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We study the Cauchy problem for a time fractional reaction-diffusion equation{
∂α
t u = ∆u+ up, x ∈ Rn, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Rn,
(1.1)

where n ≥ 1, 0 < α < 1, p > 1, u0 ∈ C(Rn) ∩ L∞(Rn), and ∂α
t denotes the Caputo time fractional

derivative of order α defined by

∂α
t u(t) =

1

Γ(1− α)

∫ t

0
(t− s)−α∂u

∂s
(x, s)ds, 0 < α < 1. (1.2)

Here, Γ(·) is the Gamma function. Moreover, the Caputo time fractional derivative (1.2) is related to
the Riemann-Liouville derivative by

∂α
t u(t) =

1

Γ(1− α)

d

dt
(t−α ∗ [u− u0])(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−α(u(x, s)− u0(x))ds. (1.3)

In this paper, we show that every solution of (1.1) blows up in finite time with the non-decaying
initial data at space infinity, and also present the estimate on the life span of the solutions for (1.1).
Then, we define the life span (or blow-up time) T ∗ as

T ∗ = sup{T > 0; there exists a mild solution u of (1.1) in C([0, T ], C(Rn) ∩ L∞(Rn))},
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where the definition of “mild solution” and the local “existence” of a mild solution are described in
section 2. If T ∗ = ∞, the solution is global. On the other hand, if T ∗ < ∞, then the solution is not
global in time in the sense that it blows up at t = T ∗ such as

lim sup
t→T ∗

∥u(·, t)∥L∞(Rn) = ∞.

A brief review on the blow-up and global existence results obtained for Cauchy problem (1.1) is
given below:

(A) Kirane et al. [12] obtained that the following results.

• If 1 < p ≤ 1 + 2α/{αn+ 2(1− α)}, then (1.1) admits no global weak nonnegative solutions
other than the trivial one.

• Let u be a local solution to (1.1). Then, there exists a constant C > 0 such that

lim inf
|x|→∞

u0(x) ≤ CT
α

1−p ,

where 0 < t ≤ T < +∞.

• Suppose that (1.1) has a nontrivial global nonnegative weak solution. Then, there is a
constant K > 0 such that

lim inf
|x|→∞

|x|
α

p−1u0(x) ≤ K.

(B) When u0 ∈ C0(R
n) :=

{
u ∈ C(Rn)| lim|x|→∞ u(x) = 0

}
, the following results were proved by

Zhang and Sun [28] and Zhang et al. [29]:

• If 1 < p < 1 + 2/n, then any nontrivial positive solution of (1.1) blows up in finite time.

• If p ≥ 1+2/n and ∥u0∥Lqc is sufficiently small, where qc = n(p−1)/2, then (1.1) has a global
solution.

• If
∫
Rn u0(x)χ(x)dx > 1, where

χ(x) =

(∫
Rn

e−
√

n2+|x|2dx

)−1

e−
√

n2+|x|2 ,

then the solutions of (1.1) blow up in finite time.

(C) The following results were also obtained in Ahmad et.al. [1] when u0 ∈ C0(R
n):

• If p ≥ 1+2/n and ∥u0∥L1 +∥u0∥L∞ ≤ ϵ0 with some ϵ0 > 0, there exists s > p such that (1.1)
admits a global solution with u ∈ L∞([0,∞), L∞(Rn)) ∩ L∞([0,∞), Ls(Rn)). Furthermore,
for all δ > 0,

max

{
1− p− 1

αp
, 2− p

}
< δ < min

{
1,

n(p− 1)

2p

}
,

∥u(t)∥Ls ≤ C(t+ 1)
− (1−δ)α

p−1 , t ≥ 0.
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In addition, if pn < 2s, or

n > 2 and pn ≥ 2s

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

with

max

{
1

p2
,
p− 1

p2
,
α

p
,

√
α

p2

}
< α < 1,

then u ∈ L∞([0,∞), L∞(Rn)),

∥u(t)∥L∞ ≤ C(t+ 1)−σ, t ≥ 0,

for some constant σ > 0.

