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Unbranched Riemann Domains over Q-Complete Spaces
By Youssef Alaoui

Abstract- It is proved that if I : X — Q is an unbranched Riemann domain and locally r-complete
morphism over a g-complete space Q, then X is cohomo- logically (g + r — 1)-complete, if
g = 2. We have shown in [1] that if [T : X — Q is an unbranched Riemann domain and locally
g-complete morphism over a Stein space Q, then X is cohomologically g-complete with respect
to the struc- ture sheaf. In section 4 of this article, we prove by means of a counterexample that
that there exists for each integer n = 3 an open subset Q < Cn which is locally (n — 1)-complete
but Q is not (n — 1)-complete. The counterexample we give is obtained by making a slight
modification of a recent example given by the author [2].

In 1962, Andreotti and Grauert [3] showed finiteness and vanishing the- orems
for cohomology groups of analytic spaces under geometric conditions of g-convexity.
Since then the question whether the reciprocal statements of these theorems are true
have been subject to extensive studies.
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Ret Unbranched Riemann Domains over
Q-Complete Spaces

Youssef Alaoui

Abstract

It is proved that if 7 : X — Q is an unbranched Riemann domain and locally
r-complete morphism over a g-complete space €2, then X is cohomologically
(¢ + r — 1)-complete if ¢ > 2. We have shown in [1] that if 7 : X — Q is an
unbranched Riemann domain and locally g-complete morphism over a Stein
space €2, then X is cohomologically g-complete for the structure sheaf Ox. In
section 4 of this article, we prove using a counter-example that there exists for
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each integer n > 3 an open subset @ C C™ which is locally (n — 1)-complete,
but Q is not (n — 1)-complete. The counter-example we give is based on a
recent example given by the author [2].

By the theory of Andreotti and Grauert [3] it is known that a g-complete

to the

complex space is always cohomologically g-complete. A counter-example to the
converse of this theorem was given in [2], where it is shown that there exists for
each integer n > 3 a domain  C C™ which is cohomologically (n—1)-complete
but © is not (n — 1)-complete. Since then, the question of whether the joint
statements of these theorems are factual has been subject to extensive studies.
For example, it was shown that if X is a Stein manifold and if D C X is an
open subset that has a C? boundary such that H?(D,Op) = 0 for all p > q,
then D is g-complete.

In this article, we prove that for any pair of integers (n,q), 2 < ¢ < n, there
exists an open subset Q of C" which is cohomologically (¢ — 1)-complete but
Q is not (§ — 1)-complete if n = mq + 1, where m = [%] denotes as usual the
integral part of % and g=n—m+ 1.

A Counter-Example

[. [NTRODUCTION

Let 7 : X — Y be a holomorphic map of complex spaces. Then 7 is said to be
locally r-complete if there exists for every € Y an open neighborhood U in Y
such that 7=1(U) is r-complete.

A Riemann domain over a complex space Y is a pair (X,II), where 7 : X —» Y
is a holomorphic map which is non-degenerate at every point of X, i.e., 71 (m(z))
is a discrete set at each point € X. The pair (X, ) is called unbranched or
unramified if 7 : X — Y is locally biholomorphic.

2. Y. Alaoui,

Let X and Y be complex spaces and 7 : X — Y an unbranched Riemann domain
such that Y is g-complete and 7 a locally r-complete morphism.
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Does it follow that X is (¢ 4+ r — 1)-complete?

It was shown in [4] that this problem has a positive answer when ¢ = r = 1 and
X and Y have isolated singularities.

It is known from [9] that if 7 : X — Q is an unbranched Riemann domain
between two complex spaces with isolated singularities, €2 g-complete, and 7 is
locally 1-complete, then X is g-complete.

We have shown in [1] that if 7 : X — Q is a locally ¢-complete unbranched
Riemann domain over an n-dimensional Stein complex space €2, then X is
cohomologically g-complete with respect to the structure Ox.

As aresult, the author has provided a positive answer to the local Steiness problem
: he has proved that if X is a Stein space and if Q@ C X is a locally Stein open
subset of X, then  is Stein. (See [1]).

In this article, we prove that if 7 : X — Q is a locally r-complete unbranched
Riemann domain over a g-complete n-dimensional complex space €2, then for any
coherent analytic sheaf F on X, the cohomology group H'(X,F) vanishes for all
I>r+q—1,if¢g>2.

In particular, we obtain the interesting conclusion.

Corollary. If X is a q-complete complex space of dimension n and if @ C X is a
locally r-complete open subset of X, then

(a) Q is cohomologically (q +r — 1)-complete if ¢ > 2.

