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Abstract-

 

Winter wheat grain protein content (GPC) is an 
important criterion for assessing grain quality. A timely and 
simple

 

GPC model is

 

urgently required for GPC prediction 
ahead of maturity. The GPC model included regressional 
models of dry matter and

 

N accumulation and translocation for 
anthesis and post-anthesis stages, and

 

incorporated both soil 
nitrogen (N) supply and meterological factors based on 
historical as well as current season data, final GPC were 
calculated as the ratio of N accumulation to dry matter in grain 
at maturity.

 

This study conducted six field experiments during 
the 2003–2006 and 2008–2011

 

growing seasons to establish 
and validate the model. A three-way factorial arrangement of N 
fertilization, sowing date, and cultivar was conducted using a 
split-plot design. Critical growth parameters were determined 

by field measurements, and historical seasonal meteorological 
data covering the growing period were collected. The 
normalized root mean square error (nRMSE, %), which is 
defined as RMSE divided by the mean of the observed value, 
multiplied by 100, was adopted to evaluate the model 
performance. The major results were as follows: (1) The 
prediction performance of dry matter (DM) and N 
accumulation (NA), and translocation during the pre-anthesis 
and post-anthesis periods were different; it was poorer for the 
former and better for the latter. However, GPC prediction was 
not significantly affected by the intrinsic ratio-form of the GPC 
prediction; (2) meteorological factors could capture the overall 
interannual trends of the corresponding dry matter and N sub-
models in an acceptable manner; (3) nRMSE and R2 of the 
semi-empirical GPC model (Exp.4 and Exp. 6) were 8.91, 4.50, 
0.64, and 0.46, respectively, and that of the simple linear 
model (Exp.4) were13.3and 0.42, respectively. The established 
semi-empirical model significantly improved the interannual 
and intra-annual prediction accuracy compared to the simple 
linear model. 
Keywords: triticum aestivum; grain nitrogen content; dry 
matter; meteorological factor. 

I. Introduction 

heat (Triticumaestivum L.) is an important staple 
grain, with a global production of 766 million 
tons in 2019 (FAO, 2020). Sustaining grain 

quality in dynamic environments has been a research 
focus because of the growing market requirements for 
food nutrition, product functionality, and commodity 
profits. Grain protein concentration (GPC) and 
composition largely affect the nutritional and end-use 
properties of dough mixing and rheological 
characteristics (Nuttall et al., 2017). Numerous studies 
have been conducted to determine the major factors 
influencing grain quality, mostly GPC, which includes 
genetics, management, and the environment. 

GPC is the net result of independent starch and 
protein accumulation in the grain, and applying Nitrogen 
(N) fertilizer is commonly considered a practical way to 
improve GPC (Ercoli et al., 2008; Subedi et al., 2007). 
From agronomical and ecophysiological perspectives, 
crop nitrogen accumulation is closely related to crop 
growth rate and biomass accumulation under ample soil 
availability. It depends on soil mineral N availability, 
distribution, and root distribution under suboptimal N 
supply (Gastal and Lemaire, 2002). Because of the 
critical role of N in wheat growth, the mechanisms of N 
uptake and redistribution in wheat have been depicted 
in detail in simulation models, with the simulation results 
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Highlights
− Annual wheat grain yield trend could be better 

captured by the accumulated meteorological factor 
established here

− The rainfall ratio of total growing season to post-
anthesis period were found an influential 
meterological factor to promote post-anthesis 
nitrogen and dry matter translocation and 
assimilation processes, especially for the dry matter

− by merging cultivars data the regressional grain 
protein content models could achieve acceptable 
prediction accuracy given the future regional 
application with variety of cultivars planted

Author Ѡ :



prone to be largely affected by the key parameters of 
crop N demand and supply processes (Jamieson and 
Semenov, 2000). 

In addition to N, climatic conditions often exert 
notable effects on crop growth and grain quality. Pan et 
al. (2006a) reported that reliable GPC prediction results 
based on the stepwise regression method were 
achieved with climatic factors that mainly covered the 
grain-filling period as independent variables. With the 
aid of detailed genotypic parameters acquired by 
cultivar experiments, the model can explain as much as 
94% of GPC variation using validation data from different 
site-year combinations. Similarly, Li et al. (2020) 
obtained robust GPC predictions using a hierarchical 
linear model based on climatic factors and cultivar 
parameters. As reported by Pan et al., the major 
difference between the climatic factors and the 
aforementioned ones is that the latter is before anthesis 
and covers a period of one month. A recent review 
(Nuttall et al., 2017) reported that under climate change, 
elevated atmospheric carbon dioxide (CO2) consistently 
reduced the GPC of wheat, and heat stress contributed 
to a significant weakening of dough properties. 
Furthermore, rainfall during wheat grain maturation 
severely reduces grain glutenin polymers, which are 
intrinsically related to grain functional properties (Koga 
et al., 2020). 

N accumulation (NA), dry matter (DM), and 
remobilization related to pre- and post-anthesis/head 
periods have become a research focus. Ercoli et al. 
(2008) suggested that grain yield (GY), DM, NA, and 
remobilization were positively affected by N availability 
and negatively affected by water stress during grain 
filling and that there was a significant interaction 
between N rate and water stress for grain N 
concentration (GNC). Tsukaguchi et al. (2016) observed 
in another crop belonging to Gramineae that both plant 
N status before and after heading is sensitive to rice 
GPC, with the latter being greater. Barbottin et al. (2005) 
indicated that the main sources of variation in the 
amount of remobilized N, N uptake during flowering, 
and N remobilization efficiency were the environment 
(including site, treatment, and year, respectively). 

