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Abstract- We introduce Mouanda's choice function for matrices which allows us to construct the 
galaxies of sequences of triples of circulant matrices with positive integers as entries. We give 
many examples of the galaxies of circulant matrices with positive integers as entries. The 
characterization of the matrix solutions  of  the equation                               allows  us to  show  that 
the  equation                                                           has   no   circulant  matrix   with   positive  integers  as  entries
solutions.   This  allows  us  to   prove   that,    in  general,   the   equation                                 has
no circulant  matrix with  positive  integers  as entries solutions. We  prove Fermat's Last 
Theorem for eigenvalues of circulant matrices. Also, we show Fermat's Last Theorem for complex 
polynomials over      associated to circulant matrices. 

Keywords: Fermat's equation, polynomials, model theory, circulant matrices, Mouanda's choise 
function, galaxy, Toeplitz matrices.

X2 + Y 2 = Z2

X2n+X2n=Z2n(n≥2)

Xn+Y n=Zn(n≥3)
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(1 + 2i× ak, 2i× ak − 2× a2k, 1 + 2i× ak − 2× a2k), a ∈ C, k ∈ N

and matrix solutions

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et 
generaliter nullam in infinitum ultra quadratum potestatum in duos ejusdem nominis fas 
est dividere: cujes rei demonstrationem mirabilem sane detexi. Hane marginis exiguitas 
non caperet.

-Pierre de Fermat (1637).

Notes

It is well known that there are many solutions in integers to the equation
x2 + y2 = z2, for instance (3,4,5); (5,12,13). Around 1500 B.C, the Babylo-
nians were aware of the solution (4961, 6480, 8161) and the Egyptians knew
the solutions (148, 2736, 2740) and (514, 66048, 66050). Also Greek math-
ematicians were attracted to the solutions of this equation. We notice that
this equation has sequences of complex number solutions
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Abstract- We introduce Mouanda's choice function for matrices which allows us to construct the 

galaxies of sequences of triples of circulant matrices with positive integers as entries. We give many 

examples of the galaxies of circulant matrices with positive integers as entries. The characterization 

 has no circulant matrix with positive integers as entries solutions. This 

allows us to prove that, in general, the equation                                      has no circulant matrix with 

positive integers as entries solutions. We prove Fermat's Last Theorem for eigenvalues of circulant 

matrices. Also, we show Fermat's Last Theorem for complex polynomials over      associated to 

circulant matrices. 

of the matrix solutions of the equation                                allows us to show that the equation                               X2 + Y 2 = Z2

X2n+X2n=Z2n(n≥2)
Xn+Y n=Zn(n≥3)

D



 −2 2i 0
0 −2 2i
2i 0 −2

 ,

 0 2i 1
1 0 2i
2i 1 0

 ,

 −2 2i 1
1 −2 2i
2i 1 −2

 .

In 1637, Pierre de Fermat wrote a note in the margin of his copy of Diophan-
tus Arithmetica [1] stating that the equation

xn + yn = zn, n ∈ N(n > 2), xyz 6= 0 (1.1)

has no integer solutions. This is the Fermat Last Theorem. He claimed that
he had found the proof of this Theorem. The only case Fermat actually wrote
down a proof is the case n = 4. In his proof, Fermat introduced the idea of
infinite descent which is still one the main tools in the study of Diophantine
equations. He proved that the equation x4 +y4 = z2 has no solutions in rela-
tively prime integers with xyz 6= 0. Solutions to this equation correspond to
rational points on the elliptic curve v2 = u3−4u. The proof of the case n = 3
was given first by Karl Gauss. In 1753, Leonhard Euler gave a different prove
of Fermat’s Last Theorem for n = 3[2, 3]. In 1823, Sophie Germain proved
that if l is a prime and 2l + 1 is also prime, the equation xl + yl = zl has no
solutions (x,y,z) with xyz 6= 0(modl). The case n = 5 was proved simultane-
ously by Adrien Marie Legendre in 1825 [4, 5] and Peter Lejeune Dirichlet
[6] in 1832. In 1839, Gabriel Lame proved the case n = 7 [7, 8, 9, 10]. Be-
tween 1840 -1843, V. A. Lebesque worked on Fermat’s Last Theorem [11, 12].
Between 1847 and 1853, Ernst Eduard Kummer published some masterful
papers about this Theorem. Fermat’s Last Theorem attracted the atten-
tion of many researchers and many studies have been developed around this
Theorem. For example the work of Arthur Wieferich (1909), Andre Weil
(1940), John Tate (1950), Gerhard Frey (1986), who was the first to suggest
that the existence of a solution of the Fermat equation might contradict the
modality conjecture of Taniyama, Shimura and Weil [29]; Jean Pierre Serre
(1985 - 1986) [14, 15, 16], who gave an interested formulation and (with J.
F. Mestre) tested numerically a precise conjecture about modular forms and
Galois representations mod p and proved how a small piece of this conjecture
the so called epsilon conjecture together Modularity Conjecture would imply
Fermat’s Last Theorem; Kennedy Ribet (1986) [17], who proved Serre’s ep-
silon conjecture, thus reducing the proof of Fermat’s Last Theorem; Barry
Mazur (1986), who introduced a significant piece of work on the deforma-
tion of Galois representations [18, 19]. However, no final proof was given to
this Theorem. This Theorem was unsolved for nearly 350 years. In 1995,
using Mazur’s deformation theory of Galois representations, recent results
on Serre’s conjecture on the modularity of Galois representations, and deep
arithmetical properties of Hecke algebras, Andrew Wiles with Richard Tay-
lor succeeded in proving that all semi-stable elliptic curves defined over the
rational numbers are modular. This result is less than the full Shimura-
Taniyama conjecture. This result does imply that the elliptic curve given
above is modular. Therefore, proving Fermat’s Last Theorem [20, 21]. Many
mathematicians are still heavenly involved on studying Fermat’s Last The-
orem [22, 23, 24]. In 2021, Nag introduced an elementary proof of Fermat’s
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Last Theorem for epsilons[25]. In 2022, Mouanda constructed the galaxies of
sequences of triples of positive integers solutions of the equation x2+y2 = z2.
The unique characterization of the solutions of this equation allowed him to
provide an elementary analytic proof of Fermat’s
mat Last Theorem for positive integers has been extended over some number
fields. In 1966, Domiaty proved that the equation X4 + Y 4 = Z4 is solvable
in M2(Z) [27]. Let GLn(Z) be the group of units of ring Mn(Z). Denote by

