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On Fermat's Last Theorem Matrix Version
and Galaxies of Sequences of Circulant
Matrices with Positive Integers as Entries

Joachim Moussounda Mouanda °, Jean Raoul Tsiba ° & Kinvi Kangni ®

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et
generaliter nullam in infinitum ultra quadratum potestatum in duos ejusdem nominis fas
est dividere: cujes rei demonstrationem mirabilem sane detexi. Hane marginis exiguitas

non caperet.
-Pierre de Fermat (1637).

Abstract- We introduce Mouanda's choice function for matrices which allows us to construct the
galaxies of sequences of triples of circulant matrices with positive integers as entries. We give many
examples of the galaxies of circulant matrices with positive integers as entries. The characterization
of the matrix solutions of the equation X2 + Y? = Z2allows us to show that the equation
X 2”+ X2 g2n (nz 2) has no circulant matrix with positive integers as entries solutions. This
allows us to prove that, in general, the equation X"+ Y "= 7 ”(n > 3) has no circulant matrix with
positive integers as entries solutions. We prove Fermat's Last Theorem for eigenvalues of circulant
matrices. Also, we show Fermat's Last Theorem for complex polynomials over [ associated to
circulant matrices.

Keywords: Fermat's equation, polynomials, model theory, circulant matrices, Mouanda's
choise function, galaxy, Toeplitz matrices.

[. [NTRODUCTION AND MAIN RESULT

It is well known that there are many solutions in integers to the equation
2?2 + y? = 22, for instance (3,4,5); (5,12,13). Around 1500 B.C, the Babylo-
nians were aware of the solution (4961, 6480, 8161) and the Egyptians knew
the solutions (148, 2736, 2740) and (514, 66048, 66050). Also Greek math-
ematicians were attracted to the solutions of this equation. We notice that
this equation has sequences of complex number solutions

(1+2ixa"2ixa"—2xa*1+2ixd"—2xa*),acCkecN

and matrix solutions
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In 1637, Pierre de Fermat wrote a note in the margin of his copy of Diophan-
tus Arithmetica [1] stating that the equation

2" +y" =2"neNn>2),zryz #0 (1.1)

has no integer solutions. This is the Fermat Last Theorem. He claimed that
he had found the proof of this Theorem. The only case Fermat actually wrote
down a proof is the case n = 4. In his proof, Fermat introduced the idea of
infinite descent which is still one the main tools in the study of Diophantine
equations. He proved that the equation 2 +y* = 2% has no solutions in rela-
tively prime integers with xyz # 0. Solutions to this equation correspond to
rational points on the elliptic curve v? = u® —4u. The proof of the case n = 3
was given first by Karl Gauss. In 1753, Leonhard Euler gave a different prove
of Fermat’s Last Theorem for n = 3[2, 3|. In 1823, Sophie Germain proved
that if [ is a prime and 2 + 1 is also prime, the equation z! + ' = 2! has no
solutions (x,y,z) with zyz # 0(modl). The case n = 5 was proved simultane-
ously by Adrien Marie Legendre in 1825 [4, 5] and Peter Lejeune Dirichlet
[6] in 1832. In 1839, Gabriel Lame proved the case n = 7 [7, 8, 9, 10]. Be-
tween 1840 -1843, V. A. Lebesque worked on Fermat’s Last Theorem [11, 12].
Between 1847 and 1853, Ernst Eduard Kummer published some masterful
papers about this Theorem. Fermat’s Last Theorem attracted the atten-
tion of many researchers and many studies have been developed around this
Theorem. For example the work of Arthur Wieferich (1909), Andre Weil
(1940), John Tate (1950), Gerhard Frey (1986), who was the first to suggest
that the existence of a solution of the Fermat equation might contradict the
modality conjecture of Taniyama, Shimura and Weil [29]; Jean Pierre Serre
(1985 - 1986) [14, 15, 16], who gave an interested formulation and (with J.
F. Mestre) tested numerically a precise conjecture about modular forms and
Galois representations mod p and proved how a small piece of this conjecture
the so called epsilon conjecture together Modularity Conjecture would imply
Fermat’s Last Theorem; Kennedy Ribet (1986) [17], who proved Serre’s ep-
silon conjecture, thus reducing the proof of Fermat’s Last Theorem; Barry
Mazur (1986), who introduced a significant piece of work on the deforma-
tion of Galois representations [18, 19]. However, no final proof was given to
this Theorem. This Theorem was unsolved for nearly 350 years. In 1995,
using Mazur’s deformation theory of Galois representations, recent results
on Serre’s conjecture on the modularity of Galois representations, and deep
arithmetical properties of Hecke algebras, Andrew Wiles with Richard Tay-
lor succeeded in proving that all semi-stable elliptic curves defined over the
rational numbers are modular. This result is less than the full Shimura-
Taniyama conjecture. This result does imply that the elliptic curve given
above is modular. Therefore, proving Fermat’s Last Theorem [20, 21]. Many
mathematicians are still heavenly involved on studying Fermat’s Last The-
orem [22, 23, 24]. In 2021, Nag introduced an elementary proof of Fermat’s
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Last Theorem for epsilons[25]. In 2022, Mouanda constructed the galaxies of
sequences of triples of positive integers solutions of the equation 2% +y? = 22
The unique characterization of the solutions of this equation allowed him to
provide an elementary analytic proof of Fermat’s Last Theorem [26]. The Fer-
mat Last Theorem for positive integers has been extended over some number
fields. In 1966, Domiaty proved that the equation X* +Y* = Z* is solvable