• If Z0 :=
∫
Rn u0(x)χ(x)dx > 21/(p−1), then the solutions of (1.1) blow up in finite time, and

the estimate of the blow-up time is

T ∗ ≤

 log
(
1− 2pZ1−p

0

)
2(1− p)

Γ(α+ 1)

1/α

.

Several studies have been made on the life span of solutions. The results are given below:

(A) Gui and Wang [6] and Mukai et al. [17] considered

{
∂tv = ∆vm + vp1 , x ∈ Rn, t > 0,
v(x, 0) = v0(x) ≥ 0, x ∈ Rn,

(1.4)

for m = 1 and m > 1, respectively, and proved the following life span results when an initial
datum takes the form v0(x) = λϕ(x), where λ > 0 and ϕ(x) is a bounded continuous in Rn:

• If ∥ϕ∥L∞(Rn) = ϕ(0) > 0, then there exists λ1 ≥ 0 such that T ∗ < ∞ for any λ > λ1, and

lim
λ→∞

λp1−1T ∗ =
1

p1 − 1
ϕ(0)−(p1−1).

• If ∥ϕ∥L∞(Rn) = lim
|x|→∞

ϕ(x) = ϕ∞ > 0, then T ∗ < ∞ for any λ > 0, and

lim
λ→0

λp1−1T ∗ =
1

p1 − 1
ϕ−(p1−1)
∞ .

(B) Giga and Umeda [4, 5], Seki [19] and Seki et al. [20] showed the solution of (1.4) blows up at
minimal blow-up time (see Remark 1 below); that is,

T ∗ =
1

p1 − 1
∥v0∥1−p1

L∞(Rn) (1.5)
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if and only if there exists a sequence {xj} ⊂ Rn such that

lim
j→∞

|xj | = ∞ and lim
j→∞

v0(x+ xj) = ∥v0∥L∞(Rn) a.e. in Rn.

Applying the comparison principal to (1.4), it follows that

T ∗ ≥ 1

p1 − 1
∥v0∥1−p1

L∞(Rn). (1.6)

So, when (1.5) holds, we call the time T ∗ the “minimal blow-up time” and the solution v to (1.4)
a “blow-up solution with the minimal blow-up time”.

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

Remark 1. 

(C) Maingé [15] considered (1.4) for max(0, 1− 2/n) < m < 1, and proved if the initial data satisfies

v0(x) ≥ c0max
{
0, 1− |x− x0|2ϕ0

}s
,

where x0 ∈ Rn, s > 2, and cp1−m
0 > Cbϕ0 for some constant Cb > 0 and ϕ0 > 0, then the solution

of (1.4) blows up in finite time, and

1

p1 − 1
∥v0∥1−p1

L∞(Rn) ≤ T ∗ ≤ max

{
d1

cp1−1
0

,
d2c

1−m
0

cp1−m
0 − Cbϕ0

}
,

where d1 > 0 and d2 > 0.

(D) Yamauchi [18, 25, 26, 27] considered (1.4) for m = 1, the author [8, 9] for max(0, 1−2/n) < m < 1
or 1 < m < p1, and showed the following life span results:

(a) Let n ≥ 2. For some ξ ∈ Sn−1 and δ > 0, we set the conic neighborhood Dξ(δ):

Dξ(δ) =

{
η ∈ Rn\{0};

∣∣∣∣ξ − η

|η|

∣∣∣∣ < δ

}
, (1.7)

and set Sξ(δ) = Dξ(δ) ∩ Sn−1. Define

N∞ := sup
ξ∈Sn−1, δ>0

{
ess.inf
θ∈Sξ(δ)

(
lim inf
r→+∞

v0(rθ)

)}
,

where r = |x|, θ = x/r.

• If N∞ > 0, then the solution of (1.4) blows up in finite time, and

1

p1 − 1
∥v0∥1−p1

L∞(Rn) ≤ T ∗ ≤ 1

p1 − 1
N1−p1

∞ .

