

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: D
AGRICULTURE AND VETERINARY
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-460x & Print ISSN: 0975-587X

Native Mycorrhizh-Forming Fungi Associated with Cultivated Forage Plants in the Central Valley of Catamarca, Argentina

By Di Barbaro Gabriela, Andrada Horacio, Viale Sixto, González Basso Valeria, Alurralde Ana, Del Valle Eleodoro & Brandán de Weth Celia

University of Catamarca

Abstract- Mycorrhizae are a symbiosis between the roots of some plants and certain soil fungi, where both participants in this association obtain benefits. The plant provides the fungus with carbohydrates, proteins, and lipids, and in turn, the fungus allows the plant to better uptake nutrients from the soil and water. The objective was to determine the existence of mycorrhizal associations between native fungi and forage crops in the Central Valley of Catamarca. Root colonization of *Melilotus officinalis*, *Avena sativa*, *Hordeum vulgare*, *Secale cereale*, *Panicum maximum*, and *Cenchrus ciliaris* from field crops in the Central Valley of Catamarca was studied. Fungal infection or colonization was quantified using the line intersection method and the frequency of appearance of fungal structures. Endomycorrhizal structures of the arbuscular vesicle type were observed, with continuous mycorrhizal hyphae, some of them with rosary lipids inside and vesicles with fat globules. In addition, dark septate endophytic fungi were observed. The association of mycorrhizae is described in six forage species cultivated in the Central Valley of Catamarca and the co-occurrence of arbusculo-vesicular mycorrhizae and native dark septate endophytes.

Keywords: oatmeal; barley; rye; gatton panic; buffalo-grass.

GJSFR-D Classification: DDC Code: 631.46 LCC Code: QK604.2.M92

Strictly as per the compliance and regulations of:

Native Mycorrhizh-Forming Fungi Associated with Cultivated Forage Plants in the Central Valley of Catamarca, Argentina

Di Barbaro Gabriela ^a, Andrada Horacio ^a, Viale Sixto ^b, González Basso Valeria ^c, Alurralde Ana ^Y, Del Valle Eleodoro ^s & Brandán de Weth Celia ^x

Abstract- Mycorrhizae are a symbiosis between the roots of some plants and certain soil fungi, where both participants in this association obtain benefits. The plant provides the fungus with carbohydrates, proteins, and lipids, and in turn, the fungus allows the plant to better uptake nutrients from the soil and water. The objective was to determine the existence of mycorrhizal associations between native fungi and forage crops in the Central Valley of Catamarca. Root colonization of *Mellilotus officinalis*, *Avena sativa*, *Hordeum vulgare*, *Secale cereale*, *Panicum maximum*, and *Cenchrus ciliaris* from field crops in the Central Valley of Catamarca was studied. Fungal infection or colonization was quantified using the line intersection method and the frequency of appearance of fungal structures. Endomycorrhizal structures of the arbuscular vesicle type were observed, with continuous mycorrhizal hyphae, some of them with rosary lipids inside and vesicles with fat globules. In addition, dark septate endophytic fungi were observed. The association of mycorrhizae is described in six forage species cultivated in the Central Valley of Catamarca and the co-occurrence of arbusculo-vesicular mycorrhizae and native dark septate endophytes.

Keywords: oatmeal; barley; rye; gatton panic; buffalo-grass.

I. INTRODUCTION

Mycorrhizae are symbioses between plant roots and certain soil fungi. The term mycorrhiza describes the group made up of the absorption structures of plants and the fungal symbionts that colonize them in a distinctive way (Sánchez de Prager, 2007; Pérez *et al.*, 2010), generating a structural and metabolic integration typical of a symbiosis. The absorption of nutrients is affected by these associations that also influence plant health, productivity, and the adaptation of plants to environmental conditions (Sánchez de Prager, 2007).

The plant provides the fungus with carbohydrates, proteins, and lipids, necessary for its development, and in turn, the fungus allows the plant to

better capture water and nutrients from the soil, both macronutrients and micronutrients, especially those few mobile, such as phosphorus (Sánchez de Prager, 2007).

