring
current conservation. Now our quest for the fluid gauge theory has come to the final
stage.

Statement of the fluid gauge theory :
Collecting main results obtained in the last section (An approach aiming at a fluid

gauge theory), the fluid gauge theory is presented by the following set of expressions:

S(total) = S(pf) + S(int) + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (3.1)

L(pf) = −c−1(c2 + ϵ(ρ)) ρ , L(int) = c−1jν aν , (3.2)

L(F) = − 1

4µc
f νλ fνλ, fµν = ∂µaν − ∂νaµ, (3.3)

aµ = (a0, a1, a2, a3) = (−ϕ/c,a), (3.4)

Dtv + ρ−1 ∇p = fa , (3.5)

∂νj
ν = ∂tρ+∇ · j = 0, jν = (ρc, j), j = ρv, (3.6)

fa = e+ v × b (3.7)

b = ∇× a, e = −∂ta−∇ϕ. (3.8)

∇ · b = 0, ∂tb+∇× e = 0, (3.9)

∇ · (ε e) = ρ, − ∂t(ε e) + µ−1∇× b = j. (3.10)

where c is the light velocity and aµ the background field. Two parameters µ and
ε = 1/(c2 µ) are field constants.

According to the scenario of Utiyama (1956), to begin with, we have to check the
global invariance of the system under consideration. Namely, with respect to the global
transformation aµ → aµ + ϵµ for constants ϵµ independent of coordinates xν , we ask
whether the action integral S(total) and the governing equation (3.5) derived from it are
invariant or not.

In regard to the modified Euler equation (3.5), the field aµ is included only in the
additional term fa which includes all the components aµ linearly and in derivative forms,
as seen from (3.7) and (3.8). Hence, constant variation ϵµ of aµ does not give any effect
on the equation (3.5). Not only the equation of motion (3.5), but the action S(total) of

(3.1) must be invariant. Since the third Lagrangian L(F) of (3.3) includes only derivative
forms of aµ, the above global transformation causes no variation. However, regarding

the second interaction Lagrangian L(int), its integrand J (int) of S(int) associated with the
part dm = ρ dV is given by

J (int) ≡ L(int) dV c dt = c−1 (ρ dV) aµ (dXµ/dt) c dt = (dm) aµ dX
µ. (3.11)

With respect to the global transformation aµ → aµ + ϵµ, the action variation is

dSint =

∫
J (int) = (dm) ϵµ

∫ b

a

dXµ = (dm) ϵµ [X
µ]ba ,

for a fixed mass element dm of a fluid particle. It is seen that the variation dSint does
not depend on internal values of Xµ, but depends only on its boundary values. Hence

b)

Fluid Gauge Theory

II

II



 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

       

               

                          

                   

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

129

  
 

( A
)

© 2021 Global Journals

V
er
sio

n
I

Next, even if the global invariance of the system S(total) is satisfied, one may consider
local transformation by δaµ(x

ν) varying with space-time coordinates xν . By substituting
the transformed variable aµ + δaµ(x

ν) into aµ of the action S(total) of (2.28), the system
of field equations (2.30) and (2.32) have been deduced by the action principle in
In other words, Invariant Variation of the total action S(total) of (3.1) yields the system
of field equations (3.5) and (3.10). The two equations of (3.9) are immediately derived
from the identity d2A ≡ 0 satisfied by the one-form A, which is given in

The present system is a genuine mechanical system described by the action (3.1)
and the equation of motion (3.5) derived by the action principle. Then, in this case, there
must be a certain background field aµ(x

ν) that is interacting with the flow field vµ(xν),
and the interaction force is the fluid Lorentz force fa of (3.7). Concerning the last point,
more detailed account is given at the second half of the last section of (Summary and
discussions). The background field aµ(x

ν) ensures the current conservation ∂νj
ν = 0

of (3.6), which is verified in based on the gauge invariance. Hence, our riddle
mentioned in is resolved.

Thus, the above fluid gauge theory is proposed, according to the gauge principle of
Utiyama (1956). The field of fluid-flow is required to be improved or reformed as follows.
The flow field of Eulerian system is characterized by the isotropic pressure stress field.
The stress field is extended to general anisotropic stress field in the flow of a perfect
fluid if its motion is time-dependent and rotational. This is required by the constraint
of the current conservation driven by the background gauge fields.

Remarks on the fluid gauge theory
Whole structure of the present theory is founded on the Gauge Principle which

worked successfully in theoretical physics, particularly in the particles physics. The
analyses presented so far in the present paper verifies that the scenario of the Gauge
Principle works successfully in the flow field of a perfect fluid too. Here in this section
some remarks on the theory are presented in order to supplement insufficient parts of
the above presentation.

Euler’s equation Dtv + ρ−1 ∇ p = 0 is still valid
Euler’s equation of motion is still valid as a family member. There is a special class

of background field ãν , for which the equation (3.5) reduces to the Euler’s equation of
motion (2.2) for ãν = ∂νΨ, because, with this field, the fluid Maxwell fields e and
b vanish by (3.8) (where ak → + ∂kΨ and ϕ → − ∂tΨ since aµ = (−ϕ/c,a
∂0 = c−1∂t), and hence fa of (3.7) vanishes as well.

Namely, the Euler’s equation of motion (2.2), Dtv + ρ−1 ∇p = 0, is valid for the
background field ãν = ∂νΨ and the continuity equation ∂tρ +∇ · (ρv) = 0 is deduced
from the action principle as shown in . Accordingly, one may say that the field
ãν itself exists, but does not show in the observable world. Hence, the rotational flow
solution (Kambe 2013) mentioned in and Appendix C is yet valid as a general
solution to the Euler’s equation of motion Dtv + ρ−1 ∇p = −∇ΦE, where the term
−∇ΦE on the right hand side (due to the gravitational potential ΦE) does not cause
any problem in the present context. Anyway, if ΦE is set to a constant, this equation
reduces to (2.2). The class of flow fields governed by the Euler’s equation of motion,
Dtv + ρ−1 ∇p = 0, may be called a ground flow-state.

Significance of the new force fa represented with anisotropic stress tensor
Background field: Fluid Maxwell fields
In we have defined the 4-potential aν by (a0,a) with a0=−ϕ/c and

a = (a1, a2, a3) and the one form A = aν dx
ν with x0 ≡ c t. Taking exterior differential,

the field strength two-form F is given by

the constant variation ϵµ does not give any mechanical effect on the system. Thus, the
present system described by S(total) is globally invariant for the uniform aµ-variation.
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F = dA =
∑
ν<λ

fνλ dx
ν ∧ dxλ , (3.12)

fνλ = ∂νaλ − ∂λaν = −fλν . (3.13)

Then, a pair of fluid Maxwell fields e and b are defined:

e ≡ − ∂ta−∇ϕ, b ≡ ∇× a , and e ≡ e/c . (3.14)

For the tensor fνλ, the diagonal elements are all zero, and the element f01 is given
by ∂0a1 − ∂1a0 = (∂ta1 + ∂1ϕ)/c = −e1/c = −e1 and the element f12 given by
∂1a2 − ∂2a1 = (∇ × a)3 = b3. The field strength tensor of covariant (downstairs)
indices fµν and that of contravariant (upstairs) form fµν = ηµαFαβη

βν are given by
matrix forms as follows:‡

( fνλ ) =


0 −e1 −e2 −e3
e1 0 b3 −b2
e2 −b3 0 b1
e3 b2 −b1 0

 , ( f νλ ) =


0 e1 e2 e3

−e1 0 b3 −b2
−e2 −b3 0 b1
−e3 b2 −b1 0

 . (3.15)

Taking non-relativistic limit of the definition of vν = cuν of (A.3), we have vν = (c,v).
Then, from (3.15) with noting the index of fkν , the equation (2.30), equivalently (2.11),
can be represented in 3-vector form as follows:

Dtv + ρ−1 ∇p− fa = 0, (3.16)

fa ≡ e+ v × b = −∂ta−∇ϕ+ v × (∇× a). (3.17)

The equation (3.16) is the modified Euler’s equation of motion of a perfect fluid with
additional force term fa depending on the assumed background gauge-potential aµ.
Note that the background potential aµ = (−ϕ/c,a) is analogous to the electromagnetic
gauge potential Aµ of eq.(2.1) of Kambe (2021a), where Φ corresponds to ϕ/c.

Using the definition (3.14) of the fields e and b and the matrix representation (3.15)
of the field strength tensor f νλ, the equation (2.32) represents the followings:

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j. (3.18)

where ε = 1/(c2 µ). Another pair of fluid Maxwell equations is given

Second pair of fluid Maxwell equations for the background field aν = (−ϕ/c,a)
Using the field tensor (fνλ) defined by (3.13), one can derive fluid Maxwell equations

of source-free type. In fact, taking one more exterior differential of F of (3.12), we obtain

dF = d2A =
∑

α<β<γ

(
∂αfβγ + ∂βfγα + ∂γfαβ

)
dxα ∧ dxβ ∧ dxγ = 0, (3.19)

because d2A ≡ 0. This leads to the equation, ∂αfβγ + ∂βfγα + ∂γfαβ = 0, yielding the
following pair of fluid Maxwell equations for b and e of (3.14):

∇ · b = 0, ∂tb+∇× e = 0, (3.20)

where the first is obtained with (α, β, γ) = (1, 2, 3), while the second is obtained when
one of α, β and γ takes the suffix number 0.

‡ The latter matrix fνλ is to be used later to derive field equations. Practically, the matrix fνλ is

obtained from fνλ with simply replacing e by −e.

b.
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Significance of fa in the representation with anisotropic stress tensor
the formulation described so far is based on logical reasonings both physically

and mathematically, the present theory is valid solidly. The present fluid gauge
theory for a perfect fluid represents a broader class of flow fields than the current
Eulerian field, although the Eulerian field too is valid, as stated in the of
this section. The current Eulerian flow field is governed by the Euler’s equation of
motion: Dtv + ρ−1 ∇p = 0. However, the present gauge theory extends the current
Eulerian flow field to a wider class, covering a broader family of flow fields of a perfect
fluid (an inviscid fluid).

In the presence of background field aν , the governing equations are given by (3.5),
(3.7) and (3.8):

ρDtv = −∇ p+ ρfa. (3.21)

fa = e+ v × b = −∇ϕ− ∂ta+ v × (∇× a). (3.22)

At first sight, it is surprising to see the Lorentz-type force fa (acceleration correctly)
in fluid-flow field which is electrically neutral. The role of charge density in the
electromagnetism is played by the mass density ρ. Significance of the fluid Lorentz
acceleration fa is interpreted from the following two aspects.

Firstly, the acceleration fa is independent of the mass density ρ as obviously seen
in (3.7), but depends on the velocity v unlike the gravity acceleration, in addition
depending on the time derivative term ∂ta and rotational term ∇× a. In other words,
the acceleration term fa would become significant in turbulent flow fields in which flow
fields are time-dependent and rotational.