• If N∞ = ∥v0∥L∞(Rn), then the solution of (1.4) blows up at minimal blow-up time; that
is,

T ∗ =
1

p1 − 1
∥v0∥1−p1

L∞(Rn) =
1

p1 − 1
N1−p1

∞ .

© 2022 Global Journals
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(b) Let n = 1. Define

n∞ := max

(
lim inf
x→∞

v0(x), lim inf
x→−∞

v0(x)

)
.

• If n∞ > 0, then the solution of (1.4) blows up in finite time, and

1

p1 − 1
∥v0∥1−p1

L∞(R) ≤ T ∗ ≤ 1

p1 − 1
n1−p1
∞ .

• If n∞ = ∥v0∥L∞(R), then the solution of (1.4) blows up at minimal blow-up time; that
is,

T ∗ =
1

p1 − 1
∥v0∥1−p1

L∞(R) =
1

p1 − 1
n1−p1
∞ .

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

(E) The author [10] also considered

{
∂tv = vp2(∆v + vq), x ∈ Rn, t > 0,
v(x, 0) = v0(x) > 0, x ∈ Rn,

(1.8)

for p2 ≥ 1 or q ≥ 1, and showed the following life span results:

(a) Let n ≥ 2.

• If N∞ > 0, then the solution of (1.8) blows up in finite time, and

1

p2 + q − 1
∥v0∥1−p2−q

L∞(Rn) ≤ T ∗ ≤ 1

p2 + q − 1
N1−p2−q

∞ .

• If N∞ = ∥v0∥L∞(Rn), then the solution of (1.8) blows up at minimal blow-up time; that
is,

T ∗ =
1

p2 + q − 1
∥v0∥1−p2−q

L∞(Rn) =
1

p2 + q − 1
N1−p2−q

∞ .

(b) Let n = 1.

• If n∞ > 0, then the solution of (1.8) blows up in finite time, and

1

p2 + q − 1
∥v0∥1−p2−q

L∞(R) ≤ T ∗ ≤ 1

p2 + q − 1
n1−p2−q
∞ .

• If n∞ = ∥v0∥L∞(R), then the solution of (1.8) blows up at minimal blow-up time; that
is,

T ∗ =
1

p2 + q − 1
∥v0∥1−p2−q

L∞(R) =
1

p2 + q − 1
n1−p2−q
∞ .
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Several recent studies show that the minimal blow-up time is strongly associated with blow-up
at space infinity. Related researchers are Giga and Umeda [4, 5], Mochizuki and Suzuki [16],
Ozawa and Yamauchi [18], Seki [19], Seki et al. [20], Shimojō [22], Yamaguchi and Yamauchi [27],
Yamauchi [25, 26] and the author [8, 9].

Here, we state the main results.

Consider the Cauchy problem (1.1) for 0 < α < 1 and p > 1.

(a) Let n ≥ 2. Suppose that there exist ξ ∈ Sn−1 and δ > 0 such that

M∞ := sup
ξ∈Sn−1, δ>0

{
ess.inf
θ∈Sξ(δ)

(
lim inf
r→+∞

u0(rθ)

)}
> 0, (1.9)

where r = |x|, θ = x/r, Sξ(δ) = Dξ(δ) ∩ Sn−1 and Dξ(δ) is the conic neighborhood defined by (1.7).
Then the solution of (1.1) blows up in finite time, and we have[

(p− 1)p−1Γ(α+ 1)

pp
∥u0∥1−p

L∞(Rn)

]1/α
≤ T ∗ ≤

[
Γ(α+ 1)

p− 1
M1−p

∞

]1/α
. (1.10)

In particular, assuming that

M∞ = ∥u0∥L∞(Rn), (1.11)

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

Theorem 1. 

the solution of (1.1) blows up at

T ∗ =

[
Γ(α+ 1)

p− 1
∥u0∥1−p

L∞(Rn)