Endo mycorrhizae and ectomycorrhizae are two types of mycorrhizae that occur naturally (Sieverding, 1983; García *et al.*, 2000; Biaus, 2017). Endomycorrhizae are more frequent in nature and are characterized by the colonization of cortical cells by a mycosymbiont, which lives between them and within them, inter and intracellularly (Montenegro Gómez *et al.*, 2017). Among the different types of endomycorrhizal, the most widespread within plant species are vesicular-arbuscular mycorrhizae (VAM) or arbuscular mycorrhizae (AM) and some more specific forms such as orchidoids and ericoid (Sánchez de Prager, 2007; Montenegro Gómez *et al.*, 2017).

Arbuscular mycorrhizal fungi (AMF) and vesicular-arbuscular fungi (HMVA) do not develop in pure culture media because they are not capable of growing in the absence of a host plant (Aguilar-Ulloa *et al.*, 2016), so they are considered obligate symbionts, this biological condition that represents an obstacle to their massive propagation. These fungi are propagated using trap plants, which after a period of growth, the roots and soil are collected for use as inoculant of endomycorrhizal fungi (De la Rosa-Mera *et al.*, 2012). In recent decades, the study of these organisms has become important for applying them to the ground, as biofertilizers to increase the productivity in crops (Covacevich and Echeverría, 2010; Reyes Tena *et al.*, 2015; Aguilar-Ulloa *et al.*, 2016; Ordoñez-Castañeda *et al.*, 2021) and in phytoremediation, programs to correct contaminated soils (Pérez *et al.*, 2021; Colombo *et al.*, 2020; Quiroz-Mojica *et al.*, 2021). The colonization of roots by endomycorrhizal fungi is the most used parameter as a quick indicator of the presence of mycorrhizal symbiosis (Covacevich and Echeverría, 2010).

Several plant species have been investigated as trap crops to produce mycorrhizae, to find plants that can be colonized and allow the rapid growth of mycorrhizae (Aguilar-Ulloa *et al.*, 2016). The appropriate trap crop must be a fast-growing plant that adapts to the environmental conditions where it will grow, must be

Author ^a & ^Y: Faculty of Agricultural Sciences. National University of Catamarca. Avda. Belgrano and Maestro Quiroga. (4700) Catamarca. Argentina. e-mail: gabydibarbaro@yahoo.com.ar

Author ^s: Faculty of Agricultural Sciences. National University of the Coast. Kreder 2805. (3080) Esperanza, Santa Fe. Argentina, National Council for Scientific and Technical Research.

Author ^x: National Council for Scientific and Technical Research.

easily colonized by the mycorrhizal fungus, and produce many roots in a relatively short time (45-60 days) (Siqueira Martins *et al.*, 2017).

The association established by AMF is not specific, which allows the same fungus to colonize different plant species to generate symbiosis (Aguilar-Ulloa *et al.*, 2016). Also, there is a preference that certain AMF colonize and spread better in certain plant species (Covacevich and Echeverría, 2010). Furthermore, using the same fungal species is probably not optimal for all crops. For this reason, it is convenient to evaluate the MVA in each trap crop species.

Because the interactions between different VMAs with soil microorganisms are complex, it is necessary to determine their behavior in the field under the growth conditions of each crop. The use of native MVA is recommended due to its adaptation to prevailing conditions, avoiding ecological risks associated with introducing exotic species (Sánchez de Prager, 2007).

The objective was to determine the existence of mycorrhizal associations between autochthonous soil fungi and forage crops planted in the Central Valley of Catamarca and to evaluate the biological aspects of the interactions found.

II. MATERIALS AND METHODS

Colonization of mycorrhizae in plant roots of six commonly cultivated forage species in the region was studied. The sowings were carried out in the locality of Miraflores, Department of Capayán, in the Central Valley of Catamarca, in plots of native forest or with agricultural history without application of mycorrhizal fungi. The species evaluated were: clover (*Melilotus officinalis* L.), oats (*Avena sativa* L.), barley (*Hordeum vulgare* L.), rye (*Secale cereale* L.), Gatton panic (*Panicum maximum* Jacq.), and buffel grass (*Cenchrus ciliaris* L.).

