

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: A
PHYSICS AND SPACE SCIENCE
Volume 22 Issue 1 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Influence about Zinc for Transient; Steady State Creep Properties, Microstructure and Characteristics in Aluminum Alloys

By M. Y. Salem

New Valley University

Abstract- Regardless of enormous studies besides of attempts dedicated to studying the creep attitude about present samples, a complete characterization about creep on the foundation of precise structural coefficient and testing stipulations will remain wanting soon. A creep study will usually be performed by an expression called creep system. This study expresses more notification of transient and steady creep conductance in aluminum-zinc alloys. Our study was investigated around 15.25, 18.255, and 21.70 MPa. All tests about working degree 523 until 643 kelvin. The transient creep is expressed using $\text{strain}_{\text{transient}} = \beta \text{time}^n$; the constant n has values around 0.31 to 0.85 in the case of Al-8Zn, and it ranges from 0.44 to 1.21 in the case of Al-85Zn binary samples. The β has a rate of about -4.3 until -12.54 and -6.1 until -13.5 for the used present specimens consecutively. Amounts for activation energy are about 45.6 and 39.8 KJ/mole in low-temperature regions for tested alloys and 62.4 and 45.7 KJ/mole in high-temperature regions. Coefficient (m) is increased by increasing the working temperature.

Keywords: aluminum; zinc; transient; steady-state creeps.

GJSFR-A Classification: FOR Code: 249999

Strictly as per the compliance and regulations of:

Influence about Zinc for Transient; Steady State Creep Properties, Microstructure and Characteristics in Aluminum Alloys

M. Y. Salem

Abstract- Regardless of enormous studies besides of attempts dedicated to studying the creep attitude about present samples, a complete characterization about creep on the foundation of precise structural coefficient and testing stipulations will remain wanting soon. A creep study will usually be performed by an expression called creep system. This study expresses more notification of transient and steady creep conductance in aluminum-zinc alloys. Our study was investigated around 15.25, 18.255, and 21.70 MPa. All tests about working degree 523 until 643 kelvin. The transient creep is expressed using $\text{strain}_{\text{transient}} = \beta \text{time}^n$; the constant n has values around 0.31 to 0.85 in the case of Al-8Zn, and it ranges from 0.44 to 1.21 in the case of Al-85Zn binary samples. The β has a rate of about -4.3 until -12.54 and -6.1 until -13.5 for the used present specimens consecutively. Amounts for activation energy are about 45.6 and 39.8 KJ/mole in low-temperature regions for tested alloys and 62.4 and 45.7 KJ/mole in high-temperature regions. Coefficient (m) is increased by increasing the working temperature.

Keywords: aluminum; zinc; transient; steady-state creeps.

I. INTRODUCTION

Mineral creep considered as a major topic of various experiments like power, transportation, or chemicals. The creep conductance for present samples is studied; it is characterized using collecting mechanism $\epsilon(t)$ as a parameter of loads and interval. Typically 3 parts were presented, which are the initial creep region {where $\text{strain} \cdot (\text{time}) = 0$ }; 2- system, which is named steady-state {where $\text{strain} \cdot (\text{time}) = 0$ }; and 3- part {where $\text{strain} \cdot (\text{time}) > 0$ }; where interrupt happens. Several authors, such as Evans, minimized steady-state study to one rotation case from region one to third stages of the curve manner; therefore, creep rate become minimum [1,2]. Therefore the purpose in straightforwardness, that, throughout this work, it becomes referring to stable regions. All studies aim to correlate the performance of the study by the exact constitutional coefficient for present samples, limiting its study creep system [3-5].

Relationship through stable creep rate ϵ_{ss} and applied stress is usually maintained by the law of authority, i.e.,

Author: Physics Department, Faculty of Science, New Valley University, 72511, El-Kharga, Egypt. e-mail: mahmoudsalem778@gmail.com

$$\text{strain}_{\text{steady-state}} = \text{Constant} (\text{stress}/G)^n \quad (1)$$

where n is the stress exponent, G is the shear modulus, exponent n of the existing literature is explained by Sherry [6]; the n assessment determines predominant arrangement.

The cast aluminum alloy has depressed concentration, altitude abrasion impedance besides perfect elasticity. It is easy to molding, fabricate, shape, shape weld. Al and zinc offer enormous domains for characteristics that aid for the precise purpose of manufacturing combinations for confirmed usages. Therefore it stands out for various applications to outputs like airframes, boats, martial employment, and vehicles; their combinations. The main advantages for Al-Zn samples considered as lightweight, altitude individual intensity, idealistic, great concerning metal alloys [7-9].

The study was inescapable for shaping sections that undergo loads in high degrees, which leads to imperceptible loads recuperation; also, stress aggregation outputs in premature insufficiency for most combinations. A clear assertions for manufacture; papers establishments indicate a recent group for foundational equations about curve which wanted to progressing suitable study [10-12].

Precipitation-hardening aluminum alloy is the extremely joint sprightly heaviness industrial samples in case of constitutional implementation 303 kelvin [13-17], and considerably coveted in purposes around high degrees (573 Kelvin); also, recent developments in aerospace refractory aluminum alloys used as a pattern for airframe barriers also, pavilion lashings for altitude achievement warlike aircraft, automobile motives; besides of warmth dissenting jointer for intensity conveyance, when the composition for the specimen competence stay fixed beneath difficult situations of heat. However, the advice which coveted employ degree that much higher than consolidation point depending on the lifetime temperature, which is below 498 K for conventional aluminum alloys to obtain hardening deposits [18-21].

Through the particular thermal-mechanical domain of Al-Zn, the elastic deformation is progressively altered to constant distortion using strain-time curves, where meanwhile, present samples are enriched using

longevity [22,23]. Paramount characteristic in Al-Zn in practice presents through contemporary approach for style construction; also specimens reinforcement, therefore conventional disconnect figuration; also warmth remediation operations is happened [24-26]. Nevertheless, because of congregation frame for complete tablets, like altitude side, unequal concentration, beside of unsteady bending, a different congregation loads classification becomes occurred for boards specialized Al-Zn. Especially, whereas polygonal schedule convenient for checkmate carefully, current intense loads density is just reproduction regional disproportionate ductile distortion for curvature side. For the present attitude, confirmed strain-time impediment has been generally happened when growing for distortion grade curves [27]. Most output for disadvantage is necessarily engender onerousness for monitoring for origination precision beside of manufacture accomplishment.

Considerable theory research besides on empirical on Al-Zn fundamentally concentrated on strengthening for hot-self-acting coefficient, present samples premier disposition, description of composition; features, besides of foretelling for spring back beside of rendering. Arabi Jeshvaghani et al. [28,29] investigated the influences for degree beside of interval for spring back and self-acting characteristics for Al-Zn specimens. They explained commanding techniques for period indeclinable and strain-time distortion.

In several papers mentioned that the addition of zinc to aluminum samples influences the installation and crystallization tendency, which enhances the deposition of stages through synthetic longevity [30-33]. The main reason has been spotted for the last automatic advantages for specimens. Through artificial longevity for samples, the ultimate impedance was supposed to use sedimentation for stages, which stable and have a similar structure phase [34]. We assumed such semblance for pure zinc molecules award much deepness that the reason for samples realized altitude impedance by perfect power characteristics for altitude degrees. Interval deposition was spotted for zinc alloys, forming GP regions [35] however, for minimum considerable influence. Though Aluminum sample has been examined for important conclusions, particularly for cases concerning with phase deposition also, the padlock relationship for refinement in spontaneous characteristics, small survey has been awarded for finding out influences for the supplement to other samples such as zinc on the behavior of the alloy [36].

