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R Fractional Order Riemann Curvature Tensor
in Differential Geometry

Wedad Saleh

Absiract- This study discussed some interesting aspects and features of fractional
curvature in the differential manifold. In particular, Riemannian fractional curvature tensor,
Livi-Civita fractional connection and Bianchi fractional identity are presented.

[. [NTRODUCTION

In mathematics, several special functions appear in many applications
such as the Gamma function that plays some significant roles in the
theory of integral differential equations in particular fractional calcu-
lus. Thus, we begin with some definitions, for the details we refer to
1, 15, 8].

The Gamma function of a positive integer 7 is again a positive integer,
while the gamma function I'(—7n) of a negative integer changes to
infinities. The Gamma function any positive n value is defined as
follows:

I'(n) = / tte~tdt.
0

The Gamma function I'(n) is considered as a generalization of the
factorial and I'(n) is defined for n > 0 by the integral

[(n) = /0 T pletay,
I

In the classical sense since I'(0) = 0 then it follows that I'(n) is

chemistry. Oliver & Boyd, (1956).

not defined for integers n < 0. However, the extension formula gives

15.1. N. Sneddon. Special functions of mathematical physics and

finite values for I'(n), for R(n) < 0 since I'(n) is analytic everywhere
except at n =0, —1, -2, ..., and the residue at n = k is given by

(-1)*

Res,—xI'(n) = o
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Now, if n > 0, then
I'(n+1) =nl(n). (1.1)

Equation (1.1) can be used to define I'(n) forn < 0and n # —1,—2,...
and further, this is one of the most important formulas that were sat-
isfied by the Gamma function.

Even though the Gamma function is defined as a locally summable
function on the real line by [17]

I'(n) = / t" e~ dt, n > 0. (1.2)
0

In the classical sense, I'(n) function was not defined for the negative
integer thus, there was an open problem to give a satisfactory defini-
tion. However, by using the neutral limit, it has been shown in [21]
that the Gamma function (1.2) is defined as follows:

o

I'(n) =N —lim t"te~tdt
e=0 [

for n #0,—1,—2, ..., and this function can be defined by neutral limit
such as

(o)

I'(—n) =N —lim t"lemtdt
e=0 /.

o0
= / e tdt
1

+/01 -l [e‘t — Y (_le)ltZ] dt — i%,n e N.

=0
It was also proven in [20] the existence of r the derivative of the
Gamma function and defined it by equation
o0

Ir'™0)=N—1lim [ t'In"te'at

e=0 J,_
0 1
:/ t_llnrte_tdt—k/ t'In" ¢t [e7t — 1] dt
1 0

I'"(—n) = N — lim " n" te~tdt

e—0 c
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Thus, the definition can be extended to the whole real line where,

’

r(0) =T'(1) = —,
where v denotes Euler’s constant, see [22].

For a function f: V C R — R with 0 € V| the fractional derivative of
order « is defined by:

a1 ["f(s) = f(0)
%f(t)_f‘(—a)/o (t— 5o ds, a <0 (1.3)

d* 1L dv [ f(s) - f(0)
%f@) = m%/o mds, a>0 (14)

where n is the first integer greater than or equal to a.
The relation (1.3) gives a fractional integral and (1.4) gives a frac-
tional derivative.

We express some of the operators of fractional derivatives, see for
example, [4, 7,9, 10, 12, 16].

o I(1
A (1+7)

- e R C dl 0,-1,....—
dte F(l—i—'y—{—a) , a € Ror (a € C)and 1+ # 0, y ey T
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dn da dn+a
2 o f () = T f(B), neN,

dtm™ dte
d” d~ d”
3. dta(fl( )+ [2(1) = %fl(t) + %fQ(t)v
4 @ C @ t), where C'i
. dta< f() = %f( ), where C'is a constant,
d° T
5. G (B0 = 5" s SO,

It is well known that fractional calculus is an essential and advanta-
geous branch of mathematics, having a broad range of applications at
almost every department of sciences. Techniques of fractional calcu-
lus have been employed in the modeling of many different phenomena
in engineering, physics , and mathematics. The problem in fractional
calculus is not only essential but also quite challenging ,which usually
involves complicated mathematical solution techniques. However, a
general solution theory for almost every issue in this area has yet to be
established. Each application has developed its approaches and imple-
mentations. Consequently, a single standard method for the problems
in fractional calculus has not emerged yet. Therefore, funding reli-
able and efficient solution techniques along with fast implementation
methods are significantly essential and still active research areas.

