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I. Introduction 

  
 

  

  

  

 
 
 
 
 

 
  

 

    
   
   
  
  
   
  

  
  

 
  

 
  

  
   

 

Thermally produced movements of proteinous structure are perceived as
the dominant factors involved in its biotic performance [1, 2, 3, 4], and their
deliberate remodeling might lead to the discovery of an untapped resource.
The majority of protein is organized via certain domain parts, and these do-
mains are moving. Remodeling the domain movements would considerably
influence molecular interactions between protein and ligand. Such interac-
tions are of interest in many fields such as medical treatments, food pro-
cessing, and bio-electronic devices [5, 6, 7, 8, 9], and their remodeling would
provoke a breakthrough in these fields.

Hydrosoluble protein ficin separates certain peptides bound in sites near
its active center, and its characteristics are beneficial to the improvement
of transfusion safety, the development of novel antimicrobial therapeutics,
and as a method for meat tenderization [10, 11, 12]. The structure of ficin
is formed from two domains, and the binding areas of peptides are found
in the two domains. Peptide binding is strongly affected by the domain
movements, and therefore, remodeling the domain movements should affect
the separation properties.

The two domains of ficin are joined by the β strand, which acts as a hinge.
Modification of amino acid in the β strand would guide ficin to remodel the
domain movements. It is desirable to be able to clearly explain the resulting
effects of remodeling on peptide binding in more detail. Considering that
ficin is a member of the protease family, reports on protease inhibitors play
a large role in perceiving the effects [13, 14, 15, 16, 17]. However, remodeling
effects of the domain movements in ficin to peptide bindings have not yet
been clearly revealed.
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Abstract- Remodeling impacts of domain movements in protease are of interest in many fields such 
as medical treatments, food processing, and bio-electronic devices. However, they are yet to be 
precisely explained. In this study, the remodeling effects in ficin were investigated via a deep neural 
network, genetic programming, and computer simulations. The replacement (Y113F) in ficin using 
domain movements exhibited a critical effect on the peptide compatibilities. Specifically, 
modification of amino acid allows the remodeling of the domain movements, and types of 
compatible peptides should be modulated by the remodeling. Moreover, the decision tree revealed 
important factors in peptides and ficin.
Keywords: protein, deep neural networks, genetic programming, molecular dynamics 
simulations.
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The purpose of this research was to remodel the domain movements in
ficin by modifying its local structure, and to clarify the effects of the re-
modeling to peptide bindings. Several possible combination patterns are
possible for peptide, but the priority order of the search was unclear. The
selection of combinations was conducted using deep neural networks (DNN)
[18], and factors which enormously influence the peptide bindings were iden-
tified via genetic programming (GP) [19]. Characteristic features of various
proteins were analyzed by molecular dynamics (MD) and docking simula-
tions [20, 21, 13, 14, 22]. The moving structures of locally modified ficin
were produced by MD simulation, while the binding states of peptides on the
structures were assessed by docking simulations.

For the site near the center of the β strand between the two domains
of ficin, the amino acid was replaced by another one (Y113F). For the first
trial, a similar amino acid (F) was selected for this replacement. In the pre-
vious study, the binding properties between the tetrapeptides and ficin were
investigated by DNN, GP, MD and docking simulations [23]. Tetrapeptide
structures have multiple structures, and they often have weights comparable
to the protease inhibitor E64. In this study, the behavior of tetrapeptides on
the replaced structure of ficin (ficin Y113F) was researched using the dual
artificial intelligences (AIs) and the simulations.

The selection speed of candidate peptides was better for DNN than for
GP, and thus DNN was utilized to select the candidates for this pursuit.
The factors that influence the peptide bindings need to be clarified, but they
cannot be derived using DNN. Therefore, the factors were extracted using
GP.