It is emphasized that the fluid Lorentz acceleration fa is considered to be a
generalization of the pressure force −∇p. In fact, citing the equation (2.13) again:

ρDtv
k = −∂j(p δjk) + ρ fkν v

ν , (k = 1, 2, 3; ν = 0, 1, 2, 3), (3.23)

this is equivalent to (3.21), but represented in component form.
Secondly, physical meaning of fa may be given as follows. It is remarkable to find

that the force field F a ≡ ρfa can be represented by the stress field M νk (where F a may
be called the fluid Lorentz force). In fact, for spatial components (i, k = 1, 2, 3), the
k-th component of the force F a ≡ ρfa can be rewritten as follows:

(F a)k = (ρe+ ρv × b)k = − ∂νM
νk, ∂ν = (c−1∂t, ∂k), (3.24)

M0k = cϵ (e× b)k, we ≡ 1
2 ϵ |e|

2 + 1
2 µ

−1 |b|2 =M00,

M ik = −ϵ eiek − µ−1 bibk + weδik, (3.25)

[Mαβ ≡ Θαβ
w with Θαβ

w defined by Eq.(33) of Kambe (2017)], where µ and ϵ = 1/(µ c2)
are parameters of flow fields, and the equality (ρe+ ρv × b)k = −∂νM νk can be shown
by using (3.9) and (3.10).

The stress tensor M ik of (3.25) as well as the parameters ϵ and µ are analogous to
those (Maxwell stress) of electromagnetism. The term (−∇ p)k on the right-hand side
of (3.21) can be written as −∂ν(p δνk), a force from the isotropic pressure stress −p δνk.

According to the present fluid gauge theory, the state of isotropic pressure stress
p δνk of Eulerian system is extended to the state of combined anisotropic stress
p δνk + M νk. Namely the isotropic pressure stress p δνk valid at the Eulerian system
is modified and augmented by an anisotropic stress M νk depending on the velocity vk

and the time change ∂ta
k, to ensure the current conservation.

The flow field described by the Euler’s equation ρDtv + ∇ p = 0 may be called
a ground flow-state. Then, another flow states governed by (3.21) may be an excited
flow-state. The terms ”ground” and ”excited” are used in analogy with quantum states,
although the states here are not discrete.

c.

Fluid Gauge Theory
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Theory of fluid mechanics is extended to cover time-dependent rotational flows under
anisotropic stress field of a compressible perfect fluid, including turbulent flows. The
Eulerian fluid mechanics is characterized with isotropic pressure stress fields. According
to the general gauge principle, the current theoretical structure of fluid mechanics can
be extended to a wider class of flow fields of a perfect fluid under anisotropic stress field
by the Fluid Gauge Theory presented in the present paper.

Motivation of the present study is based on three observations. First one is the
experimental evidence of observation of large-scale structures coexisting with turbulent
flow fields; second one is a physical query of what symmetry implies the current
conservation law; and third motivation is posed by a mathematical representation of
the field of fluid flow, described in (Introduction).

The third one is based on the general representation of rotational flows of an
ideal compressible fluid satisfying the Euler’s equation presented by Kambe (2013),
in which ”four independent fields are newly introduced in the general solution to the
Euler’s equation of motion. Those fields must be either given externally or to be
determined internally within the framework of theory. Present study has taken the
latter approach on the understanding that the general solution predicts existence of
new fields. Importantly, the very fact that the four independent fields exist in the 4-
dimesional linked spacetime encourages a gauge-theoretic formulation on the basis of
differential forms or one-form A existing in the liked 4d-spacetime.

The last point is essential in the present study in the sense that even the fluid
mechanics from the Euler’s point of view has a glimpse of structures of linked 4d-
spacetime. As an obvious example, this is seen in the equation of current conservation,
∂jν/∂xν , represented in terms of the current 4-vector jν = (ρ c, ρvk) and the 4-
differential operator ∂/∂xν = (c−1∂t, ∂k). We have ∂jν/∂xν = ∂tρ + ∂k(ρv

k). It is
remarkable that the scalar product ∂νj

ν is invariant by the Lorentz transformation.
In the 4d-spacetime xν , by introducing a set of four fields aµ(x

ν), a one-form
structure is defined by A ≡ aµdx

µ = ρ−1jµaµ dt. Using it, an interaction action
S(int) = c−1

∫
jµ aµ d4xν was defined for the combined field of a 4-current field

jµ = ρ (dxµ/dt) and a background 4-field aµ. Correspondingly, a combined action
Sc = S(pf) + S(int) is defined by incorporating the known action of a perfect fluid S(pf),
both expressed relativistically. The action principle applied to Sc yields the equation of
motion (2.11):

Dtv
k + ρ−1 ∂kp = fkν v

ν . fµν ≡ ∂µaν − ∂νaµ (4.1)

(vk = ηklvl = vk). The term fkν v
ν on the right-hand side is a new term (owing

to interaction) added to the Euler’s equation of motion given on the left-hand side.
However, if the field aν takes a particular form ãν = ∂νΨ, then the field tensor fµν
vanishes identically since fµν = ∂µ∂νΨ − ∂ν∂µΨ = 0. Then the equation (4.1) reduces
to the original Euler’s equation, and in addition the equation of current conservation
(2.21), ∂νj

ν = 0, is deduced for this case (§2.1).

According to Utiyama (1956, 1987), the general gauge principle states as follows.
”If both of the composite action Sc and the equation of motion (4.1) are invariant under
a global transformation of ãµ defined by ãµ → ãµ + δaµ for a uniform value of δaµ = ϵµ
(constant), then the system is said invariant globally for the aµ-transformation.”

The constant variation ϵµ of ãµ does not give any effect on the equation (4.1).
Invariance of the action S(int) (therefore invariance of Sc) is also verified in §3.2.† Hence,

† In §3.2, the transformation was ãµ → aµ = ãµ + ϵµ. However, as far as the variation part of the

action S(int) is concerned, there is no difference from that of the transformation aµ → a′µ = aµ + ϵµ.

IV. Summary and Discussions

Fluid Gauge Theory
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the constant variation ϵµ does not give any mechanical effect on the system, and the
system is globally invariant for the uniform aµ-variation.

The gauge principle reads furthermore, ”Even if the global invariance of Sc is
satisfied, one may consider local transformation of ãµ → aµ(x

ν) = ãµ + δaµ(x
ν) with

δaµ(x
ν) varying with the space-time coordinates xν.” The problem is now reduced to

whether one can construct a physical system which is invariant under such a local gauge
transformation of aµ field.

The last point is interpreted as follows. There may exist a background field aµ in
the flow field jµ = ρ vµ, which interacts with the flow by the force fkν v

ν (which vanished
in the test of global transformation for ãµ). Existence of a background field aµ causes
drastic change of our battle field. Not only the term fkν v

ν is non-vanishing, but also
the equations governing the new field aµ should be given a physically reasonable form.

This is done by introducing the third action S(F) with the total action given by
S(total) = Sc + S(F). The system is still free from external forcing. The Appendix
C.2 (c) investigates the dynamics: ”Free dynamical systems and the action principle of
invariant variations” based on the invariant variations in the presence of background
gauge field ensuring mass conservation. The background gauge field is an agent to
make the dynamical system curved. This is carried out in the present formulation by
implementing the connection term (i.e. the background gauge field) in the covariant
derivative to make up the structure of fluid gauge theory. Finally, the free motion of
physical system is described by curved geodesics. This scenario of investigating physical
systems of ”Free motions described by curved geodesics” is presented in Appendix C
in details. In this way, the geodesic equation governing our physical system in curved
motion is given by the equation (C.23) of Appendix C.2 (c), which reduces finally to
the modified Euler equation (2.11) obtained or (3.16) of

This is the scenario of Principle. established,
the - aµ taken into the system which represents a new
force, and a new force field fa(x

ν) has been introduced into our physical system by the
gauge principle. Significance of the fluid Lorentz acceleration (fa)k = fkν v

ν is given
in The force field fkνv

ν is considered to be a generalization of the pressure
acceleration −ρ−1∂i(p δik), as follows.

In the ground flow-state where aν = ∂νΨ, the Euler’s equation of motion (2.2) is
valid. The equation can be rewritten in the form, ρDtvk = ∂iσik (≡ Fk), where the
stress field σik is isotropic: σik[iso] ≡ −p(xν) δik. One can say that the background field
ãν ≡ ∂νΨ itself exists, but it does not show in the observable world.

However, transition of the stress field can occur from the isotropic state σik[iso] to
states of anisotropic stress σik[aniso] when the flow field (velocity field) becomes non-
uniform and time-dependent. In other words, in addition to the isotropic pressure stress
σik[iso] = −p δik valid at the rest frame vk = 0, an anisotropic stress field σik[aniso] begins
to grow, which depends on the velocity vk and the time change ∂tak, to ensure the current
conservation. To be more precise, using the fluid Maxwell stress M νk of (3.25), the force
Fk from the anisotropic stress is given by (3.24), as follows:

Fk[aniso] = −∂νM νk = −ρ ∂tak − ρ ∂kϕ+ ρ (v × b)k .

Thus, outcomes of the Fluid Gauge Theory are summarized in this concluding section.
Based on the present fluid gauge theory, a test study has been carried out recently

by M. Hashiguchi (Former iCFD researcher, Tokyo) with solving numerically the new
system, finding an encouraging result on the problem: ”Dust striations observed in
the resonance-tube experiment” by August Kundt (1866). Brief result is shown in the
presentation of Kambe (2021b). In this system there exist two different length scales
with their ratio more than fifty, consistent with the photo observation of Kundt. The
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larger scale corresponds to the wavelength of the resonant acoustic wave, while the
smaller one corresponds to an eddy structure generated by the background gauge field.

The author expresses his deep thanks to late Professor Ryoyu Utiyama, the author of
the book in Japanese ”一般ゲージ場論序説 (Ippan Gauge ba ron josetsu) Introduction
to the general gauge field theory”. The present study aims to apply the theory to fluid
systems according to the scenario of the theory of general gauge fields of Utiyama (1956,
1987). One of the motivations of the present study is that Fluid Mechanics of a perfect
fluid can join in the circles of the physical theory. Also, the present author benefitted
from informal discussions with Professor Yasuhide Fukumoto (Kyushu University) on
the theory of general gauge fields of Utiyama.

Here, some basics of the relativity theory are presented for expressions of linked 4-
dimensional space-time.

Suppose that a material particle or fluid particles are moving with high velocities
in an inertial frame K: (x0, x1, x2, x3) with x0 = c t and c the light velocity. In a time
interval dt, the position of the particle changes with time and its displacement is given
by a 4-vector:

dxµ = (c dt, dX1, dX2, dX3), dXk = vk dt (k = 1, 2, 3), (A.1)

where µ = 0, 1, 2, 3, and the upper-case notation dXk denotes displacement of a
material (fluid) particle with vk components of 3-velocity v. In the relativity theory,
an infinitesimal interval ds is defined by its squared form, ds2 = dxµdx

µ, which
is a scalar product of a line-element 4-vector dxµ with its covariant version dxµ =
ηµνdx

ν = (−c dt, dX1, dX2, dX3), where ηµν is the Minkowski metric, sometimes
called the Lorentz metric, defined by ηµν = ηµν = diag(−1, 1, 1, 1). Hence, we have
ds2 = dxµdx

µ = ηµν dx
µdxν = −c2dt2+|dX|2. The interval ds is a relativistic invariant,

i.e. invariant under the Lorentz transformation (see Appendix B of Kambe (2021a)).