Due to its large-area coverage, non-damage 
sampling, and fast acquisition, remote sensing has 
been widely applied in crop growth monitoring 
(Thenkabail, 2003). Thus, GPC forecasting can be 
achieved in advance according to the crop growth 
conditions obtained by remote sensing based on 
established models linking GPC with crop growth 
variables. In addition, such models differ in 
mechanisms, such as process-based crop growth 
models, semi-empirical models that mainly consider 
both pre- and post-anthesis processes, and simple 
empirical models (Li et al., 2015; Li et al., 2008; Song et 
al., 2009; Wang et al., 2004). The semi-empirical model 
appears to be the most promising candidate among the 

three types of models related to remote sensing data. 
Moreover, it is easier to compute GPC using a semi-
empirical model since it uses fewer processes 
compared to the complex assimilation algorithms of the 
growth model. Furthermore, the semi-empirical model 
can also explain NA and DM and remobilization related 
to the pre- and post-anthesis periods. Thus, the semi-
empirical model appears more applicable toassess 
medium-to large-scale phenomena (Cichota et al., 
2010). 

This study conducted multi-year experiments in 
Beijing, comprising 3factors, including 1–4 N fertilization 
rates (NF), 12 cultivars, and three planting dates. We 
aimed to solve the following targets: (1) analyze 
aboveground DM, NA at anthesis, and GY and grain 
nitrogen accumulation (GNA) at maturity, and establish 
new transfer coefficient sub-models that link N and 
DMat anthesis tothose at the maturity stage; (2) collect 
weather data such as rainfall, average temperature (T), 
and solar radiation (SRAD),to establish meteorological 
factor sub-models that enhance the empirical prediction 
of NA and DM at anthesis, as well as new transfer 
coefficients. (3) Soil N mineralization is considered to 
improve NA prediction, particularly with respect to N 
fertilization. Provided that the key parameters are fitted 
to local experimental data beforehand, the approach 
can be extended to other regions outside of Beijing. 

II. Model Description 

Mainly focusing on the post-anthesis period, a 
semi-empirical GPC model was established based on 
four sub-models and four accompanying meteorological 
factors involved in DM and N assimilation and their 
translocation. The basic structure of this model is as 
follows (the acronyms are listed in Table A1 in the 
Appendix): 

                        𝐺𝐺𝐺𝐺𝐺𝐺 = 5.7 ⋅ 𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺𝐺⁄ ⋅ 100,                  (1) 

where 5.7 is the transformation coefficient (Spratt, 
1979) used to calculate GPC from GNC. 

            𝐺𝐺𝐺𝐺𝑖𝑖 = 𝐺𝐺𝐴𝐴𝐹𝐹tot,𝑖𝑖
𝐺𝐺𝐴𝐴𝐹𝐹tot,𝑟𝑟

× 𝐷𝐷𝐴𝐴 ×
𝐴𝐴𝐹𝐹𝑅𝑅RβC, 𝑖𝑖
𝐴𝐴𝐹𝐹𝑅𝑅RβC, 𝑟𝑟

⋅ 2 ⋅ 𝑅𝑅𝛽𝛽𝐺𝐺 ,𝑖𝑖,         
 
(2)

 

where (1) 𝐺𝐺𝐴𝐴𝐹𝐹tot,i, 𝐺𝐺𝐴𝐴𝐹𝐹tot,r are the accumulated 
meteorological factors based on

 
data from the whole 

growing period for growing seasons i, r, respectively; (2) 
i, rare the growing seasons

 
corresponding to model 

validation and model establishment experiments, 
respectively; (3) DM

 
(kg ha-1) corresponds to

 
the 

anthesis
 
stage;(4) RβC, i is the ratio corresponding to a 

transformation of βC, i,  which is the DM
 
post-anthesis 

transfer coefficientin growing season iand
 

will be 
illustrated in detail in the following sections; (5) 2 is the 
coefficient along with the transformation of RβC, i; and 
(6)MFRβC, i , MFRβC, r

 
are

 
the meteorological factors for             

βC, i
 
in growing seasonsi, r, respectively.
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                 𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖 = 𝐺𝐺𝐺𝐺𝑖𝑖 ×
𝐴𝐴𝐹𝐹𝑅𝑅Rβ𝐺𝐺 ,𝑖𝑖
𝐴𝐴𝐹𝐹𝑅𝑅Rβ𝐺𝐺 ,𝑟𝑟

⋅ 2 ⋅ 𝑅𝑅𝛽𝛽𝐺𝐺 ,𝑖𝑖 ,                 (3) 

where(1) NAi(kg ha-1) corresponds to growing season i, 
(2) RβN, i, MFRβN, i, MFRβN, r are defined similarly to the DM 
counterparts, and (3) 2 is the coefficient along with the 
transformation of RβN, i. 

a) Accumulation of DM, N 
Aboveground DM and NA at anthesis are 

important because GY and GNA at maturity greatly 
depend on the translocation of pre-anthesis assimilated 
to the grain (Papakosta and Gagianas, 1991). Crop 
biomass production is influenced by a variety of 
environmental factors, which can be seen in solar-driven 
CERES(Otter-Nacke et al., 1986), CO2-driven WOFOST 
(Supit et al., 1994), and water-driven Aqua Cropmodels 
(Steduto et al., 2009). For simplification, only four 
variables were considered in modeling aboveground 
biomass at anthesis based on a linear regression form: 
leaf area index (LAI) derived from three key growth 
stages (jointing, heading, and anthesis stages), seed 
rate (SR), heat sum (ST, i.e., thermal time), and NF. The 
original LAI (OLAI) was proposed to represent the 
effects of soil heterogeneity other than those of SR, ST, 
and NF,which was derived by dividing the measured LAI 
by a combined factor (CF)using the following formula: 

        𝐺𝐺𝐹𝐹 = 0.5 ⋅ BNN+𝐺𝐺𝐹𝐹
BNN+𝐺𝐺𝐴𝐴𝐺𝐺𝑁𝑁

+ 0.25 ⋅ 𝑆𝑆𝑅𝑅
BSR

+ 0.25 ⋅ 𝑆𝑆𝑆𝑆
BST

,      (4)              

where (1)NMAX (kg ha-1) is the highest NF in the field 
plots;(2)BNN is the basal N nutrition with 60 kg ha-1 
mineralized N during the growth stage (Ju et al., 
2003);(3)BSR is the basal seed rate with 375 seeds m-

2;(4)BST is the basal heat sum with 2443 ℃ 
corresponding to the optimum sowing date treatment of 
the 2009–2010 field experiment;and (5)0.5,0.25, and 
0.25 are the assumed weighting coefficients here. 