SLn(Z) = {A ∈Mn(Z) : detA = 1} . (1.2)

In 1989, Vaserstein investigated the question of the solvability of the equation

Xn + Y n = Zn, n ≥ 2, n ∈ N, (1.3)

for matrices of the group GL2(Z) [28]. In 1993, Frejman studied the solvabil-
ity of the equation (1.3 ) in the set of positive integer powers of a matrix A
with elements a11 = 0, a12 = a21 = a22 = 1 [29]. In 1995, the same case was
studied by Grytczuk [30]. The same year, Khazanov proved that in GL3(Z)

of the equation (1.3 do not exist if n is a multiple of either 21 or
96, and in SL3(Z) solutions do not exist if n is a multiple of 48 [31]. In
1996, Qin gave another proof of Khazanov’s result on the solvability of the
equation (1.3) in SL2(Z) [32]. In 2002, Patay and Szakacs described the pe-
riodic elements in GL2(Z) and gave the answer to some problems concerning
the equation (1.3) in matrix groups and in irreducible elements of matrix
rings [33]. In 2021, Mao-Ting and Jie proved that Fermat’s matrix equation
has many solutions in a set of 2-by-2 positive semi-definite integral matrices,
and has no nontrivial solutions in some classes including 2-by-2 symmetric
rational and stochastic quadratic field matrices [34]. Fermat’s Last Theorem
has been extended to the field of complex polynomials of one variable [35].

The equation

Xn + Y n = Zn, XY Z 6= 0, n ∈ N(n ≥ 3)

has no circulant matrix with positive integers as entries solutions.

We construct a galaxy of sequences of eigenvalues of circulant matrices
and we prove Fermat’s Last Theorem for eigenvalues of circulant matrices.
Also, we construct a galaxy of sequences of complex polynomials over the unit
disk D associated to circulant matrices and we prove Fermat’s Last Theorem
for complex polynomials over D.
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Last Theorem [26]. The Fer-

solutions

This Theorem has many applications in Cryptography.
In this paper, we are mainly concerned with Fermat’s Last Theorem for

circulant matrices with positive integers as entries. Firstly, we focus our
attention on the construction of the galaxies of sequences of triples of cir-
culant matrices with positive integers as entries solutions of the equation
X2 + Y 2 = Z2. In particular, Mouanda’s matrix choice function allows us to
construct practical examples of such galaxies. The elementary characteriza-
tion of these matrix solutions allows us to prove Fermat’s Last Theorem for
circulant matrices with positive integers as entries.



  
 

   
 

   
 

   
  

 
  

 
   

 
   
  
  
  
  

 
  

Let A be a unital Banach algebra. We say that a ∈ A is
invertible if there is an element b ∈ A such that ab = ba = 1. In this case b
is unique and written a−1. The set

Inv(A) = {a ∈ A : ∃b ∈ A, ab = ba = 1}

is a group under multiplication. If a is an element of A, the spectrum of a is
defined as

σ(a) = {λ ∈ C : a− λ.1 /∈ Inv(A)} ,

and its spectral radius is defined to be

r(a) = sup {|λ| : λ ∈ σ(a)} .

Let V = {a0, a1, . . . , am−1} ⊂ C be a subset of the set of complex numbers,
denote by CV the following Toeplitz matrix:

CV =


a0 a1

. . . am−1

am−1 a0
. . . . . .

...
...

...
...

a1 . . . am−1 a0

 .

This matrix is called a m×m-complex circulant matrix or a complex circulant
matrix of order m. Denote by Cm(C) the commutative algebra of m × m-

complex circulant matrices. Let ε = e
2πi
m be a primitive m-th root of unity.

Let us denote by U the following matrix:

U =
1√
m



1 1 . . . 1 1 1 1
1 ε . . . . . . ε(m−3) εm−2 εm−1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 εm−3 . . . . . . ε(m−3)2 ε(m−3)(m−2) ε(m−1)(m−3)

1 εm−2 . . . . . . ε(m−2)(m−3) ε(m−2)2 ε(m−1)(m−2)

1 εm−1 . . . . . . ε(m−1)(m−3) ε(m−1)(m−2) ε(m−1)2


.

This matrix is called Vandermonde matrix. It is well known that this matrix
has the following properties:

det(U) =
1

m
m
2

m−1∏
i,j=0

(εj − εi) 6= 0,
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II. Preliminaries

Definition 2.1. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

U is non-singular, unitary, U−1 = U
T
, UT = U and U−1 = U = U∗. It is

well known that all the elements of Cm(C) are simultaneously diagonalized
by the same unitary matrix U, that is, for A in Cm(C), one has

U∗AU = DA

with DA is a diagonal matrix with diagonal entries given by the ordered
eigenvalues of A: λA1 , λ

A
2 , . . . , λ

A
m. The factorization U∗AU = DA is called

the spectral factorization of A [36, 37, 38, 39]. It is possible to write the
matrix CV as one variable complex polynomial. Indeed, let P be the cyclic
permutation m×m−matrix given by

P =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
1 0 . . . 0 0 0


.

It is simple to see that

CV =
m−1∑
k=0

akP
k.

Let D = {z ∈ C : |z| ≤ 1} be the unit disk. The complex polynomial

fV (z) =
m−1∑
k=0

akz
k

over D is called the associated complex polynomial of the matrix CV = fV (P ).
It follows that if

X =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
0 0 . . . 0 0 0


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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

fV (X) =
m−1∑
k=0

akX
k =


a0 a1

. . . am−1

0 a0
. . . . . .

...
...

...
...

0 . . . 0 a0


is a m ×m- upper complex triangular Toeplitz matrix. The complex poly-
nomial

fV (z) =
m−1∑
k=0

akz
k

is also called the associated complex polynomial of the matrix fV (X).

Let x, y, z ∈ C be complex numbers. Denote by

(x, y, z)n = (xn, yn, zn) , n =
p

q
, p, q ∈ N, q 6= 0.

The triple (xn, yn, zn) is called the triple (x, y, z) to the power n.

Let x, y, z ∈ C be complex numbers. Denote by

α (x, y, z) = (αx, αy, αz) , (x, y, z) + (a, b, c) = (x+ a, y + b, z + c) .