Another relativistic invariant is the proper time τ . Its increment dτ is defined by
the time increment (multiplied by c) in the instantaneously rest frame where v = 0.
Squared interval of the proper time is defined by dτ 2 = −dxνdx

ν = −ds2. From this,
noting dXk = vk dt, we obtain

dτ = c dt
√

1− β2 , β ≡ v/c , v =
√
vkvk. (A.2)

Using the displacement dXν of a fluid particle P , its relativistic 4-velocity is defined by

uν =
dXν

dτ
= (

1√
1− β2

,
v

c
√
1− β2

), v = (vk) = (dXk/dt). (A.3)

This fluid particle P is moving with the 4-velocity uν relative to the frame xµ.

Relativistic formulation of the variational principle is presented for three fundamental
mechanical systems. We consider how covariant derivatives or gauge invariant equations
are deduced from the principle of least action, i.e. from the invariant variations.

Acknowledgments

Appendices

Appendix A. Some basics of linked 4d-spacetime in relativity theory

Appendix B. Relativistic formulation of action principle: three mechanical systems
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Appendix B.1. Free motion of a point mass

The action of a free material particle of rest mass m is given by

S(m) = −mc
∫ b

a

dτ ≡
∫

L(m) dt, (B.1)

(its derivation, see Landau & Lifshitz (1975, §8)), where the present dτ is equivalent to
the ds of Landau & Lifshitz owing to the difference of the metric tensor definitions.‡
Since dτ = c dt

√
1− β2 from (A.2) of the main text, the Lagrangian L(m) is

L(m) = −mc2
√
1− β2. (B.2)

Principle of least action requires vanishing of the variation δ S(m):

δ S(m) = −mc δ
∫

dτ = 0. (B.3)

Since dτ 2 = −ηµνdxνdxν (Appendix A), we obtain δ(dτ 2) = 2 dτ δdτ = −2 ηµνdx
ν δdxν .

Hence, we obtain the followings:

δdτ = −ηµν
dxν

dτ
δdxν = −uν δdxν = −uν d(δxν). (B.4)

δ S(m) = mc

∫ b

a

uν d(δx
ν) = mc

[
uν δx

ν
]b
a
−mc

∫ b

a

δxν
duν

dτ
dτ . (B.5)

where the integration limits of lower a and upper b are added.
To get the equation of motion, different trajectories are compared by assuming that

the variation δxν is arbitrary within the interval [a, b], but vanishes at a and b. Then,
the principle of least action determines the trajectory by δS(m) = 0. Thus we obtain

∇τu
ν ≡ d

dτ
uν = 0. (B.6)

Namely, the 4-velocity uν of the free particle is constant in time, as well-known.

Appendix B.2. Free motion of a perfect fluid

A perfect fluid is defined as a continuum object (a continuous matter) in the 4d-
spacetime xµ = (ct,x) = (x0, x1, x2, x3), characterized with a mass density ρ(xµ) in
motion with 3-velocity v = (v1, v2, v3) and without any internal mechanism of energy
dissipation. During its motion, the entropy change ∆s = T−1 (∆ϵ+ p∆V1) is assumed
to vanish, where s and ϵ are thermodynamic variables of entropy and internal energy per
unit mass with the volume element ∆V1 defined by 1/ρ. The pressure and temperature
are denoted by p and T . Flow variables such as ρ, p , v, etc. are represented by
continuous differentiable functions of the coordinates xµ = (ct,x).

‡ The negative sign is added in front of the integral
∫ b

a
dτ , because it takes its maximum value along

a straight geodesic line (see the text cited).

The action for free motion of a perfect fluid is given by

S(pf) =

∫ [ ∫
L(pf) ρ dV

]
dτ =

∫ [ ∫
L(pf)(x

ν) dV
]
cdt, (B.7)
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dτ = c dt
√
1− β2, ρ dV = ρ dV = dm, ρ = ρ

√
1− β2 , (B.9)

Lpf dV ≡ L(pf) ρ dV
√
1− β2 = −c−1(m1c

2 + ϵ(ρ))
√

1− β2 [ρ dV ], (B.10)

where the integration within the first bracket [ ] of (B.7) is done with respect to dV
of material location (dX1dX2dX3), and overlined values denote proper values (i.e. the
values in the comoving frame where the fluid is at rest). The terms ϵ and ρ denote the

proper internal energy and density, with dτ = c dt
√

1− β2 the proper time interval,

ρ dV denotes the proper mass element dm, and dV = dX1dX2dX3 is a volume element
associated with the mass dm. The m1 = 1 (unit mass) is added to clarify physical
meaning of the term (m1c

2 + ϵ(ρ)) as relativistic proper internal energy per unit mass
including the rest-mass energy m1c

2. (For the form of L(pf), see Kambe (2020), Dewar
(1977), or Salmon (1988b).)

The Lagrangian per a volume-element dV is given by Lpf = −c−1
√

1− β2 (m1c
2+

ϵ(ρ) ) ρ. This is the proper Lagrangian with respect to an inertial frame. Its non-

relativistic limit (as β → 0) per unit mass is given as c−1
(
−m1c

2+ 1
2 m1v

2−ϵ+· · ·
)
. The

first term m1c
2 denotes the mass energy (with negative sign attached) and neglected in

the non-relativistic limit. Subsequent two terms ( 12 m1v
2−ϵ) per unit mass is equivalent

to the traditional non-Relativistic Lagrangian ΛnR:

ΛnR = 1
2 v

2 − ϵ, S(nR) =

∫ [ ∫
ΛnR ρ dV

]
dt, (B.11)

where the front factor c−1 and the integration element c dt make the dt in the above
integral. Let us take variation of S(pf) of (B.7):

δ S(pf) =

∫ ∫ [
L
(pf)

δdτ + δL
(pf)

dτ
]
dm = δ S

(pf)
1 + δ S

(pf)
2 . (B.12)

Variation is taken keeping the mass element dm = ρ dV fixed and written as ∆m = ρ∆V .
Then the second term is, under the thermodynamic condition δϵ|s:fixed = −p δ(1/ρ),

(∆m) δL
(pf)

dτ = − c−1 ∆m δϵ(ρ) dτ = −c−1 ∆m
(
(ρ)−1δp− δ(p/ρ)

)
dτ

= − c−1 ∆m
1

ρ
∂νp δx

ν dτ + c−1 δ
(
ρ ∆V p

ρ

)
dτ ,

while for the first term, using the definition dτ =
√

−ηµνdxνdxν together with (B.4),

(∆m)L
(pf)

δdτ = c−1(c2 + ϵ(ρ))∆m uν dτ (δx
ν) dτ

= c−1(c2 + ϵ(ρ))∆m
(
− (

d

dτ
uν) δx

ν +
d

dτ
(uν δx

ν)
)
dτ. (B.13)

Thus, summing up both terms, we obtain

∆m
[
L
(pf)

δdτ + δL
(pf)

dτ
]
= − c∆m

( d

dτ
uν + c−2 1

ρ
∂νp

)
δxν dτ

+ c−1 δ
(
p ∆V

)
dτ + c (1 +O(β2))∆m dτ (uν δx

ν) dτ . (B.14)

L(pf) = −c−1(m1c
2 + ϵ(ρ) ) = −c (1 + c−2 ϵ(ρ) ) since m1 = 1, (B.8)
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Since the two terms of the second line (B.14) do not give any contribution to the variation
by the reasons explained below, we are concerned with the first line (B.14) only for the
variational analysis. For arbitrary variations δxk (k = 1, 2, 3 with δx0 = 0), vanishing
of the total variations requires the following equation, to the leading order of the series
with respect to the β2(≪ 1) expansion:

c2
d

dτ
uk +

1

ρ
∂kp = 0, (B.15)

where dτ = cdt
√
1− β2. We note that ρ = ρ

√
1− β2 (Kambe (2020) Appendix B.1)

and p = p (Agmon 1977). Hence using uk = (vk/[c
√

1− β2]) from (A.3), the above
becomes

1√
1− β2

D

Dt

vk√
1− β2

+
1

ρ
∂kp = 0, (B.16)

where (D/Dt) ≡ Dt = ∂t + v · ∇ is the convective derivative defined by (2.4).
Transforming this into a contravariant form by multiplying ηik (no change except the
change of indices from lower to upper), the leading order form of the equation becomes

∇(pf)
τ vk ≡ Dtv

k + ρ−1 ∂kp = 0, (B.17)

since 1/
√

1− β2 = 1 +O(β2) and ∂k = ∂k. This is nothing but the Euler’s equation of
motion in the form of (2.2).

The equation (C.10) is a geodesic equation of free motion of perfect fluid of a

constant density ρ∗, expressed as ∇̂t u ≡ ∂tu + (u · ∇)u + ∇(p/ρ∗) = 0. Here we

used the symbol ∇(pf)
τ to denote the covariant τ -derivative of perfect fluid, because the

leading term of (B.14) can be written as

∆m
[
L
(pf)

δdτ + δL
(pf)

]
= − 1

c
√

1− β2
∆m

(
∇(pf)
τ vk

)
dτ δxk = 0, (B.18)

with the second line of (B.14) deleted.
In regard to the second line of (B.14), the factor dτ (uν δx

ν) dτ of the last term can
be integrated with respect to τ . Hence the last term does not give any contribution to
the variation, while the remaining first term leads to total variation of the integration
I ≡

∫
p dV in the rest frame, which is fixed for the variation, i.e. δI = 0. In fact, the

kinetic theory of statistical mechanics implies that
∫
p dV denotes 2/3 of total kinetic

energy E of particles composing an ideal gas, which is invariant in free state. Thus, the
second line of (B.14) does not give any contribution to the variation,

Appendix B.3. Free motion of a perfect fluid under interaction action Sint

According to the sections in the main text, one can define a composite
action Sc by using the action S(pf) of a perfect fluid of (B.7) and the action S(int) of (2.6)
for interaction of current jν and the gauge field aν . Let us define

Sc ≡ S(pf) + S(int), dΩ ≡ d4x = dV dtc (B.19)

S(pf) ≡ − c

∫
ρ dV

∫ (
1 + c−2 ϵ(ρ)

)
dτ =

∫
L(pf) d4x, (B.20)

S(int) ≡
∫

L(int) d4x, L(int) ≡ c−1 jµ aµ, jµ = ρ vµ , (B.21)

where L(pf) ≡ −c ρ (1 + c−2 ϵ)
√

1− β2, and vµ = dXµ/dt.
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To find the equations of motion, the action principle is applied to the composite
action Sc, by assuming the gauge potential aν given and vary only the position coordinate
Xk
p of fluid particles moving with the velocity DtX

k
p along their trajectories. On the

other hand, to find the equations governing the aν , we vary only the gauge-potential
aν with assuming the fluid motion given and fixed. However, to carry out the latter
variation, we have to define a third action to characterize the background field aν and
add it to Sc, (which is postponed to the next Appendix B.4), Here, we carry out the
former variation, then the action principle applied to the varied Sc should yield the
equation of fluid motion.