𝑂𝑂𝑂𝑂𝐺𝐺𝐼𝐼sum = �𝑂𝑂𝐺𝐺𝐼𝐼joint + 𝑂𝑂𝐺𝐺𝐼𝐼head + 𝑂𝑂𝐺𝐺𝐼𝐼anth� 𝐺𝐺𝐹𝐹⁄ ,       (5) 

where (1)𝑂𝑂𝑂𝑂𝐺𝐺Isum  is the sum of the original LAI at the 
jointing, heading, and anthesis growth stages, 
(2)𝑂𝑂𝐺𝐺𝐼𝐼joint , 𝑂𝑂𝐺𝐺𝐼𝐼head , and 𝑂𝑂𝐺𝐺𝐼𝐼anth  are the measured LAI at 
relative stages, and (3)CF is the combined factor. By 
adopting the log-formed DM recommended by Lobell 
and Burke (2010), itwas calculated as follows: 

Log10
(𝐷𝐷𝐴𝐴) = a1 + a2 × 𝑂𝑂𝑂𝑂𝐺𝐺𝐼𝐼sum + a3 × 𝐺𝐺𝐹𝐹 + 𝜀𝜀a ,     (6) 

where  a1–3 are the model coefficients, and εa is the error 
term. The values of a1–3were obtained using the least-
squares procedure. 

                             𝐷𝐷𝐴𝐴𝑖𝑖 =
𝐺𝐺𝐴𝐴𝐹𝐹veg,𝑖𝑖

𝐺𝐺𝐴𝐴𝐹𝐹veg,𝑟𝑟
× 𝐷𝐷𝐴𝐴,                       (7) 

where (1)𝐷𝐷𝐴𝐴𝑖𝑖(kg ha-1) is aboveground DM at anthesis 
in growing season i; and (2) 𝐺𝐺𝐴𝐴𝐹𝐹veg,i, 𝐺𝐺𝐴𝐴𝐹𝐹veg,rare the 
accumulated meteorological factors based on data 
before anthesis for growing season i, r, respectively. 

Allometric relationships were used to calculate 
crop Ndemand based on crop biomass (Gastal and 
Lemaire, 2002). Actual NA at anthesis was set 
astheminimum crop N demand (BN, kg N ha-1) and soil 
N supply (SNS, kg N ha-1), with the latter referring to Gao 
(2004). 

                                 𝐵𝐵𝐺𝐺𝑖𝑖 = b1 × 𝐷𝐷𝐴𝐴𝑖𝑖
b2                       (8) 

where b1–2 are the model coefficients obtainedfrom Eq. 
(6) after the log transformation of both sides. 
b) DM & N post-anthesis transfer coefficients 

Parameters related to DM, NA, and 
remobilization within wheat plants (Ercoli et al., 2008) 
were calculated as follows: 
• Post-anthesis DM and N (PDM, PN) as the 

difference between DM or N content at anthesis and 
physiological maturity. 

• DM remobilization (DMR) = DM at anthesis (DM)–
DM of leaves, culms, and chaff at maturity (SDM) 

• Nitrogen remobilization (NR) = N content of 
aboveground vegetation at anthesis (NA)–Ncontent 
of leaves, culms, and chaff at maturity (SN); 

For the estimation of DMR and NR, it was 
assumed that all the DM and N lost from vegetative 
plants were remobilized to develop the grain. 

DM and N post-anthesis transfer coefficients 
were calculated based on the above parameters in the 
same way:  𝛽𝛽C = �PDM-SDM� DM⁄  and 𝛽𝛽N =
�PN-SN� NA⁄ . Furthermore, GY and GNA could be 
derived based on two coefficients: 𝐺𝐺𝐺𝐺 = (1 + 𝛽𝛽𝐺𝐺) ×
𝐷𝐷𝐴𝐴and 𝐺𝐺𝐺𝐺𝐺𝐺= (1 + 𝛽𝛽𝐺𝐺)×𝐺𝐺𝐺𝐺 . From these definitions, β 
should be more influenced by post-anthesis growth 
(PDM and PN) and genetic differences (SDM and SN) 
rather than pre-anthesis growth (DM and NA) since the 
pre-anthesis stage has finished considering the model 
prediction time.Given that the three cultivars were similar 
in gluten type and a sufficient irrigation regime was 
applied for all treatments, the β values were believed to 
be affected by post-anthesis meteorological factors to a 
larger extent. To avoid negative βvalues in the 
calculation, which makes the interannual comparison 
complex when metrological factors are involved, β 
values were changed into ratios (i.e., 𝑅𝑅𝛽𝛽𝐺𝐺 and 𝑅𝑅𝛽𝛽𝐺𝐺) 
following the transformations 𝑅𝑅𝛽𝛽𝐺𝐺= (𝛽𝛽𝐺𝐺 + 1) 2⁄ and 
𝑅𝑅𝛽𝛽𝐺𝐺 = (𝛽𝛽𝐺𝐺 + 1) 2⁄ . 𝑅𝑅𝛽𝛽𝐺𝐺and𝑅𝑅𝛽𝛽𝐺𝐺were constrained in the 
range of 0–1, with the calculated values outside the 
range set as 0 or 1, depending on which was closer. 