Further, it is also realized that the operators of fractional integra-
tion and derivation have physical and geometric interpretations, which
streamline along with their utilization for related issues in various
fields of science( see [2, 8, 10, 11, 12, 14, 18, 19]). Moreover, the
fractional differential calculus on a differential manifold is studied in
2, 3, 4, 6, 13]. Even though fractional calculus is a handy and im-
portant topic, however, the research on geometric interpretation and
applications are limited ,and not many in current literature. Thus, in
this study, we focus on the Riemannian curvature tensor, Livi-Civita
connection and Bianchi’s identity on fractional differentiable manifolds
and discuss some related properties. We also give some examples.

[1. FRACTIONAL DIFFERENTIAL CALCULUS ON MANIFOLDS

Assume that N be an m-dimensional differential manifold (V,z;) a

local coordinate system on N and Vo = {z € V:0 < z; < b;,i =
m} [5].

For a function f: Vj — R, the fractional derivative with respect to

xi:

9 f(x) =

1 an Ti f(l‘l,...,J}Z‘,]_,S,l‘iJrl,...,l‘m)—f(.iL‘l,...7$i,170,$i+1,...,$m)
I'ln—a) ™ J, (z; — s)a—nt1

ds,
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Notes

where 0, = 0 0

= o 0..0 n times, 7 is fixed, o > 0).

For a € (0,1),v > —1,

r(l1+-~) A _

I Y =
al (mz) I“(l _'_A/ _ a) L2

5.
A fractional vector field V' C N is an object of the form X* = X0, where
X2 eSQy(N) i=1,.,m.

The fractional vector fields on V and x{, is generated by the operators 05, =
1,2,...,m are denoted by x{, . If ¢: & = x(t),t € I is a parameterized curve in U
then the fractional tangent vector field of c¢ is given by

2(t) = ﬁ@f‘xi(t)@f‘.

A fractional covariant derivative is given by
Vs Y = XPO8Y) + Y00

where X, Y € x¢; and I fk the functions defining the coefficients of a fractional
linear connection on N. They are determined by the relations

Vggag = Fi]kajq'

Since it is essential to study fractional vector fields on a differentiable manifold
N. For R"™, there is an obvious way to do this. Recall that x*(R™) denotes

the space of fractional differentiable vector fields defined on R. Examples are

the fractional vector fields 905 Bua determined by the natural coordinate
u u

functions w1, ..., Un. ! "

Definition 2.1. Fractional Riemannian metric F' on m-dimensional manifold N

defines for every point p € N, the scalar product of fractional tangent vectors in

the fractional tangent space T;*N depending on the point p.

Let A% = A70f and B = B{'05' any two fractional vectors tangent to the mani-
fold N at the point p with coordinates z = (21, ..., xm) (A%, B* € T;*N) the scalar
product is equal to

(A% B plp = Af(2)gi;(2)Bj] (z)
g1 gin\ [BY
= (47,..47)
where
1. F(A*, B%) = F(B*,A%), i.e., §;j = §;; (symmetricity condition).
2. F(A, A%) > 0if A% £ 0, Le. gyufud >0, jyufud = 0 iff uf = .. = ul =
0 (positive definiteness).
3. F(A% B®) |p=a, i.e. g;j(x) are smooth function where 0 < o < 1.
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Components of tensor field F' in coordinate system are matrix valued functions
9ij(x)

[1I. RULE OF TRANSFORMATION FOR ENTRIES OF THE
Matrix 0ij (X)

Gij(x)- entries of the matrix || g;; || are components of tensor field F in a given
coordinate system.

How do these components transform under transformation of coordinates {z;} —

{zir}?