In the laboratory, the roots of each of the collected plants were extracted and washed with running water. The thinnest were selected, those that were clarified and stained following the methodology of Phillips and Hayman (1970) to determine fungal colonization and detection of mycorrhizal structures. Staining was performed with Gueguén's triple dye solution, allowing fungi to stain proteins blue simultaneously, starch violet, fats red (Sarasola and Rocca, 1975), and glycogen in mahogany (Verna and Herrero, 1952).

In each specimen, the percentage of fungal colonization by MVA and the percentages of the content of arbuscules (A) and vesicles (V) were quantified by the line intersection method of Giovannetti and Mosse (1980), and the frequency of appearance of A and V (Covacevich *et al.*, 2001). For each specimen, 15 segments of the colored roots were taken, and distributed randomly on a grid slide. By means of microscopic observation (10x and 40x), the presence-

absence of mycorrhizal structures (A and V) was recorded in the horizontal and vertical intersections between roots and grid lines. Three repetitions of each species were performed, quantifying at least 100 intersections per preparation to later calculate the frequency of mycorrhizal infection, according to Giovannetti and Mosse (1980).

$$MGiovannetti (\%) = \frac{No. SI \times 100}{No. SO}$$

Where:

SI: number of infected segments (hyphae + arbuscules + vesicles) and

SO: number of total segments observed (hyphae + arbuscules + vesicles + no infection).

Also, the percentage of hyphae of dark septate endophytes (ESO) and the percentage of microsclerotia were recorded.

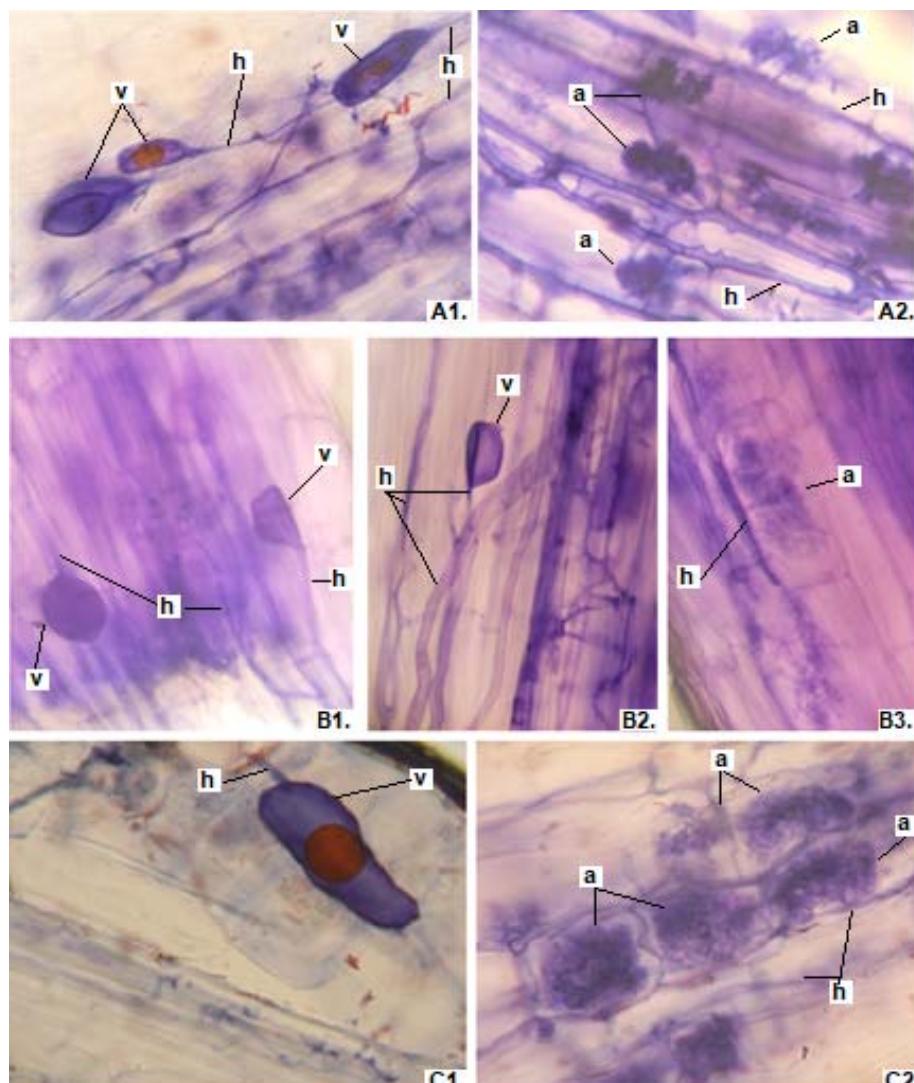
III. RESULTS AND DISCUSSION

In the six analyzed forage species, typical structures of endomycorrhizal fungi of the MVA type (hyphae, arbuscules, and vesicles), and of ESO fungi (with septate, melanized hyphae, and numerous microsclerotia) were observed.

