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I.

 

Introduction

 

Let  ℋ(𝑝𝑝)

 

be the class of analytic and p-  valent function 𝑓𝑓(𝑧𝑧). The function 𝑓𝑓(𝑧𝑧)

 

can be expressed as

 

                                        𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘                                            ∞
𝑘𝑘=𝑛𝑛+𝑝𝑝             (1.1)  

where

 

p

 

is some natural number, 𝑛𝑛 ∈ ℕ

 

The function 𝑓𝑓(𝑧𝑧)

 

defined in (1.1) isan analytic function and p  -  valent function 
in the open unit disc

 

                     𝑈𝑈1 = {𝑧𝑧 ∶

 

|𝑧𝑧| < 1}

 

If a function 𝑓𝑓(𝑧𝑧) ∈   ℋ(𝑝𝑝) satisfies the following condition

 

                                 𝑅𝑅𝑅𝑅 �𝑧𝑧𝑓𝑓
′ (𝑧𝑧)

𝑓𝑓(𝑧𝑧)
� >   𝜑𝜑          𝑧𝑧 ∈ 𝑈𝑈1  ,   0 ≤

 

φ < 𝑝𝑝   , 𝑝𝑝

 

∈

 

ℕ                 (1.2)  

then

 

𝑓𝑓(𝑧𝑧)  is a p

 

–

 

valent starlike function of order φ

 

and if a function 𝑓𝑓(𝑧𝑧) ∈

 

ℋ(𝑝𝑝) satisfies the following condition
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                               𝑅𝑅𝑅𝑅 �1 + 𝑧𝑧𝑓𝑓′′ (𝑧𝑧)
𝑓𝑓′ (𝑧𝑧)

� > φ           𝑧𝑧 ∈ 𝑈𝑈1 ,   0 ≤   φ < 𝑝𝑝   , 𝑝𝑝  ∈  ℕ              (1.3) 

then  𝑓𝑓(𝑧𝑧)  is a p  –  valent convex function of order φ  

To define a new subclass of multivalent function by using Jackson derivative, we use 
the following definitions  

Definition 1:  Let𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝   𝑎𝑎𝑎𝑎𝑎𝑎   𝑔𝑔(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑏𝑏𝑘𝑘𝑧𝑧𝑘𝑘∞

𝑘𝑘=𝑛𝑛+𝑝𝑝  are the   

members of the class  ℋ(𝑝𝑝), then their convolution product or Hadamard product  is 
defined as  

                           (𝑓𝑓 ∗ 𝑔𝑔)(𝑧𝑧) =  (𝑔𝑔 ∗ 𝑓𝑓)(𝑧𝑧)  = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝                                (1.4)  

and generally the convolution product of functions  𝑓𝑓(𝑧𝑧)  and 𝑔𝑔(𝑧𝑧)  is denoted by 

(𝑓𝑓 ∗ 𝑔𝑔)(𝑧𝑧) or(𝑔𝑔 ∗ 𝑓𝑓)(𝑧𝑧). 

Definition 2:  The Jackson q- derivative of a function 𝑓𝑓(𝑧𝑧)  is denoted by  
𝐷𝐷𝑞𝑞𝑓𝑓(𝑧𝑧)  𝑜𝑜𝑜𝑜  𝐷𝐷𝑞𝑞 ,𝑧𝑧  𝑓𝑓(𝑧𝑧) and  it is defined as  

                                                      𝐷𝐷𝑞𝑞 ,𝑧𝑧  𝑓𝑓(𝑧𝑧) = 𝑓𝑓(𝑧𝑧)−𝑓𝑓(𝑧𝑧𝑧𝑧 )
𝑧𝑧−𝑧𝑧𝑧𝑧

𝑧𝑧 ≠ 0 𝑎𝑎𝑎𝑎𝑎𝑎  𝑞𝑞  ≠ 1                                     (1.5) 

The Jackson’s q –  derivative tends to ordinary derivative when q tends to 1.  
The Jackson q- derivative can also be written as  

                              𝐷𝐷𝑞𝑞 ,𝑧𝑧
m 𝑧𝑧𝑟𝑟 =  Γ𝑞𝑞 (1+ r)

Γ𝑞𝑞 (1+ r−m )
𝑧𝑧𝑟𝑟−m                     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑚𝑚  ≥ 0 , 𝑟𝑟 > −1                       (1.6) 

A new class of multivalent function form by using Jackson Derivative Operator 
is defined in the following definition.  

