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In mathematics, several special functions appear in many applications
such as the Gamma function that plays some significant roles in the
theory of integral differential equations in particular fractional calcu-
lus. Thus, we begin with some definitions, for the details we refer to
[1, 15, 8].

The Gamma function of a positive integer η is again a positive integer,
while the gamma function Γ(−η) of a negative integer changes to
infinities. The Gamma function any positive η value is defined as
follows:

Γ(η) =

∫ ∞

0

tη−1e−tdt.

The Gamma function Γ(η) is considered as a generalization of the
factorial and Γ(η) is defined for η > 0 by the integral

Γ(η) =

∫ ∞

0

tη−1e−t dt.

In the classical sense since Γ(0) =
Γ(1)

0
, then it follows that Γ(η) is

not defined for integers η ≤ 0. However, the extension formula gives
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curvature in the differential manifold. In particular, Riemannian fractional curvature tensor, 
Livi-Civita fractional connection and Bianchi fractional identity are presented.
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finite values for Γ(η), for ℜ(η) ≤ 0 since Γ(η) is analytic everywhere
except at η = 0,−1,−2, ..., and the residue at η = k is given by

Resη=kΓ(η) =
(−1)k

k!
.
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Fractional O rder Riemann Curvature Tensor in Differential Geometry

Now, if η > 0, then

Γ(η + 1) = ηΓ(η). (1.1)

Equation (1.1) can be used to define Γ(η) for η < 0 and η ̸= −1,−2, . . .
and further, this is one of the most important formulas that were sat-
isfied by the Gamma function.

Even though the Gamma function is defined as a locally summable
function on the real line by [17]

Γ (η) =

∫ ∞

0

tη−1e−tdt, η > 0. (1.2)

In the classical sense, Γ(η) function was not defined for the negative
integer thus, there was an open problem to give a satisfactory defini-
tion. However, by using the neutral limit, it has been shown in [21]
that the Gamma function (1.2) is defined as follows:

Γ (η) = N − lim
ε→0

∫ ∞

ε

tη−1e−tdt

for η ̸= 0,−1,−2, ..., and this function can be defined by neutral limit
such as

Γ (−n) = N − lim
ε→0

∫ ∞

ε

t−n−1e−tdt

=

∫ ∞

1

t−n−1e−tdt

+

∫ 1

0

t−n−1

[
e−t −

n∑
i=0

(−1)i

i!
ti

]
dt−

n−1∑
i=0

(−1)i

i!(n− i)
, n ∈ N.

It was also proven in [20] the existence of r the derivative of the
Gamma function and defined it by equation

Γ (r)(0) = N − lim
ε→0

∫ ∞

ε

t−1 lnr te−tdt

=

∫ ∞

1

t−1 lnr te−tdt+

∫ 1

0

t−1 lnr t
[
e−t − 1

]
dt

Γ (r)(−n) = N − lim
ε→0

∫ ∞

ε

t−n−1 lnr te−tdt
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=

∫ ∞

1

t−n−1 lnr te−tdt

+

∫ 1

0

t−n−1 lnr t

[
e−t −

n∑
i=0

(−1)i

i!
ti

]
dt

−
n−1∑
i=0

(−1)i

i!
r!(n− i)−r−1

for r ∈ N0 and n ∈ N. Also,

Γ(−r) =
(−1)r

r!
(r)− (−1)r

r!
γ

for r = 1, 2, . . . , where

(r) =
r∑

i=1

1

i
.

Thus, the definition can be extended to the whole real line where,

Γ(0) = Γ
′
(1) = −γ,

where γ denotes Euler’s constant, see [22].

For a function f : V ⊂ R → R with 0 ∈ V , the fractional derivative of
order α is defined by:

dα

dtα
f(t) =

1

Γ(−α)

∫ t

0

f(s)− f(0)

(t− s)1+α
ds, α < 0 (1.3)

dα

dtα
f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)− f(0)

(t− s)α−n+1
ds, α > 0 (1.4)

where n is the first integer greater than or equal to α.
The relation (1.3) gives a fractional integral and (1.4) gives a frac-
tional derivative.

We express some of the operators of fractional derivatives, see for
example, [4, 7, 9, 10, 12, 16].

1.
dα

dtα
tγ =

Γ(1 + γ)

Γ(1 + γ + α)
tγ−α, α ∈ R or (α ∈ C) and 1+γ ̸= 0,−1, ...,−n,
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3.
dα

dtα
(f1(t) + f2(t)) =

dα

dtα
f1(t) +

dα

dtα
f2(t),

4.
dα

dtα
(Cf(t)) = C

dα

dtα
f(t), where C is a constant,

5.
dα

dtα
f(βt) = βα dα

[d(βt)]α
f(βt).

It is well known that fractional calculus is an essential and advanta-
geous branch of mathematics, having a broad range of applications at
almost every department of sciences. Techniques of fractional calcu-
lus have been employed in the modeling of many different phenomena
in engineering, physics , and mathematics.The problem in fractional
calculus is not only essential but also quite challenging ,which usually
involves complicated mathematical solution techniques. However, a
general solution theory for almost every issue in this area has yet to be
established. Each application has developed its approaches and imple-
mentations. Consequently, a single standard method for the problems
in fractional calculus has not emerged yet. Therefore, funding reli-
able and efficient solution techniques along with fast implementation
methods are significantly essential and still active research areas.

