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In the middle of the 19th century, August Kundt carried out acoustic experiments to
estimate sound speeds in various gases and materials, in laboratories very innovatively, from
wave phenomena of sound resonance excited in closed tubes and published those observations
in 1866 [1]. In this paper he reported an anomaly which has remained unresolved for a long
time. The issue was as follows: there existed two characteristic scales, observed in his
experiment. One is the wave-length of the sound wave in resonance within the tube, which
was just the one being sought in his experiment. However embarrassingly to him, another
characteristic scales were observed in his experiment, i.e. the dust striations formed in the
resonant standing waves which were characterized with much shorter scales. Formation
mechanism of the second dust striation has remained unresolved, i.e. without being given
an appropriate interpretation on its physical mechanism.

After more than eighty years since then, in 1955 Robert Carman wrote a very informative
review [8] for teachers of physics and explained compactly the Kundt Tube Dust Striations.
Showing a beautiful sketch of striations, he noted that very few know what to say when a
student asks why the dust figures in the tube are striated.

Most frequently offered explanations were that those were caused by higher harmonics of
the resonant mode. But this was refuted by Dvorak [2] already in 1874. He argued that a
very high overtone would be necessary to explain the observed wavelength of about 0.8cm
for a typical resonant wavelength of about 11cm of Kundt’s experiment. It is unconceivable
in mechanics to assume that only one overtone is sufficiently stronger than any others to
produce such distinct ripples.
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Abstract- In the Kundt’s experiment of acoustic resonance in closed tubes, two characteristic lengths were observed: 
one is the wave-length of the sound waves in resonance and the other the scale of dust striation. The latter has 
remained unresolved for its formation mechanism. Based on the Fluid Gauge Theory proposed recently by the author,
formation mechanism of the dust striation is studied. When the sound is weak enough, the striation is unobserved. Once 
the wave intensity exceeds a threshold value, dust striations are formed. Formation of the dust striation is understood as 
a spontaneous transition of symmetry in the acoustics. According to the Theory, there is a transition of stress field within 
the fluid flow. Whereas the stress field is isotropic before transition, it becomes anisotropic after the transition. This is 
analogous to the spontaneous symmetry breaking known in the field theory. Lagrangian structures of both systems are 
verified to be analogous either.

The main part of present study was presented orally at the Physics-2022 held at San Francisco, USA, on 18 - 21 July 2022.



Experimental picture of dust striation from Fig.7 of [7]. The two vertical bars on both
sides are the part of Fig.7, signifying the length between them corresponds to 1

2 λr.

In this regard, the experimental studies of Andrade ([5]∼[7]) are particularly noteworthy.
Those were carried out prior to Carman’s review (1955). In 1931, since it had passed already
65 years from the Kundt’s work [1], the experimental devices of Andrade were renewed
significantly with using electric oscillators and vibrating diaphragms, enabling steady-state
conditions maintained during the observation of Andrade. Thus he was able to lower the
resonance frequencies to 100 to 2300 cps (compared with previous values, 2500 ∼ 4000). As
viewed from the present time, his key findings were two:

(i) A certain minimum velocity of the air particles is required for the ripple formation;

(ii) The inception of ripple formation corresponds to a spontaneous breakdown of
the physical state of vortex-free flow in the tube.

The first signifies that there is a critical intensity of sound for the formation and the second
implies that the ripple formation resulted from a spontaneous symmetry breaking. These
findings are reviewed in the present study from the fluid-dynamic point of view on the basis
of the Fluid Gauge Theory [13]. This is one of the main issues.

1
2 λr

The Kundt-tube experiments show us various interesting acoustic phenomena. There-
fore, the present approach investigates the Kundt-tube experiments from diverse aspects:
(a) fluid-mechanically, concerning stress fields, transition from a stress field to another, os-
cillatory boundary layers over the tube walls, or steady streaming as a nonlinear effect; (b)
gauge-theoretically. concerning Lagrangians, gauge fields, or spontaneous symmetry transi-
tion.

First in the sections II and III, various phenomena observed in the experiments are pre-
sented compactly and then reviewed from a gauge-theoretic point of view, emphasizing that
a transitional change of acoustic phenomena may be interpreted as spontaneous symmetry
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Fig. 1:

Kundt’s experiment attracted interest of Rayleigh [4], who proposed that, within a 
sinusoidal standing wave excited powerfully in a pipe, steady streaming is generated in 
addition to the periodic oscillation by the action of the nonlinear mean Reynolds stress in
collaboration with the dissipative dragging action of viscosity. Andrade [6] presented 
experimental photographs showing this steady streaming (Fig. 5(a)). In these back-
grounds, Lighthill showed a diagram of the steady streaming ([11], Fig. 85) consisting of 

four cells of closed streamlines within a wavelength , noting that this explains why dust 

particles tend to accumulate at the nodes and there are two nodes within .
However, it is noted by Andrade [7] that the steady streaming is observed only under

prolonged intensive sound waves. Lowering the intensity, but still above a critical 
intensity, he observed ripple-like striation with using minute cork particles. FIG.1 is its 

photo from [7], showing a number of ripple waves within a half wavelength . Kundt 
himself [1] used a number of minute Lycopodium dried spores as the dust particles, and 
described the structure of lateral striation as ribs, which were caused by the air in 
motion, not by other causes. Since then, very little is known about its formation 
mechanism.

λr

λr



 
 

 
 

 
 
 
 
 
 
 
 
 
 

transition. Then in § IV, the fluid gauge theory is presented for its theoretical interpreta-
tion. Computer simulations are also presented to visualize non-trivial acoustic phenomena
occurring within the flow fields in § III and IV, helped by the experimental picture (FIG.2)
of the rotational eddy field visualized by Andrade [7].