(b) Q is cohomologically r-complete with respect to the structure sheaf if X is a
Stein space (g =1).

It should be mentioned [13] that if Y is g-complete and if 7 : X — Y is a lo-
cally r-complete morphism, then the space X is cohomologically (¢ + r)-complete.
But in general, H9t"~1(X, Ox) does not vanish, even when 7 : X — Y is locally
1-complete and ¢ = 1 [12] (See also [6]).

The above question generalizes the following classical problem:
Is a locally g-complete open subset €2 of a Stein space X necessarily g-complete?

A counter-example to this problem is not known. One can easily verify that
Q is cohomologically (g + 1)-complete. It is easy to see that a cohomologically
g-complete open subset 2 C C™ is always g-complete with corners. But it is
unknown if these two conditions are equivalent.

By the theory of Andreotti and Grauert [3], it is known that if X is a g-complete
complex space, then for every coherent analytic sheaf F on X, the cohomology
group H?(X,F) =0 for all p > ¢. But it is not known if these two conditions are
equivalent except when X is a Stein manifold, 2 C X is cohomologically g-complete
with respect to the structure sheaf Oq and €2 has a smooth boundary [7]. In [2],
we have shown that there exists for each n > 3 an open subset 2 C C™ which is
cohomologically (n — 1)-complete, but € is not (n — 1)-complete.

In section 4 of this article, we prove that for each n > 3, there exists an integer ¢
with 2 < g < n such that for any coherent analytic sheaf F, the cohomology group
HP(Q, F) vanishes for all p > ¢ but € is not g-complete.

[1. PRELIMINARIES

We start by recalling some definitions and results concerning g-complete spaces.
Let © be an open set in C™ with complex coordinates zq, - - - , z,. Then it is known
that a function ¢ € C*° () is g-convex if for every point z € Q, the Levi form.

9?2¢(z) n
Zazlaf 57, J7 é‘ec

Has at most ¢ — 1 negative or zero eigenvalues.
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A smooth real-valued function ¢ on a complex space X is called g-convex if every
point x € X has a local chart U — D C C" such that ¢|y has an extension
¢ € C*°(D,R) which is g-convex on D.

Two g-convex functions ¢,y on X have the exact positivity directions if, for each
point z € X, there exists an open neighborhood U of x that can be identified to a
closed analytic subset B of a domain D of some C”, and a complex vector subspace
E of C" of dimension > n— ¢+ 1 such that the Levi forms of L, (¢,&) and L, (¢, &),
z € U, are positive definite when restricted to E.

We say that X is g-complete if there exists a g-convex function ¢ € C°(X,R)
which is exhaustive on X, i.e. {z € X;¢(x) < c} is relatively compact for any
ceR.

A complex space X is said to be cohomologically g-complete if the cohomology
groups H?(X, F), F € Coh(X), vanish for all p > q.

An open subset D of ) is called ¢-Runge, if for every compact set K C D, there
is a g-convex exhaustion function ¢ € C*°(£2) such that

Kc{zeQ:¢(x)<0}ccD

This generalizes the classical notion of Runge pairs of Stein spaces.

It is shown in [3] that if D is ¢-Runge in 2, then for every coherent analytic sheaf
F on 2, the cohomology groups H?(D, F) vanish for p > ¢ and the restriction map

H?(Q,F) — HP(D,F)

has a dense image for all p > q — 1.

A holomorphic map 7 : X — € of complex spaces is called a g-complete morphism
if there exists a g-convex function : X — R such that for every real number y € R,
the restriction of II from {z € X; (z) < pu} to Qis proper. The canonical topologies
on HP(X, F) are separated for all p > ¢+ 1 and for every coherent analytic sheaf
Fon X.

[1T. UNBRUNCHED RIEMANN DOMAINS OVER Q-COMPLETE SPACES

Theorem 1. Let X and Y be two n-dimensional complex spaces such thatY is q-
complete and w : X =Y is an unbranched Riemann domain and locally r-complete
morphism. Then X is cohomologically (q + r — 1)-complete.

