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Abstract-In this paper the authors have used Jackson Derivative operator to form a new subclass of multivalent function
and derived some results for a function belonging to new subclass of multivalent functions. The main emphasis is on
coefficient estimate of functions belonging to new subclass of multivalent function, the radii of starlikeness, convexity
and close to convexity properties of a function have also been discussed. The results reduces to the earlier known
results of Silverman, Srivastava, Altintas and Khosravianarab by assuming some particular values of the parameters.
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[. INTRODUCTION

Let J(p) be the class of analytic and p- valent function f(z). The function f(z)
can be expressed as

f@) =20 = Ly aiz" (1.1)

where p is some natural number, n € N

The function f(z) defined in (1.1) isan analytic function and p - valent function
in the open unit disc

U ={z: |z| <1}

If a function f(z) € H(p) satisfies the following condition

z2f (2)
Re{m}>(p ZEU,, 0< @<p ,p €N (1.2)
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then f(z) is a p — valent starlike function of order ¢
and if a function f(z) € H (p) satisfies the following condition
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Re{1+%}>(p ze€U;, 0 o<p ,p EN (1.3)

then f(z) is a p — valent convex function of order ¢

To define a new subclass of multivalent function by using Jackson derivative, we use
the following definitions

Definition 1. Letf(z) = zF —¥p_, ., axz" and g(z) = zP — ¥i_,,, bez" are the
members of the class H(p), then their convolution product or Hadamard product is
defined as

f*9@) = (9* @) = 2" =Xy abiz” (1.4)

and generally the convolution product of functions f(z) and g(z) is denoted by
(f *9)(2) or(g * f)(2).

Definition 2: The Jackson ¢- derivative of a function f(z) is denoted by
D,f(z) or D, , f(z) and it is defined as

D,,f(2) = ]C(ZZ):#Z #0andq # 1 (1.5)

The Jackson’s q — derivative tends to ordinary derivative when q tends to 1.
The Jackson g- derivative can also be written as

Fg(1+7r)

Dl,z"m = ————
9. [g(1+r—-m)

z'™m where m >0,r > -1 (1.6)

A new class of multivalent function form by using Jackson Derivative Operator
is defined in the following definition.

Definition 5.3: A function f(z) € H(p) is also belongs to new subclass
Yonp (o, B, 4, €, q) if it follow the following condition

(z+ﬁz2)(D;’fz+“1f(z)) + z(z2+ﬁz)(D;’fj5+2f(z))
A-2(0 £ )+ 2G+82)(D ()

Re >« (1.7)

wherez € Uy,meENU{0},0<a<p 0<B<1,0<A1<1land0<é<1

By taking particular values of the parameters,n,p,q, S, 1, £ we get the previously
defined subclasses of univalent and multivalent function. These classes were studied by
Silverman [14], Srivastava [15], Altintas et. al [2] and Khosravianarb et. al [7].

Particular Cases:
1. fm=0,=0,§=0,q - 1then from (1.7) we get

z(D1.f@) + 122 (D2,f(2))

Re >a

A= (DL,f(@) + 12(D1.f (D))
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which is equivalent to

° zf (2) + 1z%f" (2)
¢ {(1 ~Df@) + Azf’(z)} -

sowe get ¥, ., (@, 0,4,0,1) = T(n,p,A, a) and this classwas studied byAltintas et al. [2]
2. Ifm=0,8=0,q = lthen from (1.7) we get

