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Life Span of Solutions for a Time Fractional
Reaction-Diffusion Equation with Non-
Decaying Initial Data

Takefumi Igarashi

Abstract- We consider the Cauchy problem of time fractional reaction-diffusion equation
ofu=Au+u? in R" (n>1),

where 0 < a <1, p >1 and 9;* denotes the Caputo time fractional derivative of order o. The initial condition 1 is assumed
to be nonnegative and bounded continuous function. For the non-decaying initial data at space infinity, we show that the
positive solution blows up in finite time and give the estimate of the life span of positive solutions. It is also given blow-up time
of the solutions when the initial data attain its maximum at space infinity.

Keywords: life span, fractional diffusion equation, Cauchy problem, non-decaying initial data, blow-up.

[. [NTRODUCTION

We study the Cauchy problem for a time fractional reaction-diffusion equation

ofu = Au + uP, xzeR™ t>0, (1.1)
u(z,0) =uo(z) 20, z€R", '

where n > 1, 0 < a < 1, p > 1, up € C(R™) N L>®(R"), and 95 denotes the Caputo time fractional
derivative of order « defined by

1

ofu(t) = F(l—a)/o (t— 3)_0‘2(% s)ds, 0<a<l. (1.2)

Here, I'(+) is the Gamma function. Moreover, the Caputo time fractional derivative (1.2) is related to
the Riemann-Liouville derivative by

1 d 1 d

ofu(t) = ma(f& * [u — o)) (t) = F(l—a)dt/o (t—s)"*(u(x,s) —ug(z))ds. (1.3)

In this paper, we show that every solution of (1.1) blows up in finite time with the non-decaying
initial data at space infinity, and also present the estimate on the life span of the solutions for (1.1).
Then, we define the life span (or blow-up time) 7™ as

T* = sup{T > 0; there exists a mild solution u of (1.1) in C([0,T],C(R") N L>=(R"))},
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where the definition of “mild solution” and the local “existence” of a mild solution are described in
section 2. If T* = oo, the solution is global. On the other hand, if 7% < oo, then the solution is not
global in time in the sense that it blows up at ¢t = T™ such as

lim sup [Ju(-, )| oo (rn) = 0.
t—T*

A brief review on the blow-up and global existence results obtained for Cauchy problem (1.1) is
given below: RC £

(A) Kirane et al. [12] obtained that the following results.

o If 1 <p<1+42a/{an+2(1—a)}, then (1.1) admits no global weak nonnegative solutions
other than the trivial one.

e Let u be a local solution to (1.1). Then, there exists a constant C' > 0 such that

lim inf ug(z) < CTT™7,

|z| =00

"26—69 ‘(S103)

o ‘Teuy IeauruoN SpoyleIN ‘1odoJ, ‘worpenbe uworsnyip [euorjovry ouwir) € Ioj suajqo.rd

where 0 <t < T < +o00.

e Suppose that (1.1) has a nontrivial global nonnegative weak solution. Then, there is a
constant K > 0 such that

lim inf ]m|ﬁu0(x) < K.
|z|—00

(B) When ug € Co(R™) := {u € C(R")|limj;|_,o u(z) = 0}, the following results were proved by
Zhang and Sun [28] and Zhang et al. [29]:

e If 1 < p <14 2/n,then any nontrivial positive solution of (1.1) blows up in finite time.

e If p > 1+2/n and ||ug||Le is sufficiently small, where ¢. = n(p—1)/2, then (1.1) has a global
solution.

pue dn-mojq oy ‘ung "y ‘H ‘Sueyyz ‘©) ‘08¢

5

ong) Jo SUornjos jo 9oudISIxo [Bqoy.

o If [R. uo(x)x(x)dx > 1, where
-1
x(x) = (/ eV ”2+x|2d:c> em Vit

then the solutions of (1.1) blow up in finite time.

(C) The following results were also obtained in Ahmad et.al. [1] when ug € Co(R"™):

o Ifp>1+2/nand ||ug| 1 + ||uollLe < €o with some €y > 0, there exists s > p such that (1.1)
admits a global solution with u € L*°([0, 00), L= (R™)) N L>°([0, 00), L*(R™)). Furthermore,
for all 4 > 0,

1 1
max{l—p,Z—p} <5<min{1,n(p)},
ap 2p

(1)
7.