In the flow fields studied here, there are three types of stress fields (§ IV-C) which are

playing important roles in the acoustic phenomena: (A) isotropic stress field σjk
I (xν) (non-

dissipative), (B) anisotropic stress σjk
A (xν) (non-dissipative), and (C) viscous stress σjk

vis(x
k)

(anisotropic and dissipative). Traditional Eulerian fluid system is governed by the isotropic

pressure stress σjk
I . Depending on whether the stress field is isotropic σjk

I or anisotropic σjk
A ,

the fluid current field jµ(xµ) changes its character drastically. In fact , this is one of the

main themes of the present study. The third viscous stress σjk
vis plays an important role in

the Navier-Stokes system.
The viscous stress tensor has anisotropic components as well. The anisotropic components

of viscous stress play essential roles in the study of fluid mechanics. Turbulence theory
learns those and takes advantage of the anisotropic property of viscous stress. However,
there exists an essential difference between the two fields of the viscous stress σjk

vis and the
FGT anisotropic stress σνk

A . The former is dissipative (shown in § IV (3)), while the latter is
conservative because the mechanical systems derived from the action principle in terms of
Lagrangians (§ IV, A and B) have Hamiltonian system of equations of motion which conserve
the total mechanical energy (cf. [19] § 2.3; [20] § 2.3). Hence the present study emphasizes
the importance of the conservative stress field σνk

A . This is another theme of the present.
Section V reviews the theory of steady streaming generated by oscillatory boundary layers

in the acoustic system, which is also observed in the Kundt’s system [7].
Section VI investigates a similarity of spontaneous symmetry transitions occurring in

two quite-different physical systems: (a) Kundt’s acoustic system and (b) Higgs’ mechanism
([21], [22]). It is quite unexpected finding that an analogy exists between the Lagrangian
structures of both systems. Each system is described by a triplet of Lagrangians, each
of which has similarity respectively. Most obvious similarity is seen in the forms of the
Lagrangian describing interactions (see §VI).

The present study takes new fluid-mechanical view-points in order to describe the Kundt’s
experiment with physical terms. In particular, to explain the two experimental observations
(i) and (ii) given in the Introduction, the Fluid Gauge Theory [13] is applied to those
observations. The application has been found very successful. The outcomes obtained by
the application have disclosed two innovative aspects of the Kundt’s acoustic system. Such
new findings are presented compactly in this section but detailed analyses are postponed to
the following sections. The two innovative findings are as follow.

(I) Firstly, it is understood that the formation of dust striation in the Kundt’s experiment
tells a deep message. Namely, according to the theory [13], the dust striation shows an
experimental evidence of existence of a background gauge field in the acoustics, characterized
with much shorter scales of the striation. The theory predicts that trace of the background
gauge field had been visualized with the dust striations.

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions
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(II) Secondly, by detailed examinations of the experiment and the theoretical structures,
the Fluid Gauge Theory implies an unexpected finding that the formation mechanism of

II. Brief Description of Kundt’s Experiment by Fluid Gauge Theory



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Kundt’s dust striation is analogous to the spontaneous symmetry breaking, known in the
Higgs mechanism. This is found by comparing the Lagrangian structure of the Fluid Gauge
Theory with that of Higgs mechanism (see the section VI). Formation of Kundt’s dust
striation is in fact an acoustic analogue of Spontaneous Symmetry Breaking

August Kundt [1] noted a remarkable statement in 1866 as follows: As far as the origin
of these transverse ribs is concerned, I refrain from any statement at this point. I would
therefore prefer not to attempt its explanation at all, nor give an explanation, which I am
forced to withdraw later. Concerning the experimental evidence, this implies that he knew
clearly the whole of phenomena, but realized that he was unable to find any appropriate
theory to explain it.

As a possible theory, the Fluid Gauge Theory [13] is presented to explain the formation
mechanism. The theory is formulated on the bases of two sets of 4-vector fields: (i) Fluid
current 4-vector jµ(xν) and (ii) Background gauge-field 4-covector aµ(x

ν) (µ, ν = 0, 1, 2, 3).
Regarding the gauge field aµ(x

ν), a preliminary comment is given below in this section with
detailed definitions postponed to later sections.

The Fluid Gauge Theory (FGT in short) is formulated in terms of relativistic Lagrangians,
and hence the current 4-vector jµ(xν) is defined relativistically as follows:

jν = ρ (c, v) = cρuν , uν ≡ dxν/dτ, ρ = ρ
√
1− β2, (1)

with c the light velocity, ρ the fluid mass density, v the fluid velocity in 3-space and β ≡
|v|/c.1 Concerning the Fluid-Mechanics, the following observation is instructive. Namely
there exist glimpses of linked structure of 4d-space-time, represented by 4d inner products:

∂νj
ν = ∂tρ+∇ · (ρv); jν∂ν = ρ (∂t + v · ∇) ≡ ρDt, (2)

where ∂ν = (c−1∂t,∇), and Dt = ∂t+v ·∇. The first is nothing but the expression leading to
the continuity equation (∂νj

ν = 0), and the second Dt ≡ ∂t + v · ∇ the material derivative.
The reason why the gauge field aµ(x

ν) is introduced in the FGT theory is to ensure the
continuity equation ∂νj

ν = 0 which should be deduced from the action principle of invariant
variation, instead of writing it a priori. Namely, the continuity equation is not given a
priori, but is ensured owing to the existence of the gauge field aµ(x

ν).
Initially when the sound wave was weak, the system is governed by the traditional Eule-

rian system, but accompanying a transparent (invisible) gauge field aν (see below). As the
wave intensity increases, the gauge field shows spontaneously its appearance at a transition
when the field is colored with a rotational field superimposed on the transparent field. In
fact, the traditional Eulerian system works only under such transparent gauge fields.

The present Fluid Gauge Theory [13] has been formulated according to the gauge principle
of general gauge theory ([15], [16]), and the present theory extends the isotropic pressure

of the traditional Eulerian fluid system to anisotropic at a transition
caused by a certain physical mechanism (which will be considered in the section III, helped
with computer simulations).

1 µ, ν = 0, 1, 2, 3. The overlined value ρ denotes the proper value (i.e. the density ρ in the rest frame where

the fluid is at rest). For the proper time τ , dτ ≡
√
1− β2 dx0 where xν = (ct,x) with x0 = ct, t the time.

and x = (x1, x2, x3) a 3-vector notation. Following notations are used: d3x ≡ dx1dx2dx3, and ∇ = (∂k)
where ∂k = ∂/∂xk, k = 1, 2, 3. The metric tensor is ηµν = ηµν = diag(−1, 1, 1, 1).

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions
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stress fields σI σ vstress fields

(Nambu [23]).



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Let us consider fluid-dynamic aspects of the Kundt’s experiment by examining the stress
fields. Suppose that the air in a closed tube is excited with resonant sound waves. During
the initial period when the sound intensity is weak, main part of the air motion executes
longitudinal oscillation, which is vortex-free and irrotational. This is described very nicely
by the Euler’s system of an ideal fluid without viscosity. However, as the sound intensity
increases, presence of minute dust particles scattered over the lower tube-wall acts as source
of eddy, providing rotational component to the main part. This plays a certain role of trigger
that prompts the state transition.