Ref

z (Df;lf(z)) + 1z? (Df;zf(z)) 3
Re " >a S
5 (-2 (0,1 ) + 22 (D1 ()
g % 50 Yo, (2,0,4,81) =T(n,p,A,a,¢) and this class was studied by Khosravianarb et :
Sk al.[7] 5
< g 5
Eg 3. fm=0,=0,§=0,g > 1,1 =0 then from (1.7) we get Z
S g
SRS g
§= . {Zf'(Z)} . << T
e a <a g
Ty f@ P &
S LB =
g 3 § 50 ¥)np(a,0,0,0,1) = T*(p,a) and T*(p,a) is the class of p valent starlike function of .
Ry ég order a. £
2SE 4 Ifm=08=0E=0,-1,1=0,p=1 then from (1.7) we get <
28y =
.8 S zf (z -
=58 Re{f()}>a 0<a<1 =
o 2
~ Qo 3
% S ; 50 ¥ ,1(,0,0,0,1) = T*(1, &) , which was earlier studied by Srivastava et al. [15]. N
O -~ v
12 2
£ =3 5. fm=0,=0§=0qg—->1,1=0,p=1,n=1 then from (1.7) we get S
o hor'c a9
2 S5 , Y
< .0 zf (2) £
-8 Re{ } > a 0<a<l1 ;
8% %) ;
NS .
g 3= Then we get a class which was earlier discussed by Silverman [14]. £
—_ s M =
c S & 6. fm=0=0%=0,q— 1,1 = 1then from (1.7) we get =
SEE 2
Fy 5 of (@) + 2 @) E
= ﬁ = Re ; >a 0<a<p
=S zf @)
< %<
o~ which is equivalent to Re {1 + %} > a 0<a<p |

50 ¥onp (0, 0,1,0,1) = C*(p, @) and C*(p, @) represent a class of p valent convex function
of order a.
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7. fm=0,8=0%8=0,q > 1,4 =1,p = 1then from (1.7) we get

0<axl1

zf” (z)} oo

Re {1 + @

sowe get ¥y, 1(a,0,1,0,1) = C*(1, @) ,which was earlier by studied Srivastava et al. [15].
8. Ifm=0,=0,§=0,g > 1,1=1,p=1,n=1then from (1.7) we get

0<ax<l1

T,

Re {1 + @

and this class of convex function was first introduced by Silverman [14].

[I. COEFFICIENT ESTIMATE

In this part of the paper we derive the coefficient estimate of function f(z),

f(2) € ¥ pp(a, B, 4,8 Q)

Theorem 1: A function f(z) = zP — };_, +p az® and f(z) € H (p) then f(z) belong to the
class Wy np (o, B,AE, q) if and only if

—~
[\]
—

N

Yoo mgé {(1+ﬂ)[k—(m+f)]q[1—0(/1+/1[k—(m+§+1)]q]_a(1_,1)} <1
k=n+p "pk A+B)[p—(m+)]g[1—a2 +A[p—(m+E+1D)]g|—a (1-2) k =

Iy 1+ (A+p—(m+$))
Iy (1+p)Fg(A+k—(m+$))

mg _
WhereEp,k =

zeU,meNU{0},0<a<p, 0<p<1,0<1<1and0<é<1

Proof: Let us consider that f(z) € ¥, ,, ,(a,,4,§,q) so we have

(z+822) (D] £ () 42 2482 (042 )

ke a-D(py £ ) + aG+p22)(Dp T ()

>«

Since f(z) = zP — Zf=n+p a,z* and

m+& _ Iy (1+p) p—(m+&) _ T I'q (1+k) k—(m+&)
Dy, f(2) = i) 2 Yhentp PG W ? (2.2)

so we have

Doz =t min? Lic=n+p T g—amagy) % (2.3)

m+é+2 _ _ Tq (Atp) p—(m+E+2) _ Joo Tq (I+k) k—(m+E+2)
Doz =1 et 2 2ic=n+p T G 41) % Z (2:4)
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By using (2.2), (2.3) and (2.4) in (2.1) then we get numerator and denominator
of (2.1) as numerator is denoted by N and denominator by D