A

(1-6)a

lu@)lles <CE+1)" 717, t>0.
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6. C. Gui, X. Wang, Life span of solutions on the Cauchy problem for a semilinear heat

equation, J. Differential Equations 115 (1995) 166—172.

In addition, if pn < 2s, or

n > 2 and pn > 2s

1 p—1 « «
max 5T 5 -5 <a< 17
p p p p

then u € L*°(]0,00), L>(R™)),

with

lu@)[p= < C(E+1)77, ¢ >0,

for some constant o > 0.
o If Zy := [, uo(z)x(z)dx > 21/(P~D then the solutions of (1.1) blow up in finite time, and
the estimate of the blow-up time is

1/

log (1 — QPZé_p>
INa+1)

T 2(1—p)

IN

Several studies have been made on the life span of solutions. The results are given below:

(A) Gui and Wang [6] and Mukai et al. [17] considered

— m D1 n
{&w Av™ + P reR" t>0, (1.4)

v(x,0) =wvo(x) >0, zeR",

for m = 1 and m > 1, respectively, and proved the following life span results when an initial
datum takes the form vg(x) = A¢(z), where A > 0 and ¢(x) is a bounded continuous in R™:

o If ||§ oo (rn) = @(0) > 0, then there exists A\; > 0 such that T* < oo for any A > A1, and

lim APl = L
A—+00 pr—1

(;5(0)7(1’1*1) )

o If [[¢]|Lo(mn) = x1|1inoo¢($) = (oo > 0, then T* < oo for any A > 0, and

lim A1 =

—(p1—1)
A—=0 P11 — 1¢oo '

(B) Giga and Umeda [4, 5], Seki [19] and Seki et al. [20] showed the solution of (1.4) blows up at
minimal blow-up time (see Remark 1 below); that is,

1
p1—1

1-p1

T = lvoll o () (1.5)
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if and only if there exists a sequence {z;} C R" such that

lim [z;| =00 and lim vo(z + ;) = [[vo| oo (rn) a-e. in R™.
j—o00 j—o00

Remark 1. Applying the comparison principal to (1.4), it follows that

1 1-p
T > —— ol 2%, 1.6
Pl — H OHL (Rn) ( )

So, when (1.5) holds, we call the time T* the “minimal blow-up time” and the solution v to (1.4)
a “blow-up solution with the minimal blow-up time”.

(C) Maingé [15] considered (1.4) for max(0,1 —2/n) < m < 1, and proved if the initial data satisfies
vo(z) > co max {0, 1—|z— $0|2¢0}8 ,

where zg € R", s > 2, and cglfm > (¢ for some constant Cp > 0 and ¢g > 0, then the solution
of (1.4) blows up in finite time, and

1 _ dq doct™™
P1 * 0
——— Vol poc (mn < T* < max — —— ,

where di > 0 and dy > 0.

(D) Yamauchi [18, 25, 26, 27] considered (1.4) for m = 1, the author [8, 9] for max(0,1-2/n) <m < 1
or 1 < m < p1, and showed the following life span results:

(a) Let n > 2. For some £ € S"~! and § > 0, we set the conic neighborhood Dg():

De(6) = {77 €

n
<5}, 17
i o
and set S¢(8) = De(8) N S™~ 1. Define

Ny := sup {ess.inf (lim inf vo(r0)> } ,

where r = |z|, 0 = z/r.
e If Ny, > 0, then the solution of (1.4) blows up in finite time, and

1

1
— ool Fy < T <

o If N = ||vo||poc(rn), then the solution of (1.4) blows up at minimal blow-up time; that
is,

1 P1 — Nl—pl
” OHLOORn L —1 >
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(b) Let n = 1. Define

Neo i= Max <lim inf vp(z), lim inf vo(aj)> .