A universe of degree p
q of the algebra B is the set F p

q
(B) of

triples (x, y, z) of elements of B which satisfy the law of stability

x
p
q + y

p
q = z

p
q , xyz 6= 0, p, q ∈ N, q 6= 0.

The element (x, y, z) is called a star (or a planet) of the universe F p
q
(B).

Every sequence (xk, yk, zk)n≥0 of elements of the universe F p
q
(B) is called a

planet system of elements of B.

The set

F p
q
(Cm(C)) =

{
(X, Y, Z) ∈ C3 : X

p
q + Y

p
q = Z

p
q , XY Z 6= 0

}
, p, q ∈ N, q 6= 0,

is called the complex ciculant universe of degree p
q
. In particular, the set

Fn(Cm(N)) =
{

(X, Y, Z) ∈ Cm(N)3 : Xn + Y n = Zn, XY Z 6= 0
}
, n ∈ N, n ≥ 2,
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III. The Universe of an Algebra

Definition 3.1. 

Definition 3.2. 

Definition 3.3. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

is called the natural circulant universe of degree n. We are going to show that
the universe F2(Cm(N)) is not empty. Fermat’s Last Theorem for circulant
matrices is equivalent to say that

Fn(Cm(N)) = {} = φ, n ≥ 3.

In other words, there are matrix complex universes which don’t have triples
of matrices of positive integers as entries elements.

Denote by C∗(Cm(C)) = {h/h : Cm(C) −→ Cm(C)}, the set of complex func-
tions over C. Let

Ω(F2(Cm(C))) = {P : P ⊆ F2(Cm(C))}

be the set of all subsets of F2(Cm(C)). Theorem 2.5 of [26] allows us to claim
that the appropriate choice of the values of m0(k) and n0(k) such that

2(m0(k)− n0(k))±
√

8m0(k)(m0(k)− n0(k))

2
∈ Cm(C)

leads to the construction of sequences of triples of circulant matrices with
positive (or negative) integers as entries which satisfy the equation

X2 + Y 2 = Z2.

Let fM : C∗(Cm(C))×C∗(Cm(C)) −→ Ω(F2(Cm(C))) be the function defined
by

fM(m0(k), n0(k)) =



m0(k) = aβ(k), k, a, β(k) ∈ Cm(C), β ∈ C∗(Cm(C))
m0(k)− n0(k) ∈ Cm(C)

Xk(m0(k), n0(k)) =
2(m0(k)−n0(k))+

√
8m0(k)(m0(k)−n0(k))

2
∈ Cm(C)

Yk(m0(k), n0(k)) =
2(m0(k)−n0(k))+

√
8m0(k)(m0(k)−n0(k))

2
+ n0(k)

Zk(m0(k), n0(k)) =
2(m0(k)−n0(k))+

√
8m0(k)(m0(k)−n0(k))

2
+m0(k)

 ,

This type of function is called Mouanda’s choice function for matrices. Mouanda’s
choice function for matrices is a galaxy valued function. This function allows
us to construct galaxies of sequences of matrices.

All the galaxies defined in this section have been deduced from the galaxies
already introduced in [26].
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IV. Mouanda's Choice Function for Matrices

V. A Finite Galaxy of Sequences of Circulant Matrices with Positive

Integers as Entries
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A multi-galaxy is a galaxy which contains other galaxies.
The order of a galaxy is the number of variables of the galaxy.

Let

P =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
1 0 . . . 0 0 0


be a m×m−matrix. Denote by Tk = P k, k = 1, 2, ...,m− 1. Let

Um = {Im, T1, T2, ..., Tm−1}

be a finite set of unitary circulant matrices. The elements of the set Um
satisfy the following:

TiTj = Ti+j, TiTm−i = Im, Tm+i = Ti, Tk = P k.

Denote by

P(m)(C) =

{
f(z) =

m−1∑
k=0

akz
k : ak ∈ C, z ∈ D

}
.

Let

f(z) =
m−1∑
k=0

akz
k

be a complex polynomial over D. The Toeplitz matrix



a0 a1 a2
. . . am−2 am−1

am−1 a0 a1 a2
. . . am−2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

a2
. . . . . . am−1 a0 a1

a1 a2
. . . . . . am−1 a0


= f(P )

is called the circulant matrix with complex numbers as entries. The polyno-
mial f(z) is called associated polynomial of the matrix f(P ). Recall that the
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Definition 5.1. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

set Cm(C) is the commutative algebra of m×m-complex circulant matrices.
In other words,

Cm(C) =





a0 a1 a2
. . . am−2 am−1

am−1 a0 a1 a2
. . . am−2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

a2
. . . . . . am−1 a0 a1

a1 a2
. . . . . . am−1 a0


: ak ∈ C


.

It follows that

Cm(C) =
{
f(P ) : f ∈ P(m)(C)

}
and

Cm(N) =





a0 a1 a2
. . . am−2 am−1

am−1 a0 a1 a2
. . . am−2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

a2
. . . . . . am−1 a0 a1

a1 a2
. . . . . . am−1 a0


: ak ∈ N


.

It is quiet clear that

Cm(N) ⊂ Cm(Z) ⊂ Cm(Q) ⊂ Cm(R) ⊂ Cm(C).

Mouanda’s matrix choice function fM allows us to construct galaxies of cir-
culant matrices. For instance, if we choose m0 = A2k×2,m0−n0 = αIm, A ∈
Cm(N) the model

Gala(NIm, Cm(N)) =


Xk(αIm, A) = αIm + 2

√
α× Ak

Yk(αIm, A) = 2
√
α× Ak + 2× A2k

Zk(αIm, A) = αIm + 2
√
α× Ak + 2× A2k

α = r2, k, r ∈ N, A ∈ Cm(N)


is called the galaxy of sequences of circulant matrices with positive integers
as entries of order 2. For α0 and A fixed, the triple

(X0(α0Im, A), Y0(α0Im, A), Z0(α0Im, A))
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is called the origin of the galaxy Gala(α0Im, Cm(N)). The elements of
Gala(α0Im, Cm(N)) satisfy

X2
k(α0Im, A) + Y 2

k (α0Im, A) = Z2
k(α0Im, A), k ∈ N, A ∈ Cm(N)

and

(Xk(α0Im, A), Yk(α0Im, A), Zk(α0Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, A,B,C,D ∈ Cm(N)

with k, p, q ∈ N, q 6= 0.
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Example 5.2. 