]1/α
=

[
Γ(α+ 1)

p− 1
M1−p

∞

]1/α
. (1.12)

(b) Let n = 1. Suppose that

m∞ := max

(
lim inf
x→∞

u0(x), lim inf
x→−∞

u0(x)

)
> 0. (1.13)

Then the solution of (1.1) blows up in finite time, and we have

[
(p− 1)p−1Γ(α+ 1)

pp
∥u0∥1−p

L∞(Rn)

]1/α
≤ T ∗ ≤

[
Γ(α+ 1)

p− 1
m1−p

∞

]1/α
. (1.14)

In particular, assuming that

m∞ = ∥u0∥L∞(R), (1.15)

the solution of (1.1) blows up at

T ∗ =

[
Γ(α+ 1)

p− 1
∥u0∥1−p

L∞(R)

]1/α
=

[
Γ(α+ 1)

p− 1
m1−p

∞

]1/α
. (1.16)

© 2022 Global Journals
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Theorem 1 allows us the information of the life span for the initial data of intermediate size and
the non-decaying initial data at space infinity; (1.9) and (1.13).

We show some examples of the initial data u0 which satisfy M∞ > 0 in the space dimensions
n ≥ 2. For simplicity, we employ polar coordinates.

(i) u0(r, α) = 1− exp(−r2).
Since lim inf

r→+∞
u0(r, α) = 1, we have M∞ = 1.

(ii) u0(r, α) = {1− exp(−r2)}(2− cos r).
Since lim inf

r→+∞
u0(r, α) = 1, we have M∞ = 1.

(iii) u0(r, α) = {1− exp(−r2)}(1 + cosα).
Since lim inf

r→+∞
u0(r, α) = 1 + cosα, we have M∞ = 2.

(iv) u0(r, α) = {1− exp(−r2)}(1 + cosα)(2− cos r).
Since lim inf

r→+∞
u0(r, α) = 1 + cosα, we have M∞ = 2.

For the examples (i) and (iii), the initial data u0 satisfies (1.11). However, for the examples (ii) and
(iv), since ∥u0∥L∞(Rn) = 3 and ∥u0∥L∞(Rn) = 6, respectively, it follows that M∞ ̸= ∥u0∥L∞(Rn).

The outline of the rest of this paper is organized as follows. In section 2, we give the existence
theorem of a local solution to (1.1). In section 3, we prove the main results by improving the method
in the author [8, 9], Ozawa and Yamauchi [18] and Yamauchi [25, 26].

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

Remark 2. 

In this section, we show the local existence and uniqueness theorem of a mild solution to problem (1.1).
Here, we state the definition of a mild solution of (1.1).

Let T ∗ > 0. We say u ∈ C([0, T ∗], C(Rn)) is a mild solution of (1.1) if u satisfies the
integral equation

u(t) = Eα,1(−tαA)u0 +

∫ t

0
sα−1Eα,α(−sαA)f(u(t− s))ds, (2.1)

where f(u(s)) = up(s), and A is realization of −∆ and Eα,β(z) is the Mittag-Leffler function (see [11]):

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0. (2.2)

Suppose that u0 ∈ C(Rn) ∩ L∞(Rn). Then there exists a unique local mild solution
u ∈ C([0, T ∗], C(Rn)) for the problem (1.1).

Proof. See [21, Theorem 1] noting that the nonlinear term f(u(s)) = up(s) is a locally Lipschizian
function. (See also [24, Theorem 2.2].)

If u solves (1.1), then u satisfies (2.1) by the method of the proof for [21, Lemma 1].

II. Existence of a Local Mild Solution

Definition. 

Theorem 2. 

Remark 3. 
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In this section, we shall estimate the life span T ∗ both from below and from above. Here, we improve
the method in Yamauchi [25, 26] and the author [8, 9, 10].