T—00 T—r—00

e If no, > 0, then the solution of (1.4) blows up in finite time, and

1 1
—||v ;pl <T*< nloPt
Ref P — H OHL (R) = -1 Mo

e If no = [Jvol|Loo(r), then the solution of (1.4) blows up at minimal blow-up time; that
is,

1

T* :pl ||UO||1 —p1 nl—pl‘

L=(R) — p1—1

(E) The author [10] also considered

(1.8)

Ow =vP2(Av+0v?), € R" t>0,
v(z,0) =wvo(x) >0, zeR",

for po > 1 or ¢ > 1, and showed the following life span results:
(a) Let n > 2.

e If Ny > 0, then the solution of (1.8) blows up in finite time, and

1 1
o OOP2 :LI <Tr< _—— —  Nl-P2—q
p2+q— H OHL (R™) =7 “pytg—1 %

e If Noo = |lvo| oo (mn), then the solution of (1.8) blows up at minimal blow-up time; that
is,

1
1N;op2 q

T* —pP2—q _
ol ) = ———

2 +q Leo(R™)

(b) Let n=1.

e If ny > 0, then the solution of (1.8) blows up in finite time, and

1 1-p2—q T* 1 nl —P2—q_

initial data, Far East Journal of Mathematical Sciences (FJMS) 121 (2019) 39-61.

e If no = [Jvol/Loo(r), then the solution of (1.8) blows up at minimal blow-up time; that
is,

10. T. Igarashi, Life span of solutions for a degenerate parabolic equation with non-decaying

1
1—
T — ||0H pzq 11p2q

p—i—q P2 +q—
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Several recent studies show that the minimal blow-up time is strongly associated with blow-up
at space infinity. Related researchers are Giga and Umeda [4, 5], Mochizuki and Suzuki [16],
Ozawa and Yamauchi [18], Seki [19], Seki et al. [20], Shimojo [22], Yamaguchi and Yamauchi [27],
Yamauchi [25, 26] and the author [8, 9].

Here, we state the main results.

Theorem 1. Consider the Cauchy problem (1.1) for 0 < a <1 and p > 1.
(a) Let n > 2. Suppose that there exist £ € S"~' and 6 > 0 such that

My, = sup {ess.inf <liminfu ro >} > 0, 1.9
€esn—1, §>0 6€Se(8) \r—too 0( ) ( )

where v = |z|, 0 = x/r, S¢(§) = De(5) N S™ 1 and De(0) is the conic neighborhood defined by (1.7).

Then the solution of (1.1) blows up in finite time, and we have

_ 1/ 1/a
(p—1P"'T(a+1) oo [ Dlat 1) e
p ||uQHLOO(Rn) <T*< ﬁM; Pl (1.10)
In particular, assuming that
Moo = ||uo| oo mm), (1.11)
the solution of (1.1) blows up at
. [Da+1) Ve Pa+1) L/a
T = [;_”uonm Rn)} = ﬁMéo P , (1.12)
(b) Let n = 1. Suppose that
Moo = Max (lirginf ug(z), hmlnf uo(x )) > 0. (1.13)
Then the solution of (1.1) blows up in finite time, and we have
)P (a1 Ve D(a+1) 1Y
v p @t D), uol| Rn} <T* < [(p_l)m;op} : (1.14)
In particular, assuming that
Moo = [|uol| LRy (1.15)
the solution of (1.1) blows up at
. [T(a+1) 1Y [Da+1) 4,1V«
T = p_lnuonzmp(m} — R (1.16)
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18. T. Ozawa, Y. Yamauchi, Life span of positive solutions for a semilinear heat equation
with general non-decaying initial data, J. Math. Anal. Appl. 379 (2011) 518-523.

Theorem 1 allows us the information of the life span for the initial data of intermediate size and
the non-decaying initial data at space infinity; (1.9) and (1.13).

Remark 2. We show some examples of the initial data ug which satisfy My, > 0 in the space dimensions
n > 2. For simplicity, we employ polar coordinates.

(i) uo(r, @) =1 — exp(—r?).
Since li§inf up(r, o) = 1, we have My = 1.

(ii) uo(r, ) = {1 — exp(—r?)}(2 — cosr).
Since liglinf uo(r,a) = 1, we have My, = 1.