Further, it is also realized that the operators of fractional integra-
tion and derivation have physical and geometric interpretations, which
streamline along with their utilization for related issues in various
fields of science( see [2, 8, 10, 11, 12, 14, 18, 19]). Moreover, the

2.
dn

dtn
dα

dtα
f(t) =

dn+α

dtn+α
f(t), n ∈ N,

fractional differential calculus on a differential manifold is studied in
[2, 3, 4, 6, 13]. Even though fractional calculus is a handy and im-
portant topic, however, the research on geometric interpretation and
applications are limited ,and not many in current literature. Thus, in
this study, we focus on the Riemannian curvature tensor, Livi-Civita
connection and Bianchi’s identity on fractional differentiable manifolds
and discuss some related properties. We also give some examples.

Assume that N be an m-dimensional differential manifold (V, xi) a
local coordinate system on N and V0 = {x ∈ V : 0 ≤ xi ≤ bi, i =
1, 2, ...,m} [5].

For a function f : V0 → R, the fractional derivative with respect to
xi :

∂α
i f(x) =

1

Γ (n− α)
∂n
xi

∫ xi

0

f(x1, ..., xi−1, s, xi+1, ..., xm)− f(x1, . . . , xi−1, 0, xi+1, . . . , xm)

(xi − s)α−n+1
ds,

II. Fractional Differential Calculus on Manifolds

© 2022 Global Journals

1

Y
ea

r
20

22

32

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
II  
 I
ss
ue

  
  
 e

rs
io
n 

I 
 

V
I

  
 

( F
)

2.
M

. 
A

x
tell, 

M
.E

. 
B

ise,
F
ra

ctio
n
a
l 

C
a
lcu

lu
s 

A
p
p
lica

tion
 

in
 

C
on

trol S
y
stem

s.
IE

E
E

, N
at, A

erosp
ace an

d
 E

lectron
ics C

on
f., 

N
ew

 Y
ork

,
(1990) 563–

566.

Ref

Fractional O rder Riemann Curvature Tensor in Differential Geometry



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where ∂n
xi

=
∂

∂xi
◦ ∂

∂xi
◦ ... ◦ ∂

∂xi
(n times, i is fixed, α ≥ 0).

For α ∈ (0, 1), γ > −1,

∂α
i (xi)

γ =
Γ (1 + γ)

Γ (1 + γ − α)
; ∂α

i = δji .

A fractional vector field V ⊂ N is an object of the form Xα = Xα
i ∂

α
i , where

Xα
i ∈ ℑV (N) i = 1, ...,m.

The fractional vector fields on V and χα
V is generated by the operators ∂α

i , i =
1, 2, ...,m are denoted by χα

V . If c : x = x(t), t ∈ I is a parameterized curve in U
then the fractional tangent vector field of c is given by

xα(t) =
1

Γ (1 + α)
∂α
t xi(t)∂

α
i .

A fractional covariant derivative is given by

▽α
XαY α = Xα

i (∂
α
i Y

α
j + Γ̃ j

ikY
α
k )∂α

j

where Xα, Y α ∈ χα
U and Γ̃ j

ik the functions defining the coefficients of a fractional
linear connection on N. They are determined by the relations

▽α
∂α
i
∂α
k = Γ̃ j

ik∂
α
j .

Since it is essential to study fractional vector fields on a differentiable manifold
N . For Rn, there is an obvious way to do this. Recall that χα(Rn) denotes
the space of fractional differentiable vector fields defined on R. Examples are

the fractional vector fields
∂α

∂uα
1

, ...,
∂α

∂uα
n

determined by the natural coordinate

functions u1, ..., un.

Fractional Riemannian metric F on m-dimensional manifold N
defines for every point p ∈ N , the scalar product of fractional tangent vectors in
the fractional tangent space Tα

p N depending on the point p.

Let Aα = Aα
i ∂

α
i and Bα = Bα

j ∂
α
j any two fractional vectors tangent to the mani-

fold N at the point p with coordinates x = (x1, ..., xm) (Aα, Bα ∈ Tα
p N) the scalar

product is equal to

⟨Aα, Bα⟩F |p = Aα
i (x)g̃ij(x)B

α
j (x)

= (Aα
1 , ..., A

α
n)


g̃11 ... g̃1n
. ... .
. ... .
. ... .

g̃n1 ... g̃nn



Bα

1

.

.

.
Bα

n


where

1. F (Aα, Bα) = F (Bα, Aα), i.e., g̃ij = g̃ji (symmetricity condition).

2. F (Aα, Aα) > 0 if Aα ̸= 0, i.e. g̃iju
α
i u

α
j ≥ 0, g̃iju

α
i u

α
j = 0 iff uα

1 = ... = uα
n =

0 (positive definiteness).

3. F (Aα, Bα) |p=x, i.e. g̃ij(x) are smooth function where 0 < α < 1.

Definition 2.1. 
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Components of tensor field F in coordinate system are matrix valued functions
g̃ij(x)

F = g̃ij(x)d
αxi ⊗ dαxj .

g̃ij(x)- entries of the matrix ∥ g̃ij ∥ are components of tensor field F in a given
coordinate system.

