

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: H
ENVIRONMENT & EARTH SCIENCE
Volume 22 Issue 4 Version 1.0 Year 2022
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Survival of Plants Seeds and Bacteria in a Picosatellite Sent to the Stratosphere

By Juan Manuel Sánchez-Yáñez & Christian Martínez-Cámara

Michoacan University of San Nicolas de Hidalgo

Summary- The theory that life on planet Earth is based on the fact that plant seeds and prokaryotes have shown the ability to survive extreme environmental conditions. The objective of this research was to analyze the survival of plant seeds and genera of probiotic bacteria released in a picosatellite to the atmosphere. In that sense seeds of *Beta vulgaris* (beet), *Lactuca sativa* (lettuce), *Solanum lycopersicum*, as well as probiotics *Lactobacillus plantarum*, *Leuconostoc lactis*, *Bifidobacterium citreum*, were prepared in petri dishes and placed in a container of a picosatellite sent from the city of Morelia, Michoacan, Mexico: the seeds were germinated and the probiotic bacteria were evaluated before and after of the trip by the picosatellite, the experimental data were analyzed by ANNOVA-Tukey. The results indicated that only survival the seeds of *B. vulgaris* as well as the genera of *La. plantarum* and *Le. lactis*. This shows that in seeds and bacteria there are mechanisms that prevent the death of both in extreme conditions of the stratosphere.

Keywords: extreme physical conditions, life, latency, prokaryote.

GJSFR-H Classification: DDC Code: 579.3012 LCC Code: QR72.5

Strictly as per the compliance and regulations of:

Survival of Plants Seeds and Bacteria in a Picosatellite Sent to the Stratosphere

Juan Manuel Sánchez-Yáñez ^a & Christian Martínez-Cámaras ^a

Summary- The theory that life on planet Earth is based on the fact that plant seeds and prokaryotes have shown the ability to survive extreme environmental conditions. The objective of this research was to analyze the survival of plant seeds and genera of probiotic bacteria released in a picosatellite to the atmosphere. In that sense seeds of *Beta vulgaris* (beet), *Lactuca sativa* (lettuce), *Solanum lycopersicum*, as well as probiotics *Lactobacillus plantarum*, *Leuconostoc lactis*, *Bifidobacterium citreum*, were prepared in petri dishes and placed in a container of a picosatellite sent from the city of Morelia, Michoacan, Mexico: the seeds were germinated and the probiotic bacteria were evaluated before and after of the trip by the picosatellite, the experimental data were analyzed by ANNOVA-Tukey. The results indicated that only survival the seeds of *B. vulgaris* as well as the genera of *La. plantarum* and *Le. lactis*. This shows that in seeds and bacteria there are mechanisms that prevent the death of both in extreme conditions of the stratosphere.

Keywords: extreme physical conditions, life, latency, prokaryote.

I. INTRODUCTION

There is a theory that the origin of life on planet Earth comes from outer space, at the same time it has been shown that genetically both plants and microorganisms on this planet have information that allows them to survive extreme conditions of temperature, pressure, UV radiation and other that they prevent it (Rothchild and Mancinelli, 2001; Beck-Winchatz and Bramble, 2014; Coleman and Mitchell, 2014; Caro et al., 2019; Antunes, 2020; DasSarma et al., 2020; Diez et al., 2020;). The foregoing is supported by the response of both life lines subjected to such conditions (Berry et al., 2010) in addition to the research known as exobiology that endorses it with tests of seeds and microorganisms launched into the stratosphere by means of spikes and nanosatiles (Murcray et al., 1969; Coleman and Mitchell, 2014; Caro et al., 2019). The objective of this research was to demonstrate the survival capacity of seeds of *Beta vulgaris*, *Lactuca sativa*, *Solanum lycopersicum*, *Bifidobacterium citreum*, *Lactobacillus plantarum* and *Leuconostoc lactis* in a Picosatellite trip to the stratosphere.

Author a: Environmental Microbiology, Institute of Biological Chemical Research, Michoacana University of San Nicolás de Hidalgo. Morelia, Michoacan, México. Biochemical Department and Engineering Electronic. e-mail: syanez@umich.mx

Author a: National Technology of Morelia, Morelia, Michoacan, México.