Definition 5.3:  A function 𝑓𝑓(𝑧𝑧) ∈   ℋ(𝑝𝑝)  is also belongs to new subclass 

𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β, ʎ, ξ, q)  if it follow the following condition  

                        𝑅𝑅𝑅𝑅 �
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)� +   𝜆𝜆(𝑧𝑧2+𝛽𝛽𝛽𝛽 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
� > 𝛼𝛼                               (1.7) 

where  𝑧𝑧 ∈ 𝑈𝑈1,𝑚𝑚 ∈ ℕ ∪ {0} , 0 ≤ 𝛼𝛼 < 𝑝𝑝, 0 ≤ 𝛽𝛽 < 1, 0 ≤ 𝜆𝜆 ≤ 1 𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝜉𝜉 < 1   
By taking particular values of the parameters, 𝑛𝑛,𝑝𝑝,𝑞𝑞,𝛽𝛽, 𝜆𝜆,  𝜉𝜉  we get the previously 

defined subclasses of univalent and multivalent function. These classes were studied by  

Silverman [14],  Srivastava [15],  Altintas et. al [2] and Khosravianarb et. al [7].  

Particular Cases:
 

1.
 

If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1then from (1.7) we get
 

𝑅𝑅𝑅𝑅 �
𝑧𝑧 �𝐷𝐷1,𝑧𝑧𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆

 
𝑧𝑧2 �𝐷𝐷1,𝑧𝑧

2 𝑓𝑓(𝑧𝑧)�

(1− 𝜆𝜆) �𝐷𝐷1,𝑧𝑧
0 𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆𝜆𝜆 �𝐷𝐷1,𝑧𝑧𝑓𝑓(𝑧𝑧)�

� > 𝛼𝛼
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which is equivalent to  

𝑅𝑅𝑅𝑅 �
𝑧𝑧𝑓𝑓′ (𝑧𝑧)  +  𝜆𝜆𝑧𝑧2𝑓𝑓′′ (𝑧𝑧) 

(1− 𝜆𝜆)𝑓𝑓(𝑧𝑧)  +  𝜆𝜆𝜆𝜆𝑓𝑓′(𝑧𝑧)� > 𝛼𝛼 

sowe get 𝛹𝛹0,𝑛𝑛 ,𝑝𝑝(α, 0, ʎ, 0,1)≡ 𝑇𝑇(𝑛𝑛, 𝑝𝑝, λ ,𝛼𝛼) and this classwas studied byAltintas et al. [2] 

2. If 𝑚𝑚 = 0,𝛽𝛽 = 0,𝑞𝑞 → 1then from (1.7) we get 

𝑅𝑅𝑅𝑅 �
𝑧𝑧 �𝐷𝐷1,𝑧𝑧

𝜉𝜉+1𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆 𝑧𝑧2 �𝐷𝐷1,𝑧𝑧
𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1 − 𝜆𝜆) �𝐷𝐷1,𝑧𝑧
𝜉𝜉 𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆𝜆𝜆 �𝐷𝐷1,𝑧𝑧

𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
� > 𝛼𝛼 

so 𝛹𝛹0,𝑛𝑛 ,𝑝𝑝(α, 0, 𝜆𝜆, ξ, 1) ≡ 𝑇𝑇(𝑛𝑛,𝑝𝑝, λ ,𝛼𝛼, 𝜉𝜉) and this class was studied by Khosravianarb et 
al.[7] 

3. If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 0 then from (1.7) we get 

𝑅𝑅𝑅𝑅 �
𝑧𝑧𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) 

� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 𝑝𝑝 

so 𝛹𝛹0,𝑛𝑛 ,𝑝𝑝(α, 0, 0,0,1) ≡ T∗(𝑝𝑝,𝛼𝛼) and T∗(𝑝𝑝,𝛼𝛼) is the class of p valent starlike function of 

order  𝛼𝛼. 

4.
 

If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 0, 𝑝𝑝 = 1 
then from (1.7) we get

 

𝑅𝑅𝑅𝑅 �
𝑧𝑧𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) 

� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 1 

so 𝛹𝛹0,𝑛𝑛 ,1(α, 0, 0,0,1) ≡ T∗(1,𝛼𝛼)
 
, which was earlier studied by Srivastava

 
et al. [15].

 
 

5. If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 0, 𝑝𝑝 = 1,𝑛𝑛 = 1 then from (1.7) we get 

𝑅𝑅𝑅𝑅 �
𝑧𝑧𝑓𝑓′(𝑧𝑧)
𝑓𝑓(𝑧𝑧) 

� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 1 

Then we get a class which was earlier discussed by Silverman [14].
 

6.