How do these components transform under transformation of coordinates {xi} →
{xi′} ?

F = g̃ijdx
α
i ⊗ dxα

j

= g̃ij

(
∂xα

i

∂xα
i′
dxα

i′

)
⊗

∂xα
j

∂xα
j′
dxα

j′

)

=
∂xα

i

∂xα
i′
g̃ij

∂xα
j

∂xα
j′
dxα

i′ ⊗ dxα
j′

= g̃i′j′dx
α
i′ ⊗ dxα

j′ .

Hence,

g̃i′j′ =
∂xα

i

∂xα
i′
g̃ij

∂xα
j

∂xα
j′
.

Consider R2with fractional polar coordinates in the domain y > 0,
X = (rαcosαφ, rαsinαφ), then

∂αX

∂rα
= (α! cosα φ, α! sinα φ) .

∂αX

∂φα
=

(
α!eiαπrα sinα φ, α!rα cosα φ

)
.

g̃ij =

(
(α!)2

[
cos2α φ+ sin2α φ

]
(α!)2rα

[
e2απ + 1

]
sinα φ cosα φ

(α!)2rα
[
eαπi + 1

]
sinα φ cosα φ (α!)2r2α

[
e2απi sin2α φ+ cos2α φ

])
We have that

F = (α!)2
[
cos2α φ+ sin2α φ

]
(drα)

2

+2(α!)2rα
[[
eiαπ + 1

]
sinα φ cosα φ

]
drαdφα

+(α!)2r2α
[
e2iαπ sin2α φ+ cos2α φ

]
(dφα)

2}.

Notice that , as expected, when α = 1, one recovers the classical formula.

F = (dr)
2
+ r2 (dφ)

2
.

III. Rule of Transformation for Entries of the

Matrix

Example 2.2. 

Notes

© 2022 Global Journals
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α = 0.1 0.2

g̃rr 0.905[C0.2 + S0.2] 0.843[C0.4 + S0.4]

g̃rφ = g̃φr 0.905r0.1[i+ 1]S0.2C0.2 0

g̃φφ 0.905r0.2[−S0.2 − C0.2] 0.843r0.4[−S0.4 + C0.4]

F 0.905[C0.2 + S0.2]dr0.2 0.843[C0.4 + S0.4]dr0.4

+1.8101r0.1[i+ 1]S0.2C0.2(dr).1(dφ).1 +
+0.905r0.2[−S0.2 − C0.2](dφ).2 0.843r0.4[−S0.4 + C0.4](dφ)0.4

α = 0.3 0.4

g̃rr 0.805[C0.6 + S0.6] 0.787[C0.8 + S0.8]

g̃rφ = g̃φr 0.805r0.3[[i+ 1]S0.3C0.3] 1.574r0.4S0.3C0.3

g̃φφ 0.805r0.6[−S0.6 + C0.6] 0.787r0.8[S0.8 + C0.8]

F 0.805[C0.6 + S0.6](dr)0.6 0.787[C0.8 + S0.8](dr)0.8

+1.61r0.3[[i+ 1]S0.3C0.3](dr).3(dφ).3 +3.148r0.4S0.4C0.4dr.4dφ.4

+0.805r0.6[−S0.6 + C0.6](dφ).6 +0.787r0.8[S0.8 + C0.8](dφ).8

Let N is an m-dimensional Riemannian manifold with fractional
metric tensor g̃,then we shall denote the fractional derivatives of the elements of
tensor g̃ as follows:

g̃ij,k =
∂α

∂xα
k

g̃ij ,

and

g̃ij,kl =
∂α

∂xα
l

∂α

∂xα
k

g̃ij

=
∂2α

∂xα
l ∂x

α
k

g̃ij , i, j, k, l = 1, ..., n.

Asymmetric fractional connection is called Levi-Civita fractional
connection if it is compatible with metric, i.e., if it preserves the scalar product:

∂α
Xα ⟨Y α, Zα⟩ = ⟨▽α

XαY α, Zα⟩+ ⟨Y α,▽α
XαZα⟩

for arbitrary fractional vector fields Xα, Y α, and Zα.

In local coordinates Christoffel symbols of Levi-Civita fractional connection are
given by:

Γ̃ k
ij =

1

2
g̃kl(∂α

j g̃il + ∂α
i g̃lj − ∂α

l g̃ij).

Remark 2.1. 

Definition 2.3. 
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C = cosφ, S = sinφTable 1:

C = cosφ, S = sinφTable 2: 

Notes

Fractional O rder Riemann Curvature Tensor in Differential Geometry



 
 

 
 

 
 
 
 
 
 
 
 
 
 

α = 0.5 0.6

g̃rr 0.785[C + S] 0.798[C1.2 + S1.2]

g̃rφ = g̃φr 0.785r0.5[i+ 1]S0.5C0.5 0

g̃φφ 0.785r[−S + C] 0.798r1.2[S1.2 + C1.2]

F 0.785[C + S]r(dr) 0.798[C1.2 + S1.2](dr)1.2

+1.57r0.5[i+ 1]S0.5C0.5(dr)0.5(dφ)0.5 +
0.785r[−S + C]dφ +0.798r1.2[S1.2 + C1.2](dφ)1.2