II. MATERIAL AND METHODS

a) CanSat-type picosatellite

The biological samples were sent to stratosphere in CanSat-type picosatellite was made by students of directed by Dr. Edgar Cárdenas-Escamilla from Engineering Electronic. National Technology of Morelia, Morelia, Michoacan, México. Have three prefabricate printed circuit board. The sensor board has two analogues sensors, one pressure sensor to calculate the altitud of the CanSat. Also, to program the processor board to handle data the transmission frecuency is adjusted in the program and container with two Petri dishes containing plant seeds and bacterial samples that were exposed to direct stratospheric environmental conditions (Smith et al., 2014; Smith and Sowa, 2017).

The CanSat picosatellite was launched on February 20 of 2020 at 11 am from Morelia, capital of State of Michoacan, México (video playback <https://youtu.be/ICQQFuayN2w>). The balloon ascended for 2.5 h to a mean float altitude of 38.2 km where it remained for 4 h, followed by a 35 min parachute descent, at Ciudad Hidalgo, Michoacan, México landing at 97 km from Morelia at the northwest of the launch site 19°42 north latitude 100°33. The sample exposure began during the ascent to 21.4 km with the opening of the Trex-Box shutter at 1521 UTC and ended 6 h and 10 min later with the closing of the Trex-Box shutter during the descent to 22.0 km at 2040 UTC. To evaluate the effect of the environmental conditions: 20-25km high, -70°C, 10-12% relative humidity; 0.0042, including the UVB radiation estimated total of 1148kJ m⁻² of UVA. The CanSat was transferred from Ciudad Hidalgo to Morelia for 1.50 minutes, but the petri dishes with plant seeds and bacteria in a container with ice at 5°C to measure the viability of both, plant seed and bacteria at the stratosphere on the viability of seeds of *B. vulgaris* (beetroot), *S. lycopersicum* (tomato), and *L. sativa* (lettuce). A viability test was performed before and after (Saruyama and Tanida, 1995), being sent to the stratosphere on the CanSat 6 picosatellite (Beck-Winchatz and Bramble, 2014; Caro et al., 2019). As well as the genera and species of probiotic bacteria isolated from natural yogurt: *B. citreum*, *La. plantarum*, *Le. lactis* by viable plate count in nutrient agar (g/L): 10.0, glucose; 5.0, casein peptone; 1.0, yeast extract; 18.0, bacteriological agar, the concentration of each was

reported as colony-forming units per ml (Smith et al., 2014).

Table 1: Percentage of germination of *Lactuca sativa*, *Solanum lycopersicum* and *Beta vulgaris* at solarium and sent to the stratosphere

Seed+	Germination percentage (%)	
	In solarium	sent to the stratosphere
<i>Solanum lycopersicum</i>	96.66 ^{a*}	0.0 ^b
<i>Lactuca sativa</i>	90.33 ^b	0.0 ^b
<i>Beta vulgaris</i>	96.66 ^a	46.6 ^a

+n=4 *values with different letters had a statistical difference ($P<0.05$) according to ANOVA-Tukey

III. RESULTS AND DISCUSSION

Table 1 shows the survival of 46.6% of the *B. vulgaris* seed in the picosatellite at the environmental conditions of the stratosphere 25 km high at a temperature of -60 C as well as UV radiation and cosmic rays for a interval between 2 hours before declining, it is possible that the type of crioprotector, combined with the relatively short time of exposure to these conditions, favored the survival of the *B. vulgaris* seed in contrast to the total loss of viability of the *L. sativa* seeds. and *Solaneum lycopersicum* (Saruyama and Tanida, 1995; Wang et al., 2018) compared to the high viability of all

seeds under controlled conditions of temperature 25 C in the absence of light and normal atmospheric pressure in a terrestrial environment.

Table 2 shows the survival of the genera and species of probiotic bacteria *B. citreum* that, launched in the satellite peak into the stratosphere, did not survive in that environment, in contrast, *La. plantarum* of the original total exposed survived 3%, while *Le. lactis* reach 6.9%. It is possible that the cryoprotectants that they possess as well as the DNA repair enzymes have prevented the death of these probiotics based on the relatively short time in which they were exposed (Berry et al., 2010; Smith and Sowa, 2017 DasSarma et al., 2020).