Proof. Since Y is g-complete, there exists, according to [14], a smooth g-convex
function ¢ : Y —]0,+oo[ such that for every real number A\, Y(A) = {y € Y :
o(y) < A} is relatively compact in Y and {y € Y : ¢(y) < A} \ Y (\) contains at
most one point. Put p = ¢+r—1 and let F be a coherent analytic sheaf on X. We
define X (A\) = II"1(Y(\)) and consider the set A of all real numbers X such that

HP(X(N\),F)=0.
To prove that H?(X (\),F) = 0 for every A € R, it will be sufficient to show that
(a) A#( and, if A € A and X < A, then \ € A.
(b) if A\; = X and \j € A for all j, then X € A.
(c) if A\p € A, there exists €9 > 0 such that A\g + ¢ € A.
We first prove assertion (a). Clearly, A is not empty. Indeed if
Ao = min{p(x);x € Y}, then | — 0o, \g] C A. Also, if A € A and X < A, then by

theorem 1 of [13], the restriction map

© 2022 Global Journals

Global Journal of Science Frontier Research (F) Volume XXII Issue V Version I E Year 2022



Global Journal of Science Frontier Research (F) Volume XXII Issue V Version I E Year 2022

© 2022 Global Journals

HP(X(N), F) = HP(X(X), F)

has a dense range. Moreover, p is, in addition, injective. In fact, let
HP(X(N),F) == H"(X (), F)

be the restriction map, where p is any real number with u < Min(\, Ag). Then
the compostion p’op is obviously injective. This implies that the restriction p is
injective, which means that HP(X(\), F) =0 and X' € A.

To prove (c), we fix some A\g € A and suppose that {y € Y : ¢(y) = Ao} \0Y (o) =
{yo} for some yo € Y.

Let U be a Stein open neighborhood of g such that II=(U) is r-complete and

UNY (M) = 0. There exist finitely many Stein open sets U; CC Y, 1 < i < k,
k

disjoint from U such that 0Y (Ag) C U U; and II71(U;) are r-complete. Let 6; €

i=1
k

C°(U;, RT) be smooth compactly supported functions such that Z 0:(§)) >0 at
i=1
every point £ € 9Y (A\g). We can therefore choose sufficiently small numbers ¢; > 0,

0 < i <k, so that the functions ¢; : Y — R, 1 < i < k, defined by
Go=0, di=0— Y c;b;
j=1

Are g-convex with the same positivity directions. If we set
Yi={z €Y :¢i(x) <A} and Yy =Y (N\g), then
YochicYaC-CY, Yo CC Y, Y \Y,og CcCU; for 1<i<k

Moreover, since ¢ is exhaustive, there exists g9 > 0 such that Y (Ao +¢9) C Y UU.

We define for an arbitrary real number A with \g < A < Mg + €9 and integer
Jj =0, ,k, the sets Y;(A\) = Y; NY()\) and X;(\) = II71(Y;(N).

Since Y(A) = (Y(A) NYr) U(Y(A) NU), then X(\) = X;(A\) UV()N), where
V) =1 YA NU) = {z € TYU) : ¢goll(x) < A} is p-complete, because

~(U) is r-complete and ¢oll is g-convex. Moreover, X;(\) NV (A) is p-Runge in
V(A). Therefore

HP(X(N), F) = HP(X,(A), F) & HP(V(A), F) = H?(Xx(X), F)

To prove (c), we show inductively on j that HP(X;()\), F) = 0. For j = 0 this is
clearly satisfied since Xo(A) = X (A\g) and Ag € A. Assume now that j > 1 and that
Hp(Xjfl()\),.F) = 0. Since }/J = Y—jfl U (Y; n Uj), then X]()\) = Xjfl()\) @] ‘/]()\),

where

Notes



Ref

de finitude de la

éorémes

cohomologie des espaces complexes. Bull. Soc. Math. France 90

(1962;) 193 — 259.

7

3. A. Andreotti and H. Grauert, Th

V() =71 (U; nY;(N) = {2 € I7H(U;) : poll(z) < X, pjoll(z) < Ao}

is p-complete since II7!(U;) is r-complete and ¢oll and ¢;0ll are g-convex with
the same positivity directions. Furthermore, as X;_1(A) N V;(A)) = X;_1(A) N
O-YU;) = {z € T7YU;) : ¢j_10l(x) < Ao, ¢poll(xz) < A} is clearly p-Runge in
II-1(U;), then the restriction map

’

H*(ITH(U;), F) % H*(X;-1(\) N V;(A), F)

has a dense image for all s > p — 1. Since p’ is clearly injective and p — 1 > r,
then HP~1(X;_1(\) N V;()),F) = 0. Therefore from the Mayer-Vietoris sequence

for cohomology
= HPTHXG (N NV (N, F) = HP(XG(N), F) = HP (X1 (M), F) = -

we deduce that H?(X;(\), F) = 0.

To prove statement (b), it is sufficient to show that if A\; ~ XA and \; € A
for all j, then

has a dense image.
To complete the proof of theorem 1, it is, therefore, enough, according to (Cf. [3],

p. 250), to show the following lemma.