F

gij dxf‘ ® da:?

B 85E ox
- g"?’(a 5 4T > o

<
Q

Q
<

dI"/)

<.

oxr& ox®
— Ity g o
= axq glj axo‘, d.'L',L/ ® dxj/
2 J

= gi/j/dl‘?f &® dl‘?x
Hence,

dz& . O0xf

J
99 = Gy ag” 99,

Example 2.2. Consider R? with fractional polar coordinates in the domain y > 0,
X = (r*cos“p, r*sin®“p), then

X

o = (a! cos™ @, alsin® ).

X

ae = (a'e“”ro‘ sin® @, alr® cos® cp) .

_— (a!)? [cos?™ ¢ + sin®** ] (al)?re [e2om + ll sin® ¢ cos® ¢
9ij = (ah)2re [ev™ + 1] sin® pcos® ¢ (al)?r?® [20™ sin** ¢ + cos®® o]

We have that

F = (a!)? [cos®® ¢ + sin®* o] (dre)?
+2(al)?r® [[€"*7 + 1] sin® ¢ cos® @] dr®dp®

+(Ol')2 2a [621a7r <p—|—COS } (d(pa)Q}.
Notice that , as expected, when o = 1, one recovers the classical formula.

= (dr)? + 7% (dg)® .

Notes



Notes

Table 1: C = cosp, S =singp

o= 0.1 0.2

Grr 0.905[C%-2 + 50-2] 0.843[C01 + S04

Tro = Goor 0.905r0-17; 4- 1159202 0

gy 0.905r2[— 502 — C07] 0.843r04[-5%4 4 1]

F 0.905[C02 + §9-2]dr9-2 0.843[C04 4 §0-4]gp04
+1.8101r%1[i + 1]5°2C2(dr) ! (dp)* +

+0.905r02[— 502 — C02](dyp)2 0.843r04[—5%4 4 CO4](dyp)"4
Table 2: C' = cos @, S =sin g

a= 0.3 0.4

Grr 0.805[C?-6 4 50-6] 0.787[C%% 4 508

Gro = Jer 0.805r%3[[i + 1]5°2C%] 1.574r04893003

gy 0.805r06[—5%6 4 O] 0.787r08[S08 + C0¥]

F 0805[006 + 50'6](d7")0'6 0787[008 + 50'8]((1’/“)0'8

+1.61r°3[[i + 1]S93C3)(dr) > (de)?
+0.805r"5[— 596 4+ CO9](dp) ¢

+3.14870-4 504004 g4 dpt
—1—0.7871"0'8 [50.8 + 00.8] (dgo)'s

Remark 2.1. Let N is an m-dimensional Riemannian manifold with fractional
metric tensor §,then we shall denote the fractional derivatives of the elements of
tensor g as follows:

and

8(1
Gijk = 87?91’]”

o“ o¢
Gij ki = @@9@‘
82(1

(e} «
Oz 0xs!

= gij,i,j,k,l:17...,ﬂ.

Definition 2.3. Asymmetric fractional connection is called Levi-Civita fractional
connection if it is compatible with metric, i.e., if it preserves the scalar product:

Oxa (Y, Z%) = (VX Y, Z2%) + (Y, VXa Z%)

for arbitrary fractional vector fields X, Y?, and Z%.

In local coordinates Christoffel symbols of Levi-Civita fractional connection are

given by:

- 1. . ~ ~
I = 5695 it + 0731 — 07 Giy).
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Table 4: C'= cosp, S = siny

a= 0.5 0.6
Grr 0.785[C + 9] 0.798[C12 + S12]
Gro = Joor 0.785r0-5[; 4- 11595005 0
Gop 0.785r[—S + C] 0.798r12[S12 4 C12]
F 0.785[C + S]r(dr) 0.798[C** + S1-2](dr)!2
+1.57r05[i 4+ 1]5%5C5(dr) 0 (d)°> +
0.785r[—S + Cldyp +0.798r1-2[S1-2 4+ C1-2](dyp)!2
Table 5: C'= cos ¢, S = siny
a = 0.7 0.8
Grr 0.826[C** + S4] 0.867[C*6 + S16]
Gro = Jer 0.826r° i + 1]5%7C°7 1.73470-8 59808
f](pgo 0.8267‘1'4[—51'4 4 01.4} 0.8677"1'6[51'6 4 01.6]
F 0.826[C1* + ST4](dr)14 0.867[C16 + S1-5](dr)!-0