 
If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 1then from (1.7) we get

 

𝑅𝑅𝑅𝑅 �
𝑧𝑧𝑓𝑓′(𝑧𝑧)  +  𝑧𝑧2𝑓𝑓′′ (𝑧𝑧)

𝑧𝑧
 

𝑓𝑓′  (𝑧𝑧) � > 𝛼𝛼 0 ≤ 𝛼𝛼 < 𝑝𝑝
 

which is equivalent to

 
𝑅𝑅𝑅𝑅 �1 +

 

𝑧𝑧𝑓𝑓′′ (𝑧𝑧)
𝑓𝑓′  (𝑧𝑧)

� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 𝑝𝑝
 

so

 

𝛹𝛹0,𝑛𝑛 ,𝑝𝑝(α, 0, 1,0,1) ≡ C∗(𝑝𝑝,𝛼𝛼)

 

and C∗(𝑝𝑝,𝛼𝛼)

 

represent a  class of p valent convex function 

of order  𝛼𝛼. 
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7.  If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 1, 𝑝𝑝 = 1then from (1.7) we get  

𝑅𝑅𝑅𝑅 �1 +  
 𝑧𝑧𝑓𝑓′′ (𝑧𝑧)

𝑓𝑓′  (𝑧𝑧)
� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 1  

sowe get 𝛹𝛹0,𝑛𝑛 ,1(α, 0, 1,0,1) ≡ C∗(1,𝛼𝛼)  ,which was earlier by studied Srivastava et al. [15].  

8.  If 𝑚𝑚 = 0,𝛽𝛽 = 0, ξ = 0,𝑞𝑞 → 1,𝜆𝜆 = 1, 𝑝𝑝 = 1,𝑛𝑛 = 1 then from (1.7) we get  

𝑅𝑅𝑅𝑅 �1 +
 𝑧𝑧𝑓𝑓′′ (𝑧𝑧)

𝑓𝑓′  (𝑧𝑧)
� > 𝛼𝛼 0 ≤ 𝛼𝛼 < 1  

and this class of convex function was first introduced by Silverman [14].  

II.  Coefficient  Estimate
 

In this part of the paper we derive the coefficient estimate of function
 𝑓𝑓(𝑧𝑧), 

𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α, β,𝜆𝜆, ξ, q)  

Theorem 1:
 

A function f(z) = zp − ∑ ak zk∞
k=n+p and f(z) ∈  ℋ(p)  

then f(z)  
belong to the 

class Ψm ,n,p(α,β, λ, ξ, q)  if and only if  

              ∑ 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �(1+𝛽𝛽)[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝜆𝜆+𝜆𝜆 [𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

(1+𝛽𝛽)[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝜆𝜆+𝜆𝜆 [𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
�  𝑎𝑎𝑘𝑘 ≤ 1∞

𝑘𝑘=𝑛𝑛+𝑝𝑝               (2.1) 

where
 

𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 =  Γ𝑞𝑞

 
(1+𝑘𝑘)Γ𝑞𝑞 (1+𝑝𝑝−(𝑚𝑚+𝜉𝜉))

Γ𝑞𝑞
 

(1+𝑝𝑝)Γ𝑞𝑞 (1+𝑘𝑘−(𝑚𝑚+𝜉𝜉))

 

𝑧𝑧 ∈ 𝑈𝑈1,𝑚𝑚 ∈ ℕ ∪ {0} , 0 ≤ 𝛼𝛼 < 𝑝𝑝, 0 ≤ 𝛽𝛽 < 1, 0 ≤ 𝜆𝜆 ≤ 1 𝑎𝑎𝑛𝑛𝑎𝑎 0 ≤ 𝜉𝜉 < 1  
 

Proof:

 

Let us consider that𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)
 

so we

 

have

                               𝑅𝑅𝑅𝑅 �
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)� +  𝜆𝜆  (𝑧𝑧2+𝛽𝛽𝑧𝑧 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
� > 𝛼𝛼

 

Since𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 

and 

 

                 𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉

 

𝑓𝑓(𝑧𝑧) = Γ𝑞𝑞

 

(1+𝑝𝑝)
Γ𝑞𝑞 (1+𝑝𝑝−(𝑚𝑚+𝜉𝜉))

𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉) − ∑ Γ𝑞𝑞

 

(1+𝑘𝑘)
Γ𝑞𝑞 (1+𝑘𝑘−(𝑚𝑚+𝜉𝜉))

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉)         (2.2)  

so we have       

 

                    𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+1  = Γ𝑞𝑞

 

(1+𝑝𝑝)
Γ𝑞𝑞 (𝑝𝑝−(𝑚𝑚+𝜉𝜉))

𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉+1) − ∑ Γ𝑞𝑞

 

(1+𝑘𝑘)
Γ𝑞𝑞 (𝑘𝑘−(𝑚𝑚+𝜉𝜉))

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)           (2.3)  

          𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2 = Γ𝑞𝑞

 