In general, Al-Zn alloys have better castability than other alloys. Ji et al. [37-39]; sublime power for present sample has been developed specializes elevated stress as shaping. The short longevity handling consequence for considerable refinement for mechanical characteristics [40] besides, applied

specimen was utilized to form combinations for the space industry. Likewise, et al. [41]; established most properties for Aluminum samples were strengthened using Zinc supplement, resulting in specimens using bending intensity and has moderate elongation. Ding et al. [42] were instituted an extension about zinc that can significantly enhance the life hardness of the aluminum alloy. Therefore, it is advantageou while checking the effect of adding zinc to the treated aluminum ingot by gravity casting of the mold, improving the characteristics and hardening mechanism.

One of the main advantages of Al alloys after adding the element Zn compared to other alloys is its altitude intensity along with elevation elasticity. Therefore, a perfect Al-Zn alloy has a resistance of about 400 MPa while the penetration elongation is about 12% of an inch. The altitude intensity for present samples produces large convenience in case of constitutional purposes that require altitude intensity for minimum heaviness. Therefore a car shock absorber beam has been formed from either hot extruded hollow or semi-hollow tubes. Therefore, an advantage for this alloy presented in great strength at about 300 kelvin was squirearchy by altitude impedance to deformation for warm working degrees, thus characteristic for zinc existence [43,44].

This paper describe a share in the recognition for an appropriate heat processing for applied specimens for improving the mechanical characteristics even come to terms installation deepness for used samples, the generation of aluminum alloys used in automobile bodies, and more purposes with the hope of producing more ductile stages with superior forming characteristics.

II. TESTING

The dimensions for the specimen used are of diameter 0.8×10^{-3} m and 5×10^{-2} m. As mentioned earlier [45-49], The Aluminum-8Zinc and Aluminum-85Zinc samples are ready where prepared from Aluminum (purity 99.99%) and Zinc (purity 99.99%) specimens. Creep test has been achieved ranging about 15.25; 18.255; and 21.70 MPa at about degree of 4/10Tm until 7/10 Tm; Tm denotes fusion degree for used samples, ranging from 523 to 643 K to in steps.

The sample dissolved in the Cu melting-pot. The specimen has been measured beside completely jumbled using calcium chloride₂ wax for restraining corrosion using graphite style protected around 820 kelvin. In this study, the wires of Aluminum-8Zinc and Aluminum-85Zinc specimens are rigid around 180 celsius until 7200 seconds to cool remove cool effect coming through seesawing; at that time quietly refrigerated until 300 kelvin; to originate fine precise structure idealistic presented in a piece samples in

microelectronic bundle. Then the specimens were inconsiderate [50,51].

Strain-time experiments are temperature-dependent so that present size variations which occur to the level for used loads raise exponentially as degree increases [9,52]. The piece of experimentation has been demonstrated; the samples were mounted; also favored in the center of the heater beside of additional thermocouple was connected at center for

specimens measurement elongation. The heater is turned off, and the heating turned on. The closed oven stands in about 1800 second for increment for arriving a constantly used degree. The suitable degree arrived, stress has been presented, and strains for samples know with preciseness.

The obtained outcome for Energy-dispersive X-ray spectroscopy dissection was symmetrical for used samples as pronounced in Table 1 and Fig.3.

Table (1): Immediate installations for used specimens weight %

Experimental alloys	Aluminum %	Zinc %
Aluminum-8Zinc	92	8
Aluminum-85Zinc	15	85

III. RESULTS AND DISCUSSION

a) Characteristics for Strain-time

i. Transient period

Concerning the strain-time study, transient strains were particularly characterized by using the following formula [53]:

$$\text{Strain}_{\text{transient}} = \text{Beta time}^n \quad (2)$$

where Strain transient is the first interval deformation, beta and n are stable amounts.

Recent particular properties of creep for the binary samples Al-8Zn and Al-85Zn has been compared as shown in Fig.(1-3) a,b. The tendency in strain-time diagrams for all loads and different temperatures by seven degrees indicates a fast transmission for the concise initial strain-time period until another strain-time period.

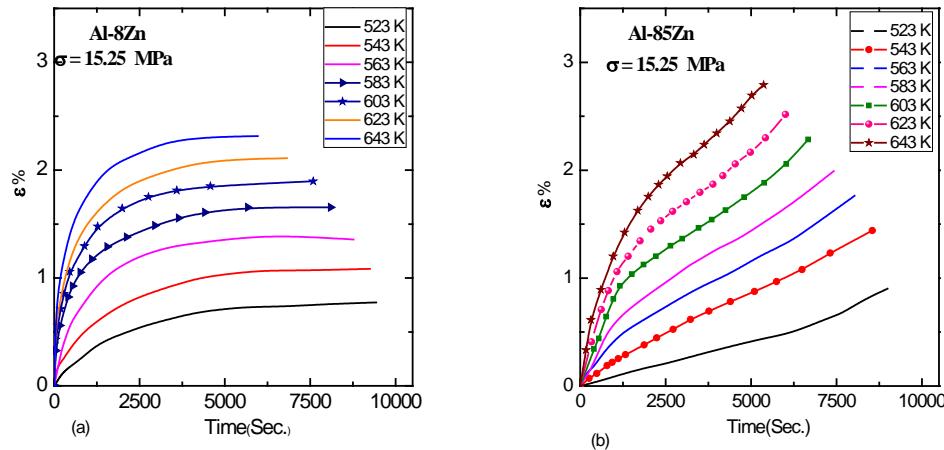


Figure (1): Isothermal Strain-Time diagrams for 15.25 MPa for different seven tested temperatures for a) Al-8Zn, and b) Al-85Zn

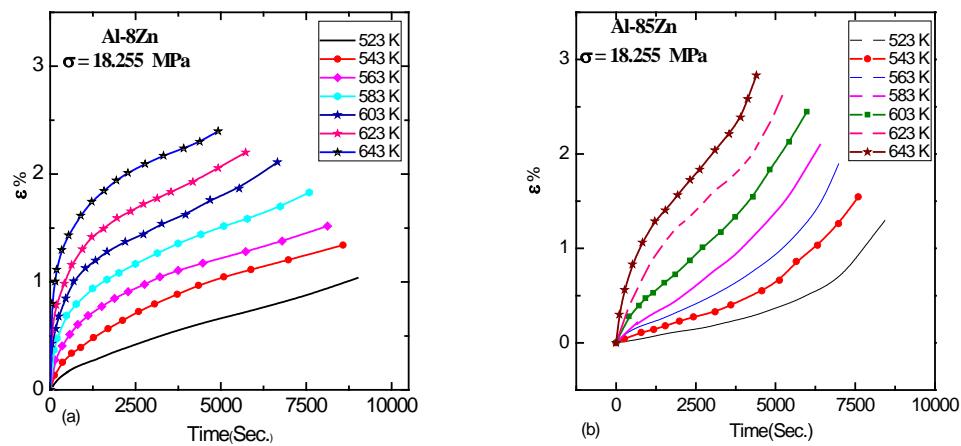


Figure (2): Isothermal Strain-Time diagrams for 18.255 MPa for different seven tested temperatures for a) Al-8Zn, and b) Al-85Zn