+1.652r07[i 4 1]S°7C%7(dr )" (dg)°"
+0.826T1'4[—51'4 4 01‘4](6190)1.4

+3.46810-850-8C0-8 0808
+0.867r1 0[S + O] (dp) 0

o = 0.9 1
Grr 0.925[C1% + S8 1
gﬁﬂ = ggm“ 0.925T0'9[i + 1]80'900'9 0
G 0.925r 8[= S8 4 CTF] r?
7 0.925[CT + ST8)(dr) L (dr)?
+1.85r0-9[3 + 11599009 (dr)09(dip)0-2 +
+0.925r18[—S18 4 L8] (dyp) 18 12 (dy)?
Proof. Since
Ojei=1I]len (2.1)
[Mener = (05%e)e (2.2)
[Fgm = Of(cia) - e(dfe)
= 0jgu — fz?emei
= 0%9i — I} gmi» (2:3)
then
.Z:‘Z-Tgml + fl?gmi = 0} i1, (2.4)
which implies that
fz’Tgml + f[?lgmv = a;lgﬂ (25)

In this equation, the index m is a dummy, so only the indices i,j ,and [ are specified.
We can cyclically permute these indices to generate two more equations:

© 2022 Global Journals
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since I3} =

We can now add (2.5)to (2.9) and subtract (2.8)to get

since g™

T G
37 g
I i then
I Gimi

m ~
il

we can write

Example 2.2. For 2-dimential polar coordinates X =

+ I G = 0 Gji

+F g?ﬂl—8 glg

+Fl gmy*al 91]

+ I Gmi = 05 iy

2077 Gt = 05 Gar + 0L G1; — O Gij
207 G g™ = G (05 Gt + 08 G1; — OF i)
= 6% , then
1 )
Fz]; 2 kl(a gzl + 8 gl] 8lagij)v
me L op . .
I = 597 Gig + Qig.s = Jisa)-

The metric tensor and its inverse here are:

_ (al)? [cos® ¢ 4 sin®* ]
glj - (CY'

gij _ (A:41(a!)2,r2a [ 2a7rz QO + COS SO]

(a!)QTa [ 2am +1
12pe [e(”i + 1} sin® pcos® ¢ (al)?r2@ [620"”

(r*cos®p, r*sin®p).

l sin® ¢ cos <p]>

<p—|—cos

— A7 al)2re [2a”+1} sin® <pcos gp)

pcos® p A7 (al)? [cos®™ ¢ + sin® * ]

“Hal)?re [e zon + 1] sin®
where
A = (a)'72 { [cos?® o + sin®® ] [¢207 5in2® ¢ + cos®
Therefore,

07 Gij = <

s = (s

Then ,

0

(a)(2a)! [ omi 1] cos®psin®yp
ro [ ami + 1} [ ami sin2a

go] — [eo‘” + 1] sin® ¢ cos2® cp}

(al)3 [e@™ + 1] sin® p cos® ¢
(a)? [e*™ + 1] sin® peos® ¢  (al)(2a)lr® [e22™ sin*

© + cos?® ]

(o

3" (0% G + 0% Gir —

(a|)3,r.o¢ [ ami
N(2a)!r?®

O Grr)

© + cos2® go})

+ 1] [e2™ sin** ¢ + cos®® ¢
(2™ + 1] sin® p cos™ ¢ '

© 2022 Global Journals
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pp

rr

PP

= —A N (a)’r* [e*™ +1] % $in2 p cos?® ¢,
s 1. . . .
F:go = 59”(53%1 + 8?.9&,0 - 8lagrw)