(1+𝑝𝑝)
Γ𝑞𝑞 (𝑝𝑝−(𝑚𝑚+𝜉𝜉+1))

𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉+2) − ∑ Γ𝑞𝑞

 

(1+𝑘𝑘)
Γ𝑞𝑞 (𝑘𝑘−(𝑚𝑚+𝜉𝜉+1))

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉+2)            (2.4)  
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By using (2.2), (2.3) and (2.4) in (2.1) then we get numerator and denominator 
of (2.1) as  numerator is denoted by N and denominator by D  

N = (𝑧𝑧 + 𝛽𝛽𝑧𝑧2) � Γ𝑞𝑞  (1+𝑝𝑝)
Γ𝑞𝑞�𝑝𝑝−(𝑚𝑚+𝜉𝜉)�

𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉+1) −∑ Γ𝑞𝑞  (1+𝑘𝑘)
Γ𝑞𝑞�𝑘𝑘−(𝑚𝑚+𝜉𝜉)�

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)� +  

𝜆𝜆(𝑧𝑧2 + 𝛽𝛽𝑧𝑧) �
Γ𝑞𝑞  (1 + 𝑝𝑝)

Γ𝑞𝑞(𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)) 𝑧𝑧
𝑝𝑝−(𝑚𝑚+𝜉𝜉+2) − �

Γ𝑞𝑞  (1 + 𝑘𝑘)
Γ𝑞𝑞(𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1))𝑎𝑎𝑘𝑘

∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉+2)�  

D = (1 − 𝜆𝜆) � Γ𝑞𝑞
 (1+𝑝𝑝)

Γ𝑞𝑞 (1+𝑝𝑝−(𝑚𝑚+𝜉𝜉))
𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉) − ∑ Γ𝑞𝑞

 (1+𝑘𝑘)
Γ𝑞𝑞 (1+𝑘𝑘−(𝑚𝑚+𝜉𝜉))

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉)� +  

𝜆𝜆 (𝑧𝑧 + 𝛽𝛽𝑧𝑧2) �
Γ𝑞𝑞  (1 + 𝑝𝑝)

Γ𝑞𝑞�𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)�
𝑧𝑧𝑝𝑝−(𝑚𝑚+𝜉𝜉+1) − �

Γ𝑞𝑞  (1 + 𝑘𝑘)
Γ𝑞𝑞�𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)�

𝑎𝑎𝑘𝑘

∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

𝑧𝑧𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)�
 

solve above  by
 
using [𝑛𝑛]𝑞𝑞 = Γ𝑞𝑞

 (1+𝑛𝑛)
Γ𝑞𝑞 (𝑛𝑛)

  and on considering the value of z to be real and let 
𝑧𝑧 → 1 then we get  

Γ𝑞𝑞  (1 + 𝑝𝑝)
Γ𝑞𝑞�1 + 𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)�

�(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1 − 𝛼𝛼𝜆𝜆 + 𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)�  

≥ �
Γ𝑞𝑞  (1 + 𝑘𝑘)

Γ𝑞𝑞�1 + 𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)�
𝑎𝑎𝑘𝑘�(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝜆𝜆 + 𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞�

∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

− 𝛼𝛼(1 − 𝜆𝜆)�  

on  simplifying we get,
 

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝜆𝜆 + 𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝜆𝜆 + 𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

�  𝑎𝑎𝑘𝑘 ≤ 1
∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

 

where
 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 =  Γ𝑞𝑞

 
(1+𝑘𝑘)Γ𝑞𝑞 (1+𝑝𝑝−(𝑚𝑚+𝜉𝜉))

Γ𝑞𝑞
 

(1+𝑝𝑝)Γ𝑞𝑞 (1+𝑘𝑘−(𝑚𝑚+𝜉𝜉))

 

Conversely:
 
Let us assume the inequality (2.1) is true

 

To Prove:
 
𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β, 𝜆𝜆, ξ, q), for this we have to show that

 

𝑅𝑅𝑅𝑅 �
(𝑧𝑧 + 𝛽𝛽𝑧𝑧2) �𝐷𝐷𝑞𝑞,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆 (𝑧𝑧2 + 𝛽𝛽𝑧𝑧) �𝐷𝐷𝑞𝑞,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1 − 𝜆𝜆) �𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆(𝑧𝑧 + 𝛽𝛽𝑧𝑧2) �𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
� > 𝛼𝛼

 

According to Lemma [4]                                                                                                       
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if                        𝑤𝑤 = 𝑢𝑢 + 𝑖𝑖𝑖𝑖   then 𝑅𝑅𝑅𝑅  𝑤𝑤  ≥ 𝛼𝛼  ⇔ |𝑤𝑤 − (1 + 𝛼𝛼)| ≤ |𝑤𝑤 + (1 − 𝛼𝛼)|            (2.5) 