(iii) wuo(r, @) = {1 — exp(—r2)}(1 + cos a).
Since lim inf ug(r, ) = 1 4 cos o, we have My, = 2.
r—+00

(iv) ug(r,a) = {1 — exp(—r?)}(1 + cosa)(2 — cos 7).
Since liminf up(r, ) = 1 4 cos a, we have My = 2.
r—+00

For the examples (i) and (iii), the initial data ug satisfies (1.11). However, for the examples (ii) and
(iv), since ||uo||poomr)y = 3 and |[uol| o (rn) = 6, respectively, it follows that Moo # |[uol| oo (rn)-

The outline of the rest of this paper is organized as follows. In section 2, we give the existence
theorem of a local solution to (1.1). In section 3, we prove the main results by improving the method
in the author [8, 9], Ozawa and Yamauchi [18] and Yamauchi [25, 26].

[[. EXISTENCE OF A LoCAL MILD SOLUTION

In this section, we show the local existence and uniqueness theorem of a mild solution to problem (1.1).
Here, we state the definition of a mild solution of (1.1).

Definition. Let T* > 0. We say u € C([0,7*],C(R"™)) is a mild solution of (1.1) if u satisfies the
integral equation

u(t) = Eqa(—t*A)ug + /0 s By o(—s*A) f(u(t — s))ds, (2.1)

where f(u(s)) = uP(s), and A is realization of —A and E,, g(z) is the Mittag-Leffler function (see [11]):

E(%ﬁ(Z) = g m, OZ,B > 0. (22)

Theorem 2. Suppose that uy € C(R™) N L>®(R™). Then there exists a unique local mild solution
u e C([0,T%],C(R™)) for the problem (1.1).

Proof. See [21, Theorem 1] noting that the nonlinear term f(u(s)) = wP(s) is a locally Lipschizian
function. (See also [24, Theorem 2.2].)

Remark 3. If u solves (1.1), then u satisfies (2.1) by the method of the proof for [21, Lemma 1].
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Remark 4. If up(z) > 0, then (1.1) admits a solution which satisfies u(x,t) > 0 by the mazimum
principle [2] (see also [3, Theorem 3.1] and [21, Theorem 3]).

[II. ProOOF OF THEOREM 1

In this section, we shall estimate the life span T both from below and from above. Here, we improve
the method in Yamauchi [25, 26] and the author [8, 9, 10].

First, we shall show a lower estimate of T in the space dimensions n > 1. This is obtained by
comparing the solution u of (1.1) with the solution U of the ordinary differential equation

Opu(t) =Ur(t), t>0,
3.1
{ U(0) = [[uo|| Lo ®n)- (3.1)
The solution U of (3.1) satisfies the integral equation
t
U = Eaa OUO) + [ 5 Eaa Ut - s
0
1 t 1

=U(0 +/ t—s)* UP(s)ds, 3.2
0+ g [ =97 07(s) (32)

where E, g(z) is the Mittag-Leffler function by defined in (2.2). Now, we take the same strategy as in
[7, Theorem 3.2] and [13, Theorem 3.1]. Here, changing of variables

Ut)=U0)[V(E)+1] and k(t) =~t*" with v = [Ué‘(zg_l, (3.3)
the integral equation (3.2) can be expressed as
Vi) = / K(t - 5)[V(s) + 1Pds (3.4)
0

Then, the solution U blows up in finite time 7*(U) such that

_ 1/ 1/
(p— 1P Ta+1), * Pa+1),
= ol | <70 < | = ol | (3.5)
By a comparison argument, we obtain
T >T*U). (3.6)

Next, we shall prove a upper estimate of T* by two case of n > 2 and n = 1.

a) Case (a):nz2

For £ € S"~! and § > 0 as in the theorem, we determine the sequences {a;} C R™ and {R;} C (0, ).
Let {a;} C R" be a sequence satisfying that |a;| — oo as j — oo, and that a;/|a;| = £ for any j € N.
Put R; = (0v4 — 02/2)|a;| for § € (0,v/2). For R; > 0, let pr; be the first eigenfunction of —A on

© 2022 Global Journals
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Bpg,(0) = {z € R"; |z| < R;}

with zero Dirichlet boundary condition under the normalization

/ pr;(z)dr = 1.
Br;(0)

Moreover, let jg, be the corresponding first eigenvalue. For the solutions of (1.1), we define

wj(t) = / u(z + aj,t)pr,; (z)dx.
Br;(0)

Then we have the following propositions.