First, we shall show a lower estimate of T ∗ in the space dimensions n ≥ 1. This is obtained by
comparing the solution u of (1.1) with the solution U of the ordinary differential equation

{
∂α
t U(t) = Up(t), t > 0,

U(0) = ∥u0∥L∞(Rn).
(3.1)

The solution U of (3.1) satisfies the integral equation

U(t) = Eα,1(0)U(0) +

∫ t

0
sα−1Eα,α(0)U

p(t− s)ds

= U(0) +
1

Γ(α)

∫ t

0
(t− s)α−1Up(s)ds, (3.2)

where Eα,β(z) is the Mittag-Leffler function by defined in (2.2). Now, we take the same strategy as in
[7, Theorem 3.2] and [13, Theorem 3.1]. Here, changing of variables

U(t) = U(0)[V (t) + 1] and k(t) = γtα−1 with γ =
[U(0)]p−1

Γ(α)
, (3.3)

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

III. Proof of Theorem 1

If u0(x) ≥ 0, then (1.1) admits a solution which satisfies u(x, t) ≥ 0 by the maximum
principle [2] (see also [3, Theorem 3.1] and [21, Theorem 3]).
Remark 4. 

the integral equation (3.2) can be expressed as

V (t) =

∫ t

0
k(t− s)[V (s) + 1]pds. (3.4)

Then, the solution U blows up in finite time T ∗(U) such that

[
(p− 1)p−1Γ(α+ 1)

pp
∥u0∥1−p

L∞(Rn)

]1/α
≤ T ∗(U) ≤

[
Γ(α+ 1)

p− 1
∥u0∥1−p

L∞(Rn)

]1/α
. (3.5)

By a comparison argument, we obtain

T ∗ ≥ T ∗(U). (3.6)

Next, we shall prove a upper estimate of T ∗ by two case of n ≥ 2 and n = 1.

For ξ ∈ Sn−1 and δ > 0 as in the theorem, we determine the sequences {aj} ⊂ Rn and {Rj} ⊂ (0,∞).
Let {aj} ⊂ Rn be a sequence satisfying that |aj | → ∞ as j → ∞, and that aj/|aj | = ξ for any j ∈ N.
Put Rj = (δ

√
4− δ2/2)|aj | for δ ∈ (0,

√
2). For Rj > 0, let ρRj be the first eigenfunction of −∆ on

a) Case (a): n ≥ 2
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with zero Dirichlet boundary condition under the normalization

∫
BRj

(0)
ρRj (x)dx = 1.

Moreover, let µRj be the corresponding first eigenvalue. For the solutions of (1.1), we define

wj(t) :=

∫
BRj

(0)
u(x+ aj , t)ρRj (x)dx. (3.7)

Then we have the following propositions.

We have

lim inf
j→+∞

wj(0) ≥ ess.inf
θ∈Sξ(δ)

(
lim inf
r→∞

u0(rθ)
)
, (3.8)

and

lim
j→+∞

log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

= 1. (3.9)

Proof. See [25, Proposition 1].

Let 0 < α < 1 and p > 1. Suppose that

wj(0) > µ
1

p−1

Rj
. (3.10)

Then u blows up in finite time, and we have

T ∗ ≤

 log
(
1− µRjw

1−p
j (0)

)
(1− p)µRj

Γ(α+ 1)

1/α

. (3.11)

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

Proposition 1. 

Proposition 2. 

BRj (0) = {x ∈ Rn; |x| < Rj}

Proof. We use the method in [1, Theorem 3.7] and [3, Thorem 2.2].