Notes

A Finite Galaxy of Sequences of Circulant Matrices
with Positive Integers as Entries

• The model

Gala(4Im, Um) =


Xk(4Im, A) = 4Im + 4× Ak

Yk(4Im, A) = 4× Ak + 2× A2k

Zk(4Im, A) = 4Im + 4× Ak + 2× A2k

k ∈ N, A ∈ Um

(X0(4Im, A), Y0(4Im, A), Z0(4Im, A)) = (8Im, 6Im, 10Im)


is called the finite galaxy of sequences of circulant matrices with positive
integers as entries of order 1. The triple (X0(4Im, A), Y0(4Im, A), Z0(4Im, A))
is called the origin of the galaxy Gala(4Im, Um). The triple

(Xk(4Im, A), Yk(4Im, A), Zk(4Im, A))

satisfies

X2
k(4Im, A) + Y 2

k (4Im, A) = Z2
k(4Im, A), k ∈ N,

X0(4Im, A) + Y0(4Im, A) + Z0(4Im, A) = 24Im
and

(Xk(4Im, A), Yk(4Im, A), Zk(4Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, k, p, q ∈ N, q 6= 0,

D,B,C ∈ Um. The finite galaxy Gala(4Im, Um) allows the construction of
the infinite galaxy

Gala(4Im, Cm(N)) =


Xk(4Im, A) = 4Im + 4× Ak

Yk(4Im, A) = 4× Ak + 2× A2k

Zk(4Im, A) = 4Im + 4× Ak + 2× A2k

k ∈ N, A ∈ Cm(N)
(X0(4Im, A), Y0(4Im, A), Z0(4Im, A)) = (8Im, 6Im, 10Im)


which has the same origin and stability law than Gala(4Im, Um). Therefore,
we can say that the galaxy Gala(NIm, Cm(N))is a multi-galaxy.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

• Assume that m = 5, U5 = {I5, T1, T2, T3, T4} and

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


2

=


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 = T2 ∈ U5.

The triples (Xk(4I5, A), Yk(4I5, A), Zk(4I5, A)) of the galaxy

Xk(4I5, A) =


4 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 4 0
0 0 0 0 4

+ 4


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


k

Yk(4I5, A) = 4


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


k

+ 2


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


2k

Zk(4I5, A) = 4I5 + 4


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


k

+ 2


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


2k

k ∈ N
(X0(4I5, A), Y0(4I5, A), Z0(4I5, A)) = (8I5, 6I5, 10I5)

X1(4I5, A) = 4I5 + 4T2
Y1(4I5, A) = 4T2 + 2T4

Z1(4I5, A) = 4I5 + 4T2 + 2T4


satisfy the equation

X2
k(4I5, A) + Y 2

k (4I5, A) = Z2
k(4I5, A), k ∈ N

and

(Xk(4I5, A), Yk(4I5, A), Zk(4I5, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, D,B,C ∈ Un, k, q, p ∈ N, q 6= 0.

• The elements of the galaxy

Gala(9Im, Um) =


Xk(9Im, A) = 9Im + 6× Ak

Yk(9Im, A) = 6× Ak + 2× A2k

Zk(9Im, A) = 9Im + 6× Ak + 2× A2k

k ∈ N, A ∈ Um
(X0(9Im, A), Y0(9Im, A), Z0(9Im, A)) = (15Im, 8Im, 17Im)


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satisfy

X2
k(9Im, A) + Y 2

k (9Im, A) = Z2
k(9Im, A), k ∈ N

and

(Xk(9Im, A), Yk(9Im, A), Zk(9Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, q, k ∈ N, q 6= 0,

D,B,C ∈ Um. Again, from the galaxy Gala(9Im, Um), we can construct a
galaxy which has an infinite number of elements. Indeed, the galaxy

Gala(9Im, Cm(N)) =


Xk(9Im, A) = 9Im + 6× Ak

Yk(9Im, A) = 6× Ak + 2× A2k

Zk(9Im, A) = 9Im + 6× Ak + 2× A2k

k ∈ N, A ∈ Cm(N)
(X0(9Im, A), Y0(9Im, A), Z0(9Im, A)) = (15Im, 8Im, 17Im)


has the same origin and stability law than the galaxy Gala(9Im, Um). This
galaxy has an infinite number of elements.

• The elements of the galaxy

Gala(16Im, Um) =


Xk(16Im, A) = 16Im + 8× Ak
Yk(16Im, A) = 8× Ak + 2× A2k

Zk(16Im, A) = 16Im + 8× Ak + 2× A2k

k ∈ N, A ∈ Um
(X0(16Im, A), Y0(16Im, A), Z0(16Im, A)) = (24Im, 10Im, 26Im)


satisfy

X2
k(16Im, A) + Y 2

k (16Im, A) = Z2
k(16Im, A), k ∈ N

and

(Xk(16Im, A), Yk(16Im, A), Zk(16Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, k, q ∈ N, q 6= 0,

D,B,C ∈ Um. The galaxy Gala(16, Um) has a finite number of elements (or
planets). However, the galaxy

Gala(16Im, Cm(N)) =


Xk(16Im, A) = 16Im + 8× Ak
Yk(16Im, A) = 8× Ak + 2× A2k

Zk(16Im, A) = 16Im + 8× Ak + 2× A2k

k ∈ N, A ∈ Cm(N)
(X0(16Im, A), Y0(16Im, A), Z0(16Im, A)) = (24Im, 10Im, 26Im)


has an infinite number of elements (or planets).
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Assume that m0 − n0 = 2Im,m0 = A2k, A ∈ Cm(N). We
can define the galaxy

∆(2Im, Cm(N)) =


Xk(2Im, A) = 2Im + 2× Ak
Yk(2Im, A) = 2× Ak + A2k

Zk(2Im, A) = 2Im + 2× Ak + A2k

k ∈ N, A ∈ Cm(N)


in which the triples (Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) , k ∈ N, satisfy

X2
k(2Im, A) + Y 2

k (2Im, A) = Z2
k(2Im, A), k ∈ N,

X0(2Im, A) + Y0(2Im, A) + Z0(2Im, A) = 12Im

and

(Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
,

p, q, k ∈ N, q 6= 0, C,D,B ∈ Cm(N).

