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Noncommutative Quantum Gravity and
Symmetry of Klein-Gordon Equation

Gang Lee

Abstract- In the paper 'A New Approach to Quantum Gravity’[1], we suggest a new
approach to quantum gravity. Using this theory, we can study the noncommutative
gravitational field in momentum space. In this paper, we obtain the general form of the
Klein-Gordon equation in noncommutative gravitational field. Then we find the symmetry
associated with noncommutative gravity from the Klein-Gordon equation. We study
black hole in momentum space and conclude that the event horizon of black holes is
formed by the dipoles in momentum space with limit state.

. [NTRODUCTION

In the paper ’A New Approach to Quantum Gravity’[1], we suggest a new theory
of quantum gravity, give the propagator of the graviton, solve the difficulty of
the Feynman integral divergence, and give evidence to prove that this theory
is classical equivalent to the general theory of relativity. In this paper, we
discuss the multi-graviton system and the self-interaction between gravitons. In
momentum space, we obtain the general form of the Klein-Gordon equation in
the gravitational field and find the symmetry associated with noncommutative
gravity. We give the metric of the gravitational field of the multi-graviton
system. There are singularities in this metric, which can produce black holes.

In section 2, we give a brief review of the quantum gravity theory suggested
in the paper[1]. In section 3, we discuss the multiple-graviton system with self-
interaction, giving the metric of the multiple-graviton system. In section 4, we
calculate the Klein-Gordon equation in gravitational field. Due to the specificity
of the metric of curved space caused by gravitational field in momentum space,
from the Klein-Gordon equation in curved space, we obtain the general form
of the Klein-Gordon equation in gravitational field, which is exactly the usual
form of the Klein-Gordon equation in quantum field theory. Then we find
the symmetry associated with noncommutative gravity from the Klein-Gordon
equation. In section 5, by transforming the metric of gravitational field from
coordinate space to momentum space, we get the isolated singularities, which
is the event horizon of the black hole. This type of isolated singularity means
that the horizon is formed by limit state dipoles.

I[I. A BRIEF REVIEW OF QUANTUM GRAVITY

In this section, we briefly review the theory of quantum gravity suggested in the
paper|[1]. More details can be found in [1].

Since the introduction of the uncertainty principle into the general theory of
relativity, we get a wave packet approximate to the Dirac §-function as follows
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It can be explained as a semiclassical graviton. The Lagrangian density can
be written as

o 96, 1) 0! (a, 7)

<z = 2 Og# o 19 (2:2)
The free field equation is
o9, =0 (2.3)
From the free field equation, we obtain Green’s function
Grk) = —— -5(1& - i)
o (k)2 lp
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Compare Green’s function (2.4) with the usual Feynman propagator, it can

be seen that the generalized functions (5<kr — li) and 5<w — %) give the
P P
regularization to the integral over k" and w of the usual Feynman propagator.

According to the properties of the Dirac d-function, we just need to give singular-
ity on the integral paths without calculating specific integrals when calculating
the Feynman diagrams. So that the difficulty of divergence of the Feynman
integral over large virtual momenta of graviton has been solved.

The energy-momentum tensor of graviton is

0L ,
T = -9,
% nuug 8(8”{’)8V§

= L0 iy + 0,0, (25)

In the general theory of relativity, the energy-momentum tensor of gravita-
tional field itself is
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Up to a factor of a constant, Eq.(2.5) and Eq.(2.6) are equivalent. This
shows that the quantum gravity theory established by a completely different
method in the paper[1] is classical equivalent to the general theory of relativity.