Let L = |𝑤𝑤 − (1 + 𝛼𝛼)|  

and                                            𝑤𝑤  =
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�  +  𝜆𝜆  (𝑧𝑧2+𝛽𝛽𝛽𝛽 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
                            (2.6)  

                      L= �
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)� +  𝜆𝜆  (𝑧𝑧2+𝛽𝛽𝛽𝛽 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
− (1 + 𝛼𝛼)�                           (2.7) 

and

 

K = |𝑤𝑤 + (1 − 𝛼𝛼)|

 

                     K = �
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)� +  𝜆𝜆  (𝑧𝑧2+𝛽𝛽𝛽𝛽 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆

 

(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�

+ (1− 𝛼𝛼)�                         (2.8) 

From (2.7) and (2.8),  𝐾𝐾 − 𝐿𝐿 > 0

  

i.e.|𝑤𝑤 + (1− 𝛽𝛽)| − |𝑤𝑤 − (1 + 𝛽𝛽)| > 0 which implies

 

𝑅𝑅𝑅𝑅(𝑤𝑤) > 𝛼𝛼

 

Hence the inequality               

 

𝑅𝑅𝑅𝑅 �
�𝑧𝑧+𝛽𝛽𝑧𝑧2��𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)� +  𝜆𝜆  (𝑧𝑧2+𝛽𝛽𝛽𝛽 )�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉+2𝑓𝑓(𝑧𝑧)�

(1−𝜆𝜆)�𝐷𝐷𝑞𝑞 ,𝑧𝑧
𝑚𝑚+𝜉𝜉𝑓𝑓(𝑧𝑧)� +  𝜆𝜆(𝑧𝑧+𝛽𝛽𝑧𝑧2)�𝐷𝐷𝑞𝑞 ,𝑧𝑧

𝑚𝑚+𝜉𝜉+1𝑓𝑓(𝑧𝑧)�
� > 𝛼𝛼

 

which implies 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)

 

so, the proof of theorem 1 is completed

 

Corollary 1:

 

Let the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 

is a member of new subclass 

𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)

 

of multivalent function then

 

                                 𝑎𝑎𝑘𝑘 ≤ �(1+𝛽𝛽 )[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−

 

𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
(1+𝛽𝛽)[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−

 

𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
� 1

𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉                                (2.9)  

where k = n + p, p is some natural number, n is a natural number.

 

III.

 

Property

 

of New Subclass Related

 

to Radii

 

of Star

 

Likeness, Convexity

 

and

 

Close

 

to  Convexity

 

In this part of the paper, we derive some results related to Radii of starlikeness, 

convexity and close to convexity for the function 𝑓𝑓(𝑧𝑧)

 

belonging to the new subclass 

𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)

 

Theorem 2:

 

Let the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 

and 𝑓𝑓(𝑧𝑧)

 

belong to 

𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)

 

then the function 𝑓𝑓(𝑧𝑧)  is p-valent close to convex of order

 

𝜑𝜑 ; 0 ≤ 𝜑𝜑 <
𝑝𝑝

 

in

 

|𝑧𝑧| < 𝑟𝑟1
∗

 

, where  
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             𝑜𝑜1
∗ = 𝑖𝑖𝑛𝑛𝑓𝑓

𝑘𝑘 ≥ 𝑛𝑛 + 𝑝𝑝 ��
𝑝𝑝−𝜑𝜑
𝑘𝑘
� �(1+𝛽𝛽)[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−  𝛼𝛼𝜆𝜆  +  𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

(1+𝛽𝛽)[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1 −  𝛼𝛼𝜆𝜆  + 𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
� 𝐸𝐸𝑝𝑝 ,𝑘𝑘

𝑚𝑚 ,𝜉𝜉 �
1

𝑘𝑘−𝑝𝑝
       (3.1) 

Proof: 
 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q) 

and 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 

To prove is  p-valent close to convex of order 𝜑𝜑 ; 0≤ 𝜑𝜑 < 𝑝𝑝 
in |𝑧𝑧| < 𝑜𝑜1

∗ 
for

this we have to show that 
 

                                     �𝑓𝑓
′ (𝑧𝑧)
𝑧𝑧𝑝𝑝−1 − 𝑝𝑝� ≤ 𝑝𝑝 − 𝜑𝜑                    |𝑧𝑧| < 𝑜𝑜1

∗                                      (3.2)  

�
𝑓𝑓′(𝑧𝑧)
𝑧𝑧𝑝𝑝−1 − 𝑝𝑝�  = �

𝑝𝑝𝑧𝑧𝑝𝑝−1
 
−

 
∑ 𝑘𝑘𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+ 𝑝𝑝 𝑧𝑧𝑘𝑘−1

𝑧𝑧𝑝𝑝−1 − 𝑝𝑝�
 

= �
∑ 𝑘𝑘𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−1

𝑧𝑧𝑝𝑝−1 �
 

                                             