Lemma 1. For every pair of real numbers u < X\, the restriction map

HP™HX (), F) = HPH(X (), F)
has a dense range.

Proof. We consider the set T of all real numbers A such that
HP"Y (X (N), F) = HP 1 (X (), F)

has a dense range for all u < A.

To see that T is not empty, we choose \g = min{p(y);y € Y}. Then clearly
] — 00, )\0] cT.

To prove that T is open in | — oo, +o0] it is, therefore, sufficient to show that if
A € T, there exists € > 0 such that A+¢& € T. For this, we consider a finite covering
(Ui)i<i<k of {y € Y : ¢(z) = A} by Stein open sets U; CC Y and compactly sup-
ported functions 6; € C°(U;), 0; >0, =1,--- , k such that II"1(U;) is r-complete

k
and Z@l(x) > 0 at any point of 9Y'(A\). Define Y; = {z € Y : ¢,(z) < A} where
i=1

© 2022 Global Journals
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J

¢j(2) = d(z) — Z ¢;b;, with ¢; > 0 sufficiently small so that ¢;(z) are still g-convex
1

With the same positivity directions for 1 < j < k.

If we consider the following sets defined in the lemma 2

YO ={y €Y :9y) <A}, X(A) =T HY(N), Y, = {z €Y : ¢(x) <
/\0} and Yy = Y()\Q), then

YochicYoaC--CY,YoCC Yy, Y \Y,y CcCU; for 1<i<k
and X;(\) =171 Y; NY () = X;_1(A\) UV;(N), where
Vi(\) =171 U; NY;(N) = {z € ITHU;) : poll(z) < A, pjoll(z) < Ao}

Now since X;_1(A)NV;(A) is p-Runge in the p-complete set V;(X) and HP(X;(N), F) =

0, it follows from the long exact sequence of cohomology
o PTG, F) = HPN G (0, ) @ HP (V;(0), ) -
HPH (X510 (A) N V;(N), F) = HP(X;(A), F) =
that the restriction map

HPH(X;(N), F) = HP7H(X;_1(N), F)

has a dense range.

Moreover, since ¢ is exhaustive, there exists ¢ > 0 such that Y (A +¢) C Y. We

deduce that the restriction map
HP" Y (X (A +¢), F) = H"HX(\), F)

has a dense image, which implies that A +¢ € T.
Let now A\j € T, j > 0, such that A; 7 A, and let & = (U;);cr be a countable base

of Stein open covering of X. Then the restriction map between spaces of cocycles
-1 -1
zZ? (u|X>\j+17]:) — Z° (u|X>\ja‘F)

has dense image for j > 0. Let A’ < A and j € N such that X" < \;. By [1, p.246],
the restriction map Z"2(U|x,,F) — Z"_Q(U|XAJ,,]:) has a dense image. Since
Aj €T, then Z"’Q(Z/I|XA7,,]-') — Z"*(U|x,,, F) has also a dense image, and hence
reT. '

Now since HP(X(j),F) = 0 for all j € N and H?~}(X(j + 1), F) has a dense
image in HP~1(X (j), F) for all j > 0, it follows from ( [3], p. 250) that

Ref
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H?(X,F)— HP(X(0),F)

is bijective, which shows that H?(X,F) = 0.

[V. A COUNTER-EXAMPLE TO THE ANDREOTTI-GRAUERT CONJECTURE

Theorem 2. There exists for each integer n > 3 a cohomologically q-complete open
subset Q C C™, 2 < g < n, which is not qg-complete.

We consider the following example due to Diederich and Forness [4]. Let (n,q)
n

be a pair of integers with 2 < ¢ < n and such that n = mq + 1, where m = [f]
the integral part of %. We define the functions.

0;(z) +Zaz +N||Z||4—*\|?«’||2 j=1--,m,
and
Pm+1(2) = —01(2) =+ —om(z +Zaz 2+ N|l2|* - ||Z||2,
n m+j(g—1)
where 0;(z) = Im(z;)+ Z |zi| > —(m+1) Z |zi)%, for j=1,---,m
i=m+1 i=m+(j—1)(g—1)+1

z = (21,22, "+ ,2n), and N > 0 a positive constant. Then, if N is large enough,
the functions ¢1, - - ¢o are g-convex on C" and, if p = Max(¢1, -+ , dms1), then,

for £, > 0 small enough, the set D., = {z € C": p(z) < —¢,} is relatively compact
in the unit ball B = B(0,1) if N is sufficiently large. (See [4]).