By the way, under the requirement of invariance of S(int) to the gauge transformation
of potential aν , the current conservation law ∂νj

ν = 0 is deduced in Hence,
we assume the invariance of the mass element dm ≡ ρ dV of a fluid particle during
the motion along its trajectory when variations are taken with respect to the particle
position Xk

p .
Regarding the action S(pf) of (B.7). Its variation is given by (B.14), and its

variation-integrand δJ (pf) is found as follows:

δ J (pf) = −c∆m
( d

dτ
uν + c−2 1

ρ
∂νp

)
δxν dτ + higher order terms of O(β2). (B.22)

Before taking variation of the interaction action S(int) =
∫ ∫

J (int), we rewrite its

integrand J (int) as follows (since d4x = c dt dV):

J (int) = (ρ dV) vν aν dt = (dm)
dXν

dt
aν dt = (dm) aν dX

ν , (B.23)

where (2.9) and vµ = dXµ/dt are used with dm = ρ dV . Its variation is given by

δJ (int) = (∆m)
(
aν d(δx

ν) + δaν dx
ν
)
= ∆m

(
− daν δx

ν + δaν dx
ν + d(aν δx

ν)
)

= ∆m
[
− ∂aν
∂xµ

dxµδxν +
∂aν
∂xµ

δxµdxν + d(aν δx
ν)
]

= ∆m
(∂aµ
∂xν

− ∂aν
∂xµ

)dxµ
dτ

δxν dτ + c∆m
d(aν δx

ν)

dτ
dτ

= ∆mfνµ u
µ δxν dτ +∆m

d(aν δx
ν)

dτ
dτ, (B.24)

fµν ≡ ∂µaν − ∂νaµ = −fνµ . (B.25)

Thus, summing up the two variations (B.22) and (B.24), we obtain

δJ (fl+a) ≡ δ J (pf) + δJ (int) = −c−1 ∆m
[
c2

d

dτ
uν +

1

ρ
∂νp − c fνµ u

µ
]
dτ δxν (B.26)

by neglecting higher order terms and vanishing integrals with respect to τ . Requiring
δJ (fl+a) = 0 for arbitrary variation δxν , this leads to

c2
d

dτ
uν +

1

ρ
∂νp− c fνµ u

µ = 0. (B.27)

Remembering that the first two terms reduced to (B.16) in the Appendix B.2, we find
that the above equation reduces to the following (ν = 0, 1, 2, 3; k = 1, 2, 3):

1√
1− β2

D

Dt

vk√
1− β2

+
1

ρ
∂kp− fkν v

ν = 0, (B.28)
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where uk = (vk/[c
√
1− β2]) is used from (A.3), Extending the reasoning of Appendix

B.2, leading order form of this equation becomes

∇(pfa)
τ vk ≡ Dtv

k + ρ−1 ∂kp− fkν v
ν = 0, (ν = 0, 1, 2, 3). (B.29)

since 1/
√

1− β2 = 1 + O(β2). Thus we have found an extended equation of Euler’s
equation in the presence of background field aµ giving rise to new third term.

Appendix B.4. Free motion of a perfect fluid :

in the presence of gauge field re-ensuring mass conservation

To make the fluid system self-contained, we need a third action S(F) =
∫
L(F) dΩ in

addition to S(pf) and S(int) of Appendix B.3, to govern free-state of the background field
aν, describing only on the property of the field itself. According to a possible

form of the free-Lagrangian L(F) is proposed to be quadratic in ∂µaν or fµν , because the
variation of S(F) reduces the degree by one with resulting equation becoming linear to
∂µaν . The only Lorentz-invariant quadratic form is a multiple of fµνf

µν . This satisfies
the requirement (i) of namely, the fluid Maxwell fields e and b should be
ensured to vanish when the background field aν takes the special form ãν = ∂µΨ. This
means that the original Euler’s equation of motion (2.2) is valid in spite of the existence
of the field aν .

Following the propositions of Kambe (2017, 2020), our fluid system is a combined
system of two fields: a fluid-current field ȷν and a background field aν ensuring the
continuity equation. Accordingly, the Lagrangian density L consists of three terms:
Lagrangians of (i) perfect fluid L(pf), (ii) back-ground field L(F) and (iii) their mutual

interaction L(int). Total Lagrangian is expressed as L(total) = L(pf) + L(int) + L(F).

(a) Total action
The total action S(total) is given by

S(total) =

∫ ∫ (
L(pf) + L(int) + L(F)

)
c dt dV , (B.30)

where d4x = dΩ = c dt dV , and dV = dx1dx2dx3 = dV
√

1− β2. Since ρ
√

1− β2 = ρ,

the mass element dm = ρ dV is invariant, i.e. ρ dV = ρ dV .
The Lagrangian densities are defined by

L(pf) = −c−1 ρ (c2 + ϵ(ρ)), L(int) = c−1jν aν , L(F) = − 1

4µc
f νλ fνλ, (B.31)

where jν ≡ ρvν = ρ
√

1− β2 vν = ρ dXν/dt is the 4-current density and vν is the
relativistic 4-velocity, defined by

vν = c
dXν

dτ
=

( c√
1− β2

,
v√

1− β2

)
≡ c uν , jν = ρ

dXν

dt
= ρ (c, v). (B.32)

The tensor fνλ is field-strength tensor of background field, defined by

fνλ = ∂νaλ − ∂λaν , (B.33)

where aν = (−ϕ/c, ak) is a 4-potential of the background field. Here in the present
fluid system, we use lower-case letters to denote field variables corresponding to
Electromagnetic variables where upper-case letters are used in of Kambe (2021a).

To find the equations governing the background field aν , we apply the principle
of least action to the action S(total), by assuming the fluid motion given and vary the
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potential aν only. On the other hand, to find the equations of fluid motion, we assume
the field potential aν given and vary only the trajectory of the fluid particle (X or
v = ∂tX). The latter variation is equivalent to what is done in Appendix B.3. The
equation (B.29) derived there is cited as the equation (B.36) at the end of this section.

We carry out the former variation, anticipating to deduce the current conservation
∂νj

ν = 0 of fluid flows.

(b) Variation with respect to aν
We have two Lagrangian densities which include the field aν : L(int) = c−1vν aν and

L(F) = − 1
4µc
f νλ fνλ. First, we note δ

(
f νλ fνλ

)
= 2f νλ (δfνλ). This is because

(δf νλ) fνλ = (δf νλ) ηναηλβf
αβ = fαβ (δfαβ).

Therefore, variation of L(int) + L(F) is given by

c δL(int) + c δL(F) = jν δaν −
1

2µ
f νλ δfνλ = jν δaν −

1

2µ
f νλ

∂

∂xν
δaλ +

1

2µ
f νλ

∂

∂xλ
δaν

=
(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν . (B.34)

where the term −(1/2µ)f νλ∂ν(δaλ) next to the last on the upper line can be equated
to the last term (1/2µ)f νλ∂λ(δaν) by using the anti-symmetric property, −f νλ = fλν ,
and interchanging the indices ν and λ, and the last two terms on the upper line are
combined to give (1/µ)f νλ∂λ(δaν), and finally carrying out integration-by-parts leads
to the second line of (B.34) with omitting the term of the form ∂λ[(1/µ)f

νλ δaν ], which
is transformed to vanishing boundary integrals in the original action integral.

Requiring vanishing of the varied Lagrangian δL(int) + δL(F) = 0 for arbitrary
variation δaν , we obtain

∂

∂xλ
f νλ = µ jν . (B.35)

From this, the current conservation equation can be derived, that is directly connected
with the gauge invariance of the system of main text).

(c) Variation with respect to xν

To find the equations of fluid motion, we assume the field potential aν given and
vary only the trajectory of the fluid particle (X or v = ∂tX). In this case, the third

Lagrangian L(F) of (B.31) is kept unchanged because it depends only on the field aν .
Therefore, the variation under consideration is equivalent to what is done in Appendix
B.3. The equation (B.29) derived there is rewritten here:

∇(pfa)
τ vk ≡ Dtv

k + ρ−1 ∂kp− fkl v
l = 0. (B.36)

Thus we find an extended equation of Euler’s equation in the presence of background
field aµ giving rise to new third term.

In Appendix C, we see that the equation (C.10) is a geodesic equation of free motion

of perfect fluid of a constant density ρ∗, expressed as ∇̂t u ≡ ∂tu+(u·∇)u+∇(p/ρ∗) = 0.
An analogous equation (B.17) is given for a perfect fluid in Appendix B.2. Just above,
we have obtained another analogous equation (B.36). Now we have introduced a new

symbol ∇(pfa)
τ to denote the covariant τ -derivative of perfect fluid in the presence of

background field aµ. In fact, the leading term of (B.26) can be written as

δ J (PFA) = − 1

c
√

1− β2
∆m

(
∇(pfa)
τ vk

)
dτ δxk = 0. (B.37)
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for the action principle concerned with the geodesic equation of free motion of a perfect
fluid in the presence of the background field aµ.

Appendix C.1. Two free physical systems described by curved geodesics

(a) Free motion of a particle in gravity field by Newtonian mechanics
To begin with, consider free motion of a test particle of a unit mass in the Galilean

rectangular space (xk) with a universal absolute time t. The particle in free motion
in a gravitational field takes a curved trajectory in general according to Newtonian
mechanics. By the equation of motion, the particle motion in the Earth’s gravity
potential ΦE(x

k) is described by

d

dt
vk +

∂ΦE

∂xk
= 0, vk ≡

dxkp
dt

, k = 1, 2, 3 , (C.1)

where the particle takes a curved trajectory xkp(t) and v
k is the k-th component of its

velocity. In the modern view to take the space and time linked to form a 4d-continuum,
the curved trajectory of a free particle is described as a geodesic curve in the linked
space-time. Let us take an illustrative example according to Utiyama (1987, §2.3), and
consider a free-falling elevator in the Earth’s gravitational field ΦE(x

ν). The free-falling
elevator provides a particular inertial system of spacetime, in which free motion of a
particle is described by

d2Xµ/dτ 2 = 0, (C.2)

where Xµ is the particle coordinates in the frame Fel fixed to the free-falling elevator.
The gravity effect does not appear apparently because the acceleration owing to the
gravity acting on both of the elevator and the particle are the same and cancel out in
the free-falling frame Fel. Thus, the particle takes a straight path Xµ = aµτ + bµ with
respect to Fel with a

µ and bµ being constants.
According to the section §3 of Part I, let us observe the same motion from another

frame, which is the frame FE fixed to the Earth surface, where the coordinates are given
by xµ. Suppose that the relation between the two frames Fel and FE is given by the
transformation function Xµ = Xµ(xν). Under this transformation from Xµ to xν , the
equation of free motion d2Xµ/dτ 2 = 0 in the free-falling frame Fel (where τ is the proper
time defined by (A.2)) is transformed to that of the frame FE as follows,

d

dτ

dXµ

dτ
=

d

dτ

[∂Xµ

∂xν
dxν

dτ

]
= Aµν

[d2xν

dτ 2
+ Γναβ

dxα

dτ

dxβ

dτ

]
= 0

where A = (Aµν ) is a transformation matrix. Using the inverse A−1 of Aµν and multiplying
by (A−1)σµ ≡ ∂xσ/∂Xµ, the above equation becomes

d2xσ

dτ 2
+ Γσαβ

dxα

dτ

dxβ

dτ
= 0, where Γσαβ =

∂xσ

∂Xσ

∂Xσ

∂xα ∂xβ
= Γσβα. (C.3)

This states that the particle trajectory is curved in general when Γσαβ ̸= 0, where Γσαβ is
playing the role of Christoffel symbol of covariant derivatives of Riemannian geometry.