In all species there were continuous thin and thick hyphae, with intracellular and intercellular growth and some of them with lipids in a rosary inside.

In clover, arbuscular distributed throughout the bark were observed, involved in the bidirectional transfer of nutrients (Smith and Read, 1997). Numerous vesicles of diverse morphology (spherical, oval, tapered) were also observed in this legume, so it is inferred that the roots are colonized by various species or genera of native HMVA. Vesicles with light blue (saccule) and red (single or multiple globules) colorations were observed. These structures are related to the carbon storage in the form of lipids and fatty acids. For this reason, vesicles are defined as reserve organs of the fungal symbiont (Sieverding, 1983).

A high level of fungal colonization was determined in the six forage plants, obtaining the highest values of mycorrhizal colonization (MC) in clover and barley roots (Table 1). The highest frequency of appearance of arbuscules (FAA) was observed in clover, while the lowest number of arbuscules was determined in oats. The highest frequency of vesicle appearance (FAV) was also observed in clover, with average values of 20% (Table 1). These results coincide with the statements of Covacevich and Echeverría (2010) that indicate that there is a preference for certain AMF to better colonize certain plant species. The more significant colonization in clover is explained by the fact that Rhizobios-arbuscular mycorrhizae (AM) associations occur in legumes that act synergistically in infection, mineral nutrition, and plant growth (Fitter & Garbaye, 1994; Barea, 1997). The main effect of AM in


enhancing rhizobia activity is through a generalized stimulation of plant nutrition, some more localized

effects may occur at the root (Melo de Miranda *et al.*, 2008; Spagnoletti *et al.*, 2021).

Table 1: Fungal colonization in forage species from the Central Valley of Catamarca

Species	Mycorrhizal Fungi			Fungi ESO FAM ⁴ (%)
	MC ¹ (%)	FAA ² (%)	FAV ³ (%)	
Clover	89	47	20	15
Barley	89	17	15	15
Rye	83	27,7	16	13
Buffalograss	76,5	20	8	2
gatton panic	75,8	32	9,8	1,7
Oatmeal	75	10	12	4

¹(MC): Mycorrhizal colonization. ²(FAA) Frequency of appearance of arbuscules. ³(FAV): Frequency of appearance of vesicles. ⁴(FAM): Frequency of appearance of microsclerotia of dark septate fungi.

Figure 1: Photomicrographs of mycorrhizal structures in roots of forage species. (A: Clover; B: Barley; C: Rye). (a: Arbuscule; h: hyphae; v: Vesicle). (Magnification: 40x)