2y [ FaA+P) p—(m+e+1) _ Tq (1+k) k—(m+$+1)]
= G+ B2 [F ey ? Lin+p T le—amaty) Y 2 *
A(z2 + B7) I,A+p) SP—(m+E+2) _ Z L, (A+k) a Zk—m+E+2)
[[((p—(m+¢&+1)) T,(k—(m+&+1)) *
D=01-4) [Fq(1+P—(m+§))Z = Zilentn Ty ey *
1 2 Fq (1+p) p—(m+&+1) _ F‘I A +k k—(m+§+1)
(z+ pz°) z ay z
Iy(p— (m+9) &t Ty (k= (m+9)
solve above by using [n], = F"FL(::) and on considering the value of z to be real and let
q

z = 1 then we get

I, (1+p)
L,(l+p—(m+&

)[(1 +Bp-m+O,[1—al+Ap— (m+E+1D],] —a(l—2)]

N r,(1+k)
> k;p Fq(l +k—(m+9§) a[(1 + B[k — (m+§)]q[1—a/1+/1[k— (m+¢+ 1)]q]

—a(l- /1)]

on simplifying we get,

e (A= m+ O] [1—ar+ Ak — (m+ &+ D], ] —a(l - 2)
Z E ’f{ : . }akS:l
Wt A+Bp—-m+d,[1—-ar+Ap—(m+E+D],]—a(l-2)

_ Iy (1+Kk)T g (1+p—(m+E))
Iy (1+p)Tg(A+k—(m+$))

where Ep k =

Conversely: Let us assume the inequality (2.1) is true

To Prove: f(z) € ¥, ., (@, B, 4,8 q), for this we have to show that

(z+ ,BZZ)< m+€+1f(z)> + A (z? +,BZ)< m+€+2f( ))

“ =0 (D F) + A+ g2 (D ()

>a

According to Lemma [4]
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if w=u+iv then Rew Za ©lw—-(_1+a)|<|w+ {1 —a)| (2.5)

Let L =|lw— 1+ a)l

_ )05 @) 2 G2 (07 @)

d 2.6
- YT T a0 @) + 1 (0 @) (26)
|G (07 @) + 2 (22 +p2) (07 T (@)
o ( pmHE ) r(n+§+1 ) -1+ (2.7)
a-0(0) r @) + A+ F @)
and K = |lw+ (1 — )l
_ |05 @) + 2 P (0 @)
( m+§ ) Sn+§+1 ) t(1-a) (2.8)
A-2(0 £ )+ 2 G422 (D ()

From (2.7) and (2.8), K—L >0
ie.lw+ (1—-pB)| —Iw— (1 + B)| > 0 which implies Re(w) > «

(z4+822) (0 £ @) + 2 G242 (D £ )
Hence the inequality Re >a

-2)(0p F @) + A+ @)

which implies f(z) € ¥, ,, (o, B,4,%,q)
so, the proof of theorem 1 is completed

Corollary 1: Let the function f(z) =zP — ¥, ,, az"is a member of new subclass
Ynp (@ B,4,8 q) of multivalent function then

< {(1+ﬁ)[p—(m+f)]q[1—a/1 +/1[p—(m+f+1)]q]—a(1—l)} 1
k=

A+B)[k—(m+)]g[1— ad + Alk—(m+E+1)]g |- (1-2)) E™* (2'9)

where k = n + p, p is some natural number, n is a natural number.

[I11. PROPERTY OF NEW SUBCLASS RELATED TO RADII OF STAR LIKENESS, CONVEXITY AND
CLOSE TO CONVEXITY

In this part of the paper, we derive some results related to Radii of starlikeness,
convexity and close to convexity for the function f(z) belonging to the new subclass

Pnnp (@B, 4,8 q)

Theorem 2: Let the function f(z)=2zP —X;_, p Ak z¢ and f(z) belong to
Ynnp (B, 4,E q) then the function f(z) is p-valent close to convex of order ¢ ;0 < ¢ <
p in|z| < r{ , where