The 4-velocity uν ≡ dxν/dτ of the particle is defined by (A.3) as uν =

(1,v/c )/
√
1− β2 . In the non-relativistic limit as β ≪ 1 for the particle velocity |v|

much less than the light velocity c, this yields uν = dxν/dτ → (1,v/c) = vν/c in the
limit (dτ → c dt). In this case, the equation (C.3) becomes

d

dt
vσ + Γσαβ v

α vβ = 0, in particular
d

dt
vk + Γk00 · 1 · 1 = 0, (C.4)

Appendix C. Free motion of physical systems and curved geodesics
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where vσ = dxσ/dt, the second equation is given for σ = k = 1, 2, 3, (α, β) = (0, 0), and
the factors Γσαβ other than Γk00 are set to zero. Compare this with (C.1). By assuming

the following relation of equality: Γk00 = ∂ΦE/∂x
k, the second equation of (C.4) becomes

equivalent to the equation (C.1). From the context of physics of the gravity theory, this
is very important because it implies a relation which equates the geometrical term Γk00
(called the Christoffel symbol) to a space derivative of the gravity potential ∂kΦE.

More precisely in mathematics, it is known of Kambe (2021a)) that a free
particle moving in curved spacetime is governed by the geodesic equation of the form

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0. (C.5)

Replacing the affine parameter λ with an equivalent proper time τ , the equation (C.5)
reduces to (C.3). Since the equations (C.1) and (C.4) have the form of the geodesic
equation (C.5), one can read off

Γk00 = ∂ΦE/∂x
k (k = 1, 2, 3); all other Γαβγ vanish. (C.6)

According to of Part I, in a curved 4d spacetime, a covariant derivative of a
vector field vα(xµ) along a curve P (λ) with its tangent uβ = dxβ/dλ is defined by

(∇̂uv)
α ≡ d

dλ
vα + Γαβγ v

βuγ ≡ ∇̂λ. (C.7)

where ∇̂ denotes the nabla-operator in the 4d spacetime. Using this definition, the
geodesic equation (C.5) can be written simply as

∇̂uu = 0, or ∇̂λu = 0, where uα ≡ dxα(P )/dλ. (C.8)

According to the differential geometry (Misner et al. 2017, Chap.8), this states that the
geodesic is a curve P (λ) which parallel-transports its tangent uα = dxα(P )/dλ. In the
flat space of special relativity where gµν is given by the metric ηµν = diag(−1, 1, 1, 1),
the geodesic takes a straight path d2xα/dλ2 = 0, since Γαβγ = 0 (see the footnote†).

The equation (C.5) can be written in the form of a geodesic equation, by taking
the specification of λ = t, uα = (1, vk) with vk = dxk(P )/dt and the equation (C.6):

(∇̂uu)
k ≡ d

dt
uk + Γk00 u

0u0 = 0, u0 = 1, uk ≡ dxk(P )

dt
= vk, (C.9)

where the operator ∇̂ is defined by (C.7). This implies that the free motion of a test
particle in a gravitational potential field ΦE(x

k) is described by a geodesic trajectory
which is curved in a linked space-time. A geodesic curve is a generalization of a straight
line in flat spacetime to a curved spacetime.

With a simplified potential Φ = gz of a uniform value g of gravity in a cartesian
(x, y, z)-space, one finds a trajectory of a point-mass: z(t) = 1

2 gt
2+w0t, x(t) = u0t and

y(t) = v0t where (u0, v0, w0) denote the initial velocity. Thus it is seen that the parabolic
trajectory of free motion of a point-mass in the gravity field Φ = gz is a geodesic in the
linked spacetime (t, x, y, z), which is curved in a geometrical sense.

(b) Free motion of a perfect fluid in a flat space
Let us consider free motion of a perfect fluid of constant density under pressure

field in a flat space. This case is worth given a particular remark, because this is a free
motion characterized with curvature tensors that occurs in a flat 3-space for a perfect

† The equation (3.12) of Part I paper: Γα
βγ = gαµΓµβγ , Γµβγ = 1

2

(∂gµβ

∂xγ +
∂gµγ

∂xβ − ∂gβγ

∂xµ

)
.
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fluid under pressure field. This is formulated mathematically with an exact analysis by
Arnold (1966).

In §2.1, we have seen that free motion of a perfect fluid can be described by the
Euler’s equation of motion of the form (2.2), which is analogous to the Newton’s equation
of motion (C.4) rewritten in the geometrical language, transformed from the original
Newton equation (C.1).

This implies that the Euler’s equation of motion too may be further transformed
to the form of geodesic equation (C.9), because both equations are descriptions of free
motion. This is true. In fact, it is already down by the mathematician V.I. Arnold (1966)
for a perfect fluid of constant density satisfying the condition of incompressibility by
applying the differential geometry of Lie groups of infinite dimensions.

According to Arnold, it is found on the basis of Riemannian geometry and Lie group
theory that the Euler’s equation of motion for flows of a perfect fluid of uniform density
on a bounded flat space-time M is a geodesic equation on a group of volume-preserving
diffeomorphisms with the metric of the kinetic energy (see also Kambe (2010, Chap. 8)
for some details, in addition to Arnold (1966) ). Here, we consider the fluid motion in
flat space.

Defining u(x) as the 3-velocity field for x ∈M (a bounded 3-space) satisfying the
divergence-free condition divxu(x) = 0 for a constant density ρ∗, the geodesic equation
is given by

∇̂t u ≡ ∂tu+∇uu = 0, ∇uu ≡ (u · ∇)u+∇(p/ρ∗), (C.10)

(eq. (8.42) of Kambe (2010)), where ∇ is a divergence-free connection satisfying

div
(
∇uu

)
= div

(
(u · ∇)u+∇(p/ρ∗)

)
= 0. (C.11)

This ensures divu = 0 at any time from (C.10) if it is satisfied initially. The equation
(C.11) constrains the pressure field p to satisfy ∇2p = −ρ∗ ∂j∂k(ujuk). The geodesic
equation (C.10) is nothing but the Euler’s equation of a perfect fluid of constant density:

∂tu+ (u · ∇)u+∇(p/ρ∗) = 0. (C.12)

Using the operator Dt of (2.4), this can be rewritten in the form of equation-of-motion
of a fluid particle analogous to (2.2) as Dtu +∇P = 0, where P ≡ p/ρ∗. Since this is
analogous to (C.1), it is suggested that the geodesic equation (C.12) can be rewritten

in the form of an equation using a covariant derivative ∇̂ of 4-spacetime in terms of
Christoffel symbol Γ’s.

For that purpose, we define the 4-velocity by vν = dXν/dt = ( c, u ), in the non-
relativistic limit (β → 0) with dXν = (c dt, dX). Then, the equation (C.12) can be
rewritten in the following form of geodesic equation:

(∇̂vv)
k ≡ D

Dt
vk + Γk00 v

0v0 = 0, for k = 1, 2, 3 , (C.13)

v0 = c, Γk00 = c−2(∂/∂xk)P , all other Γαβγ vanish.

Appendix C.2. Free dynamics and action principle of invariant variations
Free motion of a perfect fluid under a pressure field p(xν) and a background field aµ(x

ν)
in a flat space was studied in , where modified Euler’s equation of motion
(2.11) was derived in the former and the equation (2.32) governing the background
field was derived in the latter. In particular, the set of latter equations re-ensures the
continuity equation. The same continuity equation was required already in from
the invariance of the interaction action S(int) to the gauge transformation of aµ(x

ν).

Fluid Gauge Theory

section c)II and f)
section c)II

section II a)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

© 2021 Global Journals

     

     

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
I   

Is
s u

e 
  
  IV

Y
ea

r
20

21

144

  
 

( A
)

V
er

sio
n

I

By the scenario of Utiyama’s gauge principle, the new field aµ should be incorpo-
rated as a connection term in a covariant derivative. To that end, physical and mathe-
matical formulation are presented by geometrical language in this section enabling the
generalization. As a matter of fact, this section aims to conclude the fluid gauge theory.

The Euler’s equation (2.2) can be written as Dtv + ρ−1 ∇ p = 0 in the form of an
equation of motion of a fluid particle and describes free motion of a perfect fluid. In
principle, free motion is given by a geodesic equation. Appendix B.2 derives the same
equation (B.17) as a geodesic equation deduced from the action principle. In mechanical
systems, the variational principle of action integrals yields a geodesic equation.

Naively speaking, a geodesic is a curve representing the shortest (or extremum) path
between two points in a Riemannian manifold. More generally, a geodesic is defined to
be a curve whose tangent vector T remain parallel if they are transported along it,

i.e. if ∇̂T T = 0 (see Kambe (2021a): Eq.(4.8) and Appendix A.6). This recovers the
statement mentioned above that the arc length between two points in a Riemannian

manifold takes the extremum length when ∇̂T T = 0. This fact is seen transparently in
the definition of action integral of a point mass of Eq.(B.1) of Appendix B.1:

S(m) = −cm
∫

dτ, dτ ≡
√

−dxνdxν = c dt
√

1− β2, β ≡ v

c
, (C.14)

where dτ is the relativistic infinitesimal time-like interval, invariant by Lorentz

transformation. Vanishing variation of the integral, δ
∫ b
a
dτ = 0, signifies the extremum

of the time-like interval between the end points a and b. Hence there is no doubt that

a geodesic equation such as ∇̂T T = 0 plays a role in the variation.

(a) Free particle of mass m
In the Appendix B, it is found that the variation of S(m) is given by (B.5):

δ S(m) = −cm
∫ b

a

duν

dτ
δxν dτ ,

under the condition that the variation δxν vanishes at end points. Requiring δ S(m) = 0
for arbitrary variation δxν , we obtain the geodesic equation:

duν

dτ
= ∇τu

ν = uν∂νu
ν = 0,

d

dτ
= ∇τ = uν∂ν , (C.15)

Note that a tangent vector T is defined as T = T ν∂ν = uν∂ν = (dxν/dτ)(∂/∂xν) = d/dτ ,

and that the above equation can be written also in the form, ∇̂T T = 0 with ∇̂T = T ν∂ν .
Thus, it is found that a free particle is governed by the geodesic equation: ∇τu

ν = 0.

(b) Free motion of a perfect fluid
The action of a perfect fluid is given by (B.7) and (B.8) as

S(pf) = −c
∫ ∫

(ρ dV)
(
1 + c−2 ϵ(ρ)

)
dτ, ρdV = dm. (C.16)

Comparing this action for a perfect fluid (of continuum material of density ρ) with the
action S(m) of (C.14) for a single particle of mass m, one finds that the mass energy mc2

is replaced by an integral of the energy ρ (c2 + ϵ) per a volume element dV , where ϵ is
the specific internal energy in the rest frame of the fluid. Namely, the internal energy
is added to the mass energy because the fluid has its own thermal energy in addition to
the rest-mass energy. This is the difference of the two systems.

In the Appendix B.2, the integrand of variation δS(pf) is given by (B.14). Deleting
vanishing terms, its dominant leading order term is given by

δ J (pf) = −c (∆m)
( d

dτ
uν + c−2 1

ρ
∂ν p

)
δxν dτ, ∆m = ρ∆V .
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For the invariance of the action S(pf), it is required that δ J (pf) = 0 is satisfied for
arbitrary variation δxν . Thus, we obtain the following geodesic equation:

∇(pf)
τ uν ≡ d

dτ
uν + c−2 1

ρ
∂ν p = 0,

d

dτ
= uν∂ν =

1

c

(
(∂t + vk∂k) +O(β2)

)
.(C.17)

This reduces to the Euler’s equation of motion of (2.2), which is the same as Eq. (B.17)
deduced in Appendix B.2. As the above derivation shows clearly, the equation (C.17)

defines the covariant derivative ∇(pf)
τ uν of the perfect fluid. The derivative may be called

more appropriately as an invariant derivative (Utiyama (1987) Chap.11), because the
invariance of the action S(pf) is ensured by (C.17).