in My(Z) [27]. Let GL,(Z) be the group of units of ring M,(Z). Denote by

Ref

SL,(Z) ={A € M,(Z) : detA =1}. (1.2)
In 1989, Vaserstein investigated the question of the solvability of the equation
X"4+Y"=2"n>2ncN, (1.3)

for matrices of the group G Ly(Z) [28]. In 1993, Frejman studied the solvabil-
ity of the equation (1.3 ) in the set of positive integer powers of a matrix A
with elements a3 = 0,a12 = ag; = age = 1 [29]. In 1995, the same case was
studied by Grytczuk [30]. The same year, Khazanov proved that in GL3(Z)
solutions of the equation (1.3 do not exist if nis a multiple of either 21 or
96, and in SL3(Z) solutions do not exist if n is a multiple of 48 [31]. In
1996, Qin gave another proof of Khazanov’s result on the solvability of the
equation (1.3) in SLs(Z) [32]. In 2002, Patay and Szakacs described the pe-
riodic elements in G Ls(Z) and gave the answer to some problems concerning
the equation (1.3) in matrix groups and in irreducible elements of matrix
rings [33]. In 2021, Mao-Ting and Jie proved that Fermat’s matrix equation
has many solutions in a set of 2-by-2 positive semi-definite integral matrices,
and has no nontrivial solutions in some classes including 2-by-2 symmetric
rational and stochastic quadratic field matrices [34]. Fermat’s Last Theorem
has been extended to the field of complex polynomials of one variable [35].

This Theorem has many applications in Cryptography.

In this paper, we are mainly concerned with Fermat’s Last Theorem for
circulant matrices with positive integers as entries. Firstly, we focus our
attention on the construction of the galaxies of sequences of triples of cir-
culant matrices with positive integers as entries solutions of the equation
X% +Y? = Z2% In particular, Mouanda’s matrix choice function allows us to
construct practical examples of such galaxies. The elementary characteriza-
tion of these matrix solutions allows us to prove Fermat’s Last Theorem for
circulant matrices with positive integers as entries.

Theorem 1.1. The equation

epsilons, Advances in Pures Mathematics, 11(2021), 735-740.

X"+Y"=2"XYZ#0,n€N(n>3)

25. Nag. B.B, An elementary proof of Fermat’s Last Theorem for

has no circulant matriz with positive integers as entries solutions.

We construct a galaxy of sequences of eigenvalues of circulant matrices
and we prove Fermat’s Last Theorem for eigenvalues of circulant matrices.
Also, we construct a galaxy of sequences of complex polynomials over the unit
disk D associated to circulant matrices and we prove Fermat’s Last Theorem
for complex polynomials over D.
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[1. PRELIMINARIES

Definition 2.1.  Let A be a unital Banach algebra. We say that a € A is
invertible if there is an element b € A such that ab = ba = 1. In this case b
is unique and written a~'. The set

Inv(A)={ae A:Tbe A ab=ba =1}

is a group under multiplication. If a is an element of A, the spectrum of a is
defined as

ola)={AeC:a—-A1¢ Inv(A)},
and its spectral radius is defined to be
r(a) =sup{|A|: A € o(a)}.

Let V- ={ag, a1, ...,an_1} C Cbeasubset of the set of complex numbers,
denote by Cy the following Toeplitz matrix:

Qo a o Gme—1
Cy = m—-1 Ao
ay oo Q1 ao

This matrix is called a m xm-complex circulant matrix or a complex circulant
matrix of order m. Denote by C,,(C) the commutative algebra of m x m-
complex circulant matrices. Let € = e be a primitive m-th root of unity.
Let us denote by U the following matrix:

1 € e e e(m*3) em—2 em—1
1
U=— : : : : . : '
\/m 1 em3 ... e(m=3) c(m=3)(m=2)  (m—1)(m-3)
1 em2 .. ... em2m=3) c(m=2)? ((m=1)(m—2)
1 em-1 c(m=1)(m=3)  (m-1)(m-2) ((m—1)?

This matrix is called Vandermonde matrix. It is well known that this matrix
has the following properties:

det(U) = L T — &) £0,
1,j=0

m
mz2 |
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U is non-singular, unitary, U~! = UT,UT =Uand U !'=0U =U* Ttis
well known that all the elements of C,,(C) are simultaneously diagonalized
by the same unitary matrix U, that is, for A in C,,(C), one has

U*AU = Dy

with D, is a diagonal matrix with diagonal entries given by the ordered
eigenvalues of A: X' A2, ... M. The factorization U*AU = D, is called
the spectral factorization of A [36, 37, 38, 39]. It is possible to write the
matrix Cy as one variable complex polynomial. Indeed, let P be the cyclic
permutation m X m—matrix given by

01 0 0 O
00 1 O 0
P= Lo
0 0 0 0 1
10 0 0
It is simple to see that
m—1
CV = Z akPk.
k=0

Let D = {z € C: |z| < 1} be the unit disk. The complex polynomial

m—1

fv(z) = Z a2’

k=0

over D is called the associated complex polynomial of the matrix Cy = fy (P).
It follows that if

01 0 0 0
00 1 0 0
X = :
0 0 0 0 1
0 0 0 0

is a m X m-complex matrix, then
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ap a1 o Am—1
m—1

fr(X)=> axt=| U a

k=0

is a m X m- upper complex triangular Toeplitz matrix. The complex poly-
nomial

m—1
fv(z) = Z apz®
k=0
is also called the associated complex polynomial of the matrix fy (X).

[II. THE UNIVERSE OF AN ALGEBRA

Definition 3.1. Let x,y, z € C be complex numbers. Denote by
n __ n n n . p
(ZC,y,Z) —(x,y,z),n—g,p,qEN,q#O.