A Finite Galaxy

The triples (Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) , k ∈ N, of the galaxy

∆(2Im, Um) =


Xk(2Im, A) = 2Im + 2× Ak
Yk(2Im, A) = 2× Ak + A2k

Zk(2Im, A) = 2Im + 2× Ak + A2k

k ∈ N, A ∈ Um


satisfy

X2
k(2Im, A) + Y 2

k (2Im, A) = Z2
k(2Im, A), k ∈ N,

X0(2Im, A) + Y0(2Im, A) + Z0(2Im, A) = 12Im

and

(Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
,

p, q, k ∈ N, q 6= 0, C,D,B ∈ Um.

Assume that m = 10, U10 = {I10, T1, T2, T3, T4, T5, T6, T7, T8, T9}
with

T1 =



0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0


.
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Example 5.3. 

Example 5.4. 

Example 5.5. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The triples (Xk(2I10, T1), Yk(2I10, T1), Zk(2I10, T1)) of the galaxy

∆(2I10, T1) =


Xk(2I10, T1) = 2I10 + 2× T k1
Yk(2I10, T1) = 2× T k1 + T 2k

1

Zk(2I10, T1) = 2I10 + 2× T k1 + T 2k
1

k ∈ N


satisfy

X2
k(2I10, T1) + Y 2

k (2I10, T1) = Z2
k(2I10, T1), k ∈ N

and

(Xk(2I10, T1), Yk(2I10, T1), Zk(2I10, T1)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, q, k ∈ N, q 6= 0,

D,B,C ∈ U10.

The triples (Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) of the galaxy

Σ(2Im, Um) =


Xk(2Im, A) = 2Im + 2× A4k

Yk(2Im, A) = 2× A4k + A8k

Zk(2Im, A) = 2Im + 2× A4k + A8k

k ∈ N, A ∈ Um


satisfy

X2
k(2Im, A) + Y 2

k (2Im, A) = Z2
k(2Im, A), k ∈ N,

X0(2Im, A) + Y0(2Im, A) + Z0(2Im, A) = 12Im

and

(Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, q, k ∈ N, q 6= 0,

C,D,B ∈ Um. The multi-galaxy Σ(2Im, Cm(N)) has an infinite number of
planets.

The triples (Xk(2Im, T4), Yk(2Im, T4), Zk(2Im, T4)) of the galaxy

Σ(2Im, T4) =


Xk(2Im, T4) = 2Im + 2× T 4k

4

Yk(2Im, T4) = 2× T 4k
4 + T 8k

4

Zk(2Im, T4) = 2Im + 2× T 4k
4 + T 8k

4

k ∈ N,


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VI. -Model

Example 6.1. 

Notes

∑



 
 

 
 

 
 
 
 
 
 
 
 
 
 

satisfy

X2
k(2Im, T4) + Y 2

k (2Im, T4) = Z2
k(2Im, T4), k ∈ N,

X0(2Im, T4) + Y0(2Im, T4) + Z0(2Im, T4) = 12Im

and

(Xk(2Im, T4), Yk(2Im, T4), Zk(2Im, T4)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, q, k ∈ N, q 6= 0,

D,B,C, T4 ∈ Um.

The triples (Xk(2Im, T3), Yk(2Im, T3), Zk(2Im, T3)) of the se-
quence

Σ(2Im, T3) =


Xk(2Im, T3) = 2Im + 2× T 4k

3

Yk(2Im, T3) = 2× T 4k
3 + T 8k

3

Zk(2Im, T3) = 2Im + 2× T 4k
3 + T 8k

3

k ∈ N
(X0(2Im, T3), Y0(2Im, T3), Z0(2Im, T3)) = (4Im, 3Im, 5Im)


satisfy

X2
k(2Im, T3) + Y 2

k (2Im, T3) = Z2
k(2Im, T3), k ∈ N,

X0(2Im, T3) + Y0(2Im, T3) + Z0(2Im, T3) = 12Im

and

(Xk(2Im, T3), Yk(2Im, T3), Zk(2Im, T3)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, q, k ∈ N, q 6= 0,

D,B,C, T3 ∈ Um,Σ(2Im, T3) ⊂ Σ(2Im, Um) ⊂ Σ(2Im, Cm(N)).

A model of a galaxy is a power model if the power of the lead of the model is
a power. For example, if we choose m0 = A2λk and m0−n0 = 2×α2×λ2Im,
the model

URS(NIm, Um,NIm) =


Xk(αIm, A, λIm) = 2× α2 × λ2Im + 2α× λ× Aλk

Yk(αIm, A, λIm) = 2α× λ× Aλk + A2λk

Zk(αIm, A, λIm) = 2× α2 × λ2Im + 2α× λ× Aλk + A2λk

k, α, a, λ ∈ N, α 6= 0, a 6= 0, λ 6= 0, A ∈ Um


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Example 6.2. 

VII. Power Models of Galaxies of Sequences of Circulant Matrices
with Positive Integers as Entries of Order 3

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

is a power model. The elements of the model URS(Um, Um, Um) satisfy

X2
k(αIm, A, λIm) + Y 2

k (αIm, A, λIm) = Z2
k(αIm, A, λIm), k ∈ N

and

(Xk(αIm, A, λIm), Yk(αIm, A, λIm), Zk(αIm, A, λIm)) 6=
(
D

p
q , B

p
q , C

p
q

)
, k, p, q ∈ N,

, q 6= 0, D,B,C ∈ Um, URS(Um, Um, Um) ⊂ URS(Cm(N), Cm(N), Cm(N)).

The elements of the galaxy

URS(2Im, Um, 2Im) =


Xk(2Im, A, 2Im) = 32Im + 8× A2k

Yk(2Im, A, 2Im) = 8× A2k + A2k+1

Zk(2Im, A, 2Im) = 32Im + 8× A2k + A2k+1

k ∈ N, A ∈ Um


satisfy

X2
k(2Im, A, 2Im) + Y 2

k (2Im, A, 2Im) = Z2
k(2Im, A, 2Im), k ∈ N

and

(Xk(2Im, A, 2Im), Yk(2Im, A, 2Im), Zk(2Im, A, 2Im)) 6=
(
D

p
q , B

p
q , C

p
q

)
,

p, q, k ∈ N, q 6= 0, D,B,C ∈ Um.

If we choose m0 = A2k+1
and m0 − n0 = 2× α2Im, we could

construct the galaxy

Ω(αIm, Um) =


Xk(αIm, A) = α2Im + 2× α× A2k

Yk(αIm, A) = 2× α× A2k + A2k+1

Zk(αIm, A) = α2Im + 2× α× A2k + A2k+1

k ∈ N, A ∈ Um

 , α ∈ N.