(c) Free motion of perfect fluid under a background field aν
The action of this system is given in by (2.28):

S(total) = S(pf) + S(int) + S(F) =

∫ [ ∫ (
L(pf) + L(int) + L(F)

)
dV

]
c dt, (C.18)

where L(pf), L(int) and L(F) are defined by (2.27).
(i) To find the equations governing the background field aν , we take variation of the
total action S(total) by assuming the fluid motion given and vary the potential aν only.
Expressing the integrand of variation of S(int) and S(F) by J (int) and J (F) respectively,
and using (2.31) in §2.6, their variations are given by

δJ (int) + δJ (F) =
(
jν − 1

µ

∂

∂xλ
f νλ

)
δaν dτ c

−1dV , dV = dV
√

1− β2. (C.19)

Vanishing of δJ (int) + δJ (F) = 0 for arbitrary variation δaν is given in §2.6 as

∂

∂xλ
f νλ = µ jν , (C.20)

(see (2.29) for the 4-current jν). This includes two important messages inside.
Firstly, the equation yields the law of current conservation ∂νj

ν = 0 of (2.33), which
is rewritten in the following equation of continuity

∂νj
ν = 0 ⇒ ∂tρ+∇ · j = 0, (C.21)

for jν = (ρc, ρv) with j = ρv. Secondly, the equation (C.20) represents a pair of fluid
Maxwell equations. Using the definition (3.14) of the fields e and b and the matrix
representation (3.15) of f νλ, the equation (C.20) represents the followings:

ε∇ · e = ρ, −ε ∂te+ µ−1∇× b = j, where ε = 1/(c2 µ). (C.22)

(ii) Next, to find the equations of fluid motion, we assume the field potential aν given
and vary only the trajectory of the fluid particle (X or v = ∂tX). This is done in

Appendix B.3 or in with the integrand variation δJ (fl+a)given by (2.10) or by

(B.26). For the invariance of the action, vanishing of δ J (fl+a) = 0 is required for
arbitrary variation δxν . Thus, we obtain the following geodesic equation:

∇(fl+a)
τ uν ≡ d

dτ
uν + c−2 1

ρ
∂νp − c−1 fνµ u

µ = 0. (C.23)

For the definition of d/dτ, see (C.17). In , it is already shown that this reduces to
the modified Euler equation (3.16) with additional term of fluid Lorentz force fa:

Dtv + ρ−1 ∇p− fa = 0, fa ≡ e+ v × b. (96)

Fluid Gauge Theory

section c)III

section c)III

section f)II
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Abstract-

 

The electrochemical behavior of the VNZhK alloy 
waste (wt.%: W 90, Ni 7,2, Fe 1,8, Co 1)

 

in a solution of 
(NH4)2CO3

 

1M was investigated by using the methods of cyclic 
voltammetry in the potentiodynamic mode, potentiostatic 
electrolysis and electrolysis under the action of alternating 
current (industrial frequency 50 Hz). It was found, that the 
highest oxidation rate of

 

VNZhK

 

alloy waste (1700 mg /cm2·h) 
is achieved by using alternating current, and the highest 
current efficiency (about 100%) -

 

by using direct current. А

 

technological scheme

 

was proposed

 

for recovery of 

 

tungsten  
from the heavy tungsten alloy waste

 

in the form of  ammonium 
paratungstate.

  

I.

 

Introduction

 

esearch in the field of tungsten-containing 
secondary raw materials

 

processing

 

is now 
widespread [1-10]. Electrochemical technologies 

for recycling tungsten from waste of metalized tungsten-
containing raw materials, including heavy tungsten 
alloys (WHAs), are often based on the use of alkaline 
solutions [11-15]. Despite the fact, that alkaline 
electrolytes have a higher electrical conductivity 
compared to ammonium carbonate solutions [16, 17], 
the use of the latter in the electrochemical processing of 
WHAs can significantly simplify the production of a 
commercial product -

 

ammonium paratungstate (APM). 
The extraction of tungsten from traditional alkaline 
solutions, as well as ammonium alkaline tungsten-
containing solutions,

 

is based on their neutralization with 
acids and precipitation of tungstic acid.

 

Tungstic acid is

 

further purified to achieve the necessary requirements. 
In this work, we propose the use of 

 

an ammonium 
carbonate solution as an electrolyte for processing

 

of 

 

WHAs waste

 

of the VNZhK

 

type. It

 

will simplify the 
separation of tungsten from the rest of the alloy 
components (metals of the iron subgroup), and at the 
same time, the use of

 

significant volumes of acids will 
be

 

excluded from the technological process.

 

Аlso 

 

there

 

will be no need to dispose of concentrated

 

salt 
solutions. The proposed approach prevents a decrease 
in the purity of the APM by impurities from the 
electrolyte.

 

The use of ammonium carbonate solutions in 
the WHAs electrochemical processing contributes to an 

increase in the environmental safety of production and 
also reduces the number of technological operations 
when obtaining the final product - APM. 

II. Experimental Part 

The anodic behavior of the VNZhK alloy waste 
(wt.%: W 90, Ni 7,2, Fe 1,8, Co 1) was studied by linear 
voltammetry in a potentiodynamic mode using an IPC-
Pro potentiostat. The VNZhK alloy waste was applied as 
a working electrode. The measurements were carried 
out relative to a saturated chlorine-silver reference 
electrode with an auxiliary glassy-carbon electrode. The 
potential sweep  speed was 1 mV/s. The samples were 
preliminarily washed with hydrochloric acid (4M) and 
distilled water. All studies were carried out in a  
ammonium carbonate solution 1M. This is due, on the 
one hand, to sufficient electrical conductivity of the 
electrolyte, and on the other hand, to the possibility of 
achieving a high concentration of tungsten in the 
electrolyte [17]. The solution temperature 20°C was 
maintained using a thermostat TW2-02. Potentiostatic 
dissolution of VNZhK alloy waste under the action of 
direct current (DC)  in a solution of ammonium 
carbonate 1M was carried out at a potential of +0,25 V, 
using an auxiliary glassy-carbon electrode at a 
temperature of 20°C. Dissolution of the VNZhK alloy 
waste under the influence of alternating current (АС) 
was carried out at the industrial frequency 50 Hz, using 
two electrodes made of the processed material at a 
temperature of 20 °C. The completeness of the tungsten 
leaching from the VNZhK alloy surface during its 
electrochemical processing under the action of DC in a 
potentiostatic mode was determined using X-ray 
spectral analysis (ISM-6380LV equipped with an Energy 
250 analyser and X-ray diffractometry (ARL X'TRA). The 
content of tungsten oxide in ammonium paratungstate 
was determined by the gravimetric method  [18]. 

The anodic polarization of the VNZhK alloy in 
the (NH4)2CO3 1M solution is shown in Figure 1. Curves 
1 - 3 in Figure 1 represent three cycles of volt-ampere 
curves of the VNZhK alloy waste in the potential range 
from -0,25 to +1,25 V, scanned sequentially one after 
the other.  Curve 4 in Figure 1 is the last cycle of the 
volt-ampere curve, after which its appearance practically 
does not change. It is associated with the complete 

R
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leaching of tungsten from the surface of the alloy.  
Figure 1 shows that the polarization curves have a 
shape, which is typical for materials, that tend to 
passivation. The initial part of the polarization curves (in 
the potential range from -0.25 to +0.25 V) is associated 
with the oxidation of tungsten and its transition into 
solution. It can be seen, that with each subsequent 

cycle the value of the maximum anodic current density 
decreases during alloy dissolution. It drops from 170 
mA/cm2 for a fresh alloy surface to 40 mA/cm2 for alloy 
surface completely leached with tungsten and enriched 
with iron, nickel and cobalt. 

 

Figure 1: Anode polarization curves of  VNZhK alloy waste in solution (NH4)2CO3 1M. 1- the first cycle, 2 - the second 
cycle, 3 - the last cycle after complete leaching of tungsten from the surface of the alloy 

Electrochemical dissolution of VNZhK alloy 
waste under the action of a DC was carried out in a 
potentiostatic mode at a potential of +0,25 V, which 
corresponds to the maximum anodic current density of 
the investigated alloy in electrolyte (NH4)2CO3

 1M. It was 
found, that the dissolution of the VNZhK alloy waste is 

carried out at a rate of 150 mg/cm2·h and current 
efficiency close to 100% (based on the ionization of 
tungsten in the oxidation state +6) with a degree of 
tungsten extraction into the solution - 99,5%. At the 
same time, it was found that, the use of ammonium 
carbonate electrolytes, as well as alkaline and 
ammonium alkaline solutions, leads to decrease in the 
dissolution rate of  investigated alloy in the process of 
electrochemical leaching of tungsten from the surface of 
the WHAs under the action of DC [19]. The use of АС 

makes it possible to overcome this obstacle [14].  

Figure 2 shows the dependence of the oxidation 
rate of the VNZhK alloy waste and its current efficiency 
on the alternating current density in the (NH4)2CO3

 1M 
solution. It can be seen, that  current density growth 
from 1 to 7 A/cm2 leads to a manifold increase in the 
oxidation rate of the alloy from 100 to 1700 mg/cm2·h.  
The process is accompanied by an increase in the 
current efficiency only from 3 to 33%. It is important to 
note the similarity of the electrochemical behavior of the 
VNZhK alloy in ammonium carbonate and ammonium 
alkaline solutions under the action of АС [14, 20]. In 
both cases, the transition of tungsten into solution is 
accompanied by the concentration of the iron subgroup 
metals in the finely dispersed electrolysis residue.  

 

  

Figure 2: Dependences of oxidation rate (1) of VNZhK alloy waste and its current efficiency (2) on the alternating 
current density in solution (NH4)2CO3 1M. 
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In order to optimize the electrolysis energy 
parameters, it is advisable to carry out the processing of 
WHAs by using both DC and AC. In this case, DC is 
most effective in cases, where the surface of the 
processed alloy is enriched with tungsten, and АС - 
when tungsten is already leached from the alloy surface 
and it needs to be renewed through the formation of a 
residue of the iron subgroup metals oxides in the form 
micro-dispersed powder [14, 20]. 

When the concentration of tungsten in the 
electrolyte reached 50 g/l, the latter was evaporated at a 
temperature of 70-80˚C until the odor of ammonia was 
removed in order to obtain APM. The precipitated APM 
was washed and dried at 90 ̊C. The content of WO 3 in 
the obtained APM was 87,4 wt.%.  

A schematic diagram for the processing of 
tungsten alloy waste of the VNZhK type under the action 
of DC and AC in ammonium carbonate solutions is 
shown in Figure 3. Tungsten passes from the alloy into 
the electrolyte as a result of the electrochemical 
dissolution of the alloy under the action of AC and DC. 