The triple (z™,y", 2™) is called the triple (x,y, z) to the power n.

Definition 3.2. Let x,y,z € C be complex numbers. Denote by
a(x,y,2) = (ax,ay,az), (x,y,2) + (a,b,¢) = (x +a,y + b,z +¢).

Definition 3.3. A universe of degree £ of the algebra B is the set Fr(B) of
triples (z,y, z) of elements of B which satisfy the law of stability

vt +ys =zi,2y2 £ 0,p,g € N,q £ 0.

The element (x,y,z) is called a star (or a planet) of the universe Fg(B).

Every sequence (zk, Yk, 2k)n>0 of elements of the universe Fr(B) is called a
- q

planet system of elements of B.

The set

Fo(Cn(C)) = {(X,Y,2) € C: X 4 Y1 = 20, XYZ £ 0} .p,q € N.g £0,

QI

is called the complex ciculant universe of degree §. In particular, the set

F,(Cn(N)) = {(X,Y,2) € Cu(N)* : X" +Y" = Z" XY Z # 0} ,n € N,n>2,

© 2022 Global Journals
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is called the natural circulant universe of degree n. We are going to show that
the universe Fy(C),,(N)) is not empty. Fermat’s Last Theorem for circulant
matrices is equivalent to say that

Fn(Cn(N)) ={} = ¢,n > 3.

In other words, there are matrix complex universes which don’t have triples
Ref of matrices of positive integers as entries elements.

[V.  MouANDA's CHOICE FUNCTION FOR MATRICES

Denote by C.(C,,,(C)) = {h/h : C,,,(C) — C',(C)}, the set of complex func-

tions over C. Let
Q(F2(Cn(C))) = {P : P C F2(Cin(C))}

be the set of all subsets of Fy(C),,(C)). Theorem 2.5 of [26] allows us to claim
that the appropriate choice of the values of mg(k) and ng(k) such that

2(mo(k) = no(k)) & /8mo (k) (mo (k) — no(k))
2

€ Cn(C)

leads to the construction of sequences of triples of circulant matrices with
positive (or negative) integers as entries which satisfy the equation

X24+V?%=27%

Let fy : Ci(Cr(C)) x Co(Crp(C)) — Q(Fo(C,,(C))) be the function defined

i mo(k) = a"® k. a, B(k) € C1n(C), 8 € C.(Cin(C)) ]
mo(k’) — no(k?) - Cm((C)
O(k)) __ 2(mo(k)—no(k +\/8m0 (k) (mo(k)—no(k)) c Cm(C)

2(mo (k)—no(k)) 8mo (k) (mo(k)—no(k
Yk( (k’),ng(/{?)) _ 2(mo(k)—no( )"F\/ o(k)(mo(k)—no(k)) +n0(l{7>
)

) = 2molB)-no®) +\/82mo omo®)mo®) | gy

N
3
=
=
=
o
=™

This type of function is called Mouanda’s choice function for matrices. Mouanda’s
choice function for matrices is a galaxy valued function. This function allows
us to construct galaxies of sequences of matrices.

sequences of positive integers, American Journal of Computational

26. J. Moussounda Mouanda, On Fermat’s Last Theorem and Galaxies of
Mathematics, 12(2022), 162-189.

V. A FINITE GALAXY OF SEQUENCES OF CIRCULANT MATRICES WITH POSITIVE
INTEGERS AS ENTRIES

All the galaxies defined in this section have been deduced from the galaxies
already introduced in [26].
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Definition 5.1. A multi-galaxy is a galaxy which contains other galaxies.
The order of a galaxy is the number of variables of the galaxy.

Let
0 O . 0 0
00 1 O 0
P=
0 0 . 0 0 1
1 0 . 0O 0 O

be a m x m—matrix. Denote by T, = P*, k =1,2,....m — 1. Let
Um = {Im7T17T27 ‘“7Tm—1}

be a finite set of unitary circulant matrices. The elements of the set U,
satisfy the following:

TiTy = Tiy g, Tl = I, Tonsi = T, Ty = P",

Denote by
m—1
PM(C) = {f(z) = Zakzk rap€C,z € ]D} :
k=0
Let
m—1
f(z) = a2’
k=0

be a complex polynomial over ID. The Toeplitz matrix

Qo ayp Az c m—2 Am—1
m—1 Qo ag a2 e Gm—2
= f(P)
a2 - e Qme—1 Qo ay
aq as - o Gm—1 Qo

is called the circulant matrix with complex numbers as entries. The polyno-
mial f(z) is called associated polynomial of the matrix f(P). Recall that the
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set Cp,(C) is the commutative algebra of m x m-complex circulant matrices.
In other words,

( )
Qo a; ag o U2 Gt
m—1 Qo ag a2 o Q2
N Cin(C) = h o h h h ca, € C
otes e el el T . -
az - . Qme1 Qo a
\ ap,  ay - o Gme1 Qg )

It follows that

Cn(C) = {f(P): f € P"™(C)}

and

( 3\
ao a; Az o Am—2 Gp-1
m—1 Qo ag a2 e Am—2
Ca=¢| T rmeN
a2 c e Am—1 Qg ay
\ a1 a2 " T Am—1 Qo )

It is quiet clear that

Cn(N) C C(Z) C Cr(Q) C Cin(R) C Cr(C).