≤ ∑ 𝑘𝑘𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 |𝑧𝑧|𝑘𝑘−𝑝𝑝                                                     (3.3) 

The inequality (3.2) is less than or equal to 𝑝𝑝 − 𝜑𝜑  

 

if

 

                                    ∑ � 𝑘𝑘
𝑝𝑝−𝜑𝜑

 

�𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛  + 𝑝𝑝

 

|𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ 1                                                 (3.4)  

we know that 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α, β,𝜆𝜆, ξ, q)

 

if and only if

 

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝜆𝜆 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝜆𝜆 +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

�

 

𝑎𝑎𝑘𝑘 ≤ 1
∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

 

The inequality (3.2) is hold true if

 

�
𝑘𝑘

𝑝𝑝 − 𝜑𝜑�
|𝑧𝑧|𝑘𝑘−𝑝𝑝

≤ 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1 − 𝛼𝛼𝜆𝜆 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1 − 𝛼𝛼𝜆𝜆 +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)

�

 

or, we have

 

            |𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ �𝑝𝑝−𝜑𝜑
𝑘𝑘
�𝐸𝐸𝑝𝑝 ,𝑘𝑘

𝑚𝑚 ,𝜉𝜉 �(1+𝛽𝛽)[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝜆𝜆  + 𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
(1+𝛽𝛽)[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝜆𝜆  + 𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

�

 

              (3.5) 

so we get the required result
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𝑓𝑓(𝑧𝑧)

Notes



|𝑧𝑧| < 𝑟𝑟1∗

= 𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 ≥ 𝑛𝑛 + 𝑝𝑝 ��

𝑝𝑝 − 𝜑𝜑
𝑘𝑘

��
(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1 − 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 − 𝛼𝛼(1 − 𝜆𝜆)�
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1 − 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 − 𝛼𝛼(1 − 𝜆𝜆)�

�𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

1
𝑘𝑘−𝑝𝑝

 

Hence,  the given function 𝑓𝑓(𝑧𝑧)  is p-valent close to convex of order 𝜑𝜑
 

Theorem 3:  Let the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 and 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)  then 

the function 𝑓𝑓(𝑧𝑧)  is  a p-valent starlike of order 𝜑𝜑 ; 0 ≤ 𝜑𝜑 < 𝑝𝑝  in |𝑧𝑧| < 𝑟𝑟2
∗  ,where   

         𝑟𝑟2
∗ = 𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘 ≥ 𝑛𝑛 + 𝑝𝑝 ��
𝑝𝑝−𝜑𝜑
𝑘𝑘−𝜑𝜑

� �(1+𝛽𝛽 )[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼ʎ+ʎ[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−ʎ)
(1+𝛽𝛽 )[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼ʎ+ʎ[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−ʎ)

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

1
𝑘𝑘−𝑝𝑝          (3.6) 

Proof:  𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)  
and 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞

𝑘𝑘=𝑛𝑛+𝑝𝑝
 

To prove the function 𝑓𝑓(𝑧𝑧)  
is p-valent starlike of order 𝜑𝜑; 0≤ 𝜑𝜑<𝑝𝑝  

in |𝑧𝑧| < 𝑟𝑟2
∗  

for
 

this we have to show that
 

                                     �𝑧𝑧𝑓𝑓
′ (𝑧𝑧)

𝑓𝑓(𝑧𝑧)
− 𝑝𝑝� ≤ 𝑝𝑝 − 𝜑𝜑                 |𝑧𝑧| < 𝑟𝑟2

∗                                    (3.7) 

Now we take the L.H.S.
 

part of the inequality (3.7)
 

�
𝑧𝑧𝑓𝑓′ (𝑧𝑧)
𝑓𝑓(𝑧𝑧) − 𝑝𝑝� = �

𝑧𝑧(𝑝𝑝𝑧𝑧𝑝𝑝−1

 
−

 
∑ 𝑘𝑘𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 𝑧𝑧𝑘𝑘−1)

𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

− 𝑝𝑝�
 

= �
∑ (𝑘𝑘 − 𝑝𝑝)𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘= 𝑛𝑛+𝑝𝑝

𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛  +  𝑝𝑝

�

 

                                                  

≤
∑ (𝑘𝑘−𝑝𝑝)𝑎𝑎𝑘𝑘 |𝑧𝑧|𝑘𝑘−𝑝𝑝∞
𝑘𝑘=𝑛𝑛  +𝑝𝑝

 