The electrolyte is evaporated, and excess of ammonium 
carbonate decomposes into ammonia and carbon 
dioxide, released in the form of gases. The process is 
accompanied by crystallization of APM. Nickel, iron and 
cobalt are concentrated in the oxide form as micro-
dispersed electrolysis residue, which is filtered before 
the electrolyte evaporation stage. Traces of tungsten 
oxides in micro-dispersed residue are leached with an 
ammonium carbonate solution and returned to the stage 
of electrochemical dissolution of VNZhK alloy waste. 

III. Conclusions 

The electrochemical behavior of heavy tungsten 
alloy waste of the VNZhK type in a 1 M ammonium 
carbonate solution was investigated. It was found, that 
the optimal value of the alloy dissolution potential was + 
0,25 V in the investigated electrolyte. It was shown, that 
the dissolution rate of the alloy was 150 mg/cm2·h at its 
current efficiency of ~ 100% in the process of 
potentiostatic electrolysis. 

Figure 3: Schematic diagram for the recycling of heavy tungsten alloys of  VNZhK type in ammonium carbonate 
solutions 

The change in the oxidation rate of heavy 
tungsten alloy waste of the VNZhK type and its current 
efficiency depending on the alternating current density 
of the industrial frequency in the range from 1 to 7 A/cm2 
was investigated. It was revealed, that the oxidation rate 
of alloy increased to 1700 mg/cm2·h at a current density 
of 7 A/cm2 but its current efficiency was about 30%. 

A technological scheme for processing heavy 
tungsten alloy waste of the VNZhK type in ammonium 
carbonate solutions using direct and alternating electric 
current was proposed. 

The work was carried out according to the state 
ask 075-00328-21-00. 
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Fellow and Associate designations signify that the 

researcher has gained the knowledge of the fundamental 

and high-level concepts, and is a subject matter expert, 

proficient in an expertise course covering the professional 

code of conduct, and follows recognized standards of 

practice. The credentials are designated only to the 

researchers, scientists, and professionals that have been 

selected by a rigorous process by our Editorial Board and 

Management Board. 

Associates of FSFRC/ASFRC are scientists and 

researchers from around the world are working on 

projects/researches that have huge potentials. 

Members support Global Journals’ mission to advance 

technology for humanity and the profession. 
 

FSFRC 
FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL 

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL is the most prestigious membership of Global Journals. It 

is an award and membership granted to individuals that the Open Association of Research Society judges to have 

made a 'substantial contribution to the improvement of computer science, technology, and electronics engineering. 

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global 

perspective and to create a channel between them and other researchers for better exposure and knowledge 

sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are 

elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit 

on the number of new nominations made in any year. Each year, the Open Association of Research Society elect 
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A FSFRC member gets access to a closed network of Tier 1 researchers and 
scientists with direct communication channel through our website. Fellows can 
reach out to other members or researchers directly. They should also be open to 
reaching out by other.

Fellows receive a printed copy of a certificate signed by our Chief Author that may 
be used for academic purposes and a personal recommendation letter to the dean 
of member's university.

Fellows can use the honored title of membership. The “FSFRC” is an honored title 
which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., FSFRC or 
William Walldroff, M.S., FSFRC.

All the Fellow members of FSFRC get a badge of "Leading Member of Global Journals" on the Research 
Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for 
better visibility and citation. All fellows get a dedicated page on the website with their biography.
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Fellows receive discounts on future publications with Global Journals up to 60%. Through our recommendation 
programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ Internal Account

Fellows get secure and fast GJ work emails with unlimited forward of emails that 
they may use them as their primary email. For example, 
john [AT] globaljournals [DOT] org.

To take future researches to the zenith, fellows and associates receive access to all 
the premium tools that Global Journals have to offer along with the partnership with 
some of the best marketing leading tools out there.

Conferences & Events

Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation 
(USA). They can also participate in the same organized by another institution as representative of Global Journal. 
In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free 
research conferences (and others) alerts.

Get discounts on the future publications 

Unlimited forward of Emails 

Access to all the premium tools 
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All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by 
Global Journals in their subject.



And Much More 
Get access to scientific museums and observatories across the globe 

 

Access to Editorial Board 
Become a member of the Editorial Board 

Reviewers 
Get a remuneration of 15% of author fees 

 
Publishing Articles & Books 
Earn 60% of sales proceeds 

Financial  Exclusive 

Financial  

Career

 

Credibility

 

Exclusive

 

Reputation

 

IIIV

© Copyright by Global Journals | Guidelines Handbook

Fellows can publish articles (limited) without any fees. Also, they can earn up to 
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publishing of research paper. The FSFRC member can decide its price and we can 
help in making the right decision.

Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a 
remuneration of 15% of author fees, taken from the author of a respective paper.

Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful 
completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other 
members for Editorial Board.

All members get access to 5 selected scientific museums and observatories across the globe. All researches 
published with Global Journals will be kept under deep archival facilities across regions for future protections and 
disaster recovery. They get 10 GB free secure cloud access for storing research files.
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ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL is the membership of Global Journals awarded to 

individuals that the Open Association of Research Society judges to have made a 'substantial contribution to the 

improvement of computer science, technology, and electronics engineering. 

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global 

perspective and to create a channel between them and other researchers for better exposure and knowledge 

sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate 

membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review 

process on the basis of excellence in the respective domain. There is no limit on the number of new nominations 

made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members. 
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We accept the manuscript submissions in any standard (generic) format. 

We typeset manuscripts using advanced typesetting tools like Adobe In Design, CorelDraw, TeXnicCenter, and TeXStudio. 
We usually recommend authors submit their research using any standard format they are comfortable with, and let Global 
Journals do the rest. 

Alternatively, you can download our basic template  

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. 
Authors who are not able to submit manuscript using the form above can email the manuscript department at 
submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before 
submission. 

Before and during Submission 

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the 
following checklist before submitting: 

1. Authors must go through the complete author guideline and understand and agree to Global Journals' ethics and code 
of conduct, along with author responsibilities. 

2. Authors must accept the privacy policy, terms, and conditions of Global Journals. 
3. Ensure corresponding author’s email address and postal address are accurate and reachable. 
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s') names and details (email 

address, name, phone number, and institution), figures and illustrations in vector format including appropriate 
captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references. 

5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper. 
6. Proper permissions must be acquired for the use of any copyrighted material. 
7. Manuscript submitted must not have been submitted or published elsewhere and all authors must be aware of the 

submission. 

Declaration of Conflicts of Interest 

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and 
organizations that could influence (bias) their research. 

Policy on Plagiarism 

Plagiarism is not acceptable in Global Journals submissions at all. 

Plagiarized content will not be considered for publication. We reserve the right to inform authors’ institutions about 
plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines: 

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize 
existing research data. The following, if copied, will be considered plagiarism: 

• Words (language) 
• Ideas 
• Findings 
• Writings 
• Diagrams 
• Graphs 
• Illustrations 
• Lectures 
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• Printed material 
• Graphic representations 
• Computer programs 
• Electronic material 
• Any other original work 

Authorship Policies 

Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to 
its guidelines, authorship criteria must be based on: 

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings. 
2. Drafting the paper and revising it critically regarding important academic content. 
3. Final approval of the version of the paper to be published. 

Changes in Authorship 

The corresponding author should mention the name and complete details of all co-authors during submission and in 
manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication 
of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for 
changes in authorship. 

Copyright 

During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which 
gives Global Journals the authority to reproduce, reuse, and republish authors' research. We also believe in flexible 
copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after 
acceptance to choose your copyright policy. You may follow this form for copyright transfers. 

Appealing Decisions 

Unless specified in the notification, the Editorial Board’s decision on publication of the paper is final and cannot be 
appealed before making the major change in the manuscript. 

Acknowledgments 

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding 
for the research can be included. Suppliers of resources may be mentioned along with their addresses. 

Declaration of funding sources 

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research 
domain. Authors are requested to disclose their source of funding during every stage of their research, such as making 
analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its 
submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global 
Journals and submitting to the respective funding source. 

Preparing your Manuscript 

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including 
all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and 
Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is 
one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their 
paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, 
Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and 
abstract should be in English. This will facilitate indexing and the pre-peer review process. 

The following is the official style and template developed for publication of a research paper. Authors are not required to 
follow this style during the submission of the paper. It is just for reference purposes. 
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Manuscript Style Instruction (Optional) 

• Microsoft Word Document Setting Instructions. 
• Font type of all text should be Swis721 Lt BT. 
• Page size: 8.27" x 11'”, left margin: 0.65, right margin: 0.65, bottom margin: 0.75. 
• Paper title should be in one column of font size 24. 
• Author name in font size of 11 in one column. 
• Abstract: font size 9 with the word “Abstract” in bold italics. 
• Main text: font size 10 with two justified columns. 
• Two columns with equal column width of 3.38 and spacing of 0.2. 
• First character must be three lines drop-capped. 
• The paragraph before spacing of 1 pt and after of 0 pt. 
• Line spacing of 1 pt. 
• Large images must be in one column. 
• The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10. 
• The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10. 

Structure and Format of Manuscript 

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. 
Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers 
are reports of significant research (typically less than 7,000 words, including tables, figures, and references) 

A research paper must include: 

a) A title which should be relevant to the theme of the paper. 
b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.  
c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus. 
d) An introduction, giving fundamental background objectives. 
e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit 

repetition, sources of information must be given, and numerical methods must be specified by reference. 
f) Results which should be presented concisely by well-designed tables and figures. 
g) Suitable statistical data should also be given. 
h) All data must have been gathered with attention to numerical detail in the planning stage. 

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any 
paper that appears not to have adequate numerical treatments of the data will be returned unrefereed. 

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also 
be summarized. 

j) There should be brief acknowledgments. 
k) There ought to be references in the conventional format. Global Journals recommends APA format. 

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much 
more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow 
instructions. They will also be published with much fewer delays than those that require much technical and editorial 
correction. 

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity. 
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Format Structure 

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to 
published guidelines. 

All manuscripts submitted to Global Journals should include: 

Title 

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with 
spaces), names of the authors and co-authors, and the place(s) where the work was carried out. 

Author details 

The full postal address of any related author(s) must be specified. 

Abstract 

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the 
paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon. 

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing 
your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be 
viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-
friendliness of the most public part of your paper. 

Keywords 

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find 
both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, 
mining, and indexing. 

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list 
of possible keywords and phrases to try. 

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search 
should be as strategic as possible. 

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most 
important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a 
research paper?” Then consider synonyms for the important words. 

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, 
the keywords under which a research paper is abstracted are listed with the paper. 

Numerical Methods 

Numerical methods used should be transparent and, where appropriate, supported by references. 

Abbreviations 

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them. 

Formulas and equations 

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality 
image. 
 
Tables, Figures, and Figure Legends 

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic 
number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable 
format and not as images. References to these tables (if any) must be mentioned accurately. 
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Figures 

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic 
numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it. 

Preparation of Eletronic Figures for Publication 

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent 
the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/ photographs) files only. 
MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF 
only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi              (line drawings). Please give the data 
for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and 
with a TIFF preview, if possible). 

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line 
art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi. 

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that 
if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and 
return a Color Work Agreement form before your paper can be published. Also, you can email your editor to remove the 
color fee after acceptance of the paper. 