The potential candidates were selected through the use of a convolutional
neural network (CNN) [24]. CNN is a type of DNN, and its structure was
constructed using the deep learning library TensorFlow [25]. CNN is ac-
tively used in fields of image processing, and is capable of treating a large
amount of partially reliable data. Its structure is composed of seven lay-
ers, namely, input layer, first convolutional layer, first pooling layer, second
convolutional layer, second pooling layer, fully connected layer, and output
layer. A tetrapeptide comprises a combination of four amino acids, and the
amino acids contain multiple atoms. For each amino acid, each atom was
numbered. The numbers were set in the input layer. For more stable binding
states between tetrapeptide and sites near active center of ficin Y113F, the
distance between atoms in the peptides and its active center was calculated.
The binding characteristics of peptides were classified by the respective num-
bers of atoms nearer than 4.0 Åto its active center. The classification rule was
as follows: NA1≧3 atoms, 3 atoms>NA2≧2 atoms, 2 atoms>NA3≧1 atoms,
or 1 atoms>NA4. The successive numbers from 1 to 4 were assigned to
NAα (α = 1–4), and were set in the output layer. Further, the first ten
tetrapeptides were derived from the DNN for ficin [23], and their binding
properties to ficin Y113F were investigated by the simulations. Thereafter,
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II. Methods



  
 

  

the first training data was created from the investigated results and training
data of ficin [23]. Subsequently, the first DNN was constructed from the first
training data, and consequently produced the second set of ten tetrapeptides.
The properties of the second set of ten tetrapeptides were investigated in a
similar manner, and second training data was made from the investigated
results and the first training data. Consequently, the second DNN was con-
structed from the second training data, and subsequently produced the third
ten tetrapeptides. Thus, this process was repeated, and various tetrapeptides
were produced.         
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Highly Influencing factors to the peptide bindings were identified via GP.
GP is an extended genetic algorithm (GA) technique, and it allows the ex-
ploration of the space of computer programs. The hyperparameters of GP
were set with reference to a previous study [26], and evolutionary computing
iteration was used to optimize the decision tree. The first time, entire areas
of the decision tree were target of optimization. Thereafter, for the second
and subsequent times, partial areas of the decision tree were randomly se-
lected as optimization targets [27]. During the construction process of the
decision tree, its size was expanded to satisfy the training data. Then, one
of the successive numbers from 1 to 4 was set in the output of the decision
tree, where the successive numbers corresponded to NAα (α = 1–4). For
a tetrapeptide, four amino acids were labeled as amiβ, β = 1–4 from the
N-terminus to the C-terminus. Each amino acid (amiβ) contained different
types of atoms, and the number of each atom was represented by adding
the atomic symbol at the end of amiβ. For instance, ami4S represented the
number of sulfur atoms in amino acid of the C-terminus. The 20 attributes
related to tetrapeptide were represented as amiβC, amiβN, amiβO, amiβS,
and amiβAC (β = 1–4) [28]. 113 th amino acid of ficin was represented
as ami113fic, and the number of each atom in ami113fic was represented
by adding the atomic symbol at the end of ami113fic. The distance be-
tween domains of ficin was represented as domainDist, and it was assigned
a numerical value of 0 for minimum distance, 1 for average distance, and
2 for maximum distance [23]. Further, 6 attributes related to ficin were rep-
resented as ami113ficC, ami113ficN, ami113ficO, ami113ficS, ami113ficAC,
and domainDist. 19 operations (Add, Sub, Mul, Div, Fmod, Log, Log10,
Sin, Cos, If, Equal, NotEqual, GT, GE, And, Or, Not, Fmod2, and Sqrt)
and the 12 constants(a constant integer number CSTγ (γ) (γ = 0–9) and
a boolean value TRUE (1), FALSE (0)) were inherited from our previous
studies [23, 27, 29, 28]. Furthermore, the construction factors of the decision
tree were chosen from the 26 attributes, 19 operations, and 12 constants.