α = 0.7 0.8

g̃rr 0.826[C1.4 + S1.4] 0.867[C1.6 + S1.6]

g̃rφ = g̃φr 0.826r0.7[i+ 1]S0.7C0.7 1.734r0.8S0.8C0.8

g̃φφ 0.826r1.4[−S1.4 + C1.4] 0.867r1.6[S1.6 + C1.6]

F 0.826[C1.4 + S1.4](dr)1.4 0.867[C1.6 + S1.6](dr)1.6

+1.652r0.7[i+ 1]S0.7C0.7(dr)0.7(dφ)0.7 +3.468r0.8S0.8C0.8dr0.8dφ0.8

+0.826r1.4[−S1.4 + C1.4](dφ)1.4 +0.867r1.6[S1.6 + C1.6](dφ)1.6

α = 0.9 1

g̃rr 0.925[C1.8 + S1.8] 1

g̃rφ = g̃φr 0.925r0.9[i+ 1]S0.9C0.9 0

g̃φφ 0.925r1.8[−S1.8 + C1.8] r2

F 0.925[C1.8 + S1.8](dr)1.8 (dr)2

+1.85r0.9[i+ 1]S0.9C0.9(dr)0.9(dφ)0.9 +

+0.925r1.8[−S1.8 + C1.8](dφ)1.8 r2 (dφ)2

Proof. Since

∂α
j ei = Γ̃m

ij em (2.1)

Γ̃m
ij emel = (∂α

j ei)el (2.2)

Γ̃m
ij gml = ∂α

j (ei.el)− ei(∂
α
j el)

= ∂α
j gil − Γ̃m

lj emei

= ∂α
j gil − Γ̃m

lj gmi, (2.3)

then

Γ̃m
ij gml + Γ̃m

lj gmi = ∂α
j gil, (2.4)

which implies that

Γ̃m
ij g̃ml + Γ̃m

lj g̃mi = ∂α
j g̃il. (2.5)

In this equation, the indexm is a dummy, so only the indices i,j ,and l are specified.
We can cyclically permute these indices to generate two more equations:
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C = cosφ, S = sinφTable 4: 

C = cosφ, S = sinφTable 5: 
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Γ̃m
jl g̃mi + Γ̃m

il g̃mj = ∂α
l g̃ji (2.6)

Γ̃m
li g̃mj + Γ̃m

ji g̃ml = ∂α
i g̃lj (2.7)

since Γ̃m
ij = Γ̃m

ji , then

Γ̃m
lj g̃mi + Γ̃m

il g̃mj = ∂α
l g̃ij (2.8)

Γ̃m
il g̃mj + Γ̃m

ij g̃ml = ∂α
i g̃lj . (2.9)

We can now add (2.5)to (2.9) and subtract (2.8)to get

2Γ̃m
ij g̃ml = ∂α

j g̃il + ∂α
i g̃lj − ∂α

l g̃ij

2Γ̃m
ij g̃mlg̃

kl = g̃kl(∂α
j g̃il + ∂α

i g̃lj − ∂α
l g̃ij)

since g̃mlg̃
kl = δkm, then

Γ̃ k
ij =

1

2
g̃kl(∂α

j g̃il + ∂α
i g̃lj − ∂α

l g̃ij),

we can write

Γ̃ k
ij =

1

2
g̃kl(g̃il,j + g̃lj,i − g̃ij,l).

For 2-dimential polar coordinates X = (rαcosαφ, rαsinαφ).

The metric tensor and its inverse here are:

g̃ij =

(
(α!)2

[
cos2α φ+ sin2α φ

]
(α!)2rα

[
e2απ + 1

]
sinα φ cosα φ

(α!)2rα
[
eαπi + 1

]
sinα φ cosα φ (α!)2r2α

[
e2απi sin2α φ+ cos2α φ

])

g̃ij =

(
A−1(α!)2r2α

[
e2απi sin2α φ+ cos2α φ

]
−A−1(α!)2rα

[
e2απ + 1

]
sinα φ cosα φ

−A−1(α!)2rα
[
e2απ + 1

]
sinα φ cosα φ A−1(α!)2

[
cos2α φ+ sin2α φ

] )
.

where

A = (α!)4r2α
{[
cos2α φ+ sin2α φ

] [
e2απi sin2α φ+ cos2α φ

]
−
[
eαπi + 1

]
sin2α φ cos2α φ

}
Therefore,

∂α
r g̃ij =

(
0 (α!)3

[
eαπi + 1

]
sinα φ cosα φ

(α!)3
[
eαπi + 1

]
sinα φ cosα φ (α!)(2α)!rα

[
e2απi sin2α φ+ cos2α φ

])

∂α
φ g̃ij =

(
(α!)(2α)!

[
eαπi + 1

]
cosαφsinαφ (α!)3rα

[
eαπi + 1

] [
eαπi sin2α φ+ cos2α φ

]
(α!)3rα

[
eαπi + 1

] [
eαπi sin2α φ+ cos2α φ

]
(α!)(2α)!r2α

[
eαπi + 1

]
sinα φ cosα φ

)
.