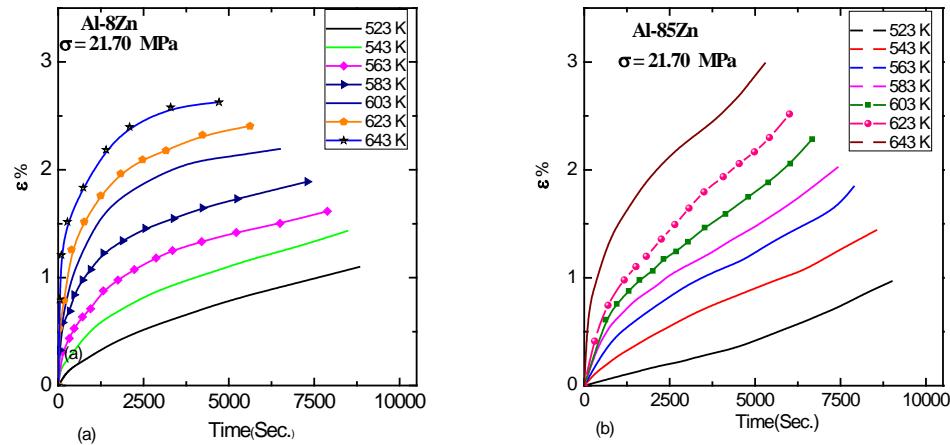


Figure (3): Isothermal Strain-Time diagrams for 1) Al-8Zn, and 2) Al-85Zn at 21.7 MPa for different seven tested temperatures

The relationship through in straintransient and in time donate upright ranges as represented at Figure (4-6) a, b. The values of strain / time denotes the amount for the exponent of the first strain-time diagrams; parameters n are point for possessing amounts about 0.31 until 0.85 in case of Al-8Zn samples; about 0.44 until 1.22 in case of Al-85Zn alloys see table 2. n parameters are heightened according to heighten distortion degree in case of two specimens accordingly represented in Figure(7); while their intercepts for \ln time equal zero denotes; β the strain-time coefficient, β has been obtained using Equation(2) [54].

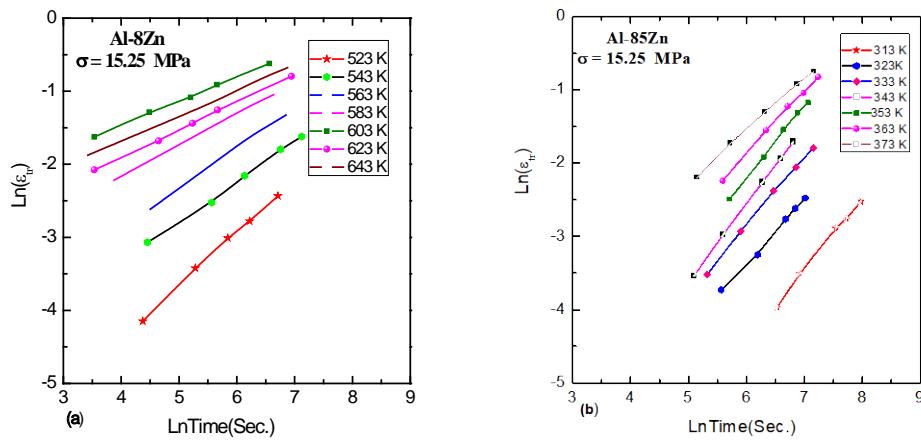


Figure (4): Relation through $\ln(\varepsilon_{tr})$ and \ln time at 15.25 MPa for a) Al-8Zn, and b) Al-85Zn.

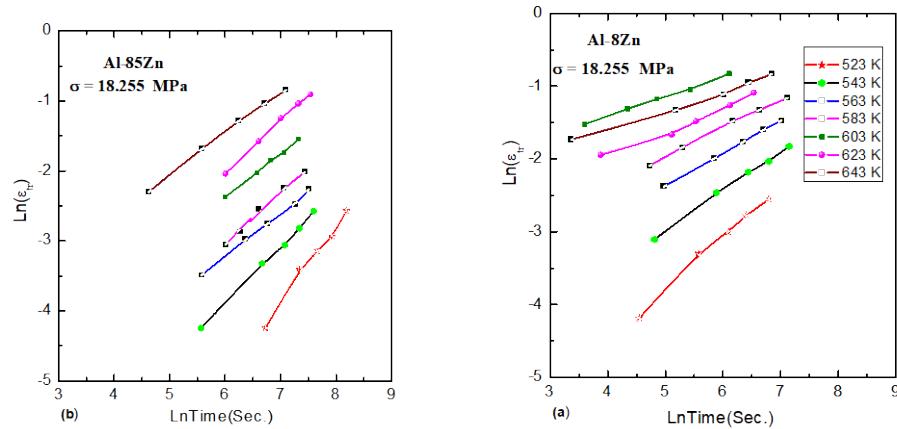


Figure (5): Relation through $\ln(\varepsilon_{tr})$ and \ln time at 18.255 MPa for a) Al-8Zn, and b) Al-85Zn for different seven tested temperatures

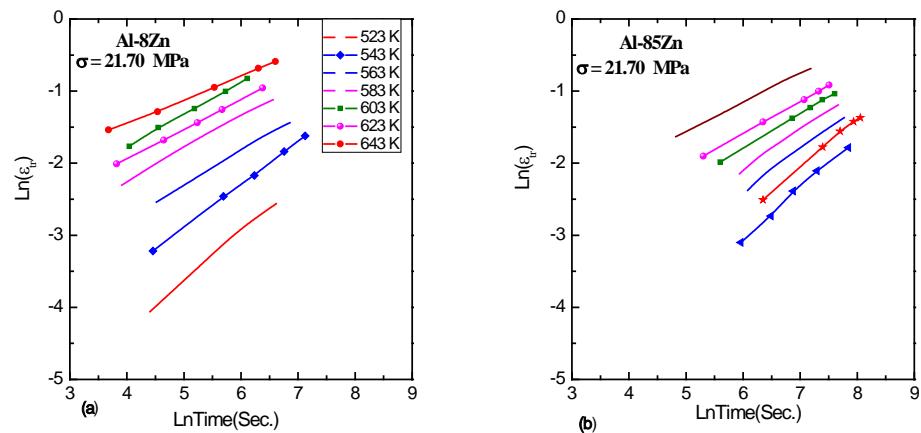


Figure (6): Dealing through $\ln(\text{strain}_{\text{transient}})$ and \ln time around 21.7 MPa for a) Al-8Zn, and b) Al-85Zn

$$\ln\beta = (\ln\epsilon_{tr2} - \ln\epsilon_{tr1}) / \ln\epsilon_{tr2} - \ln\epsilon_{tr1} \quad (3)$$

The β coefficient has been organized as increasing according to augment loads besides of degrees accordingly represented in Figure(8), β

coefficient has the number between -4.3 until -12.54 in case of Al-8Zn samples; between -6.1 until -13.5 in case of Al-85Zn alloys as shown in Table 2.