After definition, 𝑅𝑅βC and  𝑅𝑅βN
were predicted 

using the preferential binary linear regression method. 
By comparing the two-variable combination results from 
four potential parameter candidates (i.e., CLND, LAI, 
SLW, and EWT), LAI and SLW were finally chosen with 
the following linear equations: 

               𝑅𝑅βC
= c1 + c2 × LAI+c3 × SLW+𝜀𝜀c                 (9) 
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𝑅𝑅𝛽𝛽𝐺𝐺 = d1 + d2 × LAI+d3 × SLW+𝜀𝜀d                 (10)

where CLND (kg ha-1) is the canopy leaf nitrogen 
density, SLW (kg m-2) is the specific leaf weight, EWT 
(mm) is the leaf equivalent water thickness (Yilmaz, 
2008), and c1–3 and d1–3 are the model coefficients.

                      CLND = CLDM×CLNC,                        (11)

                             SLW = LDM LAI⁄ ,                            (12)

     Log10
(𝑂𝑂𝐷𝐷𝐴𝐴) = e1 + e2 × CLND+e3 × LAI+𝜀𝜀e,     (13)              

where CLDM (kg ha-1) is the top two leaf DM at anthesis, 
CLNC is the leaf nitrogen content corresponding to 
CLDM, LDM (kg m-2) is the leaf DM at anthesis, and e1–3

are model coefficients.

c) Meteorological factors
The effects of weather conditions on wheat GY

have been extensively studied (Ferris et al., 1998;
Landau et al., 2000;Sadras et al., 2003;Schillinger et al., 
2008). After long-term adaptation to the local 
environment, high GY should be achieved if the growing 
season weather is identical to the historical average 
climate conditions. Based on this assumption, the 
meteorological factors for DM at anthesis and GY were
calculated following the algorithms of Lakatos (1997):

𝜂𝜂(𝑁𝑁) = �
1 − (1 −𝐺𝐺𝑛𝑛 ) × � 𝑁𝑁−𝑁𝑁

𝑁𝑁−𝑁𝑁𝑛𝑛
� ,𝑁𝑁 < 𝑁𝑁

1 − (1 −𝐺𝐺𝑥𝑥) × � 𝑁𝑁−𝑁𝑁
𝑁𝑁𝑥𝑥−𝑁𝑁

� ,𝑁𝑁 > 𝑁𝑁
�,                    (14)

where (1) η(X) (dimensionless) is the weighting 
function;(2) X is the climate data, including T, SRAD, and 
standard precipitation index (SPI) (Mckee et al., 
1993);(3) 𝑁𝑁 is the historical average value of climate 
indices over the growing season;(4) Xn and Xx are the 
minimum and maximum values of the historical climate 
indices over the growing season, respectively; and (5)
Pn and Px are the probable values corresponding to Xn

and Xx, respectively, calculated by the probability density 
function of the standard normal distribution based on 
the historical long-term data series.

𝐺𝐺𝐴𝐴𝐹𝐹 = ∑ 𝑚𝑚𝑖𝑖𝑛𝑛[𝜂𝜂(SRAD(𝑡𝑡)), 𝜂𝜂(𝑆𝑆(𝑡𝑡)), 𝜂𝜂(SPI(𝑡𝑡))]𝑗𝑗
𝑡𝑡=1 𝑗𝑗 = 1, 2, 3,⋅⋅⋅, 𝑛𝑛   (15)                                    

where (1) AMF (dimensionless) is the accumulated 
meteorological factor for DM and GY,(2) t is the time, and 
j is the number of ten-day periods in the growing season. 
A month can be divided into three ten-day periods and 
the rest of the days as the last ten-day period except for 
the first two ten-day periods. AMFveg and AMFtot can thus 
be calculated based on Equation 14to determine the 
aboveground DM at anthesis and GY at maturity, 
respectively.

𝐴𝐴𝐹𝐹𝑅𝑅βC
and 𝐴𝐴𝐹𝐹𝑅𝑅βN

are meteorological factors 
for 𝑅𝑅βC

and 𝑅𝑅βN
, respectively, and were defined in the 

same way as 𝑅𝑅βC
and 𝑅𝑅βN

. Based on cultivar Jing 9428, 
𝐴𝐴𝐹𝐹𝑅𝑅β C

and 𝐴𝐴𝐹𝐹𝑅𝑅βN
were calculated using four model-

establishing experiments. After comparing the 
correlation coefficients between multiple meteorological 
factors during anthesis and maturity and 𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽𝐺𝐺 and 
𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽𝐺𝐺, 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛tot 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛fill⁄ was identified as the best 
candidate variable for prediction, as follows:

      𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽𝐺𝐺 = f1 + f2 × Raintot Rainfill⁄ + 𝜀𝜀f and            (16)

         𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽𝐺𝐺 = g1 + g2 × Raintot Rainfill⁄ + 𝜀𝜀g ,            (17)

where𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛tot 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛fill⁄ is the rainfall ratio of the entire 
growing season to the period during anthesis and 
maturity, and f1–2 and g1–2 are model coefficients.