As the sound intensity increases in the tube, the rms velocity u = ⟨|um|2⟩1/2 of the air
motion increases where |um| is a representative magnitude of velocity of air-gas molecules.
Presence of dust particles within intense acoustic field favors transition of the stress field
within the oscillating air to another stress field of different characteristics. Suppose that
there exist small external objects acting as roughness on the wall. When the air is flowing
fast over the roughness surface, its boundary layer separates from the solid roughness surface
if an effective Reynolds number of the fluid motion is sufficiently high to enable the flow
separation, as verified experimentally in [6]. Then, shearing rotational flows are supplied
within the fluid, inducing eddying fluid motion within a broader space region. This was
studied experimentally by Andrade ([5] ∼ [7]).

In 1930s, Andrade carried out detailed studies on the Kundt’s experiment with updated
devices at his times. From his earlier studies, he concluded on the basis of the Reynolds
numbers observed experimentally that the periodic air motion about an obstacle produced
eddying motion. This rotational motion was mixed and combined with the surrounding
irrotational oscillating motion in the pipe. Concerning all the previous experiments carried
out not only by himself but also by other previous workers, he commented that the air
motion previously had been assumed tacitly to be irrotational, but actually the motion had
been rotational.

Photo of eddies visualized with smoke ([7], Fig.27). On the lower wall
two thin cylinders (seen dark) were placed and the upper wall seen as white belt.

Figure 2 shows one of the many photos in the paper [7], visualizing eddy pattern (with
using tobacco smoke) generated by a pair of thin cylinders placed at the bottom transversally
(perpendicular to the sheet) within the resonant longitudinal (left-right) air motion. Andrade

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions
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gave a plenty of experimental evidences in [7] of existence of eddying motions generated by
obstacles in the field or roughness elements on the lower wall. In the absence of roughness

III. Transition of States

a) Transition is prompted by fluid-mechanical processes

Fig. 2:



 
 

 
 

 
 
 
 
 
 
 
 
 
 

or obstacles, the air oscillation should be longitudinal and mainly irrotational external to
thin boundary layers (caused by the non-slip condition of viscosity effect).

Hinted by the experimental evidences of Andrade, we can make a following observation
on the acoustic field of Kundt’s experiment. Those experimental evidences imply that
there must have been a transition in the acoustic field when the sound intensity was made
increased.

In the traditional Fluid Mechanics, the fluid is said to be ideal if its mechanical energy
is conserved during its motion, and said dissipative if its kinetic energy is lost into heat
energy by the action of viscosity. The equation of motion of the air (assumed to be an ideal
non-dissipative fluid as an idealization) is given by the form:

ρDtv
k = −∂kp, k = 1, 2, 3, (3)

where p is the pressure, vk is the k-th component of the fluid velocity, and the operator
Dt ≡ ∂t + v · ∇ is the material derivative defined by (2).

In the present problem of the state transition, we are interested in the stress field σjk(x)
within the space of acoustic resonance, By using it, the above equation of motion can be
rewritten as

ρDtv
k = ∂jσ

jk
I , σjk

I = −p δjk, (j, k = 1, 2, 3), (4)

where σjk
I is the stress tensor representing the Isotropic pressure stress.2 The equation (4),

or equivalently (3), is nothing but the Euler’s equation of motion.

The Fluid Gauge Theory (briefly described in §II) predicts transition of the stress field

in the fluid in motion. This implies that the form of σjk
I given in (4) may take another

form at a certain transition. There are three types of stress fields (to be considered below in

the current issue): (A) isotropic stress field σjk
I (xν) (non-dissipative), (B) anisotropic stress

σjk
A (xν) (non-dissipative), and (C) viscous stress σjk

vis(x
k) (anisotropic and dissipative). As

mentioned briefly in the section II, the traditional Eulerian fluid system, governed by the
isotropic pressure stress σjk

I , works under transparent gauge fields.

When sound intensity is weak, Euler’s equation of motion (4) is valid, with the stress

field represented by the isotropic stress σjk
I . Interestingly, the same Eulerian Fluid system

is valid in the Fluid Gauge Theory when the gauge field aν is transparent, i.e. when aν is
expressed as ∂νΨ(xµ). This finding gives a hint to develop a new theory.

In the Kundt’s experiment of acoustic resonance, when the sound intensity was increased,
minute dust-like particles of random dispersion showed unexpected behaviors under the
acoustic field. The cluster of dust particles arranged themselves spontaneously and formed
transversal rib-like structure having much smaller scale than the wavelength λr of resonant
waves. This is understood as spontaneous symmetry transition.

2 A tensor of the form p δjk is said an isotropic tensor, since the metric tensor in the 3d cartesian space
is given by the isotropic tensors: δjk = δjk = diag(1, 1, 1). Then, raising the lower index of ∂k is simply
done by ∂k = δkl∂l. Then the equation (3) can be rewritten as ρDtv

k = −∂kp.

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions
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b) Prediction of the FGT theory



 
 

 
 

 
 
 
 
 
 
 
 
 
 

An extension from the transparent gauge field a
(0)
ν = ∂νΨ to general gauge field aν , i.e.

general 4-vector field aν(x
µ), is enabled by the principle of local gauge invariance according

In fact, the new general gauge field aν enforces transition of the stress field from the isotropic
σjk
I to anisotropic stress field σjk

A of the system, given by (21) ∼ (23). This is called the

Fluid Gauge Theory (in short, FGT). The former stress field σjk
I has affinity with irrotational

velocity field under the transparent field a
(0)
ν , while the latter stress field σjk

A is receptive
with rotational (eddying) velocity field in combination with the colored field aν(x

µ). This is
consistent with what is explained in the above paragraph for the experimental visualization of

In order to see the difference of the flow fields before and after the transition of stress field,
let us carry out simple model analyses in this section. Consider a fluid in 2d (x, y)-channel
with the channel axis taken to the x-direction and its width H to the normal y-direction.

Before the transition, the motion is governed by the equation (4) under the isotropic

pressure stress σjk
I . In this analysis, no-slip condition is applied on both of the upper and

lower walls, so that the viscous stress term σjk
vis is added

3. The equation of motion takes the
following form, i.e. the Navier-Stokes equation:

ρDtv
k = ∂jσ

jk
I + ∂jσ

jk
vis . (5)

The fluid motion is assumed to be unidirectional : v = (u(t, y), 0, 0). Instead of sound oscil-
lation in the channel, an analogous problem is chosen by taking special boundary conditions
with the lower wall y = 0 being in motion under no-slip condition (moving in its own plane),
while the upper wall y = H is kept at rest. More precisely, the lower wall is given a time
periodic motion of a period T and a space-periodic tangential motion of wavelength λg, and
its x velocity is given by4

u = uw sin 2π(x/λg) cos 2π(t/T ).