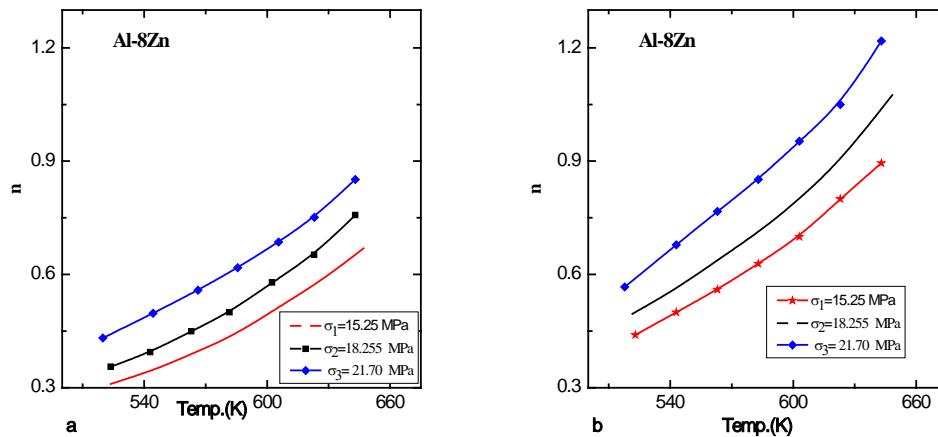


Figure (7): Subordination for parameters, n , in case of a) Al-8Zn, and b) Al-85Zn

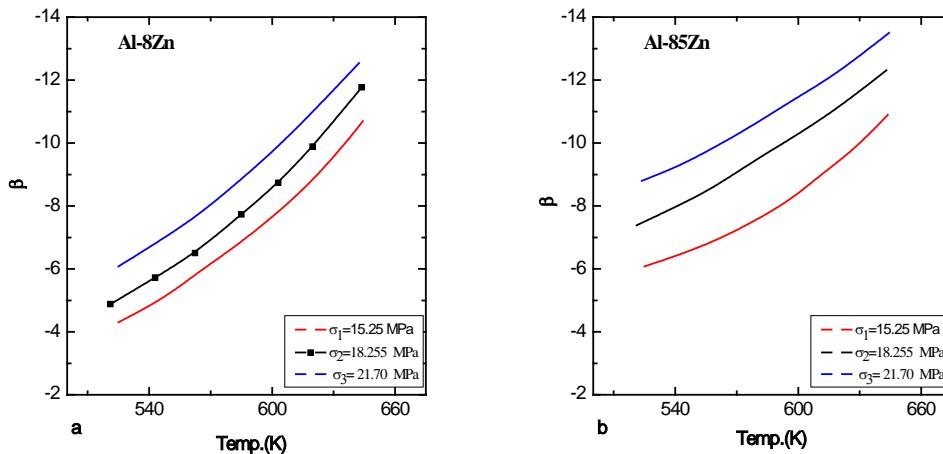


Figure (8): Relation for parameters, β in case of a) Al-8Zn, and b) Al-85Zn

Figure (9) investigates the relationship through In straintransient and 1000/temperature (Kelvin) for a minimum degrees in case of Al-8Zn beside of Al-85Zn samples to seven different working degrees; values of A.E. are 45.6; 39.8 kilo joule mole-1 at a minimum degree for tested alloys and 62.4 and 45.7 kilo joule mole-1 at maximum degree see it represented in Figure (10); besides of table 2; it is clear that A.E. in case of Al-8Zn samples is higher that of Al-85Zn; thus Al-85Zn samples genesis higher precise for granule dimension beside of more elasticity compared with Al-8Zn specimens.

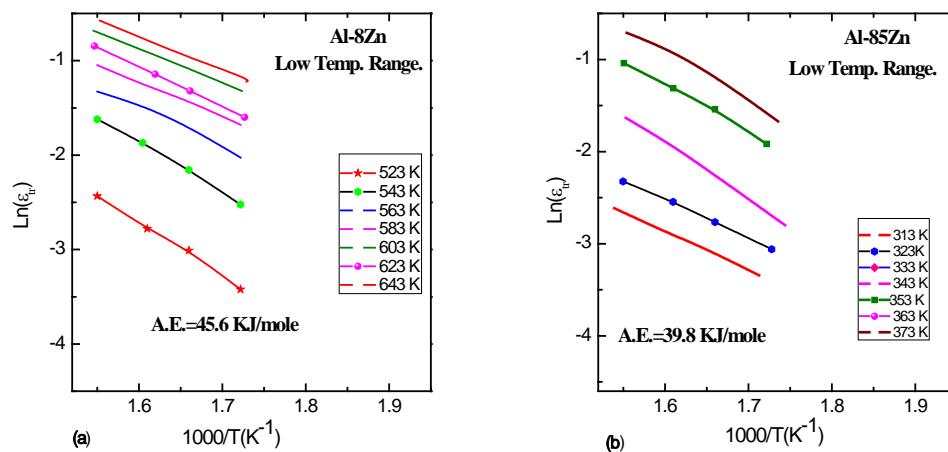


Figure (9): Relationship through in strain transient and 1000/temperature (Kelvin) for a) Al-8Zn, and b) Al-85Zn for low temperature range

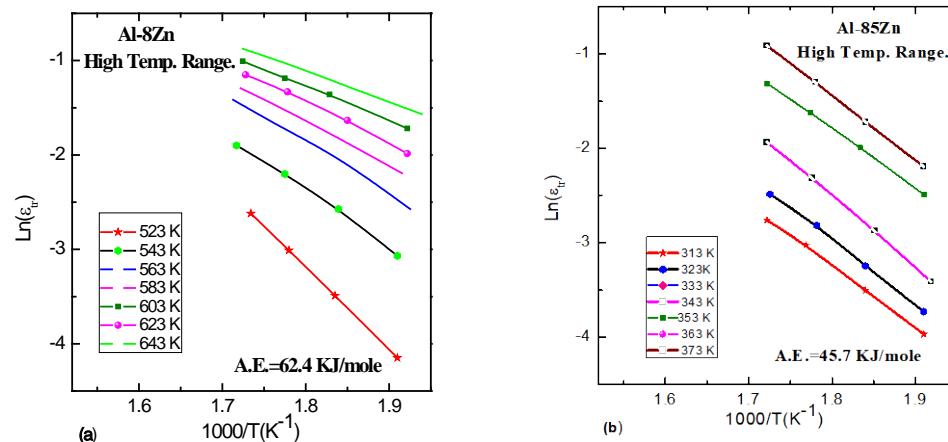


Figure (10): Relationship through in strain transient and 1000/temperature (Kelvin) for a) Al-8Zn, and b) Al-85Zn for high temperature range

Table (2): Competition for transient strain-time coefficient

Samples	Exp. n	β eta	A.E. (kJmol⁻¹)
Aluminum-8Zinc	0.31 : 0.85	20.2 : 28.8	45.6 : 62.4
Aluminum-85Zinc	0.44 : 1.22	18.1 : 26.0	39.8 : 45.7

For interfacing the relation through two strain-time intervals; the connections through in β eta and in strain rate_{steady} is illustrated in Figure eleven; the value of in β eta/in strain rate_{steady} denotes amounts for γ ; it is clear that the value of γ is higher for Aluminum-85 Zinc than the second Samples; therefore Al-85Zn alloys are more superplastic than Al-8Zn alloys.