1−∑ 𝑎𝑎𝑘𝑘 |𝑧𝑧|𝑘𝑘−𝑝𝑝∞
𝑘𝑘=  𝑛𝑛+𝑝𝑝

                                                  
(3.8) 

The inequality (3.7) is less than or equal to 𝑝𝑝 − 𝜑𝜑  if

 

                                        ∑ (𝑘𝑘−𝜑𝜑)
(𝑝𝑝−𝜑𝜑)

𝑎𝑎𝑘𝑘∞
𝑘𝑘= 𝑛𝑛  +  𝑝𝑝 |𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ 1

 

                                  (3.9) 

we know that 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α, β,𝜆𝜆, ξ, q)

 

if and only if

 

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

�

 

𝑎𝑎𝑘𝑘 ≤ 1
∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

 

The inequality (3.9) is hold true if
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Let



�
𝑘𝑘 − 𝜑𝜑
𝑝𝑝 − 𝜑𝜑�

|𝑧𝑧|𝑘𝑘−𝑝𝑝

≤ 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1 −
 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)
�  

or, we have  

                         |𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ �𝑝𝑝−𝜑𝜑
𝑘𝑘−𝜑𝜑

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �(1+𝛽𝛽 )[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  + 𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

(1+𝛽𝛽)[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  + 𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
�               (3.10)  

so we get the required result
 

|𝑧𝑧| < 𝑟𝑟2
∗

= 𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 ≥ 𝑛𝑛 + 𝑝𝑝 ��

𝑝𝑝 − 𝜑𝜑
𝑘𝑘 − 𝜑𝜑

��
(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1 − 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 � − 𝛼𝛼(1 − 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1 − 𝛼𝛼𝛼𝛼 +  𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 � − 𝛼𝛼(1− 𝜆𝜆)

�𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

1
𝑘𝑘−𝑝𝑝

 

Hence, the given function 𝑓𝑓(𝑧𝑧)  is p-valent starlike of order 𝜑𝜑
 

Theorem 4:

 

Let the function 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝− ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞
𝑘𝑘=𝑛𝑛  + 𝑝𝑝 and 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β,𝜆𝜆, ξ, q)  then 

the given function 𝑓𝑓(𝑧𝑧)  is a p-valent convex function of order 𝜑𝜑 ; 0 ≤ 𝜑𝜑 < 𝑝𝑝 in |𝑧𝑧| < 𝑟𝑟3
∗, 

where  

 

       𝑟𝑟3
∗ = 𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘 ≥ 𝑛𝑛  + 𝑝𝑝 �
𝑝𝑝
𝑘𝑘
�𝑝𝑝−𝜑𝜑
𝑘𝑘−𝜑𝜑

� �(1+𝛽𝛽)[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  + 𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
(1+𝛽𝛽 )[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

1
𝑘𝑘−𝑝𝑝

  (3.11)  
 

 
𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α,β, 𝜆𝜆, ξ, q)

 
and 𝑓𝑓(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − ∑ 𝑎𝑎𝑘𝑘𝑧𝑧𝑘𝑘∞

𝑘𝑘=𝑛𝑛+𝑝𝑝

 

To prove the function 𝑓𝑓(𝑧𝑧)
 

is p-valent convex function of order 𝜑𝜑 ; 0 ≤ 𝜑𝜑 < 𝑝𝑝
 

in |𝑧𝑧| < 𝑟𝑟3
∗ for this we have to show that    

 

                               �𝑧𝑧𝑓𝑓
′′ (𝑧𝑧)

𝑓𝑓′ (𝑧𝑧)
+ (1− 𝑝𝑝)� ≤ 𝑝𝑝 − 𝜑𝜑             |𝑧𝑧| < 𝑟𝑟3

∗                      (3.12) 

Taking the L.H.S.

 

part of the inequality (3.12)

 

�
𝑧𝑧𝑓𝑓′′ (𝑧𝑧)
𝑓𝑓′(𝑧𝑧) + (1 − 𝑝𝑝)�  = �

𝑧𝑧(𝑝𝑝(𝑝𝑝 − 1)𝑧𝑧𝑝𝑝−2

 

−

 

∑ 𝑘𝑘(𝑘𝑘 − 1)𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛  +𝑝𝑝 𝑧𝑧𝑘𝑘−2)

𝑝𝑝𝑝𝑝𝑝𝑝−1 − ∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧𝑘𝑘−1∞
𝑘𝑘= 𝑛𝑛  +𝑝𝑝

+ (1− 𝑝𝑝)�

 

= �
∑ 𝑘𝑘(𝑘𝑘 − 𝑝𝑝)𝑎𝑎𝑘𝑘∞
𝑘𝑘= 𝑛𝑛  +𝑝𝑝 𝑧𝑧𝑘𝑘−𝑝𝑝

𝑝𝑝 − ∑ 𝑘𝑘𝑘𝑘𝑘𝑘𝑧𝑧𝑘𝑘−𝑝𝑝∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

�

 