By (1.1) and (3.7), we have

∂α
t wj(t) =

∫
BRj

(0)
∂α
t u(x+ aj , t)ρRj (x)dx

=

∫
BRj

(0)
{∆u(x+ aj , t) + up(x+ aj , t)} ρRj (x)dx
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≥ −µRj

∫
BRj

(0)
u(x+ aj , t)ρRj (x)dx+

∫
BRj

(0)
up(x+ aj , t)ρRj (x)dx. (3.12)

Since p > 1 and ∫
BRj

(0)
ρRj (x)dx = 1,

by Jensen’s inequality, we have

∫
BRj

(0)
up(x+ aj , t)ρRj (x)dx ≥

∫
BRj

(0)
u(x+ aj , t)ρRj (x)dx

)p

. (3.13)

Thus, by (3.12)-(3.13), we obtain

∂α
t wj(t) ≥ −µRjwj(t) + wp

j (t). (3.14)

By (1.3), the inequality (3.14) implies

d

dt
(k ∗ [wj − wj(0)])(t) ≥ −µRjwj(t) + wp

j (t) with k(t) =
t−α

Γ(1− α)
. (3.15)

We put F (ζ) = −µRjζ + ζp. Then the funtion F is convex in ζ ≥ 0, and we get

d

dt
(k ∗ [wj − wj(0)])(t) ≥ F (wj(t)). (3.16)

in (3.15). F is positive and increasing for all ζ > µ
1

p−1

Rj
. If wj(0) satisfies (3.10), then (3.16) implies

that wj(t) > µ
1

p−1

Rj
for all t ∈ (0, T ∗) (see [1, P.24–25]). Knowing that wj(t) ≥ wj(0) > µ

1
p−1

Rj
for all

t ∈ (0, T ∗), it follows from (3.16) that

∂α
t wj(t) =

d

dt
(k ∗ [wj − wj(0)])(t) ≥ F (wj(t)) > 0, for all t ∈ (0, T ∗). (3.17)

Therefore the function wj(t) satisfying (3.17) is an upper solution of the problem

∂α
t ζ = F (ζ) = −µRjζ + ζp, ζ(0) = wj(0), (3.18)

we have wj(t) ≥ ζ(t) by comparison principle (see [14, Theorem 2.3]).

On the other hand, since F (0) ≥ 0, F (ζ) > 0 and F ′(ζ) > 0 for all ζ ≥ wj(0) > µ
1

p−1

Rj
. Then, it

follows from [1, Lemma 3.8] (see also [23, Lemma 3.10]) that v(t) = g
(

tα

Γ(α+1)

)
is a lower solution for

(3.18), where v(t) satisfies

∂α
t v ≤ F (v) = −µRjv + vp, v(0) ≤ wj(0),
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and g(t) solves the ordinary differential equation

dg

dt
= F (g) = −µRjg + gp, g(0) = wj(0). (3.19)

By comparison principle (see [14, Theorem 2.3]), we obtain ζ(t) ≥ v(t). Solving the initial value problem
(3.19), we have the solution

g(t) =

[
w1−p
j (0)−

1− exp{(1− p)µRj t}
µRj

] 1
1−p

exp
(
−µRj t

)
,

and obtain that g(t) → ∞ as t →
log

(
1−µRj

w1−p(0)
)

(1−p)µRj
. By comparison principle (see [14, Theorem 2.3]),

we conclude that

wj(t) ≥ ζ(t) ≥ v(t) = g

(
tα

Γ(α+ 1)

)
=

w1−p
j (0)−

1− exp

{
(1−p)µRj

tα

Γ(α+1)

}
µRj


1

1−p

exp

(
−

µRj t
α

Γ(α+ 1)

)
.

(3.20)

By (3.20), if wj(0) satisfies (3.10), then we obtain that v(t) → ∞ as

t →

 log
(
1− µRjw

1−p
j (0)

)
(1− p)µRj

Γ(α+ 1)

1/α

, (3.21)

and that wj(t) blows up in finite time. Therefore, the solution u blows up in finite time, and it follows
that the estimate (3.11) holds, the proof of Proposition 2 is complete.