Then ,

Γ̃ r
rr =

1

2
g̃rl(∂α

r g̃rl + ∂α
r g̃lr − ∂α

l g̃rr)

Example 2.2. 
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Γ̃ r
rφ =

1

2
g̃rl(∂α

φ g̃rl + ∂α
r g̃lφ − ∂α

l g̃rφ)

= 0

= Γ̃ r
φr,

Γ̃ r
φφ =

1

2
g̃rl(∂α

φ g̃φl + ∂α
φ g̃lφ − ∂α

l g̃φφ)

= (α!)2rα(2A)−1
{[
e2απisin2αφ+ cos2α φ

] [
2(α!)3rα

[
eαπi + 1

] [
eαπi sin2α φ+ cos2α φ

]
− (α!)(2α)!rα

[
e2απi sin2α φ+ sin2α φ

]]
− (α!)(2α)!rα

[
eαπi + 1

]
sin2α φ cos2α φ

}
,

Γ̃φ
rr =

1

2
g̃φl(∂α

φ g̃rl + ∂α
r g̃lr − ∂α

l g̃rr)

= −(α!)2(2A)−1
{
(α!)(2α)!rα

[
eαπi + 1

]2
sin2α φ cos2α φ+

[
cos2α φ+ sin2α φ

] [
eαπi + 1

]
×
[
(α!)3rα

[
eαπi sin2α φ+ cos2α φ

]
+ (α!)3 sinα φ cosα φ− (α!)(2α)! cosα φ sinα φ

]}
,

Γ̃φ
rφ =

1

2
g̃φl(∂α

φ g̃rl + ∂α
r g̃lφ − ∂α

l g̃rφ)

= (α!)2(2A)−1
{
−(α!)(2α)!2rα

[
eαπi + 1

]
cos2α φ sin2α φ

+(α!)(2α)!rα
[
cos2α φ+ sin2α φ

] [
e2απi sin2α φ+ cos2α φ

]}
= Γ̃φ

φr,

Γ̃φ
φφ =

1

2
g̃φl(∂α

φ g̃φl + ∂α
φ g̃lφ − ∂α

l g̃φφ)

= (α!)2r2α(2A)−1
{
−
[
eαπi + 1

]
sinα φ cosα φ

[
2(α!)3

[
eαπi + 1

] [
eαπi sin2α φ+ cos2α φ

]
−(α!)(2α)!

[
e2απi sin2α φ+ cos2α φ

]]
+ (α!)(2α)!

[
eαπi + 1

] [
sin2α φ+ cos2α φ

]
sinα φ cosα φ

}
.

The fractional curvature R̃ of order α of a Riemannian mani-
fold N is a correspondence that associates to every pair Xα, Y α ∈ χα a mapping
R̃(Xα, Y α) : χα(N)× χα(N) → χα(N) given by

R̃(Xα, Y α)Zα = ▽α
Xα ▽α

Y α Zα −▽α
Y α ▽α

Xα Zα −▽α
[Xα,Y α]Z

α,

where Zα ∈ χα and ▽α is the fractional Riemannian connection.

= −A−1(α!)5rα
[
eαπi + 1

]2
sin2α φ cos2α φ,

Definition 3.1. 

Notes

IV. Fractional Curvature
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R̃(Xα, Y α)Zα = ▽α
Xα ▽α

Y α Zα −▽α
Y α ▽α

Xα Zα −▽α
[Xα,Y α]Z

α

= −(▽α
Y α ▽α

Xα Zα −▽α
Xα ▽α

Y α Zα −▽α
[Y α,Xα]Z

α)

= −R̃(Y α, Xα)Zα.

The fractional curvature R̃ of a Riemannian manifold has the
following properties:

1. R̃ is bilinear in χα(N)× χα(N), that is,

R̃(fXα + gY α, Zα)Wα = fR̃(Xα, Zα)Wα + gR̃(Y α, Zα)Wα,

R̃(Xα, fY α + gZα)Wα = fR̃(Xα, Y α)Wα + gR̃(Xα, Zα)Wα,

where f, g ∈ ℑ(M), Xα, Y α, Zα,Wα ∈ χα(N)

2. For any Xα, Y α ∈ χα(N), R̃(Xα, Y α) is linear

R̃(Xα, Y α)(Zα +Wα) = R̃(Xα, Y α)Zα + R̃(Xα, Y α)Wα,

R̃(Xα, Y α)(fZα) = fR̃(Xα, Y α)Zα,

where Zα,Wα ∈ χα(N)

Proof. 1.

R̃(fXα + gY α, Zα)Wα

= ▽α
fXα+gY α ▽α

Zα Wα −▽α
Zα ▽α

fXα+gY α Wα −▽α
[fXα+gY α,Zα]W

α

= (f ▽α
Xα +g▽α

Y α)▽α
Zα Wα −▽α

Zα(f ▽α
Xα Wα + g ▽α

Y α Wα)

−▽α
f [Xα,Zα]+g[Y α,Zα]−(Zαf)Xα−(Zαg)Y α Wα

= f ▽α
Xα ▽α

ZαWα + g ▽α
Y α ▽α

ZαWα − (Zαf)▽α
Xα Wα

−f ▽α
Zα ▽α

XαWα − (Zαg)▽α
Y α Wα − g ▽α

Zα ▽α
Y αWα − f ▽α

[Xα,Zα] W
α

−g ▽α
[Y α,Zα] W

α + (Zαf)▽α
Xα Wα + (Zαg)▽α

Y α Wα

= f(▽α
Xα ▽α

Zα Wα −▽α
Zα ▽α

Xα Wα −▽α
[Xα,Zα]W

α)

+g(▽α
Y α ▽α

Zα Wα −▽α
Zα ▽α

Y α Wα −▽α
[Y α,Zα]W

α)

= fR̃(Xα, Zα)Wα + gfR̃(Y α, Zα)Wα.