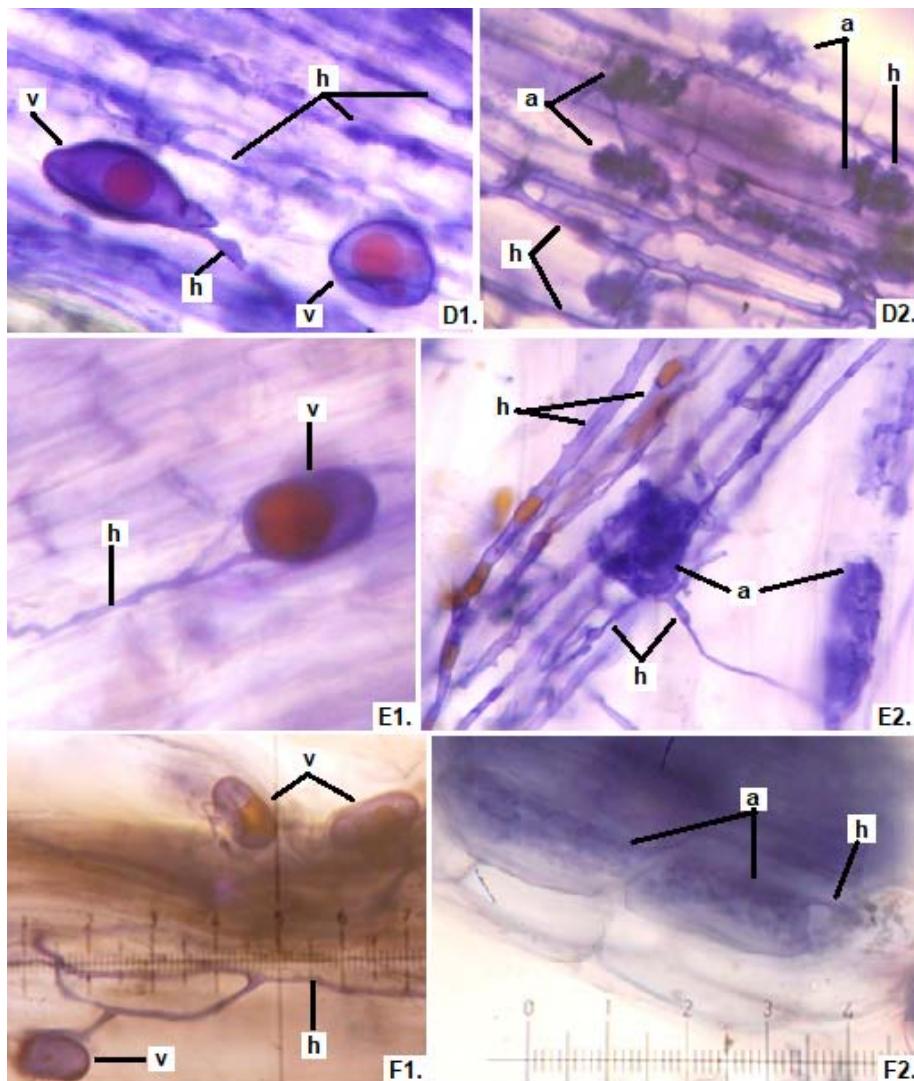
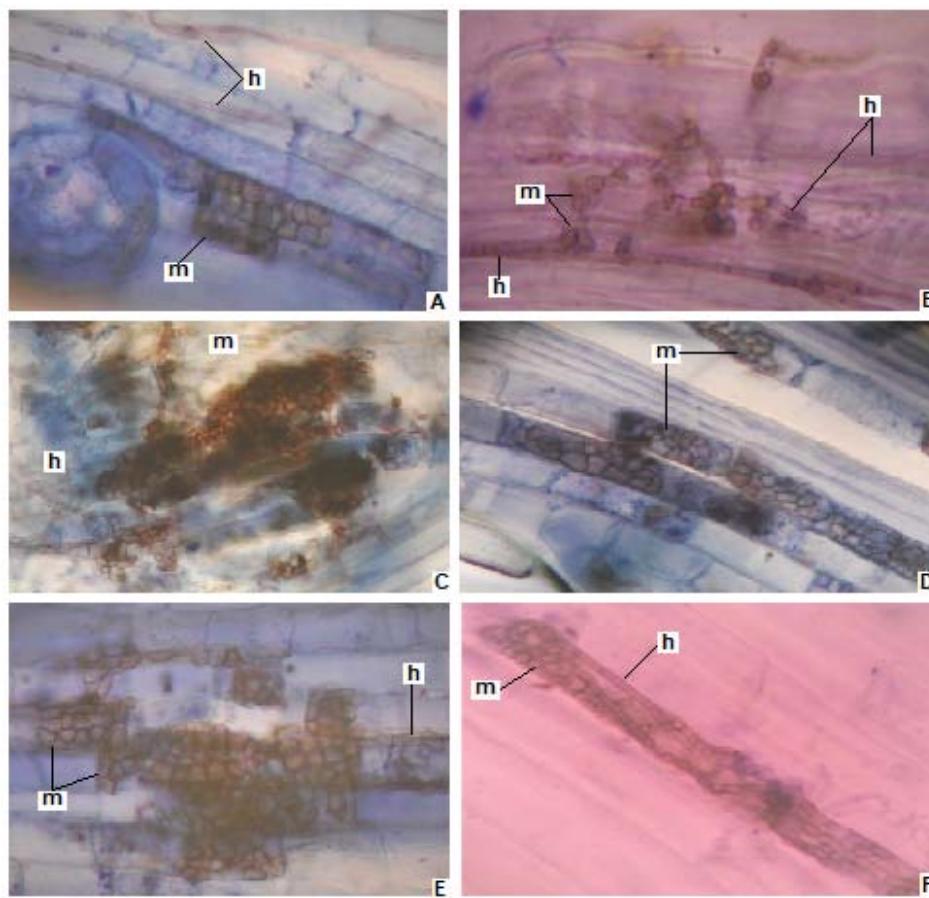