The coefficients of the above equations were
based on the experimental data for the four growing 
seasons, which are listed in Table 1. As shown in the 
table, except for the nonsignificant sub-model 
of MFRβN

(P=0.085), all the other sub-models reached 
significant or even higher levels.
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A Semi-Empirical Model of Winter Wheat Grain Protein Content

Table 1: Regression coefficients of model parameters

*, **, *** indicate the significance at 0.05, 0.01, and 0.001 probability levels, respectively. ns indicates no significance at 
the 0.05 probability level. － indicates a parameter that is not considered by the model. The same below.
DM-dry matter at anthesis; BN-crop nitrogen demand at anthesis; -dry matter post-anthesis transfer coefficients; -N post-
anthesis transfer coefficients; LDM-leaf dry matter at anthesis; -meteorological factors of dry matter post-anthesis transfer 
coefficient; -meteorological factors of N post-anthesis transfer coefficient

III. Materials and Methods

a) Treatments
Six growing season experiments were 

conducted at the National Research and Demonstrating 
Base of Precision Agriculture, Beijing, China (40°11’ N, 
116°27’ E, 36 m elevation).The experimental design and 
treatments are summarized in Table 2, and the winter 
wheat and summer maize rotation systems remained 
the same for each experiment. During the later period of 
the growing seasons, the accelerated growth and 
development produced identical anthesis dates for all 
treatments, thus showing only one set of meteorological 
data for the three sowing date treatments. Seeding rates 
were referenced to local production practices ranging 
from 375 to 600 seedsm-2. Sprinkler irrigation was 
adopted after 2005 relative to the previous border 
irrigation mode. One irrigation before the overwintering 
period was applied, and another 3–4 irrigations were 
applied during the re-green, jointing, anthesis, and 
grain-filling growth stages with an average of 60–75 mm 
each time.

Four experiments, 2003/2004, 2004/2005/, 
2005/2006, and 2009/2010, were used as model 
establishing experiments (Exp.1–3and Exp.5, 
respectively), and Exp.5 was the main establishing 
experiment. Only cultivar Jing 9428 was planted in 
Exp.1–3. In Exp. 5, three winter wheat cultivars were 
adopted: Jing 9428, Nongda 195, and Jingdong 13, and 
the former two were classified as strong-gluten cultivars 
and the remaining as medium-gluten cultivars. Together 
with Exp. 5, Exp.1–3 provided data for constructing the 
meteorological factor sub-models. Two field 
experiments covering the 2008/2009 and 2010/2011 
growing seasons (Exp. 4 and 6, respectively) were used 
for validation.

Parameters Log(DM) BN 𝐑𝐑𝛃𝛃𝐂𝐂
𝐑𝐑𝛃𝛃𝐍𝐍 Log(LDM) MFR𝛃𝛃𝐂𝐂

MFR𝛃𝛃𝐍𝐍

Constant 3.228(***) -0.497(ns) -0.298(ns) 0.061(ns) 2.576(***) 0.032(ns) 0.151(ns)

OLAIsum 0.032(***) - - - - - -

CF 0.249(ns) - - - - - -

DM - 0.693(0.05) - - - - -

LAI - - -0.036(ns) -0.085(*) 0.137(***) - -

SLW - - 17.656(*) 14.404(ns) - - -

CLND - - - - 0.003(**) - -

Raintot Rainfill⁄ - - - - 0.135(*) 0.124(ns)
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Because of the extremely low values 
presumably caused by sampling or measuring errors, 
two LAI and two GPC values were deleted from Exp. 5 
and 4, respectively. To establish the biomass N sub-
model, only13 treatments with top-dressing N 
fertilization were considered, ignoring the other three nil-
top-dressing N fertilization treatments.The cultivars used 
for Exp.4 and 5 were the same, except for Jingdong 13 
in Exp. 5, which was replaced with Jingdong 8 in Exp.4. 
In Exp. 6, a quasi-four-level orthogonal table design, that 
is, L16(45), was used with three cultivars (Jing 9428, 
Nongda 195, and Yannong 19), four nitrogen fertilizer 
rates, and three sowing dates (Table 3). However, the 

cultivar Jing 9428 was mistakenly replaced by Jing 9843 
in plots 3, 4, 7, and 8. Seven additional local popular 
cultivars planted on the S1 date and with an N3 fertilizer 
rate were Jing 9843, Jingdong 17, Zhongyou 206, 
Jingdong 12, Nongda 3432, Nongda 211, and 
Zhongmai 175. Only 12 treatments from the S1 date, 
which were far away from the weed-affected treatments, 
were viewed as suitable for validation because other 
treatments were affected by weed spread from adjacent 
freeze-injury treatments in another study. Two of the 12 
treatments were removed further for abnormal or 
missing LAI values. 

Quasi-four-level orthogonal table design in Exp.6 
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A Semi-Empirical Model of Winter Wheat Grain Protein Content

Num. Sowingdate Cultivar Nfertilization Num. Sowingdate Cultivar Nfertilization

1 S1 C1 B+N1 9 S2 C1 B+N2

2 S1 C2 B+N3 10 S2 C2 B+N4

3 S1 C3 B+N4 11 S2 C3 B+N3

4 S1 C3 B+N2 12 S2 C3 B+N1

5 S1 C1 B+N4 13 S3 C1 B+N3

6 S1 C2 B+N2 14 S3 C2 B+N1

7 S1 C3 B+N1 15 S3 C3 B+N2

8 S1 C3 B+N3 16 S3 C3 B+N4

Table 3:

C1–C3 denote cultivars Nongda 195, Yannong 19, and Jing 9428, respectively. B+N1 indicates basal nitrogen fertilization when 
sowing plus N1 level of top-dressing nitrogen fertilization shown in Table 2, while the other N fertilization codes have similar 
definitions.

b) Sample measurement
Field samples (0.18 m2 from the center rows) 

were collected at ground level at the jointing, heading, 
and anthesis stages in each plot, which was separated 
into four parts: culm, upper two leaves, lower leaves,
and ear. Aboveground NA was calculated by summing 
the individual organ values obtained by multiplying the 
organ biomass with the corresponding N concentration. 
At maturity, two samples of 1 m2 from the central rows in 
each plot were cut to measure GY. Each sample was 
first oven-dried at 105 °Cfor15–20 min,then oven-dried 
at 70 °Cfor 24 h and weighed. After drying, all samples 
were ground in a mill to pass through a 1-mm screen.