To see the characteristic features of fluid motion before the transition, the equation (5) was

solved under the stresses, σjk
I + σjk

vis, satisfying the boundary conditions mentioned above.

anisotropic stress field σjk
A is newly added and the total stress field takes the form σjk

I + σjk
A

+ σjk
vis

ρDtv
k = ∂νσ

νk
I + ∂νσ

νk
A + ∂jσ

jk
vis. (6)

To see the fluid motion after the transition, the equation (6) was solved under the same
driving condition at the lower wall y = 0 while taking passive condition at the upper wall,
taking reflection-less boundary condition allowing slip.

3 σjk
vis = 2η (ejk − 1

3 ∆ δjk). where η is a viscosity coefficient, ejk = 1
2 (∂juk + ∂kuj) and ∆ = ekk.

4 where uw/cs = 1.5× 10−3 and cg/cs = 0.031 for cs sound speed (344 m/s at 20◦ C) and cg speed of gauge
field.
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c) Comparison of Flow Fields before and after the Transition

IV.General [15], This is in the section[16]). described([13],the TheoryGaugeto

the rib-like structure of dust particles existing in the acoustic field, called the spontaneous 
symmetry transition.

where the form of    is defined by (22) and (23) in the next section IV.
 
Hence the 

equation of motion (4) is replaced by

σjk
A,

Next, after the transition, according to the last paragraph of section (b), the



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(a) (b)

Comparison of velocity fields generated by different stress fields at x/λg = 0.45: (a) before
the transition and (b) after the transition. See Appendix B 4 for more details.

Figure 3 compares the flow developments before (left) and after (right) the transition in
2d (x, y)-channel within a period T of oscillation. The figure on the left is the Stokes-type
oscillatory layer (Eulerian + viscosity: under transparent gauge field), while that on the
right is the wavy layer in FGT system (FGT+viscosity under general colored gauge field).

Difference of the features of both fields is remarkable. This impressive difference has been
caused by the transition of internal stress field from the isotropic σjk

I to the anisotropic σjk
A ,

which may be called as Spontaneous Symmetry Transition.

σjk
(ani)

Under the influence of anisotropic stress field σjk
A , the acoustic field is modified sponta-

neously. In the Kundt’s experiment, when the sound intensity was increased, the cluster of
minute dust particles arranged themselves spontaneously forming rib-like structure of much
smaller scale than the resonant wavelength λr.

On the basis of the FGT theory, computer simulation has been carried out. Figure 4
shows computed streamlines in the acoustic field averaged over a cycle of sound oscillation.
Striking similarity is observed between the two of FIG.2 and FIG.4, concerning the envelope
curves seen at the central lower part of the figures, both of which enclose a pair of eddies
with their heights reaching half of the channel height. This is remarkable because the
experimental photo of FIG.2 was taken in 1930s by Andrade ([5]∼[7]) visualizing the flow
pattern by tobacco smoke, while the computed envelope line of FIG.4 has been obtained in

Streamlines computed from the velocity field of FGT theory
averaged over a cycle of acoustic oscillation .
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Effect of the anisotropic stress fieldd)

Fig. 3:

Fig. 4:



 
 

 
 

 
 
 
 
 
 
 
 
 
 

this year by the FGT theory presented next in the secction IV, or by the governing system
of equations (21) ∼ (23) of § IV C - 2 , 5 under the time separation of ninety years.

Another point to be remarked is that this structure was sketched and shown as the figure
2 of [7], in order to illustrate formation of small intermediate ridges (libs) of dust which
are seen in FIG.1 as shorter vertical lines between longer ones. In FIG.4, the shorter line
corresponds to the innermost eddy-pair surrounded by outer larger pair of eddies. In FIG.2,
there must be a separation bubble of eddies although it is hard to recognize.

Thus it is understood that longitudinal (left-right) sequential array of transversal eddies
of FIG.4 are responsible for formation of the Kundt’s dust striation.

The Fluid Gauge Theory [13] has been proposed to improve representation of the stress
fields within fluid flows including strong turbulence, by extending the isotropic pressure
stress field σνk

I to anisotropic stress field σνk
A . As explained in the previous sections II and

III for the formation mechanism of Kundt’s dust striations, it is remarkable that this new
gauge theory is found to explain most appropriately the fluid mechanical aspects of what are
happening in the resonance tube of Kundt’s experiment. Therefore, its detailed theoretical
structure is presented in this section.

Total Lagrangian LFGT proposed by the FGT theory [13] for the fluid system consists of
three parts, LFGT = Lfluid + Lint + La:

Lfluid = −c−1(c2 + ϵ(ρ)) ρ, (7)

Lint = c−1jν aν , (8)

La = −(4µc)−1f νλ fνλ, (9)

fνλ ≡ ∂νaλ − ∂λaν , ρ ≡ ρ
√

1− β2 , (10)

where β ≡ |v|/c, and overlined values denote proper values. The action of the system SFGT

is defined by

SFGT ≡
∫

LFGTdΩ =

∫ [
Lfluid + Lint + La

]
dΩ, (11)

where dΩ = c dt d3x. The first Lfluid is the Lagrangian of a perfect fluid (i.e. an ideal
fluid). In fact, in non-relativistic limit as β → 0, the expression of Lfluid c d

3x per unit mass
(m1 ≡ ρ d3x = 1) reduces to the non-relativistic Lagrangian, Lnr ≡ 1

2 m1v
2 − ϵ (with ϵ the

specific internal energy), neglecting the rest-mass energy −m1c
2. Hence it is seen that the

Lagrangian Lfluid is a relativistic version extended from the classic non-relativistic form Lnr.
The third La is the Lagrangian of the gauge field represented in a form satisfying local

gauge invariance with respect to the gauge field aν as well as ensuring current conservation.
The middle Lint represents the interaction between the current jν and the gauge field aν .