We fix some € > £y and consider a covering (U;);en of D¢, by Stein open subsets
U; CC D., and functions ; € C§°(C™,R) such that

6; >0, Supp(d;) CC UJ,ZG )>0 at any point z € dD..

We can therefore choose sufficienly small positive numbers ¢y, , ¢ so that the

J
functions ¢; ; = ¢; — Zcﬁl are g-convex for i =1,--- m+land 1 <j<k.
1=1

We define ¢; 0 = ¢; fori =1,--- ,m+1, Dy = D, and D; = {z € D, : pj(2) <
J
—¢e}, where p;(z) = p— Z ¢i0; for j =1,--- k. Then p; are g-convex with corners

i=1
and it is clear that

Dy C Dy C---C Dy, Dy CCDkCCDEO andDj\Dj_1 CCU]' forj=1,---=k.

Lemma 2. In the situation described above, for any coherent analytic sheaf F on
D.,, the restriction map HP(D;y1,F) — HP(D;, F) is surjective for allp > §—1
and all 0 < j < k—1. In particular, dimcH?(D;, F) < oo, if p> G — 1.
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Proof. We first prove that the cohomology group H?(D;NU;, F) = 0 for allp > ¢—1,
0<j<k and1 <[ <k Infact, the set D; N U; can be written in the form
D;nU=DiN---NDj, ., where D; = {2z € Uy : ¢; ;(2) < —¢} are clearly
g-complete. Then for every iy, -+ ,ip € {1,--- ,m+1}, D; N---ND; are

(G — 1)-complete. Therefore, by using Proposition 1 of [11], we obtain

H?(D;NU,F) = H™(D{U---UD,, 1, F)

if p > ¢ — 1, which implies that H?(D; NU;, F) =0 for all p > ¢ — 1.

Now since Dj+1 = D;U(D;j41NUj41), it follows from the Mayer-Vietoris sequence
for cohomology

— Hp(DjJrl,]:) — Hp(Dj,f) @Hp(Dj+1 N Uj+1,f) — Hp(Dj N Uj+1,.7:) —
HPM(Djir, F) —

that the restriction map
H?(Djt1, F) — HP(D;, F)

is surjective when p > g — 1.
Let now A be the set of all real numbers € > ¢y such that H?(D., F) = 0 for all
p>q—1

Lemma 3. -The set A is not empty and, if e € A, € > ¢¢, then there exits ' € A
such that g < &’ < e.

Proof. In fact, if po = Min_ .5{$i(2),i =1,--- ,m + 1}, then one sees easily that
[— o, +o0[C A.

For the proof of the second assertion, if with the notations of lemma 1 we set
Dy = D., we obtain Dy C Dy C --- C Dy, Dy CC Dy, CC D, and D; \ D;—; CC
Ujforj=1,---=k.

We fix some 1 < j < kand1 <1<k, andset D;,NU; =DiN---D;, ., where
D) ={z€U: ¢;;(z) < —¢}, then D] are g-complete and ¢g-Runge in U;. Therefore

because of the proof of lemma 2, one obtains
HP(D;NU,F) = H™(D{U---UD,,,,,F) =0
for p > ¢ — 1 and, consequently, the restriction map
HP(D;i1,F) — HP(D;, F)
is surjective for all p > ¢ — 1.

We now show inductively on j that H9~(D;, F) = 0. For j = 0, this is clearly
satisfied since Dy = D. and € € A. Assume now that this property has already
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been proved for j < k. Since for every i1, ,im, in {1,--- ,;m + 1}, the open set
D; n---NnDj is (¢~ 1)-Runge in U;, then the restriction map

HP(U;, F) — HP(D, ---N D}

Tm

F)

has a dense range for p > ¢ — 2. Since the canonical topologies on H*(Dj N---N
D; ,F) are obviously separated for i > 2, then HP(D; N---ND; ,F) =0 for all
p > ¢ — 2. We know from Proposition 1 of [11] that H?(D; NU,;, F) & HPT™(D}{ U
--UDy, 1, F)forp>§—2=mn—m—1. We can choose the covering (U;)1<i<
of D, such that U; \ D} U---U Dy, ., has no compact connected components,
so it follows from the mean theorem of [5], that the restriction H?(U;, F) —

HP(DyU---UD;, 1, F) has a dense image for p > n — 1. This proves that
H?(D; NU,F) = H*"™(D{U---UD, .,F)=0 for all p>q—2.