GPC and grain moisture content were 
determined by NIT spectroscopy using an Infratec 1241 
grain analyzer (FOSS-Tecator, Höganäs, Sweden). Soil 
organic matter was analyzed by potassium dichromate-
sulfuric acid titration using a vario MACRO cube 
elemental analyzer (Elementar, Hanau, Germany). The 
total nitrogen content in the soil was analyzed using the 
Semi-Micro-Kjeldahl method with a KJELTEC 2300 Auto 
analyzer (FOSS Tecator, Höganäs, Sweden). Soil 
nitrate-nitrogen was analyzed using the phenol 
disulfonic acid colorimetric method with a Helios Alpha 
double-beam ultraviolet spectrophotometer (Thermo 
Fisher Scientific Inc., MA, USA). All measured and 

estimated values related to DM, GY, and GPC were 
based on dry mass.

c) Weather data collection and calculation
Long-term daily sunshine duration (h), T (°C), 

and precipitation (mm) data covering a 30–60-year 
period for the Beijing area were obtained from the China 
Meteorological Data Sharing Service System (China 
Meteorological Data Service Centre, 2010). SRAD were 
calculated using the procedures described by Allen et 
al. (1998). Monthly SPI values were simulated using 
SPI_SL_6 (National Drought Mitigation Center, 2011) 
software. Standard values of the SRAD, T, and SPI data 
series were derived from the standard normal 
distribution transformation.

d) Model assessment
Model performance was assessed using 

normalized root mean squared error (nRMSE, %) 
(Rinaldi et al., 2003):

nRMSE = �∑ (𝐺𝐺𝑖𝑖－𝑂𝑂𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2

𝑛𝑛 ×
100
𝑂𝑂

where Pi and Oi are the estimated and observed values, 
respectively, O is the mean observed value. The model 
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performance was considered excellent if the nRMSE 
was <10%, good if it was 10–20%, fair if it was 20–30%, 
and poor if the nRMSE was >30%.

III. Results

a) Effects of NF and sowing date
In Exp. 4, the three-factor experimental design 

of the study was not a complete factorial design; 
however, two two-factor complete factorial designs 
could be derived from it (i.e., 4(NF)×3(cultivar) on the 
S1 date and 3(sowing date)×3(cultivar) under N3
application). Cultivar factors could be viewed as 
replicates because of their similar gluten types. DM at 
anthesis, DM post-anthesis transfer coefficients (RβC

), N 
post-anthesis transfer coefficients (RβN

), and GY were 
calculated by averaging the values of the three cultivars, 

and the results were not significant between NF levels 
(P>0.05; Table 4). Generally, DM showed an opposite 
trend relative to RβC

and RβN
with N rates; with DM rising

and RβC
and RβN

falling. As for GY, N2 corresponded to 
the highest GY (4006 kg ha-1), and GY decreased in 
cases of higher or lower NF compared to N2. 

NA at anthesis increased with N application 
rates; NA was significantly higher for N4 than for N1 
(P<0.05), and the former value (138.9 kg ha-1) was 
double the latter one (68.6 kg ha-1). GPC was 
significantly higher (P<0.05) in N2 and N4 than in N1. 
For the remaining three N rate treatments, the increasing 
GPC trend from 12.6 to 17.4% indicated the strong 
positive effects of NF on GPC. In contrast, the sowing 
date had no significant effects on any of the five traits 
(P>0.05). 

Table 4: Effects of N application rate and sowing date on dry matter (DM) at anthesis, nitrogen accumulation (NA) at 
anthesis, dry matter post-anthesis transferring coefficient (𝑹𝑹𝜷𝜷𝑪𝑪), N accumulation post-anthesis transferring 
coefficient (𝑹𝑹𝜷𝜷𝑵𝑵), grain yield and GPC in Exp.4

Values represent the means of the sub-plots. Values followed by the same letter are not significantly different at a probability level 
of 0.05. Only treatments with significant differences are indicated by the letters.

b) Model simulations
In Exp. 4, for DM and NA at anthesis, R2 of 

correlation between observation and prediction were 
0.23 and 0.56, reaching a significant level (P<0.05) and 
extremely significant level (P<0.001), respectively 
(Figure 1 (a), (b)). However, the majority of the DM was 
underestimated, with a larger deviation toward higher 
DM. In comparison, a higher consistency existed 
between the estimation and observation of NA. A similar
phenomenon was observed for DM and NA simulations 
in Exp. 6 compared with those in Exp. 4, while neither of 
the R2 values reached a significant level (P>0.05) 
(Figure 1 (c), (d)). 

Treatment Dry matter
(kg ha-1)

Nitrogen 
accumulation

(kg ha-1)

Dry matter 
post-anthesis 
transferring 
coefficient 

N accumulation 
post-anthesis 
transferring 
coefficient

Grain 
yield

(kg ha-1)
GPC
(%)

N application rate

N1 6431 68.6a 0.299 0.658 3602 12.6a

N2 6985 110.1ab 0.311 0.518 4006 15.7b

N3 6903 119.6ab 0.255 0.398 3525 －

N4 7336 138.9b 0.257 0.419 3700 17.4b

Sowing date

S1 6903 119.6 0.255 0.398 3525 －

S2 6708 121.2 0.270 0.436 3471 16.4

S3 7106 141.0 0.250 0.370 3467 16.2



 

 

Figure 1:

 

Comparison of estimation and observation values for dry matter (a) and N accumulation (b) in Exp. 
4 and dry matter (c) and

 