The structures of ficin Y113F with movements were produced by MD
simulation through the use of the packaged software AMBER 12.0 [30]. The
initial coordinate data of ficin Y113F was produced by homology model-
ing through the use of the software MODELLER [31, 32]. For homology
modeling, structural prediction was performed from sequence homology with
known structures. The produced structure of ficin Y113F was solvated with
11,843 TIP3P water molecules [33] inside a rectangular box. For the sol-
vated system, its temperature was gradually increased from 5 to 300 K over
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a period of 140 ps, and subsequently it was retained over a period of 100 ns
until the precipitous structural changes vanished. Moreover, the ff03.r1 force
field [34] was applied to manage MD simulation, and the hyperparameters
were set by referencing the previous study [28]. In addition, the pressure
and temperature were set using the Berendsen algorithm [35]. The long-
distance electrostatic interactions were calculated using the particle mesh
Ewald method [36]. The domain movements in ficin Y113F were character-
ized as the distance variation between them for the period after the disappear-
ance of precipitous structural changes. Thereafter, the average and snapshot
structures were produced after the disappearance of the precipitous changes.
The average structure was defined as ficin Y 113F ave. Moreover, if the
distance between the two domains of ficin Y113F was at a maximum, the
structure was defined as ficin Y 113F max. Whereas, if the distance was at
a minimum, the structure was defined as ficin Y 113F min. The snapshot
structures were made up of ficin Y 113F max and ficin Y 113F min.

For ficin Y 113F ave, ficin Y 113F max and ficin Y 113F min, bind-
ing affinities of the peptides were evaluated through the use of AutoDock
Vina [37]. This simulation software was executed by using the iterated lo-
cal search global optimizer algorithm [38, 39] and the Broyden–Fletcher–
Goldfarb–Shanno method [40], with its scoring function derived by machine
learning. These methods contributed significantly to approximately two or-
ders of size speed-up compared to the molecular docking software AutoDock
4 [41, 42, 43]. Further, the coordinate data of the tetrapeptides was built
by using the LEaP module in AMBER 12.0 [30]. The exploration space over
the surface of ficin Y113F was restricted to the regions near the active cen-
ter. The explorations were executed 10 times for each tetrapeptide, and the
most stable state was chosen from them. For the most stable state, atoms in
the tetrapeptide were counted only if they were found near the active center
of ficin Y113F. However, if there were certain members in the most stable
docking state, the counted numbers were averaged.

The temperature of the system was maintained at 300 K via MD simu-
lations, and the precipitous structural changes of ficin Y113F were surveyed
at regular time intervals. For the structure of ficin Y113F, the root-mean-
square deviation (RMSD) between successive simulations was calculated to
survey the precipitous changes(Figure S1). Consequently, the precipitous
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structural change was determined from the larger RMSD value, and they dis-
appeared after 98,840 ps. The ficin Y 113F ave was estimated in the range
of 99,901 to 100,000 ps, and the snapshot structures (ficin Y 113F max and
ficin Y 113F min) were derived from this range. Figure 1 shows the aver-
age structures of ficin and ficin Y113F. The positional relation between the
active center and the α–helix structure near the active center was changed
by the replacement (Y113F). 10 tetrapeptides ((a) of Table S1) were selected
as first candidates by using the data regarding ficin [23]. Thereafter, the
candidates were docked to sites near active center of ficin Y 113F ave, and
the most stable styles were extracted.

III. Results
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Ficin is member of the family of cysteine protease, and the thiol (SH)
group of its Cys25 can efficiently separate peptide. Consequently, the sulfur
atom of Cys25 (S-Cys25) was considered as the active center. To discover
the talented peptides for ficin Y113F, the number of the atoms nearer than
4.0 Åto S-Cys25 in the most-stable docking state were estimated. In case of
certain most-stable states, the estimated numbers were averaged. These re-
sults were represented by NAα (α = 1–4), and are listed in Table S2. Within
the first ten peptides, one member (Asn–Ser–Lys–Gln) was compatible with
the sites near S-Cys25 of ficin Y113F. Moreover, machine learning of the CNN
was executed with the addition of these results, and the next ten candidates
((b) of Table S1) were guided. The characteristics of the ten peptides were es-
timated by docking simulations (Table S2), and one member (Arg–Ala–Val–
Val) was compatible with the sites. This process was repeated eight times,
and thereby, the characteristics of 80 peptides were obtained (Table S2),
within which 17 members were compatible. The compatible 17 peptides
were deposited in ave of Table 1. Simultaneously, 38 members were identi-
fied as especially incompatible peptides (Table S3). The docking simulations
of the compatible 17 peptides (ave of Table 1) to the sites near S-Cys25
of two snapshot structures (ficin Y 113F max and ficin Y 113F min) were
executed, and the results are presented in Table S4. Within the 17 peptides,
nine members (max of Table 1) were compatible to the sites near S-Cys25
of ficin Y 113F max and six members (min of Table 1) were compatible to
those of ficin Y 113F min. Furthermore, the five members (both of Table 1)
were compatible to them of both ficin Y 113F max and ficin Y 113F min.

ficin ave, and ficin max
comprised 45 nodes, and
attributes were included in
important factors. They

one ami3C, two ami3N, one ami113ficO, and two domainDist.
The acronyms were explained in Table S5.