The elements of the galaxy Ω(αIm, Um) satisfy

X2
k(αIm, A) + Y 2

k (αIm, A) = Z2
k(αIm, A), k ∈ N

and

(Xk(αIm, A), Yk(αIm, A), Zk(αIm, A)) 6=
(
D

p
q , B

p
q , C

p
q

)
, p, k, q ∈ N, q 6= 0,

D,B,C ∈ Um. The galaxy
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Example 7.1. 

Example 7.2. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The characterization of the elements of the set F2(Cm(N)) is completely
the same as the characterization of the elements of the set F2(N) [26].

Let (X, Y, Z) and (X1, Y1, Z1) be two elements of F2(Cm(N)).
Then

(X, Y, Z) 6=
(
A

p
q , B

p
q , C

p
q

)
, (X1, Y1, Z1) 6=

(
A

p
q

1 , B
p
q

1 , C
p
q

1

)
, (X, Y, Z) 6= (X1, Y1, Z1) ,

A,B,C,A1, B1, C1 ∈ F2(Cm(N)).

The equation

X2n + Y 2n = Z2n, XY Z 6= 0, n ∈ N(n ≥ 2)

has no circulant matrix with positive integers as entries solutions.

. Assume that there exist X, Y, Z ∈ Cm(N) such that

X2n + Y 2n = Z2n, n ≥ 2, n ∈ N.

This means that

(Xn)2 + (Y n)2 = (Zn)2 .

Therefore,

(Xn, Y n, Zn) ∈ F2(Cm(N)) =
{

(A,B,C) ∈ Cm(N)3 : A2 +B2 = C2
}
.

Remark 7.3 allows us to claim that we have a contradiction because the
universe F2(Cm(N)) has no power elements. Finally, there exist no circulant
matrices with positive integers as entries X, Y, Z ∈ Cm(N) such that

X2n + Y 2n = Z2n, n ∈ N, n ≥ 2.

This result allows to claim that the equation(
X2
)n

+
(
Y 2
)n

=
(
Z2
)n
, n ≥ 2,

has no solution in Cm(N). We can now prove our main result.
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Ω(αIm, Cm(N)) =


Xk(αIm, A) = α2Im + 2× α× A2k

Yk(αIm, A) = 2× α× A2k + A2k+1

Zk(αIm, A) = α2Im + 2× α× A2k + A2k+1

k ∈ N, A ∈ Cm(N)

 , α ∈ N,

has an infinite number of planet systems.

Remark 7.3. 

Theorem 7.4. 

Proof

Notes

Let us observe that the characterization of one element of the set F2(Cm(N))
allows us to deduce the characterization of the elements of the set F2(Cm(N)).
In other words, the set F2(Cm(N)) has no power elements. Remark 7.3 allows
us to prove the following result:



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We just need to show that if (X, Y, Z) ∈ Fn(Cm(C)), n ∈ N, n ≥ 3, then
(X, Y, Z) /∈ Cm(N). Let (X, Y, Z) be an element of the universe
Fn(Cm(C)), n ≥ 3. Then

Xn + Y n = Zn.

This implies that

(
√
X)2n + (

√
Y )2n = (

√
Z)2n ⇐⇒ (X2n)

1
2 + (Y 2n)

1
2 = (Z2n)

1
2 .

and

(X2n)
1
2 + (Y 2n)

1
2 = (Z2n)

1
2 ⇐⇒ (X

n
2 )2 + (Y

n
2 )2 = (Z

n
2 )2.

Theorem 7.4 and Remark 7.3 allow us to claim that

(
√
X,
√
Y ,
√
Z) /∈ F2(Cm(N)), (X2n, Y 2n, Z2n) /∈ F2(Cm(N))

and

(X
n
2 , Y

n
2 , Z

n
2 ) /∈ F2(Cm(N)), n ≥ 3,

since F2(Cm(N)) has no power elements. In other words,

(
√
X,
√
Y ,
√
Z) /∈ Cm(N), (X2n, Y 2n, Z2n) /∈ Cm(N)

and

(X
n
2 , Y

n
2 , Z

n
2 ) /∈ Cm(N), n ≥ 3.

The fact that

(X2n, Y 2n, Z2n) /∈ Cm(N), n ≥ 3

implies that

(X, Y, Z) /∈ Cm(N).

It is well known that if A = C(Ω), where Ω is a compact Hausdorff space,
then σ(f) = f(Ω) for all f ∈ A. Let

ϕ(z) =
m−1∑
k=0

akz
k

be a complex polynomial over D. Then σ(ϕ) = ϕ(D).
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Proof of Theorem 1.1

VIII. Eigenvalues of Circulant Matrices

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

[40]. Let T ∈ B(H) be a normal
bounded linear operator on the Hilbert space H and let f : σ(T ) −→ C be a
continuous function on σ(T ). Then σ(f(T )) = f(σ(T )).

Let us introduce the well known spectrum of circulant matrices associated
to complex polynomials over D. Let

ϕ(z) =
m−1∑
k=0

akz
k

be a complex polynomial over D. Let

P =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
1 0 . . . 0 0 0


be an m ×m- matrix. The matrix P is normal. Indeed, PP ∗ = P ∗P = Im.
Assume that

A0 =



a0 a1 a2
. . . am−2 am−1

am−1 a0 a1 a2
. . . am−2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

a2
. . . . . . am−1 a0 a1

a1 a2
. . . . . . am−1 a0


.

A simple calculation shows that

A0 = ϕ(P ) =
m−1∑
k=0

akP
k.

The matrix A0 is considered as a polynomial of one variable. Let us compute
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The Spectral Mapping Theorem 1. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

the spectrum of the normal matrix P. Let

f(λ) = det(P − λIm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1 0
. . . 0 0

0 −λ 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 −λ 1
1 0 . . . 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1− λm.

be the characteristic polynomial of P. Thus, λ is a primitive m-th root of
unity. Therefore,

σ(P ) =
{
λPk = e

2πki
m : k = 0, 1, 2, ...,m− 1

}
.

In other words,

σ(P ) =
{

1, e
2πi
m , e

4πi
m , e

6πi
m , e

8πi
m , e

10πi
m , e

12πi
m , e

14πi
m , ..., e

2(m−1)πi
m

}
.