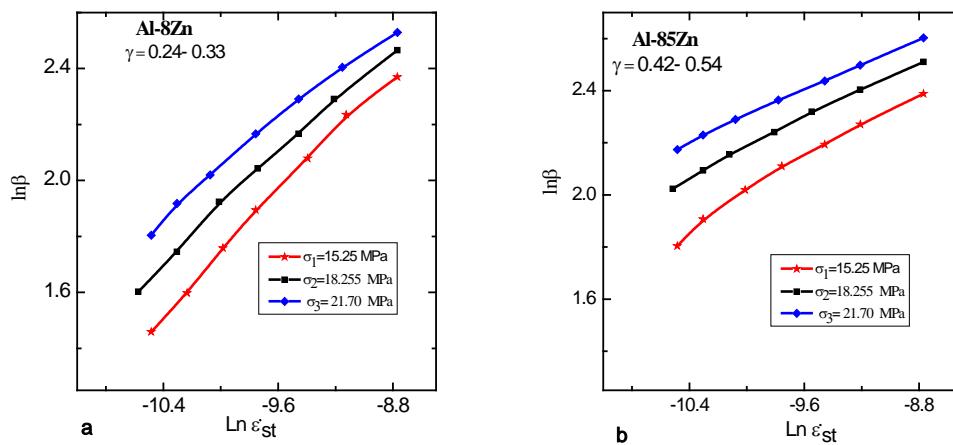


Figure (11): Relationship through in β and in strain in case of a) Al-8Zn, and b) Al-85Zn

ii. Steady-state creep stage

Functional steady-state strain-time is represent by Dorn equation [55,56].

$$\dot{\epsilon} = A x (1/d)^p \cdot \exp(-Q/RT) \times \tau^n \quad (4)$$

Anywhere A is constant; p grain size; Q activation energy and n stress exponential; these amounts depend on microstructure beside of mechanism; therefore strain rate $\dot{\epsilon}$.

$$\dot{\epsilon} = A x (1/d)^p \exp. (-Q/RT) \times \sigma^n \quad (5)$$

We find, two or three parameter has been required for investigating steady-state strain-time, also the permanent creep mechanism is depends on microstructure and applied loads [57].

The steady-state strain rate (strain_{steady}) ($\dot{\epsilon}_{st}$) of the present alloys has been obtained by using values for strain/time for strain-time study as represented in Figures (1-3). It grows according to reproducible temperature besides loads as shown in Figure (12). Therefore using himself experimental circumstances for Aluminum-85Zinc samples demonstrated elevated strain rate $\dot{\epsilon}_{st}$; contrasted by $\dot{\epsilon}_{st}$ for Aluminum-8Zinc; we observed closely to all curves was described through all the three characteristic parts: (one) primary, (two) secondary state, and (three) tertiary. Because of stress besides temperature seem a constant, distinction for behavior suggests a necessary change for microstructure. Strain ϵ and strain rate $\dot{\epsilon}$ are, in predominant, minimum in case of Aluminum-8Zinc specimens but for Aluminum-85Zinc specimens whereas even used loads, will smoothing microstructure for second samples. Like variations within strain-time behavior is regarding with variations in morphology and microstructure for specimens.

We find reality there is independent of the elongation at a lower strain-time average, indicates such strain-time attitude was mightily affected using zinc

addition. Moreover, a present gained lower strain-time moderate is separate with strain-time sapping operator for continuous crystallizes again [58].

The relationship between loads $\ln \sigma$, against average $\ln \epsilon_{st}$ for different applied stresses for Aluminum-8Zinc and Aluminum-85Zinc alloys has been represented by Figure (13, a, b). The magnitude for strain average sensitivity parameter m calculated using $\ln \sigma / \ln \epsilon_{st}$, it has values about 1.41 until 1.361 in case of Aluminum-85Zinc, ranging from about 1.11 until 1.41 in case of Aluminum-8Zinc see Figure (13, c). We find such m magnitude in case of Aluminum-85Zinc was altitude in amount with Aluminum-8Zinc specimens, illustrating m coefficient installation becomes degree dependent therefore Al-85Zn alloys are more superplastic than Al-8Zn alloys.

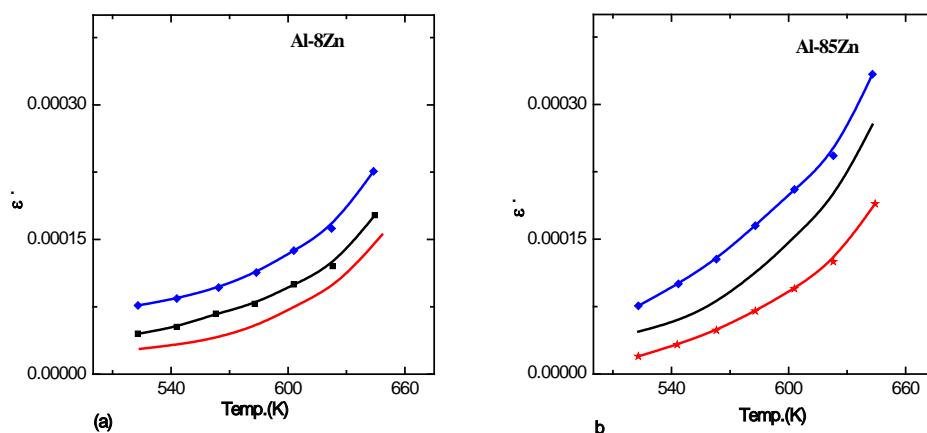


Figure (12): The relation through Strain Rate ($\dot{\varepsilon}_{st}$) in case of a) Al-8Zn, and b) Al-85Zn

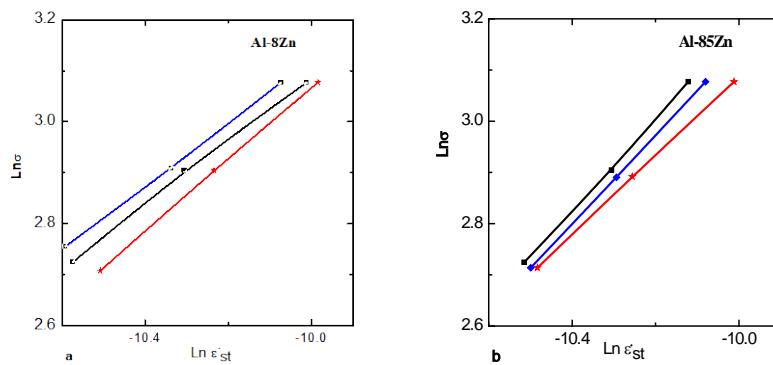


Figure (13) a, b: The relation through in stress and in strain rate $\dot{\varepsilon}_{st}$ in case of a) Al-8Zn, and b) Al-85Zn; c) the relation through m and stress (MPa) for a) Al-8Zn, and b) Al-85Zn; c)

The A.E. for strain-time when we use fixed loads has been represented by equation [59].

$$A.E. = R \left(\partial \ln \text{strain}_{st} / \partial (1/T) \right) \quad (6)$$

where R is the gas constant.

Furthermore, our obtained consequences confirm the formula of steady-state strain-time [48]

$$\dot{\varepsilon}_{st} = c \left(\frac{\sigma}{d} \right)^{1/m} \exp \left(\frac{Q}{kT} \right) \quad (7)$$

where $m = 0.5$ for dislocation climb among grain boundaries [46]. Thus, we find that more strain is due to dislocation activity leads to grain boundary sliding beside contained it through distortion.

A.E. of steady-state strain-time is determined by plotting $\ln \text{strain}_{st}$ and $1000/T$ (kelvin) for Aluminum-85Zinc beside Aluminum-8Zinc samples.

A.E. in case of first beside of second specimens are ranged from 77.6 and 69.1 and in case of the low temperature regions and 97.9 and 83.6 kilo joule mole⁻¹ at elevation degree regions and second alloys be 77.6

and 69.1 and at the low-temperature regions and 97.9 and 83.6 kJ mol⁻¹ in the high-temperature regions, consecutively as represented in Figures (14, 15). We induce that A.E. in the case of Aluminum-8Zinc specimens lower than of Aluminum-8Zinc alloys, i.e., first alloys is more in superplasticity than the other by about 13 to 17 % in all regions as represented in Table (three).