Mouanda’s matrix choice function fy; allows us to construct galaxies of cir-
culant matrices. For instance, if we choose mg = A?* x 2, mg—ny = al,,, A €
Cy(N) the model

Xi(aly,, A) = al, + 2/a x A*
Yi(al,, A) = 2¢/a x AF +2 x A%
Zi(aly,, A) = al, + 2v/a x AF 42 x A%
a=7r%kreNAe(C,(N)

Gala(NI,,,C,,(N)) =

is called the galaxy of sequences of circulant matrices with positive integers
as entries of order 2. For oy and A fixed, the triple

(Xo(Oéofm, A), Yo(OéoIrm A), Zo(Oéofrm A))
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is called the origin of the galaxy Gala(agl,y,, Cpy(N)). The elements of
Gala(aoly,, Cy(N)) satisty

X2 (aopl, A) + Y2 (agl, A) = Z(aplm, A),k € N, A € C,,(N)
and
(Xi(@0Lm, A), YL, A), Zi(aoln, A)) # (D, BY,CY), A, B,C, D € Cp(N)
with k,p,q € N,q # 0.

Example 5.2. A Finite Galaxy of Sequences of Circulant Matrices
with Positive Integers as Entries

e The model
Xy (41, A) = 41, +4 X Ak
Yie(4l,,, A) = 4 x A¥ + 2 x A%
Gala(41,,,U,) = Zi(41,, A) = 41, + 4 % AF 42 x A%k

keN AelU,
(Xo(41,, A),Yo(41,,, A), Zo(41,,, A)) = (81,,,61,,,101,,)

is called the finite galaxy of sequences of circulant matrices with positive
integers as entries of order 1. The triple (Xo(41m, A), Yo(41m, A), Zo(41,,, A))
is called the origin of the galaxy Gala(41,,,U,,). The triple

(Xk(41, A), Yy (41, A), Zy (411, A))
satisfies

X7 (41, A) + Y241, A) = Z7(41,,, A), k € N,

Xo(41m, A) + Yo (41, A) + Zo(41,, A) = 241,
and

(Xu(4Ln, A), Ve, A), Zu(3D, A)) # (DF, BE,CF) kopyq € Noq # 0,

D,B,C € U,,. The finite galaxy Gala(41,,,U,,) allows the construction of
the infinite galaxy

Xy (41, A) = 4L, + 4 x AF
Yi(4l,, A) = 4 x AF +2 x A%
Gala(4L,,, Cy(N)) = Zi(Al, A) = 41, +4 x AF +2 x A%
keN,Ae Cp(N)
(Xo(4Lm, A), Yo(4L, A), Zo(AL, A)) = (81, 61,0, 101,,)

which has the same origin and stability law than Gala(41,,,U,,). Therefore,
we can say that the galaxy Gala(NI,,, C,,(N))is a multi-galaxy.
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e Assume that m = 5,Us = {I5, Ty, Ts, T3, T, } and

2

01000 00100
00100 00010
A=]1000 10 = 00001 |=T1T¢cUs.
00 0O01 10000
10000 01000

The triples (Xy(415, A), Yi(415, A), Zi(415, A)) of the galaxy

40000 00100\"
04000 000710
XoAdl;,A)=|00400|+4] 00001
00040 1000 0
0000 4 01000
00100\" 00100\
000710 00010
Yodli, A)=4f 0000 1| +2] 00001
1000 0 1000 0
01000 01000
00100\" 00100\
000710 00010
Z,(4Is,A) =4 +4| 0 0 0 0 1 | +2] 0 0 0 0 1
1000 0 1000 0
01000 01000
keN
(Xo(415, A),Yo(415, A), Zo(415, A)) = (815,615,1015)
X, (45, A) = 415 + AT
Yi (415, A) = 4Ty + 2T,
I Zy(415, A) = 4I5 + AT, + 2T, |

satisfy the equation

X745, A) + Y2 (4l5, A) = Z7(4I5, A), k € N
and

(Xk(4IS>A)aYk(4[57A>7Zk(4IS>A)) 7£ <D§78570§> ,D,B,C € Unak7Q7p € qu 7é 0.
e The elements of the galaxy

Xp(9Tp, A) = 9L, + 6 x AF
Yi(91,,, A) = 6 x AF +2 x A%
Gala(91,,,U,,) = Zp(91,,, A) = 91, + 6 x AF 42 x A%
keN AelU,
(Xo(9Ln, A), Yo(OLn, A), Zo(9L,n, A)) = (151, 81, 171,)
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satisfy
X,?(9[m,A) + Yk2<9[m7 A) = le(gjn% A),keN

and

(Xu(OLns A), Ye(OLins A), Ze(O1n, A)) # (D5, BE,CF) p.g.k € Ng 0,
Notes

D,B,C € U,. Again, from the galaxy Gala(91,,,U,,), we can construct a
galaxy which has an infinite number of elements. Indeed, the galaxy

Xp(9T, A) = 9T, + 6 x A*
Yi(91,,, A) = 6 x AF + 2 x A%
Gala(91,,,C,,(N)) = Zp(91,, A) = 91, + 6 x AF +2 x A%
keN Ae(C,(N)
(Xo(9Ts A), Yo(9Ts A), Zo(9Ls A)) = (151, 8T, 171,)

has the same origin and stability law than the galaxy Gala(91,,,U,,). This
galaxy has an infinite number of elements.

e The elements of the galaxy

X4(161,,, A) = 161,, + 8 x A*
Yi(161,, A) = 8 x A¥ + 2 x A%
Gala(161,,, Uy,) = Zi(161,, A) = 161,, + 8 x AF 2 x A%
keN,Ael,
(Xo(161, A), Yo(161,n, A), Zo(161,0, A)) = (241, 101, 261,,)

satisfy
X2(161,,, A) + Y2(161,,, A) = Z;(161,,, A),k € N
and

(Xk(161n, A), Yil(16L, 4), Z4(161, A)) # (D, B, CF) p,k,q € Nog £0,

D, B,C € U,,. The galaxy Gala(16,U,,) has a finite number of elements (or
planets). However, the galaxy