Tips for Writing a Good Quality Science Frontier Research Paper 

1. Choosing the topic: 

 

In most cases, the topic is selected by the interests of the author, but it can also be suggested by the 
guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking 
several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to 
accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is 
"yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, 
you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed 
information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that 
evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So 
present your best aspect.

 

2.

 

Think like evaluators:

 

If you are in confusion or getting demotivated because your paper may not be accepted by the 
evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your 
research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or 
framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your 
outline must be related to the topic you have chosen.

 

3.

 

Ask your

 

guides:

 

If you are having any difficulty with your research, then do not hesitate to share your difficulty with 
your guide (if you have one). They will surely help you out and resolve your doubts. If you can't clarify what exactly you 
require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list 
of essential readings.

 

4.

 

Use of computer is recommended:

 

As you are doing research in the field of science frontier then this point is quite 
obvious.

 

Use right software: Always use good quality software packages. If you are not capable of judging good software, 
then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can 
get through the internet.

 

5.

 

Use the internet for help:

 

An excellent start for your paper is using Google. It is a wondrous search engine, where you 
can have your doubts resolved. You may also read some answers for the frequent question of how to write your research 
paper or find a model research paper. You can download books from the internet. If you have all the required books, place 
importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big 
pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should 
strictly follow here.
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6. Bookmarks are useful: When you read any book or magazine, you generally use bookmarks, right? It is a good habit 
which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will 
make your search easier. 

7. Revise what you wrote: When you write anything, always read it, summarize it, and then finalize it. 

8. Make every effort: Make every effort to mention what you are going to write in your paper. That means always have a 
good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your 
work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any 
important thing like making a research paper, you should always have backup copies of it either on your computer or on 
paper. This protects you from losing any portion of your important data. 

9. Produce good diagrams of your own: Always try to include good charts or diagrams in your paper to improve quality. 
Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to 
include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do 
research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant 
to science, use of quotes is not preferable. 

10. Use proper verb tense: Use proper verb tenses in your paper. Use past tense to present those events that have 
happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in 
the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete. 

11. Pick a good study spot: Always try to pick a spot for your research which is quiet. Not every spot is good for studying. 

12. Know what you know: Always try to know what you know by making objectives, otherwise you will be confused and 
unable to achieve your target. 

13. Use good grammar: Always use good grammar and words that will have a positive impact on the evaluator; use of 
good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment 
sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice. 

Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish 
them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) 
complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. 
Put together a neat summary. 

14. Arrangement of information: Each section of the main body should start with an opening sentence, and there should 
be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain 
your arguments with records. 

15. Never start at the last minute: Always allow enough time for research work. Leaving everything to the last minute will 
degrade your paper and spoil your work. 

16. Multitasking in research is not good: Doing several things at the same time is a bad habit in the case of research 
activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a 
particular part in a particular time slot. 

17. Never copy others' work: Never copy others' work and give it your name because if the evaluator has seen it anywhere, 
you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you 
are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and 
food. 

18. Go to seminars: Attend seminars if the topic is relevant to your research area. Utilize all your resources. 

19. Refresh your mind after intervals: Try to give your mind a rest by listening to soft music or sleeping in intervals. This 
will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you 
acquire colleagues, they can give you ideas which will be helpful to your research. 
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20. Think technically: Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think 
and then print: When you go to print your paper, check that tables are not split, headings are not detached from their 
descriptions, and page sequence is maintained. 

21. Adding unnecessary information: Do not add unnecessary information like "I have used MS Excel to draw graphs." 
Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never 
take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove 
quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never 
go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. 
Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, 
abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or 
commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review. 

22. Report concluded results: Use concluded results. From raw data, filter the results, and then conclude your studies 
based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical 
remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot 
perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include 
examples. 

23. Upon conclusion: Once you have concluded your research, the next most important step is to present your findings. 
Presentation is extremely important as it is the definite medium though which your research is going to be in print for the 
rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A 
good quality research paper format is essential because it serves to highlight your research paper and bring to light all 
necessary aspects of your research. 

Informal Guidelines of Research Paper Writing 

Key points to remember: 

• Submit all work in its final form. 
• Write your paper in the form which is presented in the guidelines using the template. 
• Please note the criteria peer reviewers will use for grading the final paper. 

Final points: 

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the 
following sections, submitted in the order listed, with each section starting on a new page: 

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that 
directed you to make a study. As you carry out the process of study, the method and process section will be constructed 
like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar 
intellectual paths throughout the data that you gathered to carry out your study. 

The discussion section: 

This will provide understanding of the data and projections as to the implications of the results. The use of good quality 
references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings. 

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent 
preparation, and controlled record-keeping are the only means to make straightforward progression. 

General style: 

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general 
guidelines. 

To make a paper clear: Adhere to recommended page limits. 
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Mistakes to avoid: 

• Insertion of a title at the foot of a page with subsequent text on the next page. 
• Separating a table, chart, or figure—confine each to a single page. 
• Submitting a manuscript with pages out of sequence. 
• In every section of your document, use standard writing style, including articles ("a" and "the"). 
• Keep paying attention to the topic of the paper. 
• Use paragraphs to split each significant point (excluding the abstract). 
• Align the primary line of each section. 
• Present your points in sound order. 
• Use present tense to report well-accepted matters. 
• Use past tense to describe specific results. 
• Do not use familiar wording; don't address the reviewer directly. Don't use slang or superlatives. 
• Avoid use of extra pictures—include only those figures essential to presenting results. 

Title page: 

Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have 
acronyms or abbreviations or exceed two printed lines. 

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported 
in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in 
itself. Do not cite references at this point. 

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer 
can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant 
conclusions or new questions. 

Write your summary when your paper is completed because how can you write the summary of anything which is not yet 
written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability 
for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The 
author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any 
summary. Try to limit the initial two items to no more than one line each. 

Reason for writing the article—theory, overall issue, purpose. 

• Fundamental goal. 
• To-the-point depiction of the research. 
• Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of 

any numerical analysis should be reported. Significant conclusions or questions that emerge from the research. 

Approach: 

o Single section and succinct. 
o An outline of the job done is always written in past tense. 
o Concentrate on shortening results—limit background information to a verdict or two. 
o Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important 

statistics) are just as significant in an abstract as they are anywhere else. 

Introduction: 

The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background 
information to be capable of comprehending and calculating the purpose of your study without having to refer to other 
works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive 
appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the 
reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if 
needed, but do not present any particulars about the protocols here. 
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The following approach can create a valuable beginning: 

o Explain the value (significance) of the study. 
o Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon 

its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it. 
o Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose 

them. 
o Briefly explain the study's tentative purpose and how it meets the declared objectives. 

Approach: 

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job 
is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you 
will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The 
reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad 
view. 

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases. 

Procedures (methods and materials): 

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a 
capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of 
reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped 
as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit 
another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of 
subheadings is suggested and ought to be synchronized with the results section. 

When a technique is used that has been well-described in another section, mention the specific item describing the way, 
but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad 
procedures so that another person may use some or all of the methods in one more study or referee the scientific value of 
your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders. 

Materials: 

Materials may be reported in part of a section or else they may be recognized along with your measures. 

Methods: 

o Report the method and not the particulars of each process that engaged the same methodology. 
o Describe the method entirely. 
o To be succinct, present methods under headings dedicated to specific dealings or groups of measures. 
o Simplify—detail how procedures were completed, not how they were performed on a particular day. 
o If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all. 

Approach: 

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the 
reviewer's interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third 
person passive voice. 

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences. 

What to keep away from: 

o Resources and methods are not a set of information. 
o Skip all descriptive information and surroundings—save it for the argument. 
o Leave out information that is immaterial to a third party. 
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Results: 

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective 
details of the outcome, and save all understanding for the discussion. 

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to 
present consequences most efficiently. 

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data 
or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if 
requested by the instructor. 

Content: 

o Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables. 
o In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate. 
o Present a background, such as by describing the question that was addressed by creation of an exacting study. 
o Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if 

appropriate. 
o Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or 

manuscript. 

What to stay away from: 

o Do not discuss or infer your outcome, report surrounding information, or try to explain anything. 
o Do not include raw data or intermediate calculations in a research manuscript. 
o Do not present similar data more than once. 
o A manuscript should complement any figures or tables, not duplicate information. 
o Never confuse figures with tables—there is a difference.  

Approach: 

As always, use past tense when you submit your results, and put the whole thing in a reasonable order. 

Put figures and tables, appropriately numbered, in order at the end of the report. 

If you desire, you may place your figures and tables properly within the text of your results section. 

Figures and tables: 

If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached 
appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and 
include a heading. All figures and tables must be divided from the text. 

Discussion: 

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded 
based on problems with the discussion. There is no rule for how long an argument should be. 

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the 
paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results 
and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The 
implication of results should be fully described. 

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain 
mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have 
happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the 
data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded 
or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain." 
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Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results 
that you have, and take care of the study as a finished work. 

o You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea. 
o Give details of all of your remarks as much as possible, focusing on mechanisms. 
o Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was 

correctly restricted. Try to present substitute explanations if they are sensible alternatives. 
o One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go 

next? The best studies unlock new avenues of study. What questions remain? 
o Recommendations for detailed papers will offer supplementary suggestions. 

Approach: 

When you refer to information, differentiate data generated by your own studies from other available information. Present 
work done by specific persons (including you) in past tense. 

Describe generally acknowledged facts and main beliefs in present tense. 

The Administration Rules 

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc. 

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to 
avoid rejection. 

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your 
paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to 
identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and 
do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript. 

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is 
only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid 
plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your 
career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read 
your paper and file. 
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Topics Grades

A-B C-D E-F

Abstract

Clear and concise with 

appropriate content, Correct 

format. 200 words or below 

Unclear summary and no 

specific data, Incorrect form

Above 200 words 

No specific data with ambiguous 

information

Above 250 words

Introduction

Containing all background 

details with clear goal and 

appropriate details, flow 

specification, no grammar 

and spelling mistake, well 

organized sentence and 

paragraph, reference cited

Unclear and confusing data,

appropriate format, grammar 

and spelling errors with 

unorganized matter

Out of place depth and content, 

hazy format

Methods and 

Procedures

Clear and to the point with 

well arranged paragraph, 

precision and accuracy of 

facts and figures, well 

organized subheads

Difficult to comprehend with 

embarrassed text, too much 

explanation but completed 

Incorrect and unorganized 

structure with hazy meaning

Result

Well organized, Clear and 

specific, Correct units with 

precision, correct data, well 

structuring of paragraph, no 

grammar and spelling 

mistake

Complete and embarrassed 

text, difficult to comprehend

Irregular format with wrong facts 

and figures

Discussion

Well organized, meaningful 

specification, sound 

conclusion, logical and 

concise explanation, highly 

structured paragraph 

reference cited 

Wordy, unclear conclusion, 

spurious

Conclusion is not cited, 

unorganized, difficult to 

comprehend 

References

Complete and correct 

format, well organized

Beside the point, Incomplete Wrong format and structuring

                                          

CRITERION FOR GRADING A RESEARCH PAPER (COMPILATION)
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Please note that following table is only a Grading of "Paper Compilation" and not on "Performed/Stated Research" whose grading 

solely depends on Individual Assigned Peer Reviewer and Editorial Board Member. These can be available only on request and after 

decision of Paper. This report will be the property of Global Journals.
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