Finally,

σ(P ) =
{
λP0 , λ

P
1 , ..., λ

P
m−1

}
⊂ D.

ϕ(σ(P )) = σ(ϕ(P )) = σ(A0).

Therefore,

σ(A0) =
{
ϕ(λP0 ), ϕ(λP1 ), ..., ϕ(λPm−1)

}
.

In this section, we construct galaxies of sequences of eigenvalues of circulant
matrices.

Let X, Y, Z ∈ Cm(C) be three circulant matrices with complex
numbers as entries such that

Xn + Y n = Zn.

Then

(λXk )n+(λYk )n = (λZk )n, λXk ∈ σ(X), λYk ∈ σ(Y ), λZk ∈ σ(Z), k = 0, 1, 2, ...,m−1.
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IX. Galaxy of Sequences of Eigenvalues of Circulant Matrices

Theorem 9.1. 

Notes

The spectral mapping Theorem allows us to claim that



 
 

 
 

 
 
 
 
 
 
 
 
 
 

M(X, Y, Z) =


λXk
λYk
λZk

k = 0, 1, 2, ...,m− 1

 ⊂ Fn(C).

Let (X, Y, Z) ∈ Cm(C), n ∈ N, n ≥ 3, be an element of the universe
Fn(Cm(C)). The spectral factorization of the matrices X, Y, Z [36, 37, 38]
allows us to claim that there exists a unitary matrix U such that

X = U



λX0 0 0
. . . 0 0

0 λX1 0 0
. . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 λXm−2 0

0 0
. . . . . . 0 λXm−1


U∗ = UDXU

∗,

Y = U



λY0 0 0
. . . 0 0

0 λY1 0 0
. . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 λYm−2 0

0 0
. . . . . . 0 λYm−1


U∗ = UDYU

∗

and

Z = U



λZ0 0 0
. . . 0 0

0 λZ1 0 0
. . . 0

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0
. . . . . . 0 λZm−2 0

0 0
. . . . . . 0 λZm−1


U∗ = UDZU

∗.

The equation Xn + Y n = Zn implies

UDn
XU

∗ + UDn
YU

∗ = UDn
ZU

∗.
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Proof:
Notes

In other words, the triples (λXk , λ
Y
k , λ

Z
k ) ∈ Fn(C), k = 0, 1, 2, ...,m−1. Thatis,

the planet system



 
 

 
 

 
 
 
 
 
 
 
 
 
 

It follows that

U [Dn
X +Dn

Y ]U∗ = UDn
ZU

∗.

We can claim that

Dn
X +Dn

Y = Dn
Z .

Finally,

(λXk )n+(λYk )n = (λZk )n, λXk ∈ σ(X), λYk ∈ σ(Y ), λZk ∈ σ(Z), k = 0, 1, 2, ...,m−1.

M(X, Y, Z) =


λXk
λYk
λZk

k = 0, 1, 2, ...,m− 1

 ⊂ Fn(C).

Every triple (X,Y,Z) of the universe Fn(Cm(C)) generates a planet system
M(X,Y,Z) which has exactly m elements of the universe Fn(C). We can say
that the galaxies of sequences of circulant matrices are linked to the galaxies
of sequences of eigenvalues of circulant matrices. Let us consider the galaxies

Ω(αIm, Cm(N)) =


Xk(αIm, A) = α2Im + 2× α× A2k

Yk(αIm, A) = 2× α× A2k + A2k+1

Zk(αIm, A) = α2Im + 2× α× A2k + A2k+1

k ∈ N, A ∈ Cm(N)

 , α ∈ N,

of circulant matrices. We can construct the galaxies of sequences of eigenval-
ues of the triples of circulant matrices of the galaxies Ω(αIm, Cm(N)), α ∈ N.
For example, the galaxies

Ω(α, σ(Cm(N))) =


Xk(α, λ) = α2 + 2× α× λ2k

Yk(α, λ) = 2× α× λ2k + λ2
k+1

Zk(α, λ) = α2 + 2× α× λ2k + λ2
k+1

k ∈ N, λ ∈ σ(A), A ∈ Cm(N)

 ⊂ F2(N), α ∈ N,

are galaxies of sequences of eigenvalues of triples of circulant matrices of the
galaxies Ω(αIm, Cm(N)), α ∈ N. As we can see that the galaxies

Ω(α, σ(A)) =


Xk(α, λ) = α2 + 2× α× λ2k

Yk(α, λ) = 2× α× λ2k + λ2
k+1

Zk(α, λ) = α2 + 2× α× λ2k + λ2
k+1

k ∈ N, λ ∈ σ(A)

 ⊂ F2(N), α ∈ N, A ∈ Cm(N),
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Notes

In other words, the triples (λXk , λ
Y
k , λ

Z
k ) ∈ Fn(C), k = 0, 1, 2, ...,m− 1. That

is, the planet system



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Σ(2Im, Cm(N)) =


Xk(2Im, A) = 2Im + 2× A4k

Yk(2Im, A) = 2× A4k + A8k

Zk(2Im, A) = 2Im + 2× A4k + A8k

k ∈ N, A ∈ Cm(N)

 .
We know that the triples (Xk(2Im, A), Yk(2Im, A), Zk(2Im, A)) of the galaxy
Σ(2Im, Cm(N)) satisfy

X2
k(2Im, A) + Y 2

k (2Im, A) = Z2
k(2Im, A), k ∈ N.

Define the galaxy

Σ(2, σ(Cm(N))) =


Xk(λ) = 2 + 2× λ4k
Yk(λ) = 2× λ4k + λ8k

Zk(λ) = 2 + 2× λ4k + λ8k

k ∈ N, λ ∈ σ(A), A ∈ Cm(N)

 .

The triples (Xk(λ), Yk(λ), Zk(λ)) of the galaxy Σ(2, σ(Cm(N))) satisfy

X2
k(λ) + Y 2

k (λ) = Z2
k(λ), k ∈ N.

We can deduce the galaxies

Σ(2, σ(A)) =


Xk(λ) = 2 + 2× λ4k
Yk(λ) = 2× λ4k + λ8k

Zk(λ) = 2 + 2× λ4k + λ8k

k ∈ N, λ ∈ σ(A),

 , A ∈ Cm(N),

which have a finite number of planet systems. The triples (Xk(λ), Yk(λ), Zk(λ))
of the galaxy Σ(2, σ(A)) also satisfy

X2
k(λ) + Y 2

k (λ) = Z2
k(λ), k ∈ N.