Also,

R̃(Xα, fY α + gZα)Wα = −R̃(fY α + gZα, Xα)

= −fR̃(Y α, Xα)Wα − gR̃(Zα, Xα)Wα

= fR̃(Xα, Y α)Wα + gR̃(Xα, Zα)Wα.

Remark 3.1.

Proposition 3.2. 
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2.

R̃(Xα, Y α)(Zα +Wα)

= ▽α
Xα ▽α

Y α (Zα +Wα)−▽α
Y α ▽α

Xα (Zα +Wα)−▽α
[Xα,Y α](Z

α +Wα)

= ▽α
Xα ▽α

Y α Zα +▽α
Xα ▽α

Y α Wα −▽α
Y α ▽α

Xα Zα

−▽α
Y α ▽α

XαWα −▽α
[Xα,Y α]Z

α −▽α
[Xα,Y α]W

α

= (▽α
Xα ▽α

Y α Zα −▽α
Y α ▽α

Xα Zα −▽α
[Xα,Y α]Z

α)

+(▽α
Xα ▽α

Y α Wα −▽α
Y α ▽α

Xα Wα −▽α
[Xα,Y α]W

α)

= R̃(Xα, Y α)Zα + R̃(Xα, Y α)Wα.

Also,

R̃(Xα, Y α)(fZα)

= ▽α
Xα ▽α

Y α (fZα)−▽α
Y α ▽α

Xα (fZα)−▽α
[Xα,Y α](fZ

α)

= ▽α
Xα((Y αf)Zα + f ▽α

Y α Zα)−▽α
Y α((Xαf)Zα + f ▽α

Xα Zα)

−(([Xα, Y α]f)Zα + f ▽α
[Xα,Y α] Z

α)

= Xα(Y αf)Zα + (Y αf)▽α
Xα Zα + (Xαf)▽α

Y α Zα + f ▽α
Xα ▽α

Y αZα

−Y α(Xαf)Zα + (Xαf)▽α
Y α Zα + (Y αf)▽α

Xα Zα + f ▽α
Y α ▽α

XαZα

−([Xα, Y α]f)Zα − f ▽α
[Xα,Y α] Z

α

= ([Xα, Y α]f)Zα + f(▽α
Xα ▽α

Y α Zα −▽α
Y α ▽α

Xα Zα −▽α
[Xα,Y α]Z

α)− ([Xα, Y α]f)Zα

= fR̃(Xα, Y α)Zα.

(Bianchi Fractional Identity).

R̃(Xα, Y α)Zα + R̃(Y α, Zα)Xα + R̃(Zα, Xα)Y α = 0.

Proof.

R̃(Xα, Y α)Zα + R̃(Y α, Zα)Xα + R̃(Zα, Xα)Y α

= ▽α
Xα ▽α

Y α Zα −▽α
Y α ▽α

Xα Zα −▽α
[Xα,Y α]Z

α

+▽α
Y α ▽α

ZαXα −▽α
Zα ▽α

Y α Xα −▽α
[Y α,Zα]X

α

+▽α
Zα ▽α

XαY α −▽α
Xα ▽α

Zα Y α −▽α
[Zα,Xα]Y

α

= ▽α
Xα [Y α, Zα] +▽α

Y α [Zα, Xα] +▽α
Zα [Xα, Y α]

−▽α
[Xα,Y α] Z

α −▽α
[Y α,Zα]X

α −▽α
[Zα,Xα]Y

α

= [Xα, [Y α, Zα]] + [Y α, [Zα, Xα]] + [Zα, [Xα, Y α]] = 0.

Proposition 3.3 
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and

R̃ijkm =
〈
R̃(∂α

i , ∂
α
j )∂

α
k , ∂

α
m

〉
=

〈
R̃l

ijk∂
α
l , ∂

α
m

〉
= R̃l

ijk ⟨∂α
l , ∂

α
m⟩

= R̃l
ijkg̃ml.

The fractional Riemannian curvature tensor acts on fractional vector fields as
follows:

R̃(Xα, Y α, Zα,Wα) =
〈
R̃(Xα, Y α)Zα,Wα

〉
.

1. R̃ijkl + R̃jkil + R̃kijl = 0.

2. R̃ijkl = −R̃jikl.

3. R̃ijkl = −R̃ijlk.

4. R̃ijkl = R̃klij .

Proof. 1. is just the Bianchi fractional identity again.

2.
R̃ijkl =

〈
R̃(∂α

i , ∂
α
j )∂

α
k , ∂

α
l

〉
=

〈
−R̃(∂α

j , ∂
α
i )∂

α
k , ∂

α
l

〉
= −

〈
R̃(∂α

j , ∂
α
i )∂

α
k , ∂

α
l

〉
= −R̃jikl.