Now since HQ_Q(DJ‘ N Uj+1,]‘—) = Hq_l(DjJrl N Uj+1,]:) = Hq_l(Dj,]:) =0, it

follows from the Mayer-Vietoris sequence for cohomolgy
— H12(DjNUj41, F) = HT Y (Djy1, F) = H YDy, FY@HT Y (Dj1NUj41, F) —

that Hd—l(Dj+1,f') =0.

On the other hand, since p is proper, there exists ¢’ > 0 such that e —&’ > ¢, and
D. o ={2€ D, :p(z) <e —e} CC Dy.

Since H1=Y(Dy, F) — HI"Y(D._., F) is surjective, HI"1(Dy, F) = 0 and
dimcHIY(D._or, F) < 00, then HI= (Do, F) = 0, whence € — ¢’ € A.

Lemma 4. The open set D, is cohomologically (§ — 1)-complete.

Proof. For this, we consider the set A of all real numbers ¢ > ¢¢ such that
HP(D.,F) =0 for all p > G — 1. Then by lemma 3, A is not empty and open
in [g9,00[. Moreover, if ¢ = Inf(A), there exists a decreasing sequence of real
numbers ¢; € A, j > 1, such that ; N\, e. Since H?(D,, F) =0 for p > G—1 and,
by lemma 1, the restriction map H?(D.,,,,F) — HP(D.,,F) is surjective for all
p > q— 2, then by ( [3], p. 250), the restriction map

H?(D.,F) — H?(D.,,F)

is an isomorphism for p > ¢ — 1, which shows that € € A.

Assume now that € > €g. Then there exists, according to lemma 1, &’ € A such
that g9 < ¢’ < &, which contradicts the fact that ¢ = Inf(A). We conclude that

e =¢g¢ € A, and hence D, is cohomologically (¢ — 1)-complete.

End of the proof of theorem 2

We have shown that D, is cohomologically (¢ — 1)-complete. We are now going
to prove that for a good choice of the contants £y and N, we can find an € > ¢
such that D, is cohomologically (§ — 1)-complete but © not (§ — 1)-complete.
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In fact, it was shown by Diederich-Forness [4] that if 6 > 0 is small enough, then
the topological sphere of real dimension n + ¢ — 2

Ss={z€Cr:af+ - +al +zms1f’ + - +|ml =4

n m+j(g—1)
yi=— Y lal+(m+1) > 2> for j=1,---,m}
i=m+1 i=m+(j—1)(g—1)+1

is not homologous to 0 in D.,. This follows from the fact that the set F = {z €
C":xy =2 =+ =z, = 0} does not intersect D,,, since on F

3 m m )
Oj=yj+ 7D W NQ_u)? for j=1,-,m
=1

i=1

and

3%~ o 22
¢m+1=—y1—"'—ym+Z;yi"'N(;yi)

such that p > 0 on E. So the following real form of degree n + G — 2

n n n
w = (meJr Z y§)72n+m(2(fl)ixidaz1/\~--dzi/\-~/\dmn/\dym+1 A A
i=1 i=m-+1 i=1

dyn + > (~1)" ympider A Adwn Adymir A A dYmgs A A dyy)
=1

is well-defined and d-closed on D,,. Since w does not depend on yi, -+ ,¥Ym, then
by the standard argument | 55 W # 0. Therefore Ss is not homologous to 0 in Dy, .

Let &; be the sheaf of germs of C*° g-forms on C" and 7, the sheaf of germs of

C*° d-closed g-forms. Then we have an exact sequence of sheaf homomorphisms

O—>Tq—>8qi>7;+1—>0

Since by the de Rham theorem for every p > 1, the cohomology group H?(D,,,C)
is isomorphic to

{weT(D,,,&) : df =0}

{dw:w € T'(Dey,Ep—1)}

it follows from Stokes formula that H"*9=2(D. ,C) does not vanish.

0
We are going to show that H"(D,,, ODEO) =0forallr with1<r<qg-3.
We first assert that we can choose N, €y, and € > gg such that, if, with the
notations of Proposition 1, we set

m

1 )
6;(2) = 0j(2) + Y oi(2)* + N[l = LIl G =1, ,m,

i=1

and

Smr1(2) = 0(2) + Y 0i(2)” + NlJ2||* - illzllz’ where o(z) =~ oi(2),
i=1 i=1

Ref

"68¢ — €8¢ :8¢¢ (L00g) uuy

YIeJN 'SeTiren3uls poje[osl [Im sddeds UG IOAO SUTBTIOP
uuewsry JI0J woqoid 1Ad] OYJ, ‘YOIIOPAI(] "3 Ppue nioyo) ‘N ¥



n m+j(g—1)

0j(z) = Im(z;) + Z |zi]* — (m + 1) Z |zi|%, for j=1,---,m,
i=m+1 i=m+(j—1)(g—1)+1

(z) = N||z||4fi||z\|2+€0 and p(z) = Max(¢1(z), - ,¢m+1)+z 0i(2)*+ (2)—eo,
i=1

then we obtain
D.={z€D.:¢(z) <eyp—e}

where m’ = Min,p, (2), and
$(z) = 0(2) + Y 0i(2)* +m
i=1

In fact, we can choose € > ¢ sufficiently big and A > 0 small enough so that
go—e<m' < (1+A).Min,p5_ (z)and Ae — (1 + A)eg > 0.