Xi(161,,, A) = 161, + 8 x AF
Yie(161,, A) = 8 x AF + 2 x A%
Gala(161,,, Cpy(N)) = Z (161, A) = 161, + 8 x AF +2 x A%
keN/AeCn(N)
(Xo(161, A), Yo(161,,, A), Zo(161,,, A)) = (241,,, 101, 261,,)

has an infinite number of elements (or planets).
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Example 5.3.  Assume that mg — ng = 2I,,,mg = A* A € C,,(N). We
can define the galaxy

Xip(21, A) = 21, + 2 x AF
V(2L A) = 2 x Ak 4 A2
Ze(2,, A) = 21, + 2 x Ak 4 A%
keN/Ae Cn(N)

A(21,,CL(N)) =

NOteS in which the triples (X (21, A), Yi(21L,, A), Zy(21,,, A)) , k € N, satisfy
XP (21, A) + Y2 (21, A) = Z7(21,,, A), k € N,
Xo(2I, A) + Yo(2Ln, A) + Zo(21,, A) = 121,

and

(Xk (2L, A), Yi(2n, A), Ze(2Ln, A)) # (DF, BY, CF) |
p,q, k€N, q#0,C, D,B € C,(N).
FExample 5.4. A Finite Galaxy
The triples (Xx (2L, A), Y (21, A), Zk(21,,, A)) , k € N, of the galazy

Xi(2I, A) = 21, + 2 x A
Yi(2I, A) = 2 x AF 4+ A%

AR Un) = | 7 of A) = 2L, +2 x A* + A%
ke N AelU,
satisfy
X726, A) + Y221, A) = Z7 (21, A), k €N,
Xo(2Ln, A) + Yo (21, A) + Zo(21,,, A) = 121,
and

(Xp(2Ln, A), Y20, A), Zi(21, A)) # (Dg,Bg,C%) ,
p.¢,k€N,q#0,C,D,B € Up,.

EXamp]e 5.5, Assume that m = 10, U10 = {[10, Tl, TQ, Tg, T4, T5, TG; T7, jjg7 Tg}
with
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The triples (Xx (2110, T1), Yi(2110, T1), Zx(2110,11)) of the galazy

Xk(2]10,T1) = 2]10 + 2 X le
Yk(2[10,T1) =2 X le +T12k

AL T) =1 7 (06,0, 1)) = 21y + 2 x TF + T2
kEeN
satisfy
XZ(26o, Th) + Y2 (2L, Ty) = Z7(2110,Ty), k € N
and

(X4(2610, T0), Yi(2E0, T1), Ze(2110, T1)) # (D%, BY,CY) ,p,q b € N,q 0,
D, B,C € Uy.

VI.  X-MoODEL
The triples (X(21m, A), Yi(21,,, A), Zi(21,,, A)) of the galaxy

X4(2L, A) = 21, + 2 x A%
Yi(2L, A) = 2 x A% 4 A%

(2L, Um) = Z (20, A) = 21, + 2 x A% 4 A3k
keNAeU,
satisfy
X2 (2L, A) + Y2 (21, A) = Z7(21,n, A), k €N,
Xo(20, A) + Yo (21, A) + Zo(21,,, A) = 121,
and

(Xu(2Ln, A), Ye(2ln, A), Ze(21, A) # (D5, BE,CF) p.g.k € N, g 0,

C,D,B € U,. The multi-galaxy (21,,, C;,(N)) has an infinite number of
planets.

Example 6.1. The triples (Xg (2L, T4), Yi (21, Ty), Zk(21,,, T4)) of the galaxy

Xi (2L, Ty) = 20, + 2 x Tk
Yie(2o, Ty) = 2 x T 4 T8k
Z(20, T) = 20, + 2 x T 4 T8k
keN,

Y21, Ty) =

© 2022 Global Journals

Notes



satisfy
XP (21, Ty) + Y2 (21, Ty) = Z2(21,,, Ty), k € N,

Xo(2Ln, Ty) + Yo(2L,, Ty) + Zo(21,,, Ty) = 121,

and
NOteS (Xk(2IWL7T4>7Yk<2Im7T4>7Zk<2lm7T4)) # <D§7B§7C§> » Dy Q7k € N?Q 7£ 07

D,B,C, Ty € Uy,.

Example 6.2. The triples (Xg(21n,T3), Yi(2Ln, T3), Zk(21,,,T3)) of the se-

quence
Xk (21, T3) = 21, + 2 X Tg““
Y (2L, T5) =2 % T34k + T?f‘k
Y21, Ts) = Zy (21, Ts) = 21, + 2 % Tg““ + T38’“
keN
(X0(21m7 T3)) %(2]771) T3)7 ZO(QIma T3)) = (4Im7 3[m7 5Im)
satisfy
X221, Ts) + Y2(21,,, T3) = Z7 (21, T3), k € N,
Xo(21n, T3) + Yo(21,,, T3) + Zo(21,, T3) = 121,
and

(Xk(21m7T3>7Yk<2[m>T3)aZk<21maT3)) £ <D§7B§>C§> 0, ¢,k €N, q#0,
D,B,C, T3 € Um,E(QIm,Tg) C Z(Qfm,Um) C E(Qfm,Cm(N)).