To determine the important factors related to the peptide bindings, a
decision tree was constructed from the results of 17 tetrapeptides to the
three states of ficin Y113F (ficin Y 113F min, ficin Y 113F ave, and ficin
Y 113F max)(Table 1)
modified ficin (ficin min,

and those of 4 tetrapeptides to the three states of non-
) [23]. The decision tree

its layout is indicated in Table 2 and Table 3. 11
the decision tree, and these were considered as the

were one ami1N, one ami1O, one ami1S, two ami2C,

The compatibilities of the 100 tetrapeptides to the sites near S-Cys25
of ficin Y 113F ave were revealed via a DNN, and MD and docking simu-
lations. The 17 compatible peptides were found, and about 47 percent of
them were not compatible for ficin Y 113F max, and about 65 percent of
them were not compatible for ficin Y 113F min(Table 1). The compati-
bilities of the tetrapeptides to the sites near S-Cys25 of ficin Y113F were
grossly influenced by their domain movements. The five peptides were found
to be compatible for the three states of ficin Y113F(Table 1). The five pep-
tides were not influenced by the domain movements of ficin Y113F, and their
structures would be an informative guide to drug development.

IV. Discussion
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For average structure of non-modified ficin (ficin ave), only four peptides
were compatible to the sites near S-Cys25 [23]. The replacement (Y113F)
in ficin spread the compatible peptides within those of ficin ave. Within
the four peptides, only one peptide was compatible for the structure of non-
modified ficin when the distance between their domains was at a maximum
(ficin max) [23]. In contrast, the replacement (Y113F) spread the compati-
ble peptides within those of ficin max as well. Further, all the four peptides
were not compatible for the structure of non-modified ficin when the distance
between their domains was at a minimum (ficin min) [23]. The replacement
(Y113F) spread the compatible peptides within those of ficin min as well
as above two structures and had significant influence on the compatibilities
between the peptides and ficin with domain movements. Moreover, modifi-
cation of amino acid in the hinge structure of protease can enable us to re-
model the domain movements, while the types of compatible peptides should
be regulated by the remodeling. The collaboration of a DNN, and MD and
docking simulations can be utilized as a tool in clarification of induced effects
by modification of domain movements in protease.

The decision tree was constructed to satisfy the results for the three struc-
tures of ficin Y113F (ficin Y 113 F min, ficin Y113Fave, and ficin Y113Fmax)
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and also for the three structures of non-modified ficin (ficin min,ficin
ave, andficin max) [23]. The tree was composed of 45 nodes, and the break-
down of its 45 nodes was 11 attributes, 25 operations, and 9 constants
(Table 2 and Table 3). The 11 attributes included one ami1N, one ami1O,
one ami1S, two ami2C, one ami3C, two ami3N, one ami113ficO, and two do-
mainDist. Carbon atoms in second amino acid from the N-terminus of the
peptide, nitrogen atoms in third amino acid from the N-terminus of it, and
domain movements of the protein are the important factors governing the
peptide compatibility. The three atoms (nitrogen, oxygen, and sulfur) in the
N-terminus amino acid of the peptide, carbon atom in third amino acid from
the N-terminus of it, and oxygen atom in 113 th amino acid in the protein
must also be focused on. The 25 operations included four Add, three Sub,
seven Mul, three Div, two Fmod, one Fmod2, three Sqrt, and two Sin. Many
of the operations were the four basic arithmetic operations, and the peptide
compatibility can be derived from comparatively elementary manner. The
number of Sqrt was also relatively large, and numerical value could be be
moderately changed. Furthermore, the logical operations were not included,
and the derivation of the compatibility could not be expressed in binary form.