[II.  MULTI-GRAVITON SYSTEM WITH SELF-INTERACTION

According to the model of graviton suggested in the paper[l], the noncommu-
tative space made up of V posets is flat. If we depend on traditional differential
geometry to explain the spacetime limited by the uncertainty principle, the 4-
dimensional space made up of mathematical points can be interpreted as curved,
this is the gravitational field in the sense of the general theory of relativity. Let
guv be the metric of the gravitational field. To describe a graviton, we used
both coordinate systems x* and X*. If a graviton is excited at point x, the
locally inertial coordinate system £% at point x can be written as

X
Lp(x)

(@ X)|, = X + C°(a) -exp(—\

) (3.1)

X=0

where Lp(z) = L'p(z), X = X~

In the case of multiple-graviton, due to the ductility of gravitons, gravitons
elsewhere in a multi-graviton system will act on a point = together. Therefore,
we must also consider the self-interaction between gravitons caused by the duc-
tility of gravitons. Specifically, if another graviton is excited at a distance of
I=1*=(I',1%,13,1*) to point z, the locally inertial coordinate system £ at point
x caused by this graviton can be written as

AE™) =& ((@+1), [1l)

=X+C% z+1) exp(—

ot 3.2
LP(x—i—l)‘) (3:2)

Then in multi-graviton system the locally inertial coordinate system &“ at
point x have to written as

MEY) =X + /d4l§0‘((x +1),]11)

:X+/d4l (Ca(erl)'eXp(‘LP(;m‘))

This expression shows that there is the self-interaction between gravitons.
For the gravitational field in vacuum, the field C*(z 4 1) in Eq.(3.3) satisfy
the free field equation Eq.(2.3), the solution is

Coaz+1) = /d4k (ca(k) exp (ik(z +1)) + (C(k))" exp ( — ik(z + 1 )))
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= /d4k (C’O‘(k) exp(ikx) exp(ikl ) + (C*(k))" exp(—ikz) exp(—ikl )) (3.4)

where k = k,, is the energy-momentum conjugate to x*.
From Eq.(3.3) and Eq.(3.4) we have

ey _ 0f 1oy o f (o sn oot |pgr))

OxH oxH OxH

= /d4ld4k

< 0(C (k) exp(ik(z +1)))

oxH

N a((C*(k)) e;c;oi—ik(x+l))) ) .exp(_‘LPl(k)‘)l
= / d* dk [( ik, C% (k) exp(ikz) exp(ikl ) (3.5)

iku(C‘l(k))*exp(ikx)exp(ikl))-exp(‘ l M

+ikLp(k) — 1

_ / L'k (z’kuC"(m exp(ikr) exp(— "5

ad))

it (0" exp( ko) exp( =L ) )

|Lp(F)|

= / d*k (mikuca(k) exp(ikz) —

21Lpl ey :
= ikLy ik, (C(k))" exp( zkx))

1+ikLp "

Note that in Eq.(3.5), L's(z 4+ 1) in coordinate space has been transformed
to L¥% (k) in momentum space, and we denote L's(k) as Lp(k) for short. The
modulus of Lp(k) is (Ip,tp), Lp(k) has only 3 degrees of freedom, the phase
angle (0, ¢, +tp).

Then the metric in momentum space can be written as follows

_ OAEY) 0A(EP)

Inv = g pn PrZ

6/d4l£“((x+l),|l|) a/d4zgﬁ((x+1),|1|)

- oxH oxY M

_ [ 2lLp| . e ooy 2|Lp|
—/d k( ik, C(k) exp(ikz) T EikLp(h)

1 F ikLp(k) ik (C (k)" eXp(—ikx))
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Kk,
(LFikLp) (1 Fik'Lp)

:/&Mw e (- C (k) Ca (') exp [i(k + K)2]

Kk,
(1+ikLp) (1 £ik'Lp)

(C*(k))" (Calk))" exp [ —i(k + K')]

ke,

Y S kLy KLp

[C () (Calk)) + (C° (k)" caac’)]))
It can be written as follows

C*(k)Co(K') exp [i(k + K )x]
(1FikLp) (1 Fik'Lp)

gm,:/dQMdﬁmﬁ<quF(—

B (C(k))" (Calk')) exp [ —i(k + k)] (3.7)
(£ ikLp) (1 £k Lp)