VII. POWER MODELS OF GALAXIES OF SEQUENCES OF CIRCULANT MATRICES
WITH POSITIVE INTEGERS AS ENTRIES OF ORDER 3

A model of a galaxy is a power model if the power of the lead of the model is
a power. For example, if we choose my = A2 and mo —no = 2 X a2 X \°1,,,,
the model

Xi(aln, A ML) =2 x a® X 21, + 20 x A x AN
Vi, A, ALy) = 200 x A x AN 4 AP
Zi(al, A, ML) = 2 % 02 X A21, 4 200 x A x AN 4 A2
E,a,a, e Na#0,a #0,\#0,A € U,

URS(NI,, Uy, NI,,,) =
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is a power model. The elements of the model URS(U,,, Uy, Uy,) satisty
X aly, A M) + Y (ady, AN L,) = ZE(ady, A, ML), k € N
and

(Xp(alym, A, M), Yi(aLy, A, ML), Zi(ady, A, ML) (Dﬁ, 35,05) k.p.q €N,

,q#0,D,B,C € Uy, URS(U,,, Uy, Up,) C URS(Cp,(N), Cp(N), C,p (N)).
Example 7.1. The elements of the galazy

X215, A, 21,,) = 321, + 8 x A%
Yi(2L, A, 21,,) = 8 x A% 4 42"
Ze(25,,, A, 20,,) = 321, + 8 x A% + A2""
keN AeU,

URS(21,, Uy, 21,) =

satisfy

X7 (26, A, 21,) + Y2 (21, A, 21,,) = Z2 (21, A, 21,,), k € N

and
(Xi (2L, A, 21,), Yi(2Ln, A, 21, Zi (20, A, 21,0)) # <D§,B§, 05) ,

p.¢, k€N, q#0,D,B,C€U,.

Example 7.2. If we choose mg = A2 and mo — ng = 2 x a?1,,, we could
construct the galazxy

Xy(adp, A) = oI, +2 X o x A%
Vi(ady, A) =2 x a x A2 + A2
Zp(aly,, A) = o1, +2 X a x A% A2
keN AeU,

Qaly,, Uy) = Ja €N,

The elements of the galazy Q(al,,, Uy,,) satisfy

X2 (ady,, A) + Y (al,, A) = Z(al,,, A),k € N

and
(Xk(afm7A)7Yk(aIm’A)7Zk(alva)) # (D57B57C§> Dk, q €N, q#0,

D,B,C €U, The galaxy
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Xp(aly,, A) = a?I, + 2 x a X A%
Vi(al,, A) =2 x a x A2 + 42"
Zp(aly,, A) = a1, +2 X a x A% 4 A2
keN, Ae(C,(N)

Qaly,, Crh(N)) = ,a €N,

has an infinite number of planet systems.

The characterization of the elements of the set Fo(C,,(N)) is completely
the same as the characterization of the elements of the set Fy(N) [26].

Remark 7.3.  Let (X,Y,Z) and (X1,Y1,7Z1) be two elements of Fo(C,,(N)).
Then

P

(X7Y7 Z) 7é (A%}B%)C%) 7(X171/1721) 7é <A1EaBlaaclq> 7(X7Y7 Z) 7& (Xla}/iazl)a
A B, C A, B, C € ]FQ(Om(N))

Let us observe that the characterization of one element of the set Fy(C),(N))
allows us to deduce the characterization of the elements of the set Fy(C,,(N)).
In other words, the set Fo(C,,(N)) has no power elements. Remark 7.3 allows
us to prove the following result:

Theorem 7.4. The equation
X2y = 7° XYZ #0,n€N(n>2)

has no circulant matriz with positive integers as entries solutions.

Proof. Assume that there exist X, Y, Z € C,,(N) such that

X2 4y = 72" n>2neN.
This means that
(X" +(Y")* = (2")".
Therefore,
(X", Y™, Z") € Fo(Cin(N)) = {(A, B,C) € C\n(N)* : A + B* = C?} .

Remark 7.3 allows us to claim that we have a contradiction because the
universe Fy(C,,(N)) has no power elements. Finally, there exist no circulant
matrices with positive integers as entries X, Y, Z € C,,,(N) such that

X2y y* =72 neN,n>2.
This result allows to claim that the equation
(X" 4 (V2)" = (22)"n =2

has no solution in C,,(N). We can now prove our main result.
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Proof of Theorem 1.1

We just need to show that if (X,Y,Z) € F,(C,,(C)),n € N,n > 3, then
(X,Y,Z) ¢ C,(N). Let (X,Y,Z) be an element of the universe
F,.(Cin(C)),n > 3. Then

X" +Y"=2"
This implies that
Notes
(VX" + (VY = (VZ)" = (02 + (Y7)2 = (27)2
and

(X224 (Y22 = (2°7): <= (X

M
~—
[N}
+
—~
h<
w[3
~—
[N}
I
—~
N
0|3
~—
[\o}

Theorem 7.4 and Remark 7.3 allow us to claim that

(VX NVY VZ) ¢ F2(Cr(N)), (X, Y?", Z2°") ¢ Fy(Cn(N))
and
(X2,Y%2,73) ¢ Fo(Crn(N)),n > 3,
since Fy(C,,,(N)) has no power elements. In other words,
(VX NY, VZ) ¢ Cu(N), (X2, Y2, Z°") ¢ O (N)
and
(X2,Y%,7Z3) ¢ Cn(N),n > 3.
The fact that
(X2 Y 72"y ¢ C,(N),n >3
implies that
(X,Y,Z) ¢ C,,(N).
VIII.  E1GENVALUES OF CIRCULANT MATRICES

It is well known that if A = C'(Q2), where 2 is a compact Hausdorff space,
then o(f) = f(2) for all f € A. Let

be a complex polynomial over . Then o(p) = ¢(D).
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The Spectral Mapping Theorem 1. [/0]. Let T € B(H) be a normal
bounded linear operator on the Hilbert space H and let f : o(T) — C be a
continuous function on o(T). Then o(f(T)) = f(o(T)).