The remodeling effects of the domain movements in ficin were analyzed by
using DNN, GP, MD, and docking simulations. The replacement (Y113F)
in ficin had critical effect on the compatibilities between the peptides and
ficin with domain movements. Further, modification of specific amino acid
in protease can enable remodeling of the domain movements, and types of
compatible peptides must be modulated by the remodeling. Moreover, the
decision tree revealed that particular atom in particular amino acid in peptide
and domain movements of the protease would be of central importance for the

V. Conclusions

(Table 1)
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peptide compatibility. Furthermore, the tree indicated the contribution of
oxygen atom in 113 th amino acid in the protease to the compatibility. Thus,
the analytical approach consisting of DNN, GP, MD and docking simulations
can offer valuable lessons to understand the remodeling effects of the domain
movements for some structures of protease, and the other structures should
be analyzed for further research.

This study was supported by the National Institute of Technology (KOSEN).

The average structures of ficin and ficin Y113F.

The compatible peptides.

ave max min both
Arg–Ala–Val–Val
Arg–Asp–Lys–Arg ⃝ ⃝ ⃝
Arg–Gly–Arg–Gln ⃝
Arg–Gly–Asn–Ile ⃝ ⃝ ⃝
Arg–Gly–Asn–Leu ⃝ ⃝ ⃝
Arg–Gly–Asn–Lys ⃝ ⃝ ⃝
Arg–Gly–Asn–Val ⃝ ⃝ ⃝
Arg–Gly–Gln–Lys
Arg–Gly–Pro–Ile ⃝
Arg–Gly–Pro–Leu
Arg–Gly–Ser–Leu ⃝
Arg–Gly–Thr–Leu
Arg–Gly–Val–Leu ⃝
Arg–Ser–Leu–Lys
Asn–Ser–Lys–Gln ⃝
Lys–Gly–Leu–Gln
Lys–Ser–Ile–Arg

Acknowledgments

Figure 1:

Table 1: 
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Layout of first part of decision tree (α:Input, β:Output, γ:Node).

γ0 Fmod2[α0 = β of γ1][β = Solution]
γ1 Fmod[α0 = β of γ2][α1 = β of γ33][β = α0 of γ0]
γ2 Mul[α0 = β of γ3][α1 = β of γ32][β = α0 of γ1]
γ3 Fmod[α0 = β of γ4][α1 = β of γ27][β = α0 of γ2]
γ4 Mul[α0 = β of γ5][α1 = β of γ6][β = α0 of γ3]
γ5 ami3N[β = α0 of γ4]
γ6 Sub[α0 = β of γ7][α1 = β of γ8][β = α1 of γ4]
γ7 domainDist[β = α0 of γ6]
γ8 Mul[α0 = β of γ9][α1 = β of γ20][β = α1 of γ6]
γ9 Add[α0 = β of γ10][α1 = β of γ18][β = α0 of γ8]
γ10 Mul[α0 = β of γ11][α1 = β of γ17][β = α0 of γ9]
γ11 Mul[α0 = β of γ12][α1 = β of γ16][β = α0 of γ10]
γ12 Div[α0 = β of γ13][α1 = β of γ15][β = α0 of γ11]
γ13 Sin[α0 = β of γ14][β = α0 of γ12]
γ14 Cst2[β = α0 of γ13]
γ15 domainDist[β = α1 of γ12]
γ16 ami2C[β = α1 of γ11]
γ17 Cst6[β = α1 of γ10]
γ18 Sqrt[α0 = β of γ19][β = α1 of γ9]
γ19 Cst3[β = α0 of γ18]
γ20 Add[α0 = β of γ21][α1 = β of γ25][β = α1 of γ8]
γ21 Mul[α0 = β of γ22][α1 = β of γ24][β = α0 of γ20]
γ22 Sqrt[α0 = β of γ23][β = α0 of γ21]

Layout of second part of decision tree (α:Input, β:Output, γ:Node).