© 2022 Global Journals
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1
= inf {(p_q;) {(1+ﬁ)[k—(m+$)]q[1— al +/1[k—(m+g+1)]q]—a(1—/1)}Em,g}ﬁ
V7 k2n+pl\ k Ja+mb-m+O]g[1 —ar + Alp—(m+E+D]g]-a(1-2)) Pk

(3.1)

Proof: Let f(z) € W, (0, B,4,8,q) and f(z) = zP — X7_ ., az"

To prove f(z) is p-valent close to convex of order ¢ ;0< ¢ <pin |z| <7 for
this we have to show that

LO _pl<p-o |zl < rf (3.2)

-1 © k-1
pz? B Zk=n+pkakz
zr—1 p

f (@ ‘_
—p| =

zp—1

0 k-1
Zk=n+p kak z

zp—1

< Yienap kay 12|77 (3.3)
The inequality (3.2) is less than or equal to p — ¢ if

o k _
Zk=n+p (ﬁ) a; |Z|k P <1 (34)

we know that f(z) € ¥, ,,,(a, B,4,§ q) if and only if

i Emg{(1+ﬁ)[k—(m+€)]q[1—a/1+A[k—(m+€+1)]q]—a(1—/1)}a -
PE A+ B)p-m+Ol[1—ar + Ap-m+E+ D], —a(l -]

k=n+p
The inequality (3.2) is hold true if
k
-
p—9

< g {(1 +Bk—m+ ], [1-ar + Alk—(m+¢+1D],]—aCd —/1)}
TP A+ B - m+ O] [1—ar + Ap - (n+§+ D] —a(l -2

or, we have

k—p < (P2 pmd {(1+ﬁ)[k—(m+$)]q[1—al +A[k—(m+§+1)]q]—a(1—l)}
|zl —( k )Ep,k A+B)[p—(m+)]g[1-ad + A[p—(m+E+1)]g]-a(1-2) (3'5)

so we get the required result
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lz| < 7y

_inf {(p—<p){(1+ﬁ)[k—(m+§)]q[1—a/1 + Alk— (m+ &+ D], —a(1—z)]}Em_§}ﬁ
kzn+p (N k /A +B)p-m+O],[1—ar + Ap—(m+E+ D], —a(t—1)]) P*

Hence, the given function f(z) is p-valent close to convex of order ¢
Theorem 3: Let the function f(z) = zP — X¥_, 4, apz® and f(2) € ¥y (a,B,4,8,q) then
the function f(z)is a p-valent starlike of order ¢ ;0 < ¢ <p in |z| <1y ,where

1

= inf {(p—(p){(1+ﬁ)[k—(m+f)]q[1—az(+1([k—(m+f+1)]q]—a(1—1()} m,g}ﬁ
2 7 k=n+p\k—o/ A+ p-m+6)]g[1-ak+4p—(m+E+D)]g|-a(1-H) ~Pk

(3.6)

Proof: Let f(z) € ¥y np(a,B,4,5,q) and f(z) = z° — X7 4 a,z*

To prove the function f(z) is p-valent starlike of order ¢;0< @ <p in |z| < r; for
this we have to show that

zf (2) .
Z7\zZ) <p—

Now we take the L.H.S. part of the inequality (3.7)

z(pzP ™! = Xionsp kax 27

—ye k
ZP = YR —n+p WZ

2f (2) ‘ _
f@ P

_p‘

ZI?=n+p(k - p)akzk

— J'»© k
zP Zk=n+pakz

< Zen ap CeplaglaF
=N, aklzF P

The inequality (3.7) is less than or equal to p — ¢ if

o) (k—p) _
Z,{:Hp(p_(p)ak |z P <1 (3.9)

we know that f(z) € ¥, ,,,(a, B,4,§,q) if and only if

i Emg{(l+ﬁ)[k—(m+§)]q[1—a/1+A[k—(m+€+1)]q]—a(1—l)}a .,
A+ -+ O)[1-a2 + Ap—m+E+ D) -a =D T

k=n+
The inequality (3.9) is hold true if
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k —
s
p—¢