Let us introduce the well known spectrum of circulant matrices associated
to complex polynomials over . Let

p(z) = z_: agz®

k=0

be a complex polynomial over . Let

0 0 O
0 0 0 0
P =
0 0 . 0 0 1
10 . 0 0 0

be an m x m- matrix. The matrix P is normal. Indeed, PP* = P*P = [,,.
Assume that

Qo a; az i Am—2 Am-1
m—1 Qo Q1 a2 e G2
Ag =
a2 T e Um-1 Qo a1
a1 a2 i e Gme—1 Qo

A simple calculation shows that

m—1

Ay = p(P) = Z apP*.

k=0

The matrix Ag is considered as a polynomial of one variable. Let us compute
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the spectrum of the normal matrix P. Let

A 1 0 0 0
0 —-A 1 0 0
FN) =det(P=X,,)=| = & 1 i =1=)\"
0 0 ... 0 -\ 1 Notes
1 0 ... 0 0 =\

be the characteristic polynomial of P. Thus, A is a primitive m-th root of
unity. Therefore,

a(P):{Af:e & :k;:o,1,2,...,m—1}.

In other words,

27 4mi 6mi 8w 10mi 127 147 2(m—1)mi
U(P): 1,€m,€m’em’em’em’em’emv‘”’e m

Finally,
o(P)={ M, AL} D,
The spectral mapping Theorem allows us to claim that

p(o(P)) = o(e(P)) = o(A).

Therefore,
7(Ag) = {p(Xg), e(AD), s oA 1) } -
[X. GALAXY OF SEQUENCES OF EIGENVALUES OF CIRCULANT MATRICES

In this section, we construct galaxies of sequences of eigenvalues of circulant
matrices.

Theorem 9.1. Let X,Y,Z € C,,(C) be three circulant matrices with complex
numbers as entries such that

X"+Y"r=2"
Then

)"+ = ()" A € o(X), N € a(Y), N € 9(2),k =0,1,2,...,m~1.
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In other words, the triples (A, AL, \?) € F,(C),k=0,1,2,...,m—1. Thatis,
the planet system

Notes

Proof: Let (X,Y,Z) € Cp,(C),n € N,;n > 3, be an element of the universe
F,.(C,(C)). The spectral factorization of the matrices X,Y, Z [36, 37, 38]
allows us to claim that there exists a unitary matrix U such that

X000 0 0
0 A 0 0 .0

X=v| 0 |u=ubs
0 0 A, 0
0 0 0 A,
A0 0 .0 0
0N 0 0 .0
0 0 A, 0
0 0 0 AL,

and

oo oo .0 0
0 N 0 0

z=Uu| =~ " |ur=UDyuU~
0 0 M., 0
0 0 0 N,

The equation X" + Y™ = Z" implies

UDLU* + UDLU* = UDLU™.
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It follows that
U[D% + Dy|U*=UDLU".
We can claim that

D% + Dy = D7,
Finally,

WD) A" = D)™ A € a(X), A €a(Y), A} €0(2),k=0,1,2,..,m—1.

In other words, the triples (A, A}, A\?) € F,(C),k =0,1,2,...,m — 1. That
is, the planet system

e

Ay

A
k=0,1,2,...,m—1

M(X,Y,Z) = C I, (C).

Every triple (X,Y,Z) of the universe F,(C,,(C)) generates a planet system
M(X,Y,Z) which has exactly m elements of the universe F,,(C). We can say
that the galaxies of sequences of circulant matrices are linked to the galaxies
of sequences of eigenvalues of circulant matrices. Let us consider the galaxies

Xp(aly,, A) = a?I, +2 x a X A%
Vi(al,, A) =2 x a x A2 + 42"
Zp(aly,, A) = o1, +2 X a x A% A2
keN, AeC,(N)

Qal,, Cph(N)) = ,a €N,

of circulant matrices. We can construct the galaxies of sequences of eigenval-
ues of the triples of circulant matrices of the galaxies Q(al,,, C,(N)),a € N.
For example, the galaxies

X, \) =a? +2 x a x \¥
Vi, A) = 2 x a x A2 4 A2
Zi(o,\) = a2+ 2 x a x A2 4 A2 CF(N),a €N,
kEeN,Aeo(A),AeCh(N)

e, 0(Cn(N))) =

are galaxies of sequences of eigenvalues of triples of circulant matrices of the
galaxies Q(al,,, Cp,(N)), o« € N. As we can see that the galaxies

X, \) =a?+2x ax A

Vi, \) =2 x a x A2 4 A2

Zi(o,N) = a2+ 2 x a x A2 + )
ke N Xeo(A)

e, 0(A)) =
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have each a finite number of planet systems. In our case, each galaxy has
m planet systems. Every galaxy of the universe Fy(C,,(N)) generates a new
galaxy of eigenvalues of elements of C,,(N). Let us consider the galaxy

Xi(2Ln, A) = 21, +2 x A
Yi(21,,, A) = 2 x Atk 1 A3k
Z(2Ln, A) = 21, + 2 x A% 4 Ak
keN,Ae Cp(N)

¥(2L,,Cn(N)) =

We know that the triples (X% (27, A), Yi (21, A), Zk(21,,, A)) of the galaxy
Y21, C\n(N)) satisty

X2 (21, A) + Y221, A) = Z2(21,,, A), k € N.