5 This test simulation was done by −∂td+∇×h = ρv (see (16)) for the gauge field aν and the equation of

motion (6) with additional viscosity stress σjk
vis, under the approximation |ρ′/ρ| ≪ 1 and |∇ϕ/∂ta| ≪ 1.
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IV. Fluid Gauge Theory (FGT)

a) Lagrangians



 
 

 
 

 
 
 
 
 
 
 
 
 
 

To find the equations of motion, the action principle is applied to SFGT, by assuming the
gauge field aν given and vary only the position coordinate x k

p of fluid particles moving with

the velocity vk = Dtx
k
p along their trajectories (k = 1, 2, 3). In the non-relativistic limit as

β → 0, the equation of motion is deduced by the action principle as

ρDtv
k = −∂kp+ ρfkν vν , (k = 1, 2, 3), (12)

(cf. Eq.(2.30) of [13]) from the combination of two Lagrangians Lfluid and Lint, since the
third La is invariant in this variation. By the (0, 3)-notation, we have vν = (−c,v) and
vν = (c,v) with v being a 3-vector, and ν = 0, 1, 2, 3 must be taken in (12).

To find the equations governing the gauge field aν , we vary only the field aν with assuming
the fluid motion jν = ρvν given. From the action principle, we obtain

∂

∂xλ
f νλ = µ jν (13)

(see Eq.(2.32) of [13]) with jν = (ρ c, j) and j = ρv, where µ is a control parameter
(introduced in (9)) to denote the degree of mutual interaction.

The equation of current conservation can be derived from this, which is directly connected
with the gauge-invariant property of the Lagrangian La (see [14], § II (a)). This is analogous
to the electromagnetic fields. In fact, applying the divergence operator ∂ν on the equation
(13), one obtains 0 = ∂ν∂λf

νλ = µ ∂νj
ν . The middle side of total summation with respect

to ν and λ vanishes because of the anti-symmetry of f νλ and the symmetry of ∂ν∂λ with
respect to ν and λ. Hence, the current conservation equation is deduced:

∂νj
ν = 0, ⇒ ∂tρ+∇ · (ρv) = 0, (14)

(see (2)). The third Lagrangian La ensures the mass conservation.
Introducing the (0, 3)-notation for aν too (like below (12)) by aν = (−ϕ,a) where ϕ ≡ ϕ/c

for ϕ a scalar field, we define new two 3-vector fields e and b by

e ≡ −∂ta−∇ϕ, b ≡ ∇× a. (15)

Then, these enable the equation (13) transformed into a pair of equations analogous to the
Maxwell equations of Electromagnetism. In fact, with defining d and h by d = ϵe and
h = b/µ with using ϵ ≡ 1/(µ c2), the equation (13) gives a pair of Maxwell equations:

−∂td+∇× h = j, ∇ · d = ρ, (16)

(Eq.(3.18) of [13]). Definition (15) gives another pair of Maxwell equations (Eq.(3.20) of
[13]):

∂tb+∇× e = 0, ∇ · b = 0. (17)

In summary, it is found that the fluid current field jµ(xµ) changes its character drastically,
depending on whether the gauge field aν is derived from a scalar potential Ψ(xµ) (i.e. aν =
∂νΨ) or takes an intrinsic 4-vector form aν(x

µ) yielding non-vanishing fµν(= ∂µaν − ∂νaµ)
field.
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Equations of motion are deduced from the action principle and the force field is represented
in terms of the stress field σ.

b) Governing equations



 
 

 
 

 
 
 
 
 
 
 
 
 
 

There are three types of stress fields within the fluid flows: (A) isotropic stress field σjk
I (xν)

(non-dissipative), (B) anisotropic stress σjk
A (xν) (non-dissipative), and (C) viscous stress

σjk
vis(x

k) (anisotropic and dissipative). As mentioned previously, the traditional Eulerian

fluid system is governed by the isotropic pressure stress σjk
I . According to the FGT theory,

on the other hand, the corresponding case of isotropic pressure stress σjk
I is accompanied by

a transparent gauge field which is derived from a scalar potential Ψ(xµ) (i.e. aν = ∂νΨ).

Depending on whether the stress field is σjk
I (isotropic) or σjk

A (anisotropic), the fluid
current field jµ(xµ) changes its character drastically. In the latter case, the gauge field
aν(x

µ) takes intrinsic 4-vector form yielding non-vanishing fµν(= ∂µaν − ∂νaµ). The third

viscous stress σjk
vis plays an important role in the traditional Navier-Stokes system. Below,

we look into the three stress fields in details.

(1) Isotropic stress field σjk
I and transparent gauge field ∂νΨ

If aν = ∂νΨ, the field tensor fµν defined by (10) takes the form, fµν = ∂µ∂νΨ − ∂ν∂µΨ.
Hence fµν ≡ 0. Then, the third Lagrangian La vanishes identically, while the action principle
applied to the remaining pair of Lagrangians (Lfluid, Lint) yield the equation (12) of the
Eulerian fluid system since its derivation was independent of La. The equation (12) under
fµν = 0 reduces to

ρDtv
k = ∂jσ

jk
I , σjk

I = −p δjk, j, k = 1, 2, 3. (18)

This is the same as (4).6

The equation (13) must be discarded here because both of La and fµν vanishes. However,
a wonderful feature of this gauge theory is that the mass conservation equation is still
deduced from the action principle under aν = ∂νΨ. Varying the field Ψ → Ψ + δΨ in Lint

of (8) with assuming the fluid current jν fixed, the action variation is given by δSFGT =
c−1

∫
jν ∂ν(δΨ) dΩ, which is transformed as

δSFGT = − c−1

∫
∂νj

ν δΨ dΩ +

∫
∂ν

(
jνδΨ

)
dΩ. (19)

The second is integrated once, leading to vanishing boundary integrals. Requiring δSFGT = 0
for arbitrary δΨ results in (from (19)):

∂νj
ν = ∂tρ+∇ · (ρv) = 0. (20)

Thus, it is found in the particular case aν = ∂νΨ that the fluid system, described by the
action SFGT, reduces to the Eulerian system described by the Euler’s equation of motion
(18) and the continuity equation (20). The gauge field aν = ∂νΨ exits, but not observable.
This may be said that the gauge field is transparent.

(2) Anisotropic stress field σjk
A and colored gauge field aν

Suppose that the gauge field aν makes a transition from the transparent field ∂νΨ to
general vector-potential aν yielding colored non-vanishing fµν .