N accumulation (d) in Exp. 6 at anthesis
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The average GY of Exp. 2 and 3 and identical 
NF of N2 in Exp. 4 and N3 in Exp. 5 were compared with 
the accumulated meteorological factor of GY (AMFtot) 
(Figure 2(a)). Exp. 2 and 3 had the highest and lowest 
GYof 4677 and 2943 kg ha-1, respectively, and Exp. 4 
and 5 had GY of 4006 and 3564 kg ha-1, respectively. 
Except for an obvious underestimation in Exp. 2, AMFtot

perfectly captured the GY trend of Exp. 3–5. The 
underestimation was attributed to higher N rates in Exp. 
2–3 than in Exp. 4–5, producinga high GY inExp. 2–3. 
The lowest global radiation during the grain-filling period 
in Exp. 3 among the four experiments corresponded to 
higher GYloss compared to the other three experiments 
(Table 2). Both meteorological factors of post-anthesis 

transfer coefficients (MFRβC
, MFRβN

) were positively 
correlated to Raintot Rainfill⁄ (Fig.2(b)). MFRβC

had a 
higher R2 than MFRβN

at 0.90 and 0.84, reaching 
significant (P<0.05) and nonsignificant levels (P>0.05), 
respectively.

where N indicates the number of samples. The solid lines represent y=x. The dashed lines are the fitted simple linear regression 
models with estimation and observed values as dependent and independent variables, respectively. The same as below.



 
 

Figure 2:

 

Meteorological factors of grain yield (a) and for post-anthesis transferring coefficients (b)

 

In Exp. 4,

 

for DM and N post-anthesis transfer 
coefficients, R2 values were similar at approximately 0.56, 
reaching an extremely significant level (P<0.001) (Figure 
3

 

(a), (b)). All 18 treatments overestimated the DM post-
anthesis transfer coefficients. The N post-anthesis 

transfer

 

coefficient performed much better, except for 
one apparent underestimation possibly caused by 
sampling errors.

 

In Exp. 6, neither of the R2 values

 

were 
significant

 

(P>0.05) (Figure 3

 

(c), (d)).
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AMF tot indicates accumulated meteorological factors for grain yield; Exp. 2–5 indicate 2004/2005, 2005/2006, 2008/2009, and 
2009/2010 growing seasons, respectively; MFR βC and MFR βN are the meteorological factors of dry matter and N post-anthesis 
transfer coefficients, respectively; Rain tot /Rain fill , the rainfall ratio of the whole growing season to the period during anthesis and 
maturity.



 

A simple linear model has been widely applied 
to GPC forecasting because of its convenient 
application in remote sensing; thus, a simple linear 
model was established for comparison with leaf nitrogen 
content at anthesis as an independent variable. In Exp. 
6, only 10 treatments of the S1 date, free from weed 
invasion, were selected as validation data. The R2 and 
nRMSE of the semi-empirical model for Exp. 4 and 6 
and the simple linear model for Exp. 4 were 0.64 and 

8.91, 0.45

 

and 4.50,and 0.42 and13.3, respectively 
(Figure 4). The

 

semi-empirical model had higher 
interannual prediction stability than the linear model, 
with average deviations of −

 

1.7

 

and −

 

7.6%, 
respectively. However,

 

under the optimal sowing date 
and late sowing date conditions

 

in Exp. 4, the GPC 
tended

 

to be underestimated and overestimated by the

 

semi-empirical model to an extent as high as − 16.2 
and 16.6%, respectively.
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Figure 3: Comparison of estimation and observation values for (a) and (b) in Exp. 4 and (c) and (d) in 
Exp. 6 at anthesis)



 

 

Figure 4: Comparison of grain protein content estimation and observation for new semi-empirical model with Exp. 4 
(a) and Exp. 6 (b) and for simple linear model (c). 

V. Discussion 

By conducting multi-year field experiments and 
introducing the climate and soil N effects, the semi-
empirical GPC prediction model established here 
fulfilled its intended role of demonstrating superiority 
over the simple linear model regarding the intra-annual 
GPC prediction. However, the inner ratio form and 
empirical method of the modeling also constrained 
further improvement of GPC prediction accuracy. 

a) GPC simulations 

The GPC
 
was generally underestimated

 
by both 

the semi-empirical and the simple linear models. This 
could be a result of the different climate conditions

 

during the pre-anthesis period
 
for the establishment and 

validation experiments.
 
A higher precipitation and lower 

average temperature were observed in the establishing
 

experiment than in the validation
 

experiment. Similar 
results were obtained in a study conducted in England 
during 1975–1995 (Smith and Gooding, 1999): GPC was 

negatively correlated with the rainfall from 31 Dec.–3 
Feb. (winter) and 4 Mar.–26 May. (spring). The negative 
effects of rainfall before anthesis were attributed to the 
following two aspects: soil nitrogen reserve dilution by 
vegetative proliferation and soil N loss, and leaf life 
extension during grain growth favoring carbohydrate 
assimilation and translocation more than N. Subedi et al. 
(2007) showed that GPC increased by 6–17% for all late 
planting dates, consistent with the sowing date trend 
effects,as simulated by the semi-empirical model (i.e., 
overestimation for later sowing conditions and 
underestimation for optimum sowing conditions). 

The semi-empirical model proposed here has a 
limited dataset in terms of cultivar parameters and 
growing season experiments, which could bepartly 
compensated by long-term historical climate data to 
overcome interannual GPC fluctuations with a relatively 
satisfactory nRMSE below 9%. In comparison, Weiss 
and Moreno-Sotomayer (2006) reported an nRMSE 
range of 9–14% with GPC simulation results of the 
CERES-Wheat crop model. As illustrated by Pan et al. 
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(2006a), the meteorological factors affecting GPC were 
incorporated by genotypic parameters, including a 
number of traits such as characteristic GPC, 
physiological vernalization time, temperature sensitivity, 
photoperiod sensitivity, and rainfall sensitivity. Li et al. 
(2020) found that the regression coefficients of first-layer 
models could be used to construct second-layer models 
and proposed a hierarchical linear modeling method for 
GPC.The first-layer model was a multilinear model with 
vegetation growth indices as independent variables. The 
fitted coefficients, such as intercept and slopes, became 
the dependent variables for the second-layer model, 
which is also a multilinear model with otherwise 
meteorological factors as independent variables. 