Figure 2: Microphotographs of mycorrhizal structures in roots of forage species. (D: Oats; E: Buffel Grass and F: Gatton Panic). (a: Arbuscule; h: hyphae; v: Vesicle). (Magnification: 40x)

In addition, in all the forage species analyzed, another type of hyphae was observed: septate, melanized, and with numerous microsclerotia of the kind ESO fungi (Peterson *et al.*, 2004). In clover, barley, and rye roots, similar values of FAM of ESO (between 15 and 13%) were determined (Table 1).

Figure 3: Photomicrographs of dark septate fungal structures on roots of forage species. (A: Clover; B: Barley; C: Rye; D: Oats; E: Buffel Grass and F: Gatton Panic). (m: Microsclerosia; h: hypha). (Magnification: 40x).

In all the plants studied, their roots were simultaneously colonized by both endophytes, MVA and ESO hyphae, also detecting the presence of vesicles, arbuscules typical of VA mycorrhizae, and ESO microsclerotia. This was also observed in other plants including ferns, mono, and dicots that are simultaneously colonized by MVA and ESO. (Urcelay *et al.*, 2005; Lugo *et al.*, 2011; Lizárraga *et al.*, 2015; Di Barbaro *et al.*, 2017).

Therefore, MVA and other fungal structures developed in all the forage species studied. This coincidence could be due to the fact that all these crops were carried out in contiguous lots with identical soil characteristics and environmental conditions, and because the fungal colonization developed from the native microflora, with the ability to associate and generate MVA, which is consistent with what expressed by Aguilar-Ulloa *et al.* (2016) where they explain that the same fungus can colonize different plant species to generate symbiosis.

These mycorrhizal-forming fungi can be considered as potential constituents of biofertilizers. Diaz Franco *et al.* (2019) achieved the reduction of inorganic fertilization through the inoculation of FAM in the sorghum crop. The higher yield of sorghum obtained

allows considering the inclusion of FAM as a viable practice that guarantees greater profitability, as well as the agroecological conservation of production systems.

IV. CONCLUSION

The association of mycorrhizae in six forage species cultivated in the Central Valley of Catamarca and the co-occurrence of vesicular-arbuscular mycorrhizae and native dark septate endophytes is described.

High levels of mycorrhizal colonization were obtained in all the evaluated forage species. The suitability of *Melilotus officinalis* as a trap species is highlighted as it is easily colonized by mycorrhizal fungi and generates rapid mycorrhizal growth.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Aguilar-Ulloa W., Arce-Acuña P., Galiano-Murillo F., Torres-Cruz T. 2016. Aislamiento de esporas y evaluación de métodos de inoculación en la producción de micorrizas en cultivos trampa. *Tecnología en Marcha*. Edición Especial Biocontrol.: 5-14.
2. Barea JM. 1997. Mycorrhiza/bacteria interactions on plant growth promotion. En: Ogoshi A, Kobayashi I,

Homma Y, Kodama F, Kondon N, Akino S, editores. Plant growth promoting rhizobacteria, present status and future prospects. París, Francia, OECD,: 150-158.