Proposition 1. We have

Hminf;(0) 2 gy inf (i nfvo(r9)).

and

log (1 - jurw} #(0))

lim = =1.
J=too _:u’ijj p(o)
Proof. See [25, Proposition 1].
Proposition 2. Let 0 < a < 1 and p > 1. Suppose that
1
—1
W;j (O) > ,U,Ej .
Then u blows up in finite time, and we have
1—p 1/
log (1 - w} #(0))
" < I'(a+1)

(1 —p)ur,

Proof. We use the method in [1, Theorem 3.7] and [3, Thorem 2.2].
By (1.1) and (3.7), we have

Ofwj(t) = / ofu(z + aj, t)pg, (z)dx
Br;(0)

= / {Au(x + aj,t) + uP(z + aj,t)} pr, (z)dx
B, (0)

(3.8)

(3.9)

(3.10)

(3.11)
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> — R, / u(z + aj, t)pg, (z)dr + / uf(z + aj,t)pg, (z)dz. (3.12)
Br,(0) Br,(0)

Since p > 1 and

/ PR; <$)d$ =1,
Br,(0)

J

by Jensen’s inequality, we have

P
/ uP(z + aj,t)pr; (v)dx > (/ u(z +aj,t)pr, (J:)dm) . (3.13)
B, (0) Br;(0)

Thus, by (3.12)-(3.13), we obtain
O w;(t) > —ppryw;(t) +wk(1). (3.14)

By (1.3), the inequality (3.14) implies

d —Q
%(k * [wy —w;(0)])(t) > —pr;w;(t) + w?(t) with k(t) = I‘(f—oz)' (3.15)
We put F'(¢) = —pr,;¢ + ¢P. Then the funtion F is convex in ¢ > 0, and we get
d
g B [wi = wi (0)])(t) = F(w; (). (3.16)

_1
in (3.15). F is positive and increasing for all ¢ > ugl. If w;(0) satisfies (3.10), then (3.16) implies
1

_1 _1
that w;(t) > ,ulp?;l for all t € (0,7*) (see [1, P.24-25]). Knowing that w;(t) > w;(0) > ,ulp?;l for all
t € (0,7%), it follows from (3.16) that

02w, (t) = %(k s [w; — w;(0)])(t) > F(w;(t)) >0, forallt € (0,T%). (3.17)

Therefore the function w;(t) satisfying (3.17) is an upper solution of the problem

97 ¢ =F(C) = —pr,¢+¢*  ((0) = w;(0), (3.18)

we have wj(t) > ((t) by comparison principle (see [14, Theorem 2.3]).
1
On the other hand, since F'(0) > 0, F(¢) > 0 and F'(¢) > 0 for all { > w;(0) > ,uﬁ.;l. Then, it
follows from [1, Lemma 3.8] (see also [23, Lemma 3.10]) that v(t) = g (L> is a lower solution for

I'(a+1)
(3.18), where v(t) satisfies
B0 < P(v) = —pr,v + 1%, 0(0) < w;(0),

© 2022 Global Journals
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and g(t) solves the ordinary differential equation

dg _

5 = Fl9)=—nrg+g 9(0) = w;(0). (3.19)

By comparison principle (see [14, Theorem 2.3]), we obtain ((¢) > v(t). Solving the initial value problem
(3.19), we have the solution

_ 1—exp{(1 —p)ur,t}
HR;

Notes g(t) = [w7P(0) ] M exp (—pr;t),

log (17uﬂjw1"’(0))

and obtain that g(t) — oo as t — . By comparison principle (see [14, Theorem 2.3)),

(1=p)ur;
we conclude that
1
1 —exp { A—pPpr,t* | | 177
te 1—p T'(a+1) ,URjta
B>t >vt)=g(—) = |w - SR .
w02 60 2 o0 =3 (g ) = [0)70 o exp (s
(3.20)
By (3.20), if w;(0) satisfies (3.10), then we obtain that v(t) — oo as
_ 1o
log (1= pr,w) 7(0))
t— Ma+1) , (3.21)

(1 —p)ur;

and that w;(t) blows up in finite time. Therefore, the solution u blows up in finite time, and it follows
that the estimate (3.11) holds, the proof of Proposition 2 is complete.