On the other hand, if § = Min_.p_ [|2]|?, then we have

1 _
O<5§Hz||2<mf%0 for every ze€ D,

Therefore by suitable choice of gy, € and IV we can also achieve that

1 . 1 . E—¢€p
(NIl = {112112) = Min,eg (NI|2I1* = J11211%) < Min(Z==2, X6 = (14 N)eo),

€0

and

£ —

Mazx EO,)\E— (14 Neo),

1 1 ,
2D, (NI = 112117 = (V1= = Z1I211%) < Min

for every z € D..

Because (2) < &g — ¢ on D, then clearly we obtain

o(2) = a(z)+Z oi(2)*4m/ < o(2)+Y_ 0i(2)*+(1+A).4(2)) < (14+A)(e0—¢), if z € D,

i=1
which shows that
D.={z€D.:¢(z2) <eg—e}
We are now going to show that for every none-positive real number a with a <
€o — €, the open sets
B, ={z€D.:¢(2) < a}
are relatively compact in D..

To see this, we consider a sequence (z;)j>0 C B, which converges to a point
z € D.. Then one has for every sufficiently large integer j

i 1
p(z5) = Maz(o1(25), -+ ,om(zj),0(25)) + Zoi(zj)2 + N||z|[* - i\lzjll2 < -
i=1

Since

¢(Z]) < Eyp—€+ )\1/1(,2]) < (1 + )\)(50 — 5)
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and
1 . 1
Nllesll* = 3112512 = Min, s, (NIJzll* = 51l211%) < Xe = (1 + X)eg
then

p(z) = d(z;) + N(||z|* — i||zj||2) —m <eg—¢e+A(z) + Ae — (1 + N)eo

A passage to the limit shows that
p(z) <eg—e+Mp(2)+Ae—(1+Neg < (1+A)(eg—¢) +Ae — (1 + Negg = —¢,

because (z) < g9 — &, which implies that z € D.. We conclude that with such a
choice of €9, N, and ¢ the limit z € D., and hence the open set

By ={z€ D, : ¢(z) < a}

is relatively compact in D, for all real numbers «, with a < g¢ — €.

Now since ¢ is in addition (m + 2)-convex, then a similar proof of theorem 15
of [3] shows that, if Q! is the sheaf of germs of holomorphic i-forms on C", i > 0,
(Q° = Ocn), and B. = {z € D, : ¢(z) < ¢} for ¢ < &g — ¢, then the map

H"(D., Q") — H"(D. \ B, Q")

is injective for every r < n—m —1 and ¢ < g9 —&. Then obviously H"(D., Q%) =0
for1<r<n—m-—2andi>0. In fact, let ¢g = Ma:czeﬁng(z). Then there exists

21 € OD. such that ¢(z1) = ¢p. Since ¢y = ¢(z1) = o(z1) + Zai(zl)z +m <
i=1

p(z1)+eo0 < eg—e, then B, = D, and hence H"(D.,Q") =0for 1 <r <n—m-—2.

Now if we suppose that D, is (§ — 1)-complete, then there exists a C'* strictly

(¢ — 1)-convex function : D. — R such that D.. = {z € D. : (2) < ¢} is
relatively compact in D, for every ¢ € R.

We now consider the resolution of the constant sheaf C on D,
0-CoH0%ot % ... 5%am 50

If we set Z9 = Im(Q7~! A ) for 1 < j <n—1, then we get short exact sequences

1
0—-—C—-0—-272 —0

0225002527150
027150 50" >0

Since, by Proposition 1, D, is cohomologically (§— 1)-complete, then H" (D, Q%) =
O forall”>¢g—1andi>0. So we obtain the isomorphisms

qul(DE’ Z’nfl) o~ Loy H2n7m72(DE’ Zl) o H2’n7m71(D87c)
and the exact sequence

N Hq__Q(DE,Qn) N Hti—l(DE7Zn—1) N Hti—l(Dan—l) =0

Ref

692 — €61 (‘2961)
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Ref

7. H. Diederich, J. E. Fornaess, Smoothing g-convex functions and

vanishing theorems. Invent. Math. 82. 291-305 (1985).