7 Its experimental evidence

6 With the metric tensor δjk = δjk = diag(1, 1, 1), we have σjk = ηjaηkbσ
ab = σjk.

7 The ”colored” is equivalent to ”fµν non-vanishing”. Non-dissipative anisotropic stress σjk
A was introduced

first by [18]. Detailed analysis was done by [19] from fluid-dynamics view-point. Reinterpretation was
given by [20] from the gauge invariance.
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Three stress fields in fluid-flow fieldsc)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

was given in the section III. This causes corresponding transition of stress tensor σjk within
the flow field from the isotropic stress σjk

I = −p δjk to a new stress field with additional

anisotropic part σjk
A . Rewriting the second force term on the right of (12) as ρfkν vν = ∂νσ

νk
A ,

the equation becomes

ρDtv
k = ∂νσ

νk
I + ∂νσ

νk
A , (21)

where

σjk
A = ejdk + bjhk − we δ

jk, we ≡ 1
2 (e,d) +

1
2 (h, b) (22)

σ00
A = −we, σ0k

A = −c(d× b)k, (23)

for j, k = 1, 2, 3 and ν = 0, 1, 2, 3. Definitions of d and h are given in the paragraph above
(16). Using (22) and (23), the second force term ∂νσ

νk
A can be given another expression:

∂νσ
νk
A = ρ (fL)

k, fL ≡ e+ v × b, (24)

This may be termed as fluid-Lorentz force, and the stress tensor σνk
A is analogous to the

Maxwell stress of Electromagnetism.
The anisotropic stress field σνk

A was introduced in [13]. In the current fluid mechanics,
the stress σνk

A is still out of consideration. As a matter of fact, the viscous stress tensor

σjk
vis, considered in the next item (3), is used in the current theory of fluid mechanics. The

viscous stress tensor has anisotropic components as well. At the times of 1953 and 1967
when George Batchelor published his textbooks ([9], [10]), the anisotropic components of
viscous stress might be useful in his study of fluid-dynamics and turbulence (see (3) below).

However, there exists an essential difference between the two fields of the viscous stress
σjk
vis and the FGT stress σνk

A . The former is dissipative as shown in (3), while the latter
is conservative because the mechanical systems derived from the action principle in terms
of Lagrangians (like those of the sections have Hamiltonian system of
equations of motion which conserve the total mechanical energy. Hence the present study
emphasizes the importance of the field σνk

A .

(3) Viscous stress tensor σjk
vis and boundary layers

Concerning the expression σjk
I = −p δjk, George Batchelor (the author of the book [10])

describes in its §3.3: ”There is no reason to expect these results to be valid for a fluid
in motion”. The author’s point is that the law σjk

I = −p δjk is valid in a fluid at rest.
He continues: ”The simple notion of a pressure acting equally in all directions is lost in
most cases of a fluid in motion.” And, ”Tangential stresses are non-zero in general.” The
pressure is defined originally by the thermodynamics and the thermodynamic equations of
state refer to equilibrium conditions, whereas the state of a fluid in motion are not in exact
thermodynamic equilibrium.

It is convenient to regard the stress tensor σij as the sum of an isotropic part −pδij and
a remaining non-isotropic part dij:

σij = −pδij + dij, (25)

where, assuming dii = 0, we have p = −1
3 σii, and the non-isotropic part dij may be termed

the deviatoric stress tensor. Here the p = −1
3 σii has a mechanical significance, generalizing
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a) and b) of § IV)

the elementary notion of pressure, but reducing to the fluid pressure when the fluid is at 
rest.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Traditional fluid mechanics assumes that the deviatoric stress dij is originated by non-
uniformity of the flow field, and seeks a linear local relation between the stress dij and local
velocity gradients ∂uj/∂xi. It is a usual custom to rewrite the velocity gradient ∂uj/∂xi =
∂iuj as

∂iuj = eij + ξij, eij =
1
2 (∂iuj + ∂jui), (26)

ξij =
1
2 (∂iuj − ∂jui) =

1
2 εijk ωk, ωk = εkij∂iuj, (27)

where εkij is the alternating tensor8. According to the detailed tensor analysis (in §3.3 of
[10], : deleting contribution from the term ξij after all), the deviatoric stress is given by

dij = 2η (eij − 1
3 ∆ δij), ∆ ≡ ekk = divu, (28)

satisfying dii = 0, where η is a viscosity coefficient. Thus, we find9

σjk
vis = 2η (ejk − 1

3 ∆ δjk). (29)

Then the equation of motion is given by the form of well-known Navier-Stokes equation:

ρDtv
k = −∂kp+ ∂jσ

jk
vis . (30)

In a special case where the divergence ∆ = div v is not significant, the above Navier-Stokes
equation takes the following form

ρ = ρ0 + ρ′, p = p0 + p′, p′ = c2s ρ
′, (31)

ρ ∂tuk + ρ uj∂juk = −∂kp+ η∇2uk . (32)

ρ uj∂juk ≈ ∂j(ρ0 ujuk) = ∂jRjk, Rjk = ρ0 ujuk (33)

where vk and ρ are replaced approximately with uk and a constant ρ0 when ∆ = ∂kv
k ≈ ∂kuk

is not significant.

In order to find the energy dissipated into heat by the motion of a viscous fluid (or equiv-
alently, the heat energy gained by the fluid internally), one must define the thermodynamic
state of the fluid, which is characterized with the density ρ, pressure p, specific internal en-
ergy ε (per unit mass), specific entropy s and specific enthalpy h, and temperature T . There
is a unidirectional transfer of mechanical energy by the viscosity to the internal energy ε,
i.e. irreversible dissipation into heat.

According to the texts ([10], [12]), the amount of heat gained by unit volume of the fluid is
given by the following expression (see Appendix A), which can be shown to be non-negative:

σjk
vis ∂kvj = 2η (ejk − 1

3 ∆ δjk)(ejk − 1
3 ∆ δjk) (≥ 0), (34)

where the heat conduction effect owing to non-uniform temperature (∇T ̸= 0) is omitted.
[cf. §3.4 of [10] or § shows additional non-negative ζ∆2 to (34) from ζ.]

8 εijk = 0 unless i, j, k are all different, with its value +1 or −1 according as i, j, k in cyclic order or not.
9 ζ: ζ∆ δjk stemming from the
finite time response of molecular processes. Note that there is no distinction whether the indices are upper
or lower in the present. See the note below (18).
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49 of [12]. The latter text

The textbook [12] adds one more term with the second (bulk) viscosity



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Suppose that the acoustic waves in a closed tube were initially weak. The system is gov-
erned by the Eulerian system, but accompanying a transparent (invisible) gauge field ∂νΨ
(described in § III. B). As the wave intensity increases, the gauge field shows its appearance
spontaneously at a transition when the field is colored with general rotational field super-
imposed on the transparent field. This is consistent with the Fluid Gauge Theory, which
predicts the trace of background gauge field visualized by the Kundt’s dust striations.