Now let us prove the Case (a).
By Propositions 1 and 2, we obtain that

T ∗ ≤ lim sup
j→∞

 log
(
1− µRjw

1−p
j (0)

)
(1− p)µRj

Γ(α+ 1)

1/α

= lim sup
j→∞

 log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

·
w1−p
j (0)

p− 1
Γ(α+ 1)

1/α

=

(
Γ(α+ 1)

p− 1

)1/α

lim
j→∞

 log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

1/α

·
(
lim inf
j→∞

wj(0)

) 1−p
α

≤
(
Γ(α+ 1)

p− 1

)1/α{
ess.inf
θ∈Sξ(δ)

(
lim inf
r→∞

u0(rθ)
)} 1−p

α

. (3.22)

From arbitrariness of ξ ∈ Sn−1 and δ > 0, by (3.22), we obtain
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By (3.6) and (3.23), we have

[
(p− 1)p−1Γ(α+ 1)

pp
∥u0∥1−p

L∞(Rn)

]1/α
≤ T ∗ ≤

[
Γ(α+ 1)

p− 1
M1−p

∞

]1/α
. (3.24)

Therefore, we obtain (1.10). Moreover, by (1.10) and (1.11), we have (1.12). This completes the
proof.

Let aj = j or −j. Put Rj = j/2. For Rj > 0, let ρRj be the first eigenfunction of − ∂2

∂x2 on (−Rj , Rj)
with zero Dirichlet boundary condition under the normalization∫ Rj

−Rj

ρRj (x)dx = 1.

Moreover, let µRj be the corresponding first eigenvalue. For the solutions of (1.1), we define

wj(t) :=

∫ Rj

−Rj

u(x+ aj , t)ρRj (x)dx. (3.25)

Then we have the following propositions.

We have

lim inf
j→+∞

wj(0) ≥ max

(
lim inf
x→+∞

u0(x), lim inf
x→−∞

u0(x)

)
(3.26)

and

lim
j→+∞

log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

= 1. (3.27)

Proof. See [25, Proposition 2].

Let 0 < α < 1 and p > 1. Suppose that

wj(0) > µ
1

p−1

Rj
. (3.28)

Then u blows up in finite time, and we have

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

T ∗ ≤
(
Γ(α+ 1)

p− 1

)1/α
[

sup
ξ∈Sn−1,δ>0

{
ess.inf
θ∈Sξ(δ)

(
lim inf
r→∞

u0(rθ)
)}] 1−p

α

=

[
Γ(α+ 1)

p− 1
M1−p

∞

]1/α
. (3.23)

b) Case (b): n = 1

Proposition 3. 

Proposition 4. 
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T ∗ ≤

 log
(
1− µRjw

1−p
j (0)

)
(1− p)µRj

Γ(α+ 1)

1/α

. (3.29)

Proof. It is shown in the same way as in Proposition 2.

Finally, let us prove the Case (b). The rest of the proof is the same as in that of the Case (a).

Life Span of Solutions for a Time Fractional Reaction-Diffusion Equation with Non-Decaying Initial Data

By Propositions 3 and 4, we see that

T ∗ ≤ lim sup
j→∞

 log
(
1− µRjw

1−p
j (0)

)
(1− p)µRj

Γ(α+ 1)

1/α

= lim sup
j→∞

 log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

·
w1−p
j (0)

p− 1
Γ(α+ 1)

1/α

=

(
Γ(α+ 1)

p− 1

)1/α

lim
j→∞

 log
(
1− µRjw

1−p
j (0)

)
−µRjw

1−p
j (0)

1/α

·
(
lim inf
j→∞

wj(0)

) 1−p
α

≤
(
Γ(α+ 1)

p− 1

)1/α{
max

(
lim inf
x→+∞

u0(x), lim inf
x→−∞

u0(x)

)} 1−p
α

. (3.30)

From (3.6) and (3.30), we have

[
(p− 1)p−1Γ(α+ 1)

pp
∥u0∥1−p

L∞(Rn)

]1/α
≤ T ∗ ≤

[
Γ(α+ 1)

p− 1
m1−p

∞

]1/α
. (3.31)

Therefore, we obtain (1.14). Moreover, by (1.14) and (1.15), we have (1.16). This completes the
proof.
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