= 1:17‘

or
1 ~rl/go~ o~ -~
= 39 (0591 + 0910 — 0" G

= (a)?r*(24) " {[e2*™sin®*p + cos® @] [2(al)?r™ [e*™ + 1] [e*™ sin®** ¢ + cos®* ¢

— (& (2a)lr® [620‘7” sin® ¢ + sin®® e]] = (a)(2a)lr® [e*™ +1] sin®* p cos® ¢},

1. -~ o~ -~
ig(pl(a@grl + ar gir — al grr)
= —(ah?(24)7! {(a!)(Qa)!ro‘ (2™ +1] ? in2e @ cos®® @ + [cos® @ +sin®** ] [e*™ +1]

x [(al)®r® [e*™ sin®* @ + cos®® ] + (a!)? sin® p cos® ¢ — (al)(2a)! cos® psin® ] },

~ 1. B B B
F;pap - §g<pl(aggrl + agglap - alagrcp)

= (a)?(24) 7" {=(a!)(2a)Pr* [e*™ + 1] cos®* psin®* ¢

+(a)(2a)!r® [cos® ¢ + sin®* @] [e**™ sin®* ¢ + cos® p] }

= Fap@m
1 ~pl(aa~ -~ -~
= 59 (acpgwl + 8@9190 = 0" Gpy)

= (a)?r?*(2A4)7" {= [e*™ + 1] sin® p cos® ¢ [2(a!)? [e*™ + 1] [e*™ sin®* ¢ + cos® ]
—(al)(2a)! [e**™ sin®* @ + cos®® ]| + (al)(2a)! [e*™ + 1] [sin®* ¢ + cos® ] sin® p cos® ¢} .

[V. FRACTIONAL CURVATURE

Definition 3.1. The fractional curvature R of order o of a Riemannian mani-
fold N is a correspondence that associates to every pair X, Y € x* a mapping

R(X*,Y): x*(N) x x*(N) = x*(N) given by

R(X*Y*)Z" = V%a V¥a 2% = Ve Ve 2% = Vxa,ya) 27,

where Z“ € x* and 7% is the fractional Riemannian connection.

© 2022 Global Journals
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Remark 3.1.

R(X*YN)Z* = V%o Ve 2% = Va Ve 2% = Vika ya 2°
= —(V¥e Vka Z% = Vka Vye Z% = Vlya, xa1Z%)

= —R(Y* X%z

N Proposition 3.2. The fractional curvature R of a Riemannian manifold has the
otes following properties:

1. R is bilinear in x*(N) x x*(N), that is,
R(fX® 4 gY® ZYYW* = fR(X®, ZYYW® 4+ gR(Y™, Z*)W*,
R(X®, fY® + gZ )W = fFR(X®, Y)W + gR(X®, Z¥)W*,
where f,g € (M), X*,Y* Z* W € x*(N)

2. For any X*,Y* € x*(N), R(X*,Y?) is linear
R(X*Y)(Z + W) = R(X*, YY) Z% + R(X*,Y*)W*,
R(X*,Y*)(fZ%) = fR(X*,Y*)Z",
where Z* W< € x*(N)
Proof. 1.
R(fX™ 4 gV, Z4)W®
= Vixatgye Vza W = VZa Vixayrgye W = Vixapgye, za)W*
= (f Vo +9VYe) Ve W = VZa(f Vie W* + g Vv W)
= Viixe zo)4glye.z0)—(2o )Xo —(Zg) v W
= [ V% VZa W + g VVa VzaW* = (Z2°f) Vka W
[ VZa VkeW* = (Z2%) Vya W = gV Za VyaW* = f Vlxa 7o) W
—9 Viye,za) W+ (Z°f) Vo W +(Z2%) VYo W®
= f(Vke VZe W = VZa Ve W = Vixa za)W?)
+9(Vyea Vza W = Ve Ve W = Vo za) W)
= fR(X®, Z)W + gfR(Y™, Z*)W*.
Also,

R(X®, fY* + gZ*)W* —R(fY* +92%,X%)

= —fRY®, X)W — gR(Z%, X*)W*

= fR(X®, Y)W+ gR(X®, Z¥)W*,

© 2022 Global Journals
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R(X*,Y)(Z*4+ W)