b) Post-anthesis transfer coefficients and 
corresponding meteorological factors 

Post-anthesis DM and the N transfer coefficient 
(𝑅𝑅𝛽𝛽 C

) were significantly correlated with SLW and LAI at 
anthesis, respectively. 𝑅𝑅𝛽𝛽 C

positively correlated with 

SLW. In comparison, the correlations between 𝑅𝑅𝛽𝛽 C
 

andLAIwere negative (Table 1). These results agree with 
the findings of Hodáňová (1975) and Marini and Barden 
(1981), who reported that SLW is an important indicator 
of leaf photosynthetic rate. In addition, the post-anthesis 
photosynthetic rate is an important factor for GY, as the 
assimilate contributesat least 60% of the GY at maturity 
(Bidinger et al., 1977; Wang and Shangguan, 2015). 
Thus, SLW plays an important role in GY by affecting the 
intermediate DMpost-anthesis transfer coefficient. In 
contrast, a higher LAI at anthesis decreased the post-
anthesis N-transfer coefficient (𝑅𝑅𝛽𝛽N

). In parallel with the 
findings of Pan et al. (2006b) and Xu et al. (2009), N 
remobilization from leaves was assumed to decrease 
with increasing LAI for both wheat and barley. Przulj and 
Momcilovic (2001) reported that 60–92% of the N 
accumulated in wheat grain originates from the 
translocation in vegetative tissue after anthesis. Halloran 
(1981) suggested that nitrogen translocation from leaf 
tissue is more difficult than that from culm or glume 
tissue. As a result,a larger LAI at anthesis indicates 
greater nitrogen loss with the senesced leaves at 
maturity. In contrast, it delays maturity owing to staying 
green effects. 

The relative rainfall portion with regard to pre-
anthesis and post-anthesis (𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛tot 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛fill⁄ ) can 
considerably determine post-anthesis DM and N 
assimilation and translocation in the study, which were 
chosen to establish meteorological factors of post-
anthesis transfer coefficients (𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽 C

, 𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽N
). As 

shown in Table 1, 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛tot 𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛fill⁄  was both positively 
and significantly correlated with𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽 C

, and positively 
correlated with 𝐴𝐴𝐹𝐹𝑅𝑅𝛽𝛽N

. Identical to the results of 
Nakagami et al. (2004), who observed relatively low soil 
moisture conditions during the later growth cycle, 

heavier wheat DM and GY could be achieved because 
of the high photosynthesis rate and leaf area during leaf 
senescence and enhanced root system. Similarly, Soon 
et al. (2008) showed that the ratio of rainfall in May and 
June. (the pre-anthesis period for wheat in Canada) 
compared to the average in history was highly 
correlated with the amount of remobilized nitrogen. Palta 
and Fillery (1995) also demonstrated that N 
remobilization within the plant can provide most of the 
grain N required to synthesize grain protein under post-
anthesis water deficit. However, under severe post-
anthesis water stress, N remobilization is reduced by 
approximately 15% (Ercoli et al., 2008). 

c) Further model improvement 
Ideal GPC and yield usually occur under 

favorable environmental and management conditions, 
and in most cases, an inverse relationship, known as the 
“dilution phenomenon,” exists between GPC and yield 
(Soon et al., 2008; Stewart et al., 1990). For some 
genotypes, high GPC and GY can be achieved, which is 
called grain protein deviation (Monaghan et al., 2001; 
Bogard et al., 2010). GPC mostly depends on the 
relative fluctuations in NA and DM to a greater extent 
than the corresponding absolute values. Thus, key 
processes around critical periods are crucial for GPC 
modeling (Mcmullan et al., 1988). The inaccuracies 
related to DM estimation were partly correlated with the 
simplified modules of DM and N uptake and 
translocation. The current prediction accuracy could be 
accepted given that the model is used to predict 
regional GPC before harvest and assist graded 
purchases for processing enterprises. Particularly, this 
holds true for Exp. 6 where the majority of different 
cultivars were introduced but with good model 
performance, suggesting a sound theoretical basis and 
regional application prospect. However, more field 
experiments should be carried out to improve the DM 
and N flow modules by incorporating specific 
meteorological factors for critical stages or adopting 
multi-factor regression. Comparing the prediction 
nRMSE of 6.87 by Li et al. (2020) with two-layer multi-
factor regression models and considering the cultivar 
effects, the semi-empirical model showed a larger 
annual prediction nRMSE at 8.91 and 4.50 and needs 
further improvement.      

VI. Conclusion 
The priority task of establishing the semi-

empirical GPC model was to realize prediction ahead of 
maturity with higher accuracy. Anthesis was deemed 
suitable for the ahead-of-time prediction stage, which 
ends vegetative growth and launches the grain filling 
period, whereby the whole growth period was divided 
into pre-anthesis and post-anthesis periods. The DM 
and NA and translocation involved in the two periods 
were separately modeled based on the experimental 
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data. Parameters such as LAI, SLW, and CLND, mainly 
acquired at the anthesis stage, were adopted as 
independent variables for the sub-model establishment. 
Meteorological factors were defined and calculated for 
prediction and reference growing seasons, and the ratio 
of meteorological factors involved in the two growing 
seasons was assumed to be climate effects, which were 
incorporated into relevant modeling. With independent 
evaluation data from two growing seasons, the semi-
empirical GPC model performed better with normalized 
nRMS Evalues of 8.91 and 4.50. Interannual uncertainty 
accompanied by a simple linear model was overcome 
with the semi-empirical model, which shows a promising 
future when combined with remote sensing technology. 
However, complex physiological processes involved 
with DM and NA and translocation were simplified with 
empirical equations by the study, which constrains the 
model prediction accuracy. More experiments should be 
conducted to determine critical parameters for key 
growth processes affecting GPC.  
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