γ23 Cst4[β = α0 of γ22]
γ24 Cst7[β = α1 of γ21]
γ25 Sqrt[α0 = β of γ26][β = α1 of γ20]
γ26 Cst5[β = α0 of γ25]
γ27 Sub[α0 = β of γ28][α1 = β of γ31][β = α1 of γ3]
γ28 Mul[α0 = β of γ29][α1 = β of γ30][β = α0 of γ27]
γ29 ami1O[β = α0 of γ28]
γ30 ami3C[β = α1 of γ28]
γ31 ami1S[β = α1 of γ27]
γ32 Cst2[β = α1 of γ2]
γ33 Add[α0 = β of γ34][α1 = β of γ35][β = α1 of γ1]
γ34 Cst6[β = α0 of γ33]
γ35 Div[α0 = β of γ36][α1 = β of γ37][β = α1 of γ33]
γ36 ami2C[β = α0 of γ35]
γ37 Div[α0 = β of γ38][α1 = β of γ43][β = α1 of γ35]
γ38 Add[α0 = β of γ39][α1 = β of γ40][β = α0 of γ37]
γ39 ami3N[β = α0 of γ38]
γ40 Sub[α0 = β of γ41][α1 = β of γ42][β = α1 of γ38]
γ41 ami113ficO[β = α0 of γ40]
γ42 Cst1[β = α1 of γ40]
γ43 Sin[α0 = β of γ44][β = α1 of γ37]
γ44 ami1N[β = α0 of γ43]

Table 2: 

Table 3: 
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Supplementary data associated with this article can be found in the online
version at

Appendix A. Supplementary data
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RMSD between the successive simulations.

The selected tetrapeptides.

Figure S1.: 

Table S1: 

(a) (b)

Ser-Ser-Ile-Arg Met-Gly-Lys-Gln
Arg-Cys-Lys-Arg Lys-Cys-Arg-Gln
His-Cys-Arg-Ala Gln-Ser-Arg-Asn
Arg-Asn-Arg-Asn Arg-Ser-Lys-Lys
Thr-Asn-Arg-Arg Gln-Ala-Arg-Asn
His-Gly-Leu-Gly Arg-Ala-Val-Val
Arg-Gln-Arg-Arg Lys-Gly-Lys-Val
Asn-Ser-Lys-Gln His-Gly-Arg-Asn
Leu-Gly-Arg-Asn Arg-Asp-Arg-Pro
Met-Asp-Ile-Arg Lys-Ala-Lys-Lys



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Affinity of the 100 tetrapeptides in the active region of the average structure of locally 

modified ficin (Y113F).

The 38 especially incompatible tetrapeptides.

Table S2: 

Table S3: 
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Ser-Ser-Ile-Arg NA3 Lys-Gly-Ile-Gln NA4 Arg-Gly-Lys-Leu NA2 Arg-Gly-Lys-Asn NA4

Arg-Cys-Lys-Arg NA2 Gln-Gly-Ile-Gln NA4 Gln-Gly-Lys-Lys NA4 Arg-Gly-Arg-Thr NA4
His-Cys-Arg-Ala NA3 Gln-Gly-Leu-Gln NA4 Arg-Gly-Gln-Leu NA2 Arg-Gly-Arg-Asn NA2
Arg-Asn-Arg-Asn NA2 Lys-Gly-Val-Gln NA4 Arg-Gly-Asn-Leu NA1 Val-Trp-Cys-Gly NA4
Thr-Asn-Arg-Arg NA3 Arg-Gly-Val-Leu NA1 Arg-Gly-Ser-Lys NA4 Met-Arg-Ile-Phe NA4
His-Gly-Leu-Gly NA4 Lys-Gly-Ile-Leu NA4 Arg-Gly-Pro-Lys NA3 Met-Gly-Glu-Arg NA3
Arg-Gln-Arg-Arg NA3 Arg-Gly-Lys-Met NA3 Met-Gly-Val-Lys NA4 Arg-Gly-Glu-Leu NA4
Asn-Ser-Lys-Gln NA1 Lys-Gly-Val-Leu NA3 Arg-Gly-Ala-Leu NA3 Lys-Gly-Gln-Arg NA4
Leu-Gly-Arg-Asn NA4 Arg-Gly-Val-Gln NA2 Arg-Gly-Lys-Gln NA3 Arg-Gly-Thr-Ile NA3
Met-Asp-Ile-Arg NA3 Arg-Gly-Arg-Gln NA1 Arg-Gly-Gln-Gln NA4 Ile-Gly-Asp-Arg NA4
Met-Gly-Lys-Gln NA3 Arg-Gly-Pro-Gln NA4 Arg-Gly-Gln-Ile NA4 Arg-Gly-Asp-Leu NA4