= Ve Vye (Z94+ W) = Uya Ve (2% + W) = Ulya yo (2% + W)

=VXe Vya 2%+ Ve Vye W = V¥a Via Z°
= Vya Vxa W = Vixa yo) 2% = Vixa yo W
= (Vke V¥a 2% = V¥a VXe 2% = Vixe ya)Z)
(Ve Vye W = U¥a Ve W* = Ulixa ya)W®)
= R(X™,Y*)Z*+ R(X*, Y)W,

Also,

R(X™Y*)(fZ2%)
= Vke Vye (fZ2) = V¥a VXa (fZ7) = Vixa,ya)(fZ7)
=Vx((YUN)Z + [ Ve 2%) = Uy (X)Z% + [ Vka Z7)
—(([(XYN)Z% + f Vixe,ye Z7)
= XY ZY+ (YOf) Uka 2%+ (XVf) Uy 2%+ f VXe VY Z”
“YUX)ZY + (XVf) Uya 2%+ (V) Uke 2%+ [ V¥a VkaZ®

—([X*YN)Z = f Vixaya) Z°

= (XY Z% + [(Vsa Ve 2% = VYa Ve 2% = Vixa ya) 27) — (X%, Y] ) 2°

= fR(X*,Y%)Z~,
Proposition 3.3 (Bianchi Fractional Identity).
R(X®,YNZY+ R(Y®, Z¥)X* + R(Z%, X*)Y* = 0.
Proof.
R(X*Y*)Z*+ R(Y®, Z¥)X™ + R(Z%, X*)Y*
= V%o Vya 2% = V¥a Vie 2% = Vixa yo Z°
+ Ve VzaX? = V%o Ve XY = Vo za) X
+ V%a VxeY ™ = Vka VZa Y = ViZe xo) Y
= V%Y, 2%+ UyalZ2%, X + VZa [ X, V]
= Vixeye] 2% = Viye zo)X* = Viza xo)Y"

= [Xaa [YavZa]] + [Ya’ [Za’Xa]] + [Za’ [Xavya]] =0.

© 2022 Global Journals
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In local coordinates

R(97,07)0% = Rij0f,

and

(2RI ]

Rijom = (R(O2,0)08,05,)

= (Rl 0%)

Notes

= Ri (OF,0n)

l ~
= Rijkgml~

The fractional Riemannian curvature tensor acts on fractional vector fields as
follows:

R(X®, Y™, 29 W) = <R(XQ,YC‘)ZQ,W“>.

Proposition 3.4. 1. Rijri + Rjpis + Ryiji = 0.

2. Rijri = —Rjin.

4. Rijui = Ry
Proof. 1. is just the Bianchi fractional identity again.
2. - -
Riw = (RO7,0)08.07)

(~ Ry 000507 )
= —(ROy.000.07)

= _-éjikl«
3. is equivalent to R;jr; = 0, whose proof follows:

R = (R02,00)08.07)

i Yj

= (Ve V8o O = Ve V82 O — Vb0 0008 )

but
b Vop O, 0% ) = 07 (V508,08 ) = (V508 V5 08 )
(Ve Voe 08,0 ) = 07 (V505,08 ) — (0808, V5,05 )
and
(e o198 05 ) = 5 (00,05 08 08)
then

R = 03 (Vo8 08) — 08 (V500,08 ) + 5 [07,0] (07, 07)
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1 1 1
= OO OF,0F)) — 50 (97 (OF0F)) + 5 [0, 05 (07 0%

1 1
= 5 [or. o] op. o) + 5 [08. 07 (0 o) = 0.