Define the galaxy

V(M) =2 x Atk 4 B
Zp(N) = 242 x M 4 )8k
ke N,Aeo(A),AecC,(N)

%(2,0(Cn(N))) =

The triples (Xx(A), Yi(A), Zx(XN)) of the galaxy ¥(2,0(C,,(N))) satisfy
X2\ +Y2(\) = Z2(\), k €N,

We can deduce the galaxies

Xp(A) =2+2x M\

Yi(\) = 2 x A1k 4 \8F

Zp(X) = 2+ 2 x A 4 )8
keN,\ea(A),

¥(2,0(A)) = JA e Cp(N),

which have a finite number of planet systems. The triples (Xx(\), Yi(A), Zx(N))
of the galaxy ¥(2,0(A)) also satisfy

XFN) +Y2(\) = ZZ(\),k €N.
The first eigenvalue of every matrix of C,,(N) is a positive integer.

Theorem 9.2. Let A € C,,(N) be a circulant matriz with positive integers
as entries. Then the first eigenvalue Ny of A is a positive integer. In other
words, Ny € N.
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Proof. Let

Qo ap az R Am—2 Am—1
Am—1 Qo ai a2 o Qg2
A= € Cn(N)
e Notes
a2 : - Qm—1 Qo aq
ay a2 T e Om—1 Qo

be a circulant matrix with positive integers as entries. Then there exists a
polynomial

m—1
o(z) = Z arz® ar €N,z € D,
k=0
such that
m—1
A=p(P)= Z apP*.
k=0

We know that
a(A) = {o(\0), e(AD), - p(Am1) }

with

2mi  Ami  6mi  8mi  10mi 12 2(m—1)mi
{/\g,/\f,...,/\i_l}:{1,em,em,em,em,em,em,...,e m }

Therefore,

Remark 9.3. Let A be an algebra and let A € C,,(A). Then

Theorem 9.1 and Theorem 9.2 allow us to provide another proof of our main
result.
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Second Proof of Theorem 1.1

Assume that there exist X,Y, Z € C,,(N),n € N,n > 3, three circulant
matrices with positive integers as entries such that

X"+Y"r=2".
Theorem 9.1 and Theorem 9.2 allow us to claim that
A"+ (A" = (A" n > 3.

This implies that the equation 2™ 4+ y™ = 2", n > 3 has positive integer
solutions. We have a contradiction. Therefore, the equation

X"+Y"=2"XYZ#0,n€N(n>3)

has no circulant matrix with positive integers as entries solutions.

Let A be an algebra and let

k=0

m—1
P (A) = {f(z) = Z ap?" i a € Az € ]D}

be the algebra of polynomials over ID. Complex polynomials of the alge-
bra P (N) allow us to provide Fermat’s Last Theorem for eigenvalues of
circulant matrices.

Theorem 9.4. The equation
" +y" = 2" xyz #0,n € N(n > 3)

has no positive integer eigenvalues of circulant matrices solutions.

Proof. Assume that there exists a triple (A, n, 1) of positive integer
eigenvalues of circulant matrices X,Y and Z of C,,(N) such that

ANt =p" mp#0,neNn>3 xea(X),nealY),ucalZ).

Therefore, there exist three f, g, h complex polynoimals of P (N) such
that

f(2)"+g(z)" =h(z)",n e Nn>3,z€D.

In particular,

f(P)"+g(P)"=h(P)",neNn>32€D
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with P the cyclic permutation m x m—matrix given by

01 0 0 O
00 1 0 0
P =
00 0 0 1 Notes
10 0 0 O

In other words,
X"+Y"=7"XYZ #0,neN,n>3.
We have a contradiction. Finally, The equation
" +y" = 2" xyz #0,n € N(n > 3)

has no positive integer eigenvalues of circulant matrices solutions.

X. FERMAT'S LAST THEOREM FOR COMPLEX POLYNOMIALS ASSOCIATED TO
CIRCULANT MATRICES

We can now construct models of galaxies of complex polynomials associated
to circulant matrices. Recall that

p(m)((c) = {f(z) zmz_akzk cap, €C,z e ]D)}.

k=0

The galaxies of the universe IF,,(C,,(C)) generate the galaxies of the universe
F, (P (C)). For example, from the galaxy 3(21,,, C,,(C)), we can construct
the galaxy

Xk(f) :2+2Xf4k
Vi(f) =2 x f% + f3*
Zi(f) =2+2x f%* + o
keN, fePm(C)

2(2, P™(C)) = C Fy(P™(C)).

We can continue doing the same identification process with the remaining
galaxies of Fy(Cp,(C)). This process will lead to the construction of the
universe Fy(P(™(C)). Now, we are able to provide Fermat’s Last Theorem
for complex polynomials over the unit disk D associated to circulant matrices
of the set C,,(N).
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Theorem 10.1. The equation
" +y" = 2" xyz # 0,n € N(n > 3)
has no solutions in P™ (N),m € N,m # 0.

Proof. Assume that there exists a triple (f, g, h) of complex polynomials of
the set P™(N),m € N,m # 0, such that

f(2)"+9(z)" =h(z)",neN;n>3,z€D.
This implies that
F(P)" + g(P)" = h(P)",n € N,n > 3.

with P the cyclic permutation m x m—matrix given by

01 0 0 0

00 1 0 0
P = :

0 0 0 0 1

10 0 0 0

In other words, there exist X,Y, 7 € C,,(N) such that
X"+ Y"=7"XYZ #0,ne N,n>3.
We have a contradiction. Finally, The equation
" +y" = 2" xyz #0,n € N(n > 3)

has no solutions in P (N),m € N,m # 0.

Theorem 1.1, Theorem 9.4 and Theorem 10.1 are equivalent.
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