We deduce that the map
H2(D., Q") 5 H""72(D,,C)

is surjective. The map ¢ is defined as follows : If a differential form w € C2%_5(De)

satisfies the equationﬁw =0, then w is also d-closed and therefore defines a coho-
mology class in H"t972(D,, C).

Moreover, since, by theorem 1 in [8], every d-closed differential form w € C2°._,(D,)

n,g—2
is cohomologous to a d-closed (n, ¢ — 2) differntial form w’ € C5% 5 (D), it follows
that the map

H™%(D.,Q") & H"*72(D,,C)
is bijective.
Now if we suppose that D, is (§ — 1)-complete, then there exists a C'* strictly

(G — 1)-convex function : D, — R such that D.. = {z € D. : (2) < ¢} is
relatively compact in D, for every ¢ € R.

Notice that for the given ¢, if § > 0 is small enough, the topological sphere
Ss={z€C": 2 + |2+ +|z* =4, 01(2) =0} C D,

Since is exhaustive on D., there exists ¢ > 0 such that Ss is not homologuous
to 0in D, . Let ¢ > ¢/. Then D, . and D, » are (§ — 1)-complete and, similarly
H?(D. ., Q") = H?(D. ,Q") =0for 1 <p<n-—m—2andi>0. Also the maps
H2(D. ., Q") — H""9"2(D, .,C) and H7"%(D. ,Q") — H""9=2(D, +,C) are
bijective. Moreover, since the levi form of has at least m + 1 strictly positive
eingenvalues, then by using Morse theory (See for instance [7] ) we find that

Hn+q~_2(DE,Ca (C) = Hn+q_2(D6,c” (C)
It follows from the commutative diagram of continuous maps

H®2(D, ., Q") — H"t12(D, .C)
4 +
HT%(D, ., Q") — H""~%(D, .,,C)

that the restriction homomorphism

HT™%(D. ., Q") — HI?(D. «+,Q")

is bijective. Since in addition D, . is relatively compact in D, ., the function
being exhaustive on D, then, according to theorem 11 of [1], one obtains

dimcHIT?(D. o, Q") < 00

Since the sheaf Q" is isomorphic to Op_, then we have also dimCHq*Q(Dg’c/, Op.) <
oo. Furthermore, since D, . is cohomologically (G—1)-complete and H"(D., Op_) =
0for 1 <r <mn—m—2, it follows from theorem 1 of [6] that D, . is Stein, which
is in contradiction with the fact that H"*4-2(D, .., C) # 0, since S5 C D, . is not
homologous to 0 in D, .. We conclude that D, is cohomologically (§— 1)-complete
but not (¢ — 1)-complete.
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1

2.

Theorem 3. There exists for each integer n > 3 a cohomologically (n—1)-complete
open subset ) of C™ which is locally (n — 1)-complete in C™ but Q is not (n — 1)-

complete.

Proof. We consider for n > 3 the functions ¢1, ¢ : C* — R defined by

$1(2) = 01(2) + 01(2)? + Nl[z][* = iIIZIIQ,
$2(2) = —01(2) + 01(2)* + NJ|zl[* — iIIZHa

where o1(2) = Im(z1) + Z |zi|? — |22|%, 2 = (21,22, , 2n), and N > 0 a positive
i=3

constant. Then, if N is large enough, the functions ¢; and ¢4 are (n — 1)-convex on
C™ and, if p = Max(¢1, ¢2), then, for €, > 0 small enough, the set D, = {z € C":
p(z) < —&,} is relatively compact in the unit ball B = B(0,1), if N is sufficiently
large.

According to ( [2], p. 20), we can choose g9 > 0 such that if § = Min_.5_||z[[?,

€0

then we have

1 _
0<6§Hz||2<w—%0 or every z € D,

and that by a suitable choice of € > g,
D.={z€C":p(z) < —¢}

is cohomologically (n — 1)-complete but not (n — 1)-complete.

Now if we suppose that at a boundary point zg € 9D, we have ¢1(z0) = ¢2(20),
then oy(z9) = 0 and, hence N|zg|* — @ = e. This implies |2|> = g (1 +
V1+64Ne < ﬁ. Therefore %m < %, which is a contradiction. This
implies that ¢1(z) # ¢2(z) at every boundary point z € dD.. We conclude that
with such a choice of g9 , N and €, D, is obviously locally (n — 1)-complete in

Cc.
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