C(k) (Ca(k'))” + (C(k))" Ca(K') /
* L+kLp-KLp )*““)

where k = k* = (k,w).
IV.  SYMMETRY OF KLEIN-GORDON EQUATION
Let’s study the real scalar particles in the gravitational field. Complex scalar
fields are completely similar.
In curved spacetime, the Lagrangian density of real scalar particle with spin
0is

&L = g"0,99,® + m*¢? (4.1)

where m is the mass of scalar particle.
Then in the spacetime with the metric g, the Klein-Gordon equation is

1 0

od
— oo (ngvw) —mZ2P=0 (4.2)

where g = Det g,,,, is the scalar density.
It can be written as
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e 1 99 ,, 00 g 9P

pv - —mZd =0 4.3
9 Grrdav + 2g ornd 9z T Qxk oz (43)
Eq.(4.2) can be written as follows
2
o 079 1 99 0% 09w _16¢_m2¢:0 (4.4)

Oxrox” 2g Oxt I G W g I v

The inverse of the metric g, is

g = — (97" (4.5)

1
g

where [g*]w is the adjoint matrix of the metric g, .
Then Eq.(4.4) can be written as follows

PO (1ag1[ *},wag,“,) L, 00

- m?® = 4.
oxHoxv 2g Ozt g g ozt m 0 (4.6)

For the metric (3.7), we have

1 dg 1 w Oy
= — [¢* 4.7
2y oot~ g 91 Bran (4.7)
where z# = (Z,1).
So that Eq.(4.6) can be written as
0%®
pnv o 2F _
9" Siger ™ 0 (4.8)

Therefore in the gravitational field, the Klein-Gordon equation (4.2) is the
usual form in quantum field theory, which can be written as follows

(0% —m?) F =0 98)
where 2 is the usual D’Alembertian operator in curved spacetime as follows

0% = g#"ai2 (4.10)
oxrox”

In general, in curved space, the Klein-Gordon equation is Eq.(4.2). Due
to the specificity of the metric (3.7) of noncommutative gravitational field in
momentum space, Eq.(4.8) has the following symmetry:

For the transformation from Minkowski spacetime to curved spacetime, the
Klein-Gordon equation be invariant if the transformation of the local inertial

system (or the cotangent frame of spacetime) A() is as follows:
i

Lp

)\(f) r ri+Ci(x)exp(—

) (4.11)

x

where the pole of the spherical polar coordinate system r? is z.
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Eq.(4.8) and Eq.(4.11) show the symmetry associated with noncommutative
gravity. It can be interpreted as follows:

For the transformation from Minkowski spacetime to curved spacetime, if
the Klein-Gordon equation is required to be invariant, we need to introduce the
noncommutative gravitational field with ductility which in Eq.(4.11). And the
noncommutative gravitational field must satisfy the field equation. In this way,
the metric g, of spacetime is constrained, so that not all curved spacetime
is physically possible. The ductility of graviton produces the self-interaction of
gravitational field, which can produce black holes, and keep the symmetry of the
Klein-Gordon equation associated with noncommutative gravity. The ductility
of graviton can also be understood as that the graviton itself has the gravi-
tational charge, thus affecting the geometry of spacetime around the graviton,
and also produces the self-interaction of gravitational field. The most impor-
tant feature of the ductile structure is: due to the characteristics of the ductile
function, by quantizing the noncommutative gravitational field with ductility,
we can obtain the Feynman rule without diverged integrals.

V. Brack HOLE

From the last term in the integrand of the metric (3.7), it can be seen that there
are singularities as follows

1 1

ek = Lp(k) Lp(k)

(5.1)

Lp(k) has 3 degrees of freedom, the phase angles (6, ¢, £tp). If the phase
angles of the Lp(k) and Lp (k') in Eq.(5.1) are opposite, Eq.(5.1) be true, which
also means

H=1¥1=| 5| = | | = (5 ) (52)

Eq.(5.1) and Eq.(5.2) independent of the source flow of gravity. From
Eq.(5.1) we can see that the phase angles of k and k' are the same as Lp(k)
or Lp(k'), so that the singularity in momentum space must be in pairs at the
same point in coordinate space, and the phase angles of the paired singularities
are opposite.