3. is equivalent to R̃ijkk = 0, whose proof follows:

R̃ijkk =
〈
R̃(∂α

i , ∂
α
j )∂

α
k , ∂

α
k

〉
=

〈
▽α

∂α
i
▽α

∂α
j
∂α
k −▽α

∂α
j
▽α

∂α
i
∂α
k −▽α

[∂α
i ,∂α

j ]∂
α
k , ∂

α
k

〉
,

but 〈
▽α

∂α
j
▽α

∂α
i
∂α
k , ∂

α
k

〉
= ∂α

j

〈
▽α

∂α
i
∂α
k , ∂

α
k

〉
−
〈
▽α

∂α
i
∂α
k ,▽α

∂α
j
∂α
k

〉
,

and 〈
▽α

[∂α
i ,∂α

j ]∂
α
k , ∂

α
k

〉
=

1

2

[
∂α
i , ∂

α
j

]
⟨∂α

k , ∂
α
k ⟩ ,

then

R̃ijkk = ∂α
j

〈
▽α

∂α
i
∂α
k , ∂

α
k

〉
− ∂α

i

〈
▽α

∂α
j
∂α
k , ∂

α
k

〉
+

1

2

[
∂α
i , ∂

α
j

]
⟨∂α

k , ∂
α
k ⟩

In local coordinates

R̃(∂α
i , ∂

α
j )∂

α
k = R̃l

ijk∂
α
l ,

Proposition 3.4.
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4. By Bianchi fractional identity we have

R̃ijkl + R̃jkil + R̃kijl = 0

R̃jkli + R̃klji + R̃ljki = 0

R̃klij + R̃likj + R̃iklj = 0

R̃lijk + R̃ijlk + R̃jlik = 0

summing the equations above, we obtain

2R̃kijl + 2R̃ljki = 0,

then

R̃kijl = −R̃ljki = R̃jlki.

The following expression holds

2R̃ijkm = g̃jm,ki + g̃km,ji − g̃jk,mi − g̃im,kj − g̃km,ij + g̃ik,mj − 2Γ̃ r
jkΓ̃

s
img̃rs + 2Γ̃ r

ikΓ̃
s
jmg̃rs.

Proof. From the definition of the Christoffel symbols, ▽α
∂α
i
∂α
j = Γ̃ k

ij∂
α
k ,

2
〈
▽α

∂α
i
∂α
j , ∂

α
m

〉
= 2

〈
Γ̃ k
ij∂

α
k , ∂

α
m

〉
= 2Γ̃ k

ij g̃mk

= g̃im,j + g̃jm,i − g̃ij,m,

an appropriate rearrangement of the indices yields the following expression:

2
〈
▽α

∂α
j
∂α
k , ∂

α
m

〉
= 2

〈
Γ̃ i
jk∂

α
i , ∂

α
m

〉
= 2Γ̃ i

jkg̃im

= g̃jm,k + g̃km,j − g̃jk,m. (3.1)

∂α
i < ▽α

∂α
j
∂α
k , ∂

α
m >=< ▽α

∂α
i
▽α

∂α
j
∂α
k , ∂

α
m > + < ▽α

∂α
j
∂α
k ,▽α

∂α
i
∂α
m >

whence, by (3.1)

2
〈
▽α

∂α
i
▽α

∂α
j
∂α
k , ∂

α
m

〉
+ 2

〈
▽α

∂α
j
∂α
k ,▽α

∂α
i
∂α
m

〉
= 2∂α

i

〈
▽α

∂α
j
∂α
k , ∂

α
m

〉
= ∂α

i

(
g̃imgil(∂α

k gjl + ∂α
j gkl − ∂α

l gjk)
)

= g̃jm,ki + g̃km,ji − g̃jk,mi.

(3.2)
By switching i and j we also have that

2
〈
▽α

∂α
j
▽α

∂α
i
∂α
k , ∂

α
m

〉
+ 2

〈
▽α

∂α
i
∂α
k ,▽α

∂α
j
∂α
m

〉
= g̃im,kj + g̃km,ij − g̃ik,mj . (3.3)

=
1

2
∂α
j (∂

α
i ⟨∂α

k , ∂
α
k ⟩)−

1

2
∂α
i

(
∂α
j ⟨∂α

k , ∂
α
k ⟩
)
+

1

2

[
∂α
i , ∂

α
j

]
⟨∂α

k , ∂
α
k ⟩

= −1

2

[
∂α
i , ∂

α
j

]
⟨∂α

k , ∂
α
k ⟩+

1

2

[
∂α
i , ∂

α
j

]
⟨∂α

k , ∂
α
k ⟩ = 0.

Proposition 3.5.
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Combining (3.2) and (3.3) yields

2
〈
▽α

∂α
i
▽α

∂α
j
∂α
k , ∂

α
m

〉
− 2

〈
▽α

∂α
j
▽α

∂α
i
∂α
k , ∂

α
m

〉
=

g̃jm,ki + g̃km,ji − g̃jk,mi − g̃im,kj − g̃km,ij + g̃ik,mj

−2
〈
▽α

∂α
j
∂α
k ,▽α

∂α
i
∂α
m

〉
+ 2

〈
▽α

∂α
i
∂α
k ,▽α

∂α
j
∂α
m

〉
.