Furthermore, if there is a prolonged powerful acoustic excitation, steady streaming is
generated within the tube filled with standing waves. A number of experimental photographs
showing the steady streaming were presented by Andrade [6], which were observed under
powerful excitation (FIG.5). The steady streaming is generated by the combined action of
the nonlinear Reynolds stress and the viscous shear effect causing acoustic energy dissipation
(see (38) given below). [cf. § 4.7 of [11] ]. Lowering the intensity, but still above a critical
intensity, he observed ripple-like striations.

Steady streamings of a single quarter-wave-length circulation in the Kundt tube
experiment, shown by (a) Photograph (upper) taken for 600Hz sound resonance visualized
with smoke by Andrade (FIG.13 of [6]), and (b) Streamlines (lower) between a pair of a
node (left) and antinode (right): the curves on the right-hand half side were reproduced
by reading the drift motion of smoke particles, while the curves on the left-hand half side
are theoretical streamlines computed from Rayleigh’s formula (FIG.5 of [6] and Ryleigh
formula shown at pgae 453). .

Citing the descriptions in the well-known classics [4] in 1890s, Rayleigh wrote his philo-
sophical view on the acoustic problem initiated by Kundt [1] in §352 of [4]: ”One of the
most curious consequences of viscosity is the generation in certain cases of regular vortices.
[Of this an example, discovered by Dvorak [3], has already been mentioned in §260.] In a
theoretically inviscid fluid, no such effect could occur (§240); and, even when viscosity en-
ters, the phenomenon is one of the second order, dependent, that is, upon the square of the
motion. · · · · · · ”

Suppose that oscillations of the acoustic pressure are expressed as p(t, x) = eiωt f(x)
in a closed tube. Resonant sound waves in the tube generate a steady streaming motion
there. Such effect can occur by the action of Reynolds stress ρujuk when the acoustic energy
dissipation takes place in thin boundary layers on the tube walls, where the overline signifies
an average over a wave period, i.e. a mean value. The mean force F k with which waves act
on a fluid element results from the gradient of Reynolds stress Rjk = ρ0 ujuk, represented
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by F k = −∂j(ρ0 ujuk) from (33). Taking time average of (32) in the main part of sound
waves (i.e. external to the viscous boundary layer) where the viscous effect of σvis

jk is not
significant, one obtains the mean equation of motion:

V. Steady Streaming by Powerful Excitation

Fig. 5:



 
 

 
 

 
 
 
 
 
 
 
 
 
 

ρ0 ∂t uk = F k − ∂kp,

which reduces to F k − ∂kp = 0 since ∂tuk vanishes by the time derivative. Thus, we obtain
the mean equation valid in the main part external to thin viscous boundary layers:

∂kp = F k , F x = −∂jRjx = −∂x(ρ0 uu)− ∂y(ρ0 uv), (35)

where Rjk = ρ0 ujuk. In this main wave part, there is balance of the two mean effects
(gradients) of the pressure and the Reynolds stress. This implies the place where there is a
driving force of the steady streaming. In fact, departure of the mean force ∂jRjk within the
thin boundary layer from its external value ∂j(Rjk)ex = ∂j(ρ0 ujuk)ex generates streaming,
because the external mean pressure pex is unchanged, i.e. uniform approximately across thin
boundary layer (see, e.g. §5.7 of [10]).

Hence the external mean pressure gradient ∂xpex is given by F x of (35). rewritten as

∂xpex = (F x)ex = −∂j(Rjx)ex = −∂x(ρ0 uu)ex − ∂y(ρ0 uv)ex, (36)

Within the boundary layer, the mean force F x is given by the negative of ∂jRjx where

Rxx = ρ0 u2 and Ryx = Rxy = ρ0 uv, which depart from those with the lower suffix ”ex”.10

A steady streaming ust is generated by the viscous shear force ∂y σ
vis
yx ≈ η ∂2

y u
st being in

balance with two other forces, i.e. (i) gradient of mean Reynolds stress ∂jRjx and (ii) that
of mean external pressure ∂xpex:

η ∂2
y u

st − ∂jRjx − ∂xpex = 0. (37)

Substituting the expression for ∂xpex of (36) and using the definition of ∂jRjx, one can
rewrite it as

ν ∂2
y u

st =
(
∂x u2 − ∂x(u2)ex

)
+
(
∂y
(
uv

)
− ∂y

(
uv

)
ex

)
, (38)

where ν ≡ η/ρ0. To evaluate the 2nd order terms on the right hand side of (38), the
expressions of u and v must be found from the linear theory of oscillatory boundary layers
in the tube. It is reminded that the equations for the mean stream has been derived from
the full nonlinear equations (32) and (33).

The mean equation (38) is linear with respect to the variable ust on the left hand side,
so that one can represent it as a linear combination ust = (ust)uu + (ust)uv, each of which
satisfies the following equations:

ν ∂2
y (u

st)uu = ∂x u2 − ∂x(u2)ex (39)

ν ∂2
y (u

st)uv = ∂y
(
uv

)
− ∂y

(
uv

)
ex

(40)

The linear theory of Oscillatory Boundary Layers is presented in the Appendix B. The axial
x-velocity u(t, x, y, ) is given by (B16) of the Appendix B 3 as

10 The mean streaming ust is generated by departure of Rjx from the external values (Rjx)ex, which is in
balance with the external pressure gradient pex, keeping uniform across the thin boundary layer.
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from the linear theory of the acoustic resonance under the oscillatory pressure gradient
P ≡ −∂pe/∂x = uex(x)ℜ

[
P0 e

iωt
]
, where P0 = ρ0 i ω, κ ≡

√
ω/2ν, and uex(x) is a real

function of x. Note that (i ω/ν)1/2 y = (1 + i)κ y.
From this u-solution, the y-component v(t, x, y, ) is found as

v(t, x, y, ) = u′
ex(x)ℜ

[
(ν/(i ω))1/2P̃ (t) Fκ(y)

]
, (44)

where u′
ex(x) = duex/dx. (cf. Eq. (205) and (206) of Chap.4 of [11]).