Specimens	(<i>m</i>)	γ	Q (kJmol ⁻¹)
Aluminum-8Zinc	1.11 : 1.41	0.24 : 0.33	77.6 : 97.9
Aluminum-85Zinc	1.41 : 1.361	0.42 : 0.54	69.1 : 83.6

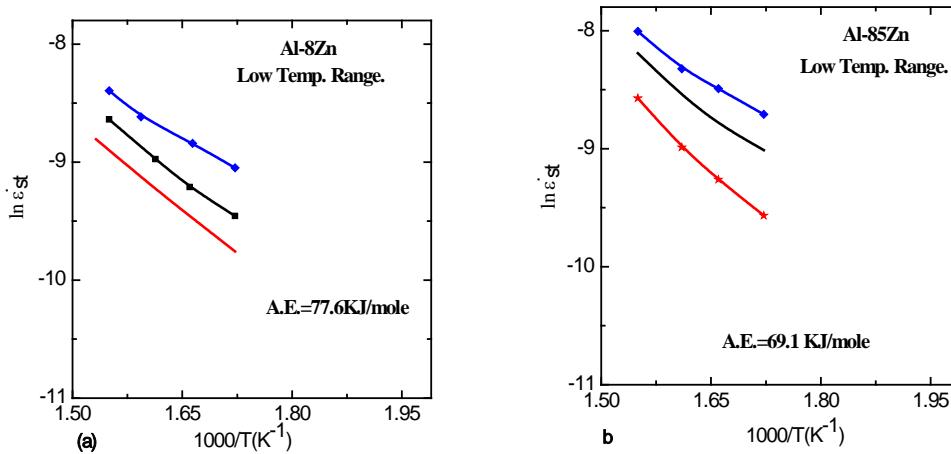


Figure (14): Relationship through \ln strain rate_{st} and $1000/\text{Temp.}(K)$ for a) Al-8Zn and b) Al-85Zn for low-temperature range

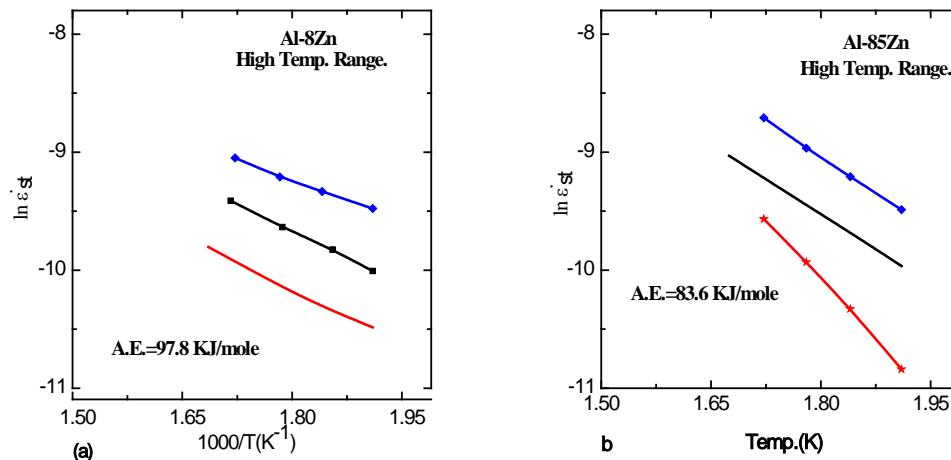


Figure (15): Relationship through \ln strain rate_{st} and $1000/\text{Temp.}(K)$ for a) Al-8Zn, and b) Al-85Zn for high-temperature range

Figure (16) represented XRD consequences for Aluminum-85Zinc and Aluminum-8Zinc analysis. Predominant analysis specimen has been fundamentally superimposed from Aluminum beside of Zinc structure. EDX pattern of present uses specimens; where white Al phase and dark Zn phase has been represented in Figure (17). The Scanning Electron Microscope morphology for two specimens is illustrated in Figure (18); within Figure (18) a); is Al-8Zn, where Al with white phase in prevalent phase while Zn is minority dark phase; while in b) is Al-85Zn binary alloy where Al with white phase in minority phase while Zn is gray.

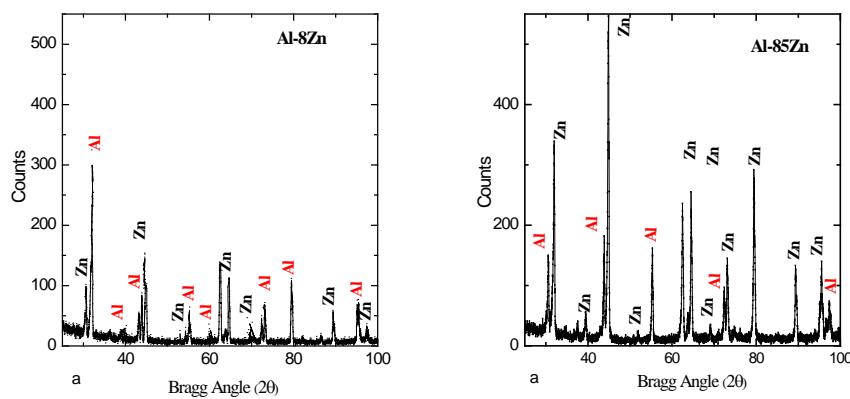


Figure (16): XRD pattern for a) Al-8Zn, and b) Al-85Zn binary alloys are mainly composed of Al and Zn phases

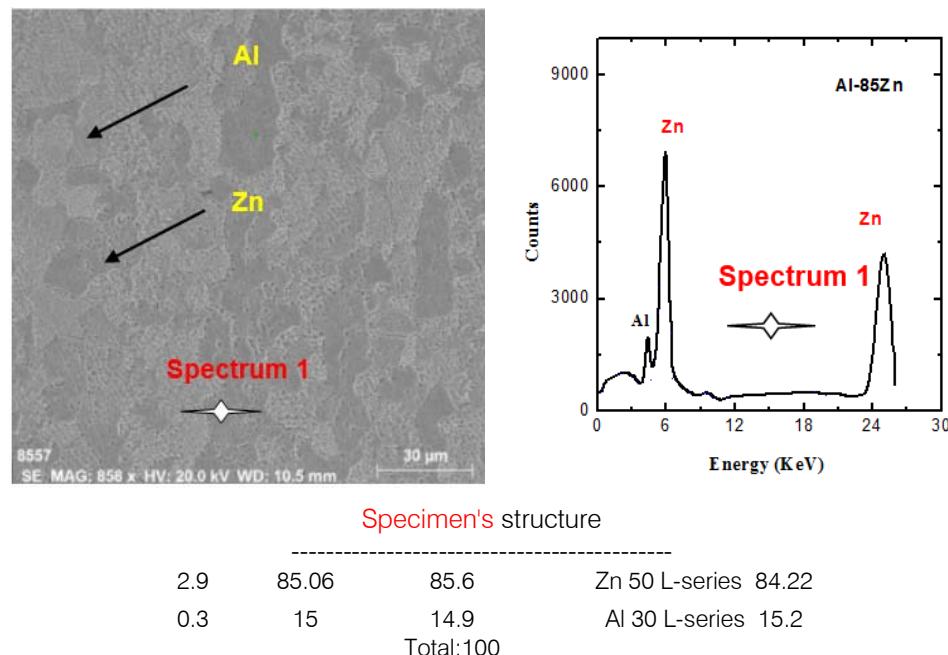


Figure (17): EDX pattern for the tested specimens; white Al phase and dark Zn phase