Table 2: Survival of *Bifidobacterium citreum*, *Lactobacillus plantarum* and *Leuconostoc lactis* sent to the stratosphere

Probiotic strain tested	Probiotic strain (control)		Sent to stratosphere
	Bacteria UFC X10 ⁷	Bacteria UFC X 10 ⁶	
Absolute control (AC)	0 ^{c*}	0 ^{b**}	
<i>Lactobacillus plantarum</i>	263 ^a	102 ^a	
<i>Bifidobacterium citreum</i>	107 ^b	0 ^b	
<i>Leuconostoc lactis</i>	133 ^b	92 ^a	

+n=4, * values with different letters had statistically difference ($P<0.05$) according ANOVA-Tukey

III. CONCLUSION

Experimentation with picosatellites launched into the stratosphere containing plant seeds and probiotic genera and species that do not produce spores are a model for the survival of life on Earth despite adverse conditions. What can help the understanding of diseases in humans, plants and animals that are dispersed by the wind in the different environments of the planet. Ongoing research will help establish public policy in human and plant epidemiology.

ACKNOWLEDGMENTS

To project 2.7 of the CIC-UMSNH (2022) for the facilities for the publication. To Phytonutrientos de

México and BIONUTRA, S.A, de C V Maravatio, Mich; México to support this publication.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Rothschild, L. J., and Mancinelli, R. L. 2001. Life in extreme environments. *Nature* 409, 1092–1101.
2. Beck-Winchatz, B., and Bramble, J. 2014. High-altitude ballooning student research with yeast and plant seeds. *Gravit Space Res.* 2, 117–127.
3. Coleman, J. S. M., and Mitchell, M. 2014. Active learning in the atmospheric science classroom and beyond through high-altitude ballooning. *J. Coll. Sci. Teach.* 44, 26–30.
4. Caro, T.A., Wendeln, M., Freeland, M., Bryan, N., Waters, S. M., McIntyre, A., et al. 2019. Ultraviolet light measurements (280–400 nm) acquired from

- stratospheric balloon flight to assess influence on bio aerosols. *Aerobiologia* 35, 771–776. doi: 10.1007/s10453-019-09597-9
5. Antunes, A. 2020. *Astrobiology: Current, Evolving and Emerging Perspectives*. Poole: Caister Academic Press.
 6. DasSarma P, Antunes A, Simoes MF, and DasSarma S. 2020. Earth's Stratosphere and Microbial Life. *Curr. Issues Mol. Biol* Vol 38
 7. Díez, J., Moreno, G., DelPeral, L., Adams, J.H.Jr., Rodríguez Frías, M. D., and Manjón, J. L. 2020. *Fuligo septica* spores on board a stratospheric NASA balloon and Its Complete In Vitro Life Cycle. *Astrobiology* 20, 394–404. doi:10.1089/ast.2019.2097
 8. Berry, B. J., Jenkins, D. G., and Schuerger, A. C. 2010. Effects of simulated Mars conditions on the survival and growth of *Escherichia coli* and *Serratia liquefaciens*. *Appl. Environ. Microbiol.* 76, 2377–2386. doi:10.1128/aem.02147-
 9. Murcray, D.G., Kyle, T.G., Kosters, J.J., and Gast, P.R. 1969. The measurement of the solar constant from high altitude balloons. *Tellus* 21, 620–624. doi:10.1111/j.2153-3490.1969.tb00467.x
 10. Smith, D.J., and Sowa, M. B. 2017. Ballooning for Biologists: Mission essentials for flying life science experiments to near space. *Gravit. Space Res.* 5, 52–73. doi:10.2478/gsr-2017-0005
 11. Smith, D. J., Thakrar, P. J., Bharrat, A. E., Dokos, A. G., Kinney, T. L., James, L. M., et al. 2014. A balloon-based payload for exposing micro-organisms in the stratosphere (E-MIST). *Gravit. Space Res.* 2, 70–80.
 12. Saruyama, H.; Tanida, M. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and-tolerant cultivars of rice (*Oryza sativa* L.). *Plant Sci.* 109, 105–113.
 13. Wang, L.-J.; Zhang, P.; Wang, R.-N.; Pu, W.; Huang, S.-B. 2018. Effects of variety and chemical regulators on cold tolerance during maize germination. *J. Integr. Agric.* 217, 2662–2669.