The first eigenvalue of every matrix of Cm(N) is a positive integer.

Let A ∈ Cm(N) be a circulant matrix with positive integers
as entries. Then the first eigenvalue λA0 of A is a positive integer. In other
words, λA0 ∈ N.
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Theorem 9.2. 

Notes

have each a finite number of planet systems. In our case, each galaxy has
m planet systems. Every galaxy of the universe F2(Cm(N)) generates a new
galaxy of eigenvalues of elements of Cm(N). Let us consider the galaxy



 
 

 
 

 
 
 
 
 
 
 
 
 
 

. Let

A =



a0 a1 a2
. . . am−2 am−1

am−1 a0 a1 a2
. . . am−2

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

a2
. . . . . . am−1 a0 a1

a1 a2
. . . . . . am−1 a0


∈ Cm(N)

be a circulant matrix with positive integers as entries. Then there exists a
polynomial

ϕ(z) =
m−1∑
k=0

akz
k, ak ∈ N, z ∈ D,

such that

A = ϕ(P ) =
m−1∑
k=0

akP
k.

We know that

σ(A) =
{
ϕ(λP0 ), ϕ(λP1 ), ..., ϕ(λPm−1)

}
with{

λP0 , λ
P
1 , ..., λ

P
m−1

}
=
{

1, e
2πi
m , e

4πi
m , e

6πi
m , e

8πi
m , e

10πi
m , e

12πi
m , ..., e

2(m−1)πi
m

}
.

Therefore,

λA0 = ϕ(1) =
m−1∑
k=0

ak ∈ N.

Let A be an algebra and let A ∈ Cm(A). Then

λA0 = ϕ(1) =
m−1∑
k=0

ak ∈ A.

Theorem 9.1 and Theorem 9.2 allow us to provide another proof of our main
result.
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Proof

Remark 9.3. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Assume that there exist X, Y, Z ∈ Cm(N), n ∈ N, n ≥ 3, three circulant
matrices with positive integers as entries such that

Xn + Y n = Zn.

Theorem 9.1 and Theorem 9.2 allow us to claim that

(λX0 )n + (λY0 )n = (λZ0 )n, n ≥ 3.

This implies that the equation xn + yn = zn, n ≥ 3 has positive integer
solutions. We have a contradiction. Therefore, the equation

Xn + Y n = Zn, XY Z 6= 0, n ∈ N(n ≥ 3)

has no circulant matrix with positive integers as entries solutions.

Let A be an algebra and let

P(m)(A) =

{
f(z) =

m−1∑
k=0

akz
k : ak ∈ A, z ∈ D

}

be the algebra of polynomials over D. Complex polynomials of the alge-
bra P(m)(N) allow us to provide Fermat’s Last Theorem for eigenvalues of
circulant matrices.

The equation

xn + yn = zn, xyz 6= 0, n ∈ N(n ≥ 3)

has no positive integer eigenvalues of circulant matrices solutions.

Assume that there exists a triple (λ, η, µ) of positive integer
eigenvalues of circulant matrices X,Y and Z of Cm(N) such that

λn + ηn = µn, ληµ 6= 0, n ∈ N, n ≥ 3, λ ∈ σ(X), η ∈ σ(Y ), µ ∈ σ(Z).

Therefore, there exist three f, g, h complex polynoimals of P(m)(N) such
that

f(z)n + g(z)n = h(z)n, n ∈ N, n ≥ 3, z ∈ D.

In particular,

f(P )n + g(P )n = h(P )n, n ∈ N, n ≥ 3, z ∈ D
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Second Proof of Theorem 1.1

Theorem 9.4. 

Proof. 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

with P the cyclic permutation m×m−matrix given by

P =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
1 0 . . . 0 0 0


.

We can now construct models of galaxies of complex polynomials associated
to circulant matrices. Recall that

P(m)(C) =

{
f(z) =

m−1∑
k=0

akz
k : ak ∈ C, z ∈ D

}
.

The galaxies of the universe Fn(Cm(C)) generate the galaxies of the universe
Fn(P(m)(C)). For example, from the galaxy Σ(2Im, Cm(C)), we can construct
the galaxy

Σ(2,P(m)(C)) =


Xk(f) = 2 + 2× f 4k

Yk(f) = 2× f 4k + f 8k

Zk(f) = 2 + 2× f 4k + f 8k

k ∈ N, f ∈ P(m)(C)

 ⊂ F2(P(m)(C)).

We can continue doing the same identification process with the remaining
galaxies of F2(Cm(C)). This process will lead to the construction of the
universe F2(P(m)(C)). Now, we are able to provide Fermat’s Last Theorem
for complex polynomials over the unit disk D associated to circulant matrices
of the set Cm(N).
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X. Fermat's Last Theorem for Complex Polynomials associated to
Circulant Matrices

Notes

In other words,

Xn + Y n = Zn, XY Z 6= 0, n ∈ N, n ≥ 3.

We have a contradiction. Finally, The equation

xn + yn = zn, xyz 6= 0, n ∈ N(n ≥ 3)

has no positive integer eigenvalues of circulant matrices solutions.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The equation

xn + yn = zn, xyz 6= 0, n ∈ N(n ≥ 3)

has no solutions in P(m)(N),m ∈ N,m 6= 0.

Assume that there exists a triple (f, g, h) of complex polynomials of
the set P(m)(N),m ∈ N,m 6= 0, such that

f(z)n + g(z)n = h(z)n, n ∈ N, n ≥ 3, z ∈ D.

This implies that

f(P )n + g(P )n = h(P )n, n ∈ N, n ≥ 3.

with P the cyclic permutation m×m−matrix given by

P =



0 1 0
. . . 0 0

0 0 1 0
. . . 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 0 1
1 0 . . . 0 0 0


.

In other words, there exist X, Y, Z ∈ Cm(N) such that

Xn + Y n = Zn, XY Z 6= 0, n ∈ N, n ≥ 3.

We have a contradiction. Finally, The equation

xn + yn = zn, xyz 6= 0, n ∈ N(n ≥ 3)

has no solutions in P(m)(N),m ∈ N,m 6= 0.

Theorem 1.1, Theorem 9.4 and Theorem 10.1 are equivalent.
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Theorem 10.1. 

Proof. 
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