 
 

A New Subclass of Multivalent Function Defined by using Jackson Derivative Operator

       

1

Y
ea

r
20

22

9

© 2022 Global Journals

       

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
II  
 I
ss
ue

  
  
  
er

sio
n 

I 
 

V
V

  
 

( F
)

Proof: Let

Notes



≤
∑ 𝑘𝑘(𝑘𝑘 − 𝑝𝑝)𝑎𝑎𝑘𝑘|𝑧𝑧|𝑘𝑘−𝑝𝑝∞
𝑘𝑘=𝑛𝑛  +𝑝𝑝

𝑝𝑝 − ∑ 𝑘𝑘𝑘𝑘𝑘𝑘|𝑧𝑧|𝑘𝑘−𝑝𝑝∞
𝑘𝑘=𝑛𝑛+𝑝𝑝

 

The inequality (3.12) is less than or equal to 𝑝𝑝 − 𝜑𝜑  if  

                                             ∑
𝑘𝑘(𝑘𝑘−λ)
𝑝𝑝(𝑝𝑝−λ)

𝑎𝑎𝑘𝑘∞
𝑘𝑘=𝑛𝑛+𝑝𝑝 |𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ 1                                            (3.13) 

we know that 𝑓𝑓(𝑧𝑧) ∈ 𝛹𝛹𝑚𝑚 ,𝑛𝑛 ,𝑝𝑝(α, β,𝜆𝜆, ξ, q)  if and only if  

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝛼𝛼 +
 
𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)

(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1− 𝛼𝛼𝛼𝛼 +
 
𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

�
 

𝑎𝑎𝑘𝑘 ≤ 1
∞

𝑘𝑘=𝑛𝑛+𝑝𝑝
 

The inequality (3.12) is hold true if
 

𝑘𝑘
𝑝𝑝 �

𝑘𝑘 − 𝜑𝜑
𝑝𝑝 − 𝜑𝜑�

|𝑧𝑧|𝑘𝑘−𝑝𝑝

≤ 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �

(1 + 𝛽𝛽)[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1
 

−  𝛼𝛼𝛼𝛼
 

+
 
𝜆𝜆  [𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1 − 𝜆𝜆)

(1 + 𝛽𝛽)[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉)]𝑞𝑞�1 − 𝛼𝛼𝛼𝛼  +
 
𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞� − 𝛼𝛼(1− 𝜆𝜆)

�  

or, we have  

                       |𝑧𝑧|𝑘𝑘−𝑝𝑝 ≤ 𝑝𝑝
𝑘𝑘
�𝑝𝑝−𝜑𝜑
𝑘𝑘−𝜑𝜑

� 𝐸𝐸𝑝𝑝 ,𝑘𝑘
𝑚𝑚 ,𝜉𝜉 �(1+𝛽𝛽 )[𝑘𝑘−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑘𝑘−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)

(1+𝛽𝛽 )[𝑝𝑝−(𝑚𝑚+𝜉𝜉)]𝑞𝑞 �1−𝛼𝛼𝛼𝛼  +  𝜆𝜆[𝑝𝑝−(𝑚𝑚+𝜉𝜉+1)]𝑞𝑞 �−𝛼𝛼(1−𝜆𝜆)
�                (3.14)

 
so we get the required result  

|𝑧𝑧| < 𝑟𝑟3
∗

= 𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘 ≥ 𝑛𝑛 + 𝑝𝑝 �

𝑝𝑝
𝑘𝑘
�
𝑝𝑝 − 𝜑𝜑
𝑘𝑘 − 𝜑𝜑

��
(1 + 𝛽𝛽)[𝑘𝑘 −(𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1− 𝛼𝛼𝛼𝛼

 

+

 

𝜆𝜆[𝑘𝑘 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 � − 𝛼𝛼(1 − 𝜆𝜆)
(1 + 𝛽𝛽)[𝑝𝑝 −(𝑚𝑚 + 𝜉𝜉)]𝑞𝑞 �1− 𝛼𝛼𝛼𝛼 +

 

𝜆𝜆[𝑝𝑝 − (𝑚𝑚 + 𝜉𝜉 + 1)]𝑞𝑞 � − 𝛼𝛼(1− 𝜆𝜆)
�𝐸𝐸𝑝𝑝 ,𝑘𝑘

𝑚𝑚 ,𝜉𝜉�

1
𝑘𝑘−𝑝𝑝

 

Hence, the given function 𝑓𝑓(𝑧𝑧)
 

is p-valent convex function of order 𝜑𝜑
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