< g {(1+ﬁ)[k— m+O),[1- ar + Ak —(m+E&+1)],]-aCd —/1)}
TP A+ -Mm+ )] [1—ad + Ap—(m+E+ D], —a(l—2)

or, we have

k—p < (P=0) pmi {(1+ﬁ)[k—(m+$)]q[1—al +A[k—(m+§+1)]q]—a(1—l)} 1
|zl _(k—go)Epfk A+B)p—(m+E)]g[1-ad + A[p—(m+E+1)]g]-a(1-2) (3.10)

so we get the required result

lz| <7y

1

_ inf {(p—go){(1+,8)[k—(m+f)]q[1—a/1+A[k—(m+f+1)]q]—a(l—A)}Emg}k—p
kzn+p M-/ (4B -+l —ar + Ap — (m+& + D]g] —a@ - 1) 7"

Hence, the given function f(z) is p-valent starlike of order ¢

Theorem 4: Let the function f(z) = z2P— X, 1 arz*and f(z) € ¥, (o, B,A4,%,q) then
the given function f(z) is a p-valent convex function of order ¢ ;0 < ¢ <p in |z| < 13,
where

1
= inf {E (p_¢,) {(1+ﬁ)[k—(m+f)]q[1—od +A[k—(m+§+1)]q]—a(1—l)} Em,.g}ﬁ (3.11)
3T k=zn +ple\k—o/ la+)p-(m+O)]g[1-ah + Alp—(m+¢+D)]g|-a(1-1)) " Pk '

Proof: Let f(Z) € lIjm,n,p (o, 3, 4,8 q) aﬂdf(z) =zP — Zl;.o=n+p Clka

To prove the function f(z) is p-valent convex function of order ¢;0<¢ <p
in |z| < r3 for this we have to show that

zf" (2)
f' (2

+(1—p)| <p—¢ |z| <73 (3.12)

Taking the L.H.S. part of the inequality (3.12)

‘Zf (2) F(-p)

—+(1—P)‘

_ ‘Z(P(P —DzP7? = X, k(k — Day 272
f(@ -

-1 o k—1
pr _Zk=n +p kakZ

Zli’,.ozn +p k(k — p)ak zkr
P — Xpenip ko zkP
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< Zl;.o=n +p k(k - p)aklzlk_p
N p— Zl?:nﬂ) kaklzlk_p

The inequality (3.12) is less than or equal to p — ¢ if

© k(k—=2) —
Eionp oy @ 12177 <1 (3.13)

we know that f(z) € ¥, ,,,(a, B,4,§ q) if and only if

i mf{u + Bk — (m+ O, [1—ar + Ak — (m+ &+ D], ] —a(1—,1)}
E]; akS1
PELA+BIp—-m+d],[l—art + Alp—(m+E+ D], | —a(l-2)

k=n+p
The inequality (3.12) is hold true if

k (k—
_<—(p)|zlk_p
Pp\p—9¢

mg {(1+ﬁ)[k—(m+€)]q[1 —al + A[k—(m+€+1)]q]—a(1—l)}
TP LA+ -m+ O [1—at + Ap—(m+E+ D], —a@-2)

or, we have

k=p <« P
|lz]*7P <

(=2) {<1+B>[k—(m+f)1q[1—aﬂ +“"‘(m+§+1)]q]_a(1_m} (3.14)

k=p) “Pk A+ p—(m+E)]g[1—ar + Alp—(m+E+D]g]-a(1-2)
so we get the required result
lz| <75

_ inf {B<p—g0>{(1 + B[k —(m + O)],[1- ar +/1[k—(m+f+1)]q]—a(l—A)]Emlf}’fP
k2n+plk\k— o/ (1+B)p—(m+ O [1-ad+ Ap - m+ ¢+ D] | a1 -] P

k

Hence, the given function f(z) is p-valent convex function of order ¢
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