Lys-Cys-Arg-Gln NA4 Arg-Gly-Arg-Lys NA3 Arg-Ser-Lys-Ile NA3 Ile-Gly-Glu-Arg NA4
Gln-Ser-Arg-Asn NA4 Lys-Gly-Pro-Ile NA2 Arg-Ser-Lys-Leu NA4 Arg-Gly-Gln-Lys NA1
Arg-Ser-Lys-Lys NA2 Arg-Gly-Leu-Lys NA4 Arg-Ala-Gln-Leu NA2 Arg-Gly-Thr-Leu NA1
Gln-Ala-Arg-Asn NA3 Arg-Ala-Gln-Lys NA4 Arg-Gly-Asn-Ile NA1 Leu-Gly-Glu-Arg NA3
Arg-Ala-Val-Val NA1 Arg-Gly-Leu-Val NA4 Gln-Asp-Lys-Arg NA3 Arg-Gly-Ser-Ile NA2
Lys-Gly-Lys-Val NA4 Arg-Cys-Leu-Leu NA4 Lys-Ser-Leu-Arg NA3 Arg-Gly-Ser-Leu NA1
His-Gly-Arg-Asn NA4 Arg-Ser-Leu-Lys NA1 Arg-Asp-Lys-Arg NA1 Arg-Gly-Ile-Lys NA3

Arg-Asp-Arg-Pro NA4 Arg-Ser-Ile-Lys NA4 Gln-Asp-Ile-Arg NA4 Arg-Gly-Val-Arg NA4

Lys-Ala-Lys-Lys NA4 Arg-Gly-Leu-Ile NA2 Lys-Ser-Ile-Arg NA1 Arg-Ser-Gln-Arg NA4
Arg-Gly-Val-Ile NA3 Arg-Gly-Asn-Lys NA1 Arg-Cys-Lys-Lys NA2 Arg-Ser-Val-Arg NA2

Arg-Gly-Pro-Leu NA1 Arg-Gly-Lys-Pro NA3 Arg-Gly-Thr-Lys NA2 Arg-Ser-Ile-Arg NA3
Lys-Gly-Pro-Gln NA3 Arg-Ala-Leu-Lys NA3 Arg-Gly-Asn-Val NA1 Arg-Ser-Leu-Arg NA3
Lys-Gly-Leu-Gln NA1 Arg-Gly-Lys-Lys NA3 Arg-Ala-Lys-Asn NA4 Arg-Ser-Pro-Arg NA2
Arg-Gly-Pro-Ile NA1 Arg-Gly-Ile-Met NA3 Arg-Cys-Arg-Asn NA3 Arg-Gly-Lys-Arg NA3

His-Gly-Leu-Gly Gln-Gly-Lys-Lys

Leu-Gly-Arg-Asn Arg-Gly-Ser-Lys
Lys-Cys-Arg-Gln Met-Gly-Val-Lys
Gln-Ser-Arg-Asn Arg-Gly-Gln-Gln
Lys-Gly-Lys-Val Arg-Gly-Gln-Ile
His-Gly-Arg-Asn Arg-Ser-Lys-Leu
Arg-Asp-Arg-Pro Gln-Asp-Ile-Arg
Lys-Ala-Lys-Lys Arg-Ala-Lys-Asn
Lys-Gly-Ile-Gln Arg-Gly-Lys-Asn
Gln-Gly-Ile-Gln Arg-Gly-Arg-Thr
Gln-Gly-Leu-Gln Val-Trp-Cys-Gly

Lys-Gly-Val-Gln Met-Arg-Ile-Phe
Lys-Gly-Ile-Leu Arg-Gly-Glu-Leu
Arg-Gly-Pro-Gln Lys-Gly-Gln-Arg
Arg-Gly-Leu-Lys Ile-Gly-Asp-Arg
Arg-Ala-Gln-Lys Arg-Gly-Asp-Leu
Arg-Gly-Leu-Val Ile-Gly-Glu-Arg
Arg-Cys-Leu-Leu Arg-Gly-Val-Arg

Arg-Ser-Ile-Lys Arg-Ser-Gln-Arg



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Affinity of the 17 tetrapeptides in the active region of the snapshot structures of locally 

modified ficin (Y113F).