By definition

R̃
(
∂α
i , ∂

α
j

)
∂α
k = ▽α

∂α
i
▽α

∂α
j
∂α
k −▽α

∂α
j
▽α

∂α
i
∂α
k

whence

2R̃ijkm = 2
〈
R̃(∂α

i , ∂
α
j )∂

α
k , ∂

α
m

〉
= 2

〈
▽α

∂α
i
▽α

∂α
j
∂α
k , ∂

α
m

〉
− 2

〈
▽α

∂α
j
▽α

∂α
i
∂α
k , ∂

α
m

〉
,

so we have proven that

2R̃ijkm =

g̃jm,ki + g̃km,ji − g̃jk,mi − g̃im,kj − g̃km,ij + g̃ik,mj

−2
〈
▽α

∂α
j
∂α
k ,▽α

∂α
i
∂α
m

〉
+ 2

〈
▽α

∂α
i
∂α
k ,▽α

∂α
j
∂α
m

〉
.

By the definition of the Christoffels,〈
▽α

∂α
i
∂α
k ,▽α

∂α
j
∂α
m

〉
=

〈
Γ̃ r
ik∂

α
r , Γ̃

s
jm∂α

s

〉
= Γ̃ r

ikΓ̃
s
jm ⟨∂α

r , ∂
α
s ⟩

= Γ̃ r
ikΓ̃

s
jmg̃rs,〈

▽α
∂α
j
∂α
k ,▽α

∂α
i
∂α
m

〉
=

〈
Γ̃ r
jk∂

α
r , Γ̃

s
im∂α

s

〉
= Γ̃ r

jkΓ̃
s
im ⟨∂α

r , ∂
α
s ⟩

= Γ̃ r
jkΓ̃

s
img̃rs,

then

2R̃ijkm = g̃jm,ki + g̃km,ji − g̃jk,mi − g̃im,kj − g̃km,ij + g̃ik,mj − 2Γ̃ r
jkΓ̃

s
img̃rs + 2Γ̃ r

ikΓ̃
s
jmg̃rs.

If α = 1,then

2Rijkm = gjm,ki + gkm,ji − gjk,mi − gim,kj − gkm,ij + gik,mj − 2Γ r
jkΓ

s
imgrs + 2Γ r

ikΓ
s
jmgrs.

Since gkm,ji = gkm,ij, then

2Rijkm = gjm,ki − gjk,mi − gim,kj + gik,mj − 2Γ r
jkΓ

s
imgrs + 2Γ r

ikΓ
s
jmgrs,

Remark 3.6.
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For any pair of fractional tangent vectors Xα, Y α ∈ Tα
p N we shall

denote with Γ̃ (Xα, Y α) the following fractional vector in Tα
p N :

Γ̃ (Xα, Y α) = Γ̃ k
ijX

α
i Y

α
j ∂α

k .

The following expressions hold for any pair Xα, Y α ∈ Tα
p N :

2R̃ (Xα, Y α, Y α, Xα)

= ∂α
i

(
g̃imgil

) (
∂α
k gjl + ∂α

j gkl − ∂α
l gjk

)
+ g̃imgil

(
∂α
i ∂

α
k gjl + ∂α

i ∂
α
j gkl − ∂α

i ∂
α
l gjk

)
−∂α

j

(
g̃jmgjl

)
(∂α

k gil + ∂α
i gkl − ∂α

l gik)− g̃jmgjl
(
∂α
j ∂

α
k gil + ∂α

j ∂
α
i gkl − ∂α

j ∂
α
l gik

)
+2 ∥ Γ̃ (Xα, Y α) ∥2 −2

〈
Γ̃ (Xα, Xα) , Γ̃ (Y α, Y α)

〉
.

Proof. Since

g̃rsX
α
i Y

α
j Y α

k Xα
mΓ̃ r

ikΓ̃
s
jm =

〈
Xα

i Y
α
k Γ̃ r

ik∂
α
r , Y

α
j Xα

mΓ̃ s
jm∂α

s

〉
=

〈
Γ̃ (Xα, Y α), Γ̃ (Xα, Y α)

〉
=∥ Γ̃ (Xα, Y α) ∥2,

and

g̃rsX
α
i Y

α
j Y α

k Xα
mΓ̃ r

jkΓ̃
s
im =

〈
Xα

i X
α
mΓ̃ s

im∂α
s , Y

α
j Y α

k Γ̃ r
jk∂

α
r

〉
=

〈
Γ̃ (Xα, Xα), Γ̃ (Y α, Y α)

〉
,

This completes the proof.

If α = 1, then

2R(X,Y, Y,X) = gjm,ki − gjk,mi − gim,kj + gik,mj

+2 ∥ Γ (X,Y ) ∥2 −2 ⟨Γ (X,X), Γ (Y, Y )⟩ .

then

2Rijkm = g̃jm,ki + g̃km,ji − g̃jk,mi − g̃im,kj − g̃km,ij + g̃ik,mj − 2Γ r
jkΓ

s
imgrs + 2Γ r

ikΓ
s
jmgrs.
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