Now let us prove the Case (a).
By Propositions 1 and 2, we obtain that

a _ 1/a
R
T* < limsup INa+1)
oo (L= p)ur,
_ _ e
log (1 — uijjl. p(O)) wl,_p(o)
. J
= lim sup g . MNa+1)
j—o0 —pr;w; "(0) p—1
_ 1/«
1/ log (1 — peg,w; "(0) i
— <W> lim ( L; ) : <liminfwj(0)>
p—1 Jj—o0 —HR;W; (0) oo
1/a 1;7;7
< (F(a—l—l)) {ess.inf (lim inf uo(re))} . (3.22)
p—1 0eSe(6) \ T—00

From arbitrariness of £ € S"~! and § > 0, by (3.22), we obtain
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1-p

. I\ Va =
T < ((a—i—)) sup {ess.inf (lim inf uo(r9)>}
p—1 gesn—1,5>0 (0E€S¢(d) \ m00

T 1 1/«
_ {(O‘HM;O—P} . (3.23)
p—1
By (3.6) and (3.23), we have
(p-DP T+, 1y 1Y% [P+, 4,17
[ o ol figny | < T*< ﬁM;o Pl (3.24)

Therefore, we obtain (1.10). Moreover, by (1.10) and (1.11), we have (1.12). This completes the
proof.

b) Case (b): n =1
Let aj = j or —j. Put R; = j/2. For R; > 0, let pg, be the first eigenfunction of —68722 on (—Rj, R;)
with zero Dirichlet boundary condition under the normalization

R;
/ pr;(z)dxr = 1.

J

Moreover, let jg, be the corresponding first eigenvalue. For the solutions of (1.1), we define
R,
wj(t) = / u(z + aj,t)pr; (z)dx. (3.25)
Then we have the following propositions.

Proposition 3. We have

ljlinﬁg w;(0) > max (l;gig up(x), ll}g_lgf uo(ﬂc)> (3.26)

and

log (1 -, w} #(0))

lim - = 1. (3.27)
Jmoeo —HR;W; ?(0)
Proof. See [25, Proposition 2].
Proposition 4. Let 0 < a < 1 and p > 1. Suppose that
_1
w;(0) > uﬁ;l. (3.28)

Then u blows up in finite time, and we have
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log (1— pr,w} (0))
(1 —p)ur

T*

IN

1/a
o+ 1)] .

Proof. It is shown in the same way as in Proposition 2.

(3.29)

Finally, let us prove the Case (b). The rest of the proof is the same as in that of the Case (a).

By Propositions 3 and 4, we see that

T* < limsup

Jj—00

= lim sup
Jj—o0

NEE

p—1

< (F(O“FU) v {max (hm inf (), lim inf uo(x)> }a .

p—1

_ 1/a
log (1 - uij§_p(0)>
(1 —p)ur, Fla+1)

J
p—1

_log (1 - uijjlfp(O)) . wl-_p(o)

—HR; wjlip(o)

1/a
Fla+ 1)]

1-p

{log (1 - Mij;p(0)>] v . <hm - wj(())) e

1— :
_:U’ijj p(o) J—oo

lim
Jj—0o0

1-p

r—-+00

From (3.6) and (3.30), we have

I'a+1)

[(p — 1) 'T(a+1)

1
ml_p] °
p—1 '

1/a
1- *
> ||uo||Lof(Rn)] <T* < [

(3.30)

(3.31)

Therefore, we obtain (1.14). Moreover, by (1.14) and (1.15), we have (1.16). This completes the

proof.
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