If the field C(x) given by the free field equation is an analytical function,
then except for singularities shown in Eq.(5.1), the integrand in Eq.(3.6) is
analytic, so these singularities are the isolated singularities. The metric be
singular while the integral paths pass through these singularities. This can
be interpreted that the event horizon in coordinate space is the set of isolated
singularities in momentum space.

From the viewpoint of hydrodynamic, this type of isolated singularity is a
drain or source of the flow in momentum space, where the complex potential
is the integrand in Eq.(3.6). From Eq.(3.6), it can be seen that the isolated
singularity in the integrand in Eq.(3.6) is the limiting case of a dipole in which
the source and drain of the same strength are infinitely close and the strength
increases infinitely.

In the paper][1], we get the energy-momentum tensor Eq.(2.5) of gravitational
field itself. Recall Eq.(3.5), the expression clearly shows the self-interaction
between gravitons. Therefore in the multi-graviton system, due to the self-
interaction of the gravitational field, the energy-momentum tensor Eq.(2.5)
should be written as follows
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Ty = =2 NENDNE iy + DAENDAE I (53)

The eigenvalue A(§) is given by Eq.(3.3). Using Eq.(3.5) we get the density
of the energy-momentum tensor as follows

777’& 4 2|LP‘ R Yale . o 2|LP| 1A « * 3
T(x) = 5 /d k<1:|:ik‘Lka C“(k) exp(ikx) 71iik;Lka (C*(k))" exp(—ikz)

2[Lp| . 2|Lp| . ‘
. 41,/ el et 0 / / / R bt / ’ Y
/d k (1¥ T Lr ik)\Co (k") exp(ik'x) 1iik;’LkaA (Cu(K")" exp(—ik'z)

/ Ak ( 2|L;:L|p ik, C* (k) exp(ikz) — %ikﬂ (Ca(k))*exp(—ik:x)) (5.4)

2|Lp| . ] 2|Lp| . .
' | =ik, ! Ty — UL / et
/d k <1:Fik"Lkauca(k ) exp(ik'z) 1iik’Lka” (Co (k") exp(—ik'z)

1 1 .
Lp(k) Lp(k)
Eq.(5.4), and these singularities are unacceptable for energy-momentum. We
can avoid this problem in this way: in the derivation of the energy-momentum
of gravitational field itself Eq.(2.6) and Eq.(5.4), we have used the mass-shell
condition, therefore it is considered that, the energy-momentum of a real gravi-

Notice that there are the isolated singularities k - k' = —

1 1
ton must satisfy |k| < (l’ t)’ the graviton with the energy-momentum
P tp

K|

v

1 1
(l’ t) must be off-shell. So that the state of isolated singularity
p lp

1 1

k| = (l’ T is the limit state that cannot be reached by the on-shell
p tp

graviton. Therefore, the event horizon is formed by dipoles composed of virtual

gravitons that can reach the limit state, which cannot radiate like the gravita-
tional wave composed of real gravitons.

VI. CONCLUSION

In the paper ’A New Approach to Quantum Gravity’[l], we suggest a new
theory of quantum gravity. Using this theory, we can study the noncommutative
gravitational field in momentum space. The metric of this curved space caused
by the gravitational field is special in momentum space, by this metric, we
obtain the general form of the Klein-Gordon equation in the gravitational field.
Then we find the symmetry associated with noncommutative gravity from the
Klein-Gordon equation. The noncommutative gravitational field in momentum
space has singularities, which means the event horizon of black holes. From
this metric, we conclude that the event horizon of black holes is formed by the
dipoles in momentum space with limit state.
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