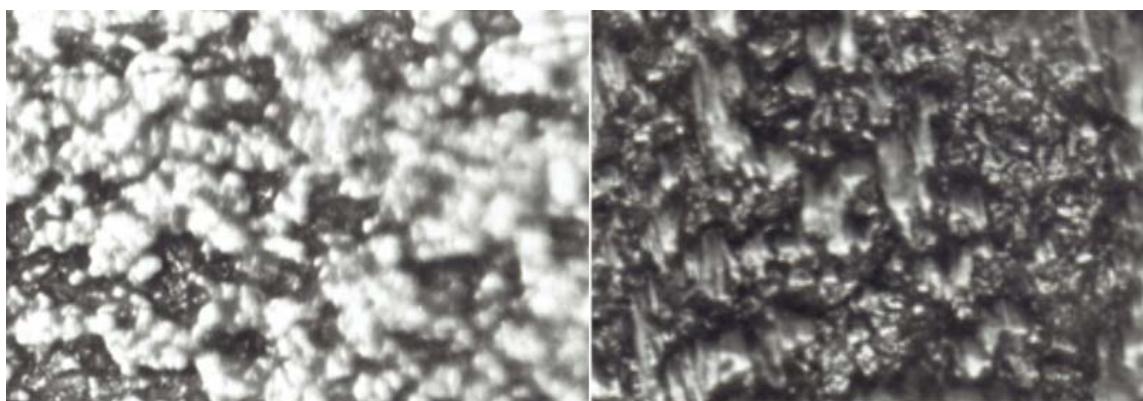


Figure (18): The Scanning Electron Microscope photograph has been illustrated in Figure (18) a); is Al-8Zn, where Al with white phase in prevalent phase while Zn is minority dark phase; while in b) is Al-85Zn binary alloy where Al with white phase in minority phase while Zn is a prevalent phase

IV. CONCLUSION

We derived some results, which are:

1. Time exponent n and were own magnitudes about 0.31 until 0.85 in case of Al-8Zn; between 0.44 until 1.22 in case of Al-85Zn alloys.
2. A. E. for first part strain-time were 45.6 while 39.8 kilo joule mole-1 in low- temperature regions for tested alloys and 62.4 and 45.7 KJ/mole in high-temperature regions.
3. (m) coefficient is increase with increasing the working degree.
4. A.E. for second part strain-time were 77.6 while 69.1 kilo joule mole-1 in low- temperature regions for tested alloys and 97.9 and 83.6 KJ/mole in high-temperature regions consecutively, characterizing grain boundary diffusion; therefore, we find at oneself experiments circumstances Aluminum-85Zinc specimens indicated elevation strain rate $\dot{\epsilon}_{st}$ concurrence to that of Aluminum -8Zinc.

REFERENCES RÉFÉRENCES REFERENCIAS

1. R. W. Evans, J. D. Parker, and B. Wilshire, Int. J. Pressure Vessels Piping 50, 147-160 (1992).
2. R. Fernandez, G. Bruno, and G. Gonzalez-Doncel; Primary and secondary creep in aluminum alloys as a solid state transformation; JOURNAL OF APPLIED PHYSICS 120, 085101 (2016).
3. P. Krizik, M. Balog, M. Nosko, M. V. C. Riglos, J. Dvorak, and O. Bajana, Mater. Sci. Eng. A657, 6-14 (2016).
4. V. Dudko, A. Belyakov, and R. Kaibyshev, Trans. Indian Inst. Met. 69(2), 223-227 (2016).
5. A. Alizadeh, A. Abdollahi, and H. Biukani, J. Alloys Compd. 650, 783-793 (2015).
6. W. Blum, in Creep of Aluminium and Aluminium Alloys. Hot Deformation of Aluminium Alloys, edited by T. G. Langdon, H. D. Merchant, J. G. Morris, and M. A. Zaidi (The Minerals, Metals & Materials Society, Warrendale, PA, USA, 1991), pp. 181-209.
7. Eliasson J., Sandstrom R., Applications of Aluminium Matrix Composites, Key Engineering; Materials, Vol. 104-107, pp 3-35, 1995.
8. ASM Handbook, Vol. 19: Fatigue and Fracture, A SM International, Metal Park, Ohio, 1997.
9. Thomas M.P., King J.E., Effect of Thermal and Mechanical Processing on Tensile Properties of Powder Formed 2124 Aluminium and 2124Al-SiCp Metal Matrix Composites, Materials Science and Technology, Vol. 9, pp 742-753, September, 1993.
10. S.R. Holdsworth, G. Merckling, Developments in the Assessment of Creep-Rupture Properties "[online]. CCCtp://www.omm.co.uk/etd/eccc/advancedcreep/SRHGMpap1.pdf (Accessed on 25/3/2012).
11. Nuclear Research (2010), Nuclear Research Index Section A, Structural Integrity, ttp://www.hse.gov.uk/nuclear/nritopics/2012/section-a.pdf. (Accessed on 25/3/2012).
12. Q. Xu. (2000) Development of constitutive equations for creep damage behaviour under multi-axial states of stress. Advances in Mechanical Behaviour, Plasticity and Damage. pp. 1375-1382.v
13. Y. H. Gao; C. Yang; J. Y. Zhang; L. F. Cao; and G. Liu; Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C; Materials Research Letters Volume 7, 2019-Issue 1; pp.1-24.
14. Polmear.I.J.4-Cast aluminium alloys Light alloys.4th ed. Oxford, UK: Elsevier; 2005. p.205-235.
15. Ovid'kolA, ValievRZ, ZhuYT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci.2018;94: 462-540.
16. Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys-A review. Z Für Met.2006; 97:246-265.
17. WadsworthJ, NiehTG, StephensJJ. Recent advances in aerospace refractory metal alloys. Int Mater Rev. 1988; 33:131-150.
18. Sherby OD, Burke PM. Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci. 1968; 13: 323-390. doi: 10.1016/0079-6425(68)90024-8.
19. Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing. Acta Mater.2002;50:3597-3608. doi:10.1016/S1359-6454(02)00164-7.
20. Hutchinson C R, Fan X, Pennycoo k S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag alloys. Acta Mater.2001;49: 2827-2841. doi:10.1016/S1359-6454(01)00155-
21. Kumar Makineni S, Sugathan S, Meher S, et al. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12Al3Zr precipitates and nucleating θ'' precipitates on them. Sci Rep.2017; 7:11154. doi:10.1038/s41598-017-11540.
22. Chao Lei; Heng Li; Jin Fu; Nian Shi; Gaowei Zheng and Tianjun Bian; Damage in Creep Aging Process of an Al-Zn-Mg-Cu Alloy: Experiments and Modeling; Metals 2018, 8(4), 285
23. Holman, M.C. Autoclave age forming large aluminum aircraft panels. J. Mech. Work. Technol. 1989, 20, 477-488.
24. Liu, L.F.; Zhan, L.H.; Li, W.K. Creep aging behavior characterization of 2219 aluminum alloy. Metals 2016, 6, 146.
25. Xu, Y.Q.; Zhan, L.H. Effect of creep aging process on microstructures and properties of the retrogressed Al-Zn-Mg-Cu alloy. Metals 2016, 6, 189.
26. Li, W.K.; Zhan, L.H.; Liu, L.F.; Xu, Y.Q. The effect of creep aging on the fatigue fracture behavior of 2524 aluminum alloy. Metals 2016, 6, 215.