70 Y] 7Yy
4. By Bianchi fractional identity we have
Rijri + Rjgis + Ryiji = 0
Rjii + Riji + Rijri = 0
Rklij + Rlikj + Riklj =0
Riiji + Rijic + Rjx = 0
summing the equations above, we obtain
2Rpiji + 2Ry = 0,
then
Rkijl = _Eljki = lekz‘-
Proposition 3.5. The following expression holds
2Rijkm = Gjmki + Grm.gi — Gjkmi — Gimoks — Grmois + Giksms — fokff;nﬁrs + Qfﬂffmgrs-
Proof. From the definition of the Christoffel symbols, vgzx o5 = f‘;}@?,
2(vse05,05) = 2(Thop.on)
= 205G
= Gim,j t Gjm,i — Gijm;
an appropriate rearrangement of the indices yields the following expression:

2(Vs08.00) = 2([500.00)

= Qf;kgim
= Gjmk + Gkm,j — Gjkm- (3.1)
Of < Ve 0k, Oy, >=< Ve Ve O, 05 > + < Ve Ok, Voe Oy >
whence, by (3.1)
2( Ve VBe 08,00 ) +2( V508, Ve0n) = 207 (508,05 )
= 0 (Gimg" (O gj1 + 05 g — O gjx))
= Gjmki + Gkm,ji — Jjk,mi-
(3.2)

By switching ¢ and j we also have that

2( V5 Voe 0705 +2(VBeOR V5p08) = Gimiks + Gemais — Gikmi- (3:3)
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Combining (3.2) and (3.3) yields

2( Ve Ve O, 00 ) —2(VBe Voo 05, 05) =

Gjm,ki + Gkem,ji — Gjk,mi — Gim,kj — Gkm,ij + Gik,mj
~2(V8:08, V05 ) +2 (V808 V595 ) -
i K J
By definition

R(02,0) 0 = e V3o OF — V3 Vi OF

whence
WRijrm = 2 <R(ag, %) agl>
= 2(V8 V8 0,05) —2( V5 VB 9. 05),
so we have proven that
2Ry jim =
Gjm,ki + Gkem,ji — Gjk,mi — Gim,kj — Gkm,ij + Gik,mj
=250 05, V50 ) + 2 (V50 08, V30051 )
By the definition of the Christoffels,
(V808 vie00) = (Dh08. 15,07 )
= I35, (08,09

_ 7T s o=
- Fiijmg’l‘S7

(V5: 00, 78005) = (I3.00, T3,02 )
= 55, 00,00
= jrkf{gvngTSa

then

s ~

2Rijkm = Gimoki + Grm.ji — Gikmi — Jimokj — Gemaig + Gikng — 201 DimGrs + 205 5 Grs-

Remark 3.6. If o = 1,then

2Rijkm = Gjm ki + Gkm ji — Gikmi — Gimkj — Gkmij + Gikomj — 205 i Grs + 215,175, Grs-

Since Grm,ji = Gkm,ij, then

2Rijkm = Gjm.ki — Gjkmi — Gim,kj + Gikmj — 2L L grs + 200 L,

Grs
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then
2Rijkm = Gjm.ki + Gkm.ji — Gikymi — Gim,kj — Gkmoig + Gikomg — 205 i Grs + 205015, Grs.

Remark 3.7. For any pair of fractional tangent vectors X, Y € TN we shall
denote with I'(X®,Y®) the following fractional vector in TyN:

F(X*Y*) =5 XY/ o5 Notes
Proposition 3.8. The following expressions hold for any pair X*,Y* € T¢N:
2R(X*, Y, Y X%)
=05 (Gimg™) (OR gs1 + 05 gt — 07 ;i) + Gimg" (050 g1 + 0505 g — 05 O} gjx)
—0% (Gim9") (O gur + 0% g — O gir) — Gjmg”" (050 g + 050 g — O50F gire)
+2 | P (X, v) 2 =20 (X%, X, (v, 7).
Proof. Since
G XEVPVEX T G = (XOYET00, Yo X0 T5,00)
= (P y), DX, Y) = DXy ) |1,

and

<X;'X“ s oo naykaf;"kaw

m>im-—s)

G XPYSYEXO T,

(DX, x2), [, v™)),
This completes the proof.

Remark 3.9. If a =1, then
2R(X,Y,Y, X) = Gjm.ki — Gjk,mi — Gim,kj + Jik,mj
+2[| D(X,Y) ||> =2(['(X, X), [(Y,Y)).
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