3. Biaus A.J. 2017. Evaluación de la aplicación de nematicidas y hongos micorrícos arbusculares sobre un cultivo de berenjena infestado con *Nacobbusaberrans*. Trabajo Final de Carrera Ingeniería Agronómica. Facultad de Ciencias Agrarias y Forestales. Universidad Nacional de La Plata.: 50p.
4. Colombo R.P., Benavidez M.E., Fernandez Bidondo L., Silvani V. A., Bompadre M.J., Statello M., Scorza M.V., Scotti A., Godeas A.M. 2020. Arbuscular mycorrhizal fungi in heavy metal highly polluted soil in the Riachuelo river basin. *Rev Argent Microbiol.* 52(2):145-149. <https://doi.org/10.1016/j.ram.2019.05.001>
5. Covacevich F., Echeverría H. E., Aguirrezabal L. A. N. 2001. Comparación de dos técnicas de cuantificación de infección micorríctica. *Ciencia del Suelo.* 19(2):155 - 158.
6. Covacevich F., Echeverría H.E. 2010. Indicadores para seleccionar inóculos de hongos micorrícos arbusculares eficientes en suelos moderadamente ácidos. *Cl. SUELO (ARGENTINA)* 28(1): 9-22.
7. De la Rosa-Mera C., Ferrera-Cerrato R., Alarcón A., Sánchez-Colín M., Franco-Ramírez A. 2012. Aislamiento de consorcios de hongos micorrícos arbusculares de plantas medicinales y su efecto en el crecimiento de vinca (*Catharanthus roseus*). *Revista Chilena de Historia Natural* 85: 187-198.
8. Di Barbaro G., Andrada H., González Basso V., Alurralde A., Del Valle E., Brandan C. 2017. Micorrizas arbusculares y hongos septados oscuros nativos en topinambur (*Helianthus tuberosus*L.) en Catamarca, Argentina. *Rev. Cienc. Agri.* 34(2): 98 - 106. doi: <http://dx.doi.org/10.22267/rca.173402.75>.
9. Díaz Franco A., Espinosa Ramírez M., Ortiz Cháirez F.E. 2019. Reducción de la fertilización inorgánica mediante micorriza arbuscular en sorgo. *Rev. Int. Contam. Ambie.* 35 (3) 683-692.
10. Federico N. Spagnoletti, Agustina Fernandez di Pardo, Natalia E. Tobar Gómez y Viviana M. Chiocchio. 2013. Las micorrizas arbusculares y Rhizobium: una simbiosis dual de interés. *Rev Argent Microbiol.* 2013; 45(2):131-132.
11. Fitter AH, Garbaye J. 1994. Interactions between fungi and other soil organisms. *Plant Soil.* 159:123-32.
12. García C., Franco M., Quintero J., Rao I. 2000. Catálogo de cepas de micorrizas arbusculares. CIAT Centro Internacional de Agricultura Tropical. Cali, Colombia.:78p.
13. Giovannetti, M.; Mosse, B. 1980. An evaluation of techniques for measuring vesicular-arbuscular infection in roots. *New Phytologist.* 84:489 - 500. doi: 10.1111/j.1469-8137.1980.tb04556.x.
14. Lizarraga S.V., Ruiz A.I., Salazar S.M., Díaz Ricci J.C., Albornoz P.L. 2015. Micorrizas vesículo-arbusculares, endófitos septados oscuros y anatomía radical en *Fragaria ananassavar*. Camino Real (Rosaceae), en la provincia de Tucumán, Argentina. *Revista Agronómica del Noroeste Argentino.* 35(1):11 - 17.
15. Lugo M. A., Giordano P. G., Urcelay C., Crespo E. M. 2011. Colonización radical por endófitos fúngicos en *Trithrinax campestris* (Arecaceae) de ecosistemas semiáridos del centro de Argentina. *Boletín de la Sociedad Argentina de Botánica.* 46(3-4):213 - 222.
16. Melo de Miranda E, Saggin Junior OJ, Ribeiro da Silva EM. 2008. Selection of arbuscular mycorrhizal fungi for the forage peanut intercropped with signal grass. *Pesq Agropec Bras.* 43:1185-91.
17. Montenegro Gómez S., Barrera Berdugo S., Valencia C.M. 2017. Bioprospección de hongos micorrícos arbusculares como alternativa para el fortalecimiento del cultivo de aguacate (*Persea americana* Miller) en Colombia. *Revista de Investigación Agraria y Ambiental* 8:13p.
18. Ordoñez-Castañeda Y.M.; Ceballosrojas I.C.; Rodriguez-Villate A.; Sanders I.R. 2021. Efecto de la inoculación *Rhizophagusirregularis* y de la fertilización fosfatada sobre la comunidad local de hongos formadores de micorrizas arbusculares. *Biología en el sector agropecuario y agroindustrial*, v. 19, n. 2: 184-200. Doi: <https://doi.org/10.18684/bsaa.v19.n2.2021.1850>.
19. Perez C.A., Rojas S.J., Fuentes C.J. 2010. Determinación de un modelo logístico para evaluación in situ de la colonización de micorrizas en pasto *Dichanthium aristatum* (L.). *Rev. Colombiana Cienc. Anim.* 2 (1): 73-84.
20. Peterson R. L., Massicote H. B., Melville L. H. 2004. Dark septate fungal endophytes. In P.B. CAVERS (ed.), *Mycorrhizas: Anatomy and cell biology*. NRC. Ottawa:145 - 153.
21. Phillips J. M., Hayman D. S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. *Trans. Br. Mycol. Soc.* 55:158 - 161. doi: 10.1016/S0007-1536(70)80110-3.
22. Quiroz-Mojica, L. J., Daza-Mendoza, M. M., Díaz-Muegue, L. C., Melo-Ríos, A. E y Peñuela-Mesa, G. A. (2021). Efecto de biochar, micorrizas arbusculares y Guazuma ulmifolia, en la rehabilitación de suelos mineros. *Terra Latinoamericana* 39: 1-16. e709. <https://doi.org/10.28940/terra.v39i0.709>
23. Reyes-Tena A., López-Pérez I., Quiñones-Aguilar E.E., Rincón-Enríquez G. 2015. Evaluación de