27. Li, L.T.; Lin, Y.C.; Zhou, H.M.; Jiang, Y.Q. Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. *Comput. Mater. Sci.* 2013, 73, 72–78.

28. Vahid Monfared; Review on Creep Analysis and Solved Problems; Open access peer-reviewed chapter; DOI: 10.5772/intechopen.71184; 2017.

29. Arabi Jeshvaghani, R.; Shahverdi, H.R.; Hadavi, S.M.M. Investigation of the age hardening and operative deformation mechanism of 7075 aluminum alloy under creep forming. *Mater. Sci. Eng. A* 2012, 552, 172–178. [Google Scholar]

30. Reinaldo Correa1, Héctor Sánchez1, Jorge A. Calderón2*; Improvement of micro-hardness and electrochemical properties of Al–4%Cu–0.5% Mg alloy by Ag addition; Print version ISSN 0120-6230; Rev.fac.ing.univ.Antioquia no.61 Medellín Dec. 2011

31. L. B. Ber, V. V. Teleshov, O. G. Ukolova. "Aluminum and high – temperatura allos. Phase composition and mechanical properties of wrought aluminum alloys of the sistem Al–Cu–Mg–Ag–Xi." *Revista Metal Science and Treatment*. Vol. 50. 2008. pp. 220–227. [Links]

32. V. V. Teleshov, D. A. Andreev, A. P. Golovleva. "Effect of chemical composition on the strength of alloy of the Al–Cu–Mg–Ag sistem after neating at 180– 210°C". *Metal Science and Heat tretment*. Vol. 48. 2006. pp. 104–112.

33. S. Min, X. Daihong, Z. Fugin. "Effect of Ce on the termal stability of the Ω phase in an Al –Cu–Mg–Ag alloy". *Rare metals*. Vol. 28. 2009. pp. 156–159.

34. Y. C. Chang, J. M. Howe. "Composition and stability of Ω phase in Al–Cu–Mg–Ag alloy." *Met. Trans. A*. Vol. 24. 1993. pp. 1461–1470.

35. L. M. Wang, H. M. Flower. "Precipitation of Ω phase in 2024 and 2124 aluminum alloy." *Scripta Materialia*. Vol. 41. 1999. pp. 391–396.

36. D. A. Little, B. J. Connolly, J. R. Scully. "An electrochemical framework to explain the intergranular stress corrosion behavior in two Al–Cu–Mg–Ag alloys as a function of aging". *Corr. Science*. Vol. 49. 2007. pp. 347–372

37. Longfei Li, Shouxun Ji, Qiang Zhu, Yun Wang, Xixi Dong, Wenchao Yang, Effect of Zn Concentration on the Microstructure and Mechanical Properties of Al-Mg-Si-Zn Alloys Processed by Gravity Die Casting; Advertisement; Springer ;Metallurgical and Materials Transactions A volume 49, pp.3247–3256(2018).

38. S. Ji, F. Yan, Z. Fan: *Mater. Sci. Eng., A*, 2015, vol. 626, pp. 165-174.

39. S. Ji, F. Yan, Z. Fan: *Light Metals*, 2016, pp. 207-10. <https://doi.org/10.1007/978-3-319-48251-4>

40. F. Yan, W. Yang, S. Ji, Z. Fan: *Mater. Chem. Phys.*, 2015, vol. 167, pp. 88-96.

41. L. Yan, Y. Zhang, X. Li, Z. Li, F. Wang, H. Liu, and B. Xiong: *Prog. Nat. Sci. Mater. Int.*, 2014, vol. 24, pp. 97-100.

42. X. Ding, H. Cui, J.X. Zhang, H.X. Li, M.X. Guo, Z. Lin, L.Z. Zhuang, J.S. Zhang: *Mater. Des.*, 2015, vol. 65, pp. 1229-1235.

43. Samson Adeosun; Sanmbo Balogun; Lawrence O. Osoba; and Wasiu Ayoola; Effect of Cu and Zn Addition on the Mechanical Properties of Structural Aluminum Alloy; *Journal of Modern Manufacturing Technology*; March 2020; Vol. <https://www.Researchgate.net/journal/Manufacturing-Technology-1213-2489> 3(1); pp. 103-110

44. Venkata Ranga Reddy, D. (2008), "Microalloying of Advanced Al-Zn-Mg-Cu Alloy" *Metalworld Technology*, 16-17.

45. M.Y.Salem; Effects of Cu addition on creep characteristics of Sn–9Zn lead-free solders; *Egypt. J. Solids*, Vol. (39); 2016, 106-121.

46. M.Y.Salem ;Transient and steady-state creep characteristics of Transformations in Al-Zn Binary Alloys; *International Journal of New Horizons in Physics* 4, No.2; 2017; 21-33.

47. M.Y.Salem; Effect of Small Additions of Indium on Transient and Steady-State Creep Characteristics, Microstructure and Properties of Sn-9Zn lead-Free Solders; *Journal: Arab J. Nucl. Sci. Appl.*, Vol. 51, 3, 69-86(2018).

48. M.Y.Salem; Steady state creep characteristics of Sn96.5Ag3.5 Based Alloys; *International Journal of Thin Films Science and Technology*; 7, No. 2, - (2018), pp.49-59.

49. Shivakumar S.P , Sharan A.S , K.sadashivappa; Constitutive modeling of creep properties of Aluminum 6061 Alloy; *IOP Conf. Series; Materials Science and Engineering*; Vol;310 p.012027; 2018.

50. A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-Shaarawy, A.M. Abdraboh, *J. Alloys, Compd.* 484 (2009) 134–142.

51. M.S. Saker, A.Z. Mohamed, A.A. El-Daly, A.M. Abdel-Daiem, A.H.Bassyouni, *Egypt. J. Solids* B2 (1990) 34.

52. M.Y.Salem, A.Z. Mohamed; Transient creep characteristics of Tin Base Alloy; *American Research, Journal of Physics*; vol 4, no. 1, 2018, pp. 1-12.

53. Mahmoud Youssef Salem "Influence of Cu Addition on the Transient Creep Characteristics of Sn–9Zn-1.5 Ag Solder Alloy". *American Research Journal of Physics*. 2020; 6(1): 1-11.

54. M.Y.Salem "Study of Transient Creep Characteristics of Zinc-40 Aluminium and Zinc-90Aluminium". *American Research Journal of Physics*, vol 6, no. 1, 2020, pp. 1-8.

55. P.L. Hacke, A.F. Sprecher, and H. Conrad, *J. Electron. Mater.* 26, 775 (1997).

56. W.H. BANG, K.H. OH, J.P. JUNG, J.W. MORRIS, Jr., and FAY HUA; The Correlation between Stress Relaxation and Steady-State Creep of Eutectic Sn-Pb Journal of ELECTRONIC MATERIALS, Vol. 34, No. 10, 2005.
57. J.W. Morris, Jr. and S.H. Kang , PRICM 3, ed. M.A. Imamet al. (1998), p. 2563.
58. Adam Tomczyk, Andrzej Seweryn, and Małgorzata Grądzka-Dahlke; The Effect of Dynamic Recrystallization on Monotonic and Cyclic Behaviour of Al-Cu-Mg Alloy; Materials (Basel). 2018 Jun; 11(6): 874.
59. Effect of Zinc on the Tensile Properties, Microstructure and characteristics in Aluminum Alloys M.Y.Salem; Egypt. J. Solids, Vol. (43), (2021).