Explanation of the acronyms. (α: Input β: Output).

Table S4: 

Table S5: 
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max min

Arg-Ala-Val-Val NA3 NA3
Arg-Asp-Lys-Arg NA1 NA1
Arg-Gly-Arg-Gln NA1 NA3
Arg-Gly-Asn-Ile NA1 NA1

Arg-Gly-Asn-Leu NA1 NA1
Arg-Gly-Asn-Lys NA1 NA1
Arg-Gly-Asn-Val NA1 NA1
Arg-Gly-Gln-Lys NA2 NA3
Arg-Gly-Pro-Ile NA1 NA3

Arg-Gly-Pro-Leu NA3 NA3

Arg-Gly-Ser-Leu NA1 NA3
Arg-Gly-Thr-Leu NA3 NA4
Arg-Gly-Val-Leu NA1 NA3
Arg-Ser-Leu-Lys NA2 NA3
Asn-Ser-Lys-Gln NA3 NA1
Lys-Gly-Leu-Gln NA3 NA3
Lys-Ser-Ile-Arg NA2 NA3

Add[α0][α1][β] β= arithmetic addition of α0 and α1

Sub[α0][α1][β] β= subtraction of α1 from α0
Mul[α0][α1][β] β= arithmetic multiplication of α0 and α1
Div[α0][α1][β] β= division of α0 by α1
Fmod[α0][α1][β] β= remainder after division of α0 by α1
Log[α0][β] β= natural logarithm of α0
Log10[α0][β] β= common logarithm of α0
Sin[α0][α1][α2][β] β= arithmetic multiplication of α0 and X, where X is sine of division of α1 by α2
Cos[α0][α1][α2][β] β= arithmetic multiplication of α0 and X, where X is cosine of division of α1 by α2
If[α0][α1][α2][β] β= if α0 = true then α1 else α2
Equal[α0][α1][β] β= if α0 = α1 then true else false

NotEqual[α0][α1][β] β= if α0 = α1 then false else true
GT[α0][α1][β] β= if α0 > α1 then true else false
GE[α0][α1][β] β= if α0 ≥ α1 then true else false
And[α0][α1][β] β= logical multiplication of α0 and α1
Or[α0][α1][β] β= logical addition of α0 and α1
Not[α0][β] β= logical negation of α0
Fmod2[α0][β] β = remainder after division of α0 by 4

Sqrt[α0][β] β = square root of α0

amiγ 4 amino acids in a tetrapeptide, γ = 1-4 from the N-terminus to the C-terminus
amiγC the number of carbon atoms in amiγ
amiγN the number of nitrogen atoms in amiγ
amiγO the number of oxygen atoms in amiγ
amiγS the number of sulfur atoms in amiγ
amiγAC the number of aromatic carbon atoms in amiγ

ami113ficC the number of carbon atoms in 113~th amino acid of ficin
ami113ficN the number of nitrogen atoms in 113~th amino acid of ficin
ami113ficO the number of oxygen atoms in 113~th amino acid of ficin
ami113ficS the number of sulfur atoms in 113~th amino acid of ficin
ami113ficAC the number of aromatic carbon atoms in 113~th amino acid of ficin
domainDist the distance between domains of ficin (0:minimum, 1:average, 2:maximum)
CSTδ a constant integer number δ(δ= 0-9)
TRUE a boolean value 1
FALSE a boolean value 0
ficin__Y113F_ave the average structure of ficin_Y113F
ficin__Y113F_max the snapshot structure of ficin_Y113F when distance between its domains is at a maximum
ficin__Y113F_mini the snapshot structure of ficin_Y113F when distance between its domains is at a minimum
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