consorcios micorrícos arbusculares en el crecimiento vegetal de plantas de maíz, chile y frijol. Biológicas, Revista de la DES Ciencias Biológico Agropecuarias, Universidad Michoacana de San Nicolás de Hidalgo, 17(2): 35 – 42.

24. Pérez R., Tapia Y., Antilén M., Casanova M., Vidal C., Santander C., Aponte H., Cornejo P. 2021. Interactive effect of compost application and inoculation with the fungus *Claroideoglomusclaroideum* in *Oenothera picensis* plants growing in mine tailings. Ecotoxicology and Environmental Safety, Volume 208, 111495: 8p. ISSN 0147-6513, <https://doi.org/10.1016/j.ecoenv.2020.111495>.

25. Sánchez de Prager M. 2007. Las micorrizas: estrategia compartida para colonizar el suelo. Capítulo 4. Las Endomicorrizas: Expresión bioedáfica de importancia en el trópico. Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. ISBN 978-958-44-0523-4. : 115-175.

26. Sarasola A., Rocca M. 1975. Fitopatología. Curso moderno. Tomo IV. Fisiogénicas – Práctica en Fitopatología. Editorial Hemisferio Sur. Buenos Aires. 191 - 192p.

27. Sieverding E. 1983. Proyecto Micorriza. Centro Internacional de Agricultura Tropical Cali. Colombia: 121p.

28. SiqueiraMartins R.M., Melloni R.; Guimarães Pereira Melloni E. 2017. Crescimento micelial de fungos micorrízicosarbusculares e formação de micorriza em solo contaminado por cádmio. Revista Scientia AgrariaVersão On-line ISSN 1983-2443 VersãoImpressa ISSN 1519-1125 SA vol. 18n°3 Curitiba Jul/Set. 2017: 48-60.

29. Smith S. E., Read D. J. 1997. Chapter 2. The development of infection and anatomy of vesicular-arbuscular mycorrhizas. In "Mycorrhizal symbiosis". 2nd ed. Academic Press, London: 32 - 63.

30. Urcelay C., Tecco P. A., Chiarini F. 2005. Micorrizas arbusculares del tipo 'Arum' y 'Paris' y endófitos radicales septados oscuros en *Miconiaioneuray Tibouchinaparatropica*(Melastomataceae). Boletín de la Sociedad Argentina de Botánica. 40(3-4): 151-155.

31. Verna L.C., Herrero F.J. 1952. Micología. Morfología, biología, experimentación. El Ateneo. Buenos Aires: 209 - 210.