It is shown in the linear theory of Appendix ?? that the above expressions of u and v
satisfy the linearized equation of continuity: ∂tρex + ρ0(∂xu+ ∂yv) = 0. From (41) and (44),

one can find time-averages of the wo products uv and u2 to be used for (39) and (40).
First, we consider uv and the equation (40). Taking a product of the real parts of (41)

and (44), one obtains after taking its time average:

uv = 1
2 (ν/2ω)

1/2 uex(x) u
′
ex(x)

∣∣∣ Fκ(y)
∣∣∣2, (45)

and its external value is (uv)ex = 1
2 (ν/2ω)

1/2 uex(x) u
′
ex(x) as κy → ∞. Integrating (40)

with y twice, the mean streaming ust
uv generated by the departure of uv from the external

value in the oscillating boundary layer is given by

ust
uv = ν−1

∫ y

0

[
uv − (uv)ex

]
dy

= ν−11

2

ν

ω

1√
2
uex(x) u

′
ex(x)

∫ y

0

[∣∣ Fκ(y)
∣∣2 − 1

]
d(κy), (46)

where κ ≡
√

ω/2ν. At the external edge of the boundary layer as ζ ≡ κy tends to ∞, the
integral in the last expression can be estimated as∫ ζ

0

[∣∣1− exp {−(1 + i) ζ∗}
∣∣2 − 1

]
dζ∗ → −1/

√
2 (as ζ → ∞).

Hence, the steady streaming generated by uv at the edge external to the boundary layer is

ust
uv = − 1

4ω
uex(x) u

′
ex(x) (47)

11 u2 = 1
2 (uex)

2|Fκ|2 and |Fκ|2 = 1− 2e−κy cosκy + e−2κy. This is because u2 = (uex)
2 ℜ

[
P̃ (t)Fκ(y)

]2
=

ℜ
[
eiωt Fκ(y)

]2
= (1/4)(uex)

2 (eiωt Fκ + e−iωt F̂κ)
2 = (1/4) (e2iωt F 2

κ + e−2iωt F̂ 2
κ +2|eiωt| |Fκ|2 ) where F̂κ

is the complex conjugate of Fκ. Taking time average < · >av, we have < e±2iωt >av= 0 and |eiωt| = 1.
∂xpuu = −(1/4)u2

ex δ, δ = 1/κ
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u(t, x, y, ) = uex(x) ℜ
[
P̃ (t) Fκ(y)

]
, P̃ (t) ≡ eiωt. (41)

Fκ(y) ≡ 1− exp {−(i ω/ν)1/2 y} = 1− exp {−(1 + i)κ y}, (42)

uex(x) ≡ U0 cos kx, (43)



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where the last term −ρ−1
0 ∂xpuu is a function of x only, which is arbitrary in general, but its

functional form is fixed by the argument just below.
Requiring the influence of viscous friction force vanishing externally from the boundary

layer, ν ∂y (u
st)uu → 0 as ζ = κy → ∞, the counter pressure force −ρ−1

0 ∂x(puu)ex owing to
the Reynolds stress uu must be given by (1/4κ)(du2

ex(x)/dx) at the edge of the boundary
layer. Then, deleting the counter pressure force, we have

ν ∂y (u
st)uu =

1

2κ
uex u

′
ex

[
− e−2ζ + 2e−ζ(cos ζ − sin ζ)

]
. (50)

Integrating this with respect to ζ for entire range [0, ∞], we obtain the steady streaming
generated by uu at the edge external to the boundary layer:

(ust)uu = ν−11

2

1

κ2
uex u

′
ex

(
− 1

2

)
= − 1

2ω
uex(x) u

′
ex(x). (51)

since 1/κ2 = 2ν/ω. Summing up this term (ust)uu with (ust)uv of (47), we find finally the
total value:

(ust)total = (ust)uu + (ust)uv = −3

4

1

ω
uex(x) u

′
ex(x). (52)

(cf. Eq. (215) of Chap.4 of [11]).

An analogy exists in the Lagrangian structures in two physical systems between Kundt’s
symmetry transition and Higgs’ mechanism. Let us consider the Higgs’ mechanism from the
abelian gauge theory [21, 22]. Suppose that a massive charged scalar field ϕ (= ϕ1 + iϕ2) is
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Secondly, there is one more contribution from the component uu of Reynolds stress. The
steady stream (ust)uu generated by uu is found from the equation (39). Taking a double
product of the real part of u given by (41), one obtains after taking its time average:11

uu = 1
2 u

2
ex |Fκ(y)|2 (48)

and its external value is (uu)ex = 1
2 u

2
ex since |Fκ(y)|2 → 1 as κy → ∞. Substituting these

values of uu and (uu)ex to the right hand side of (39) and integrating with respect to y, we
have

ν ∂y (u
st)uu =

1

2κ
(du2

ex(x)/dx)

∫ ζ

0

[
− 2e−ζ cos ζ + e−2ζ ] dζ − ρ−1

0 ∂xpuu. (49)

interacting with an electromagnetic field Aµ (a massless vector boson). Its Lagrangian is
given by L = Lϕ + LA:

VI. Spontaneous Symmetry Transitions: Kundt’s System and Higgs’ Mechanism



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(1/
√
2)(v + ϕ1(x) + i ϕ2(x)). Substituting this form, the Lagrangian L = LA + Lϕ can be

rearranged as L ≡ LHiggs = L(m)
ϕ + LintG + L(m)

A , where

L(m)
ϕ = 1

2 (∂µϕ1)
2 + 1

2 (∂µϕ1)
2 − 1

2 m
2
ϕϕ

2
1 , (55)

LintG = mA Aµ∂
µϕ2 (a Goldstone-mode term), (56)

L(m)
A = −(1/4)FµνF

µν + 1
2 m

2
AAµA

µ, (57)

where m 2
ϕ = 2v2λ and mA = ev. The third L(m)

A describes the gauge field Aµ which acquired
a mass term proportional to m 2

A. One can see similarity of the above triplet of Lagrangians,

[L(m)
ϕ , LintG, L(m)

A ] in each form with the triplet of FGT Lagrangians, [Lfluid, Lint, La] given
by (7), (8) and (9).

Most obvious similarity is seen in the forms of LintG of (56) and Lint = c−1jν aν of (8),
comparing those from the viewpoint of the de Broglie concept for the momentum associated
with ∂µϕ2 of (56), in which the factor Aµ∂

µϕ2 is analogous to aνj
ν of Lint. Next, the first

member L(m)
ϕ describes the massive scalar particle field ϕ, while its FGT counterpart Lfluid

describes the massive fluid current.

In the beginning, the Lagrangian LA described the massless gauge boson, which has been

transformed to L(m)
A having a mass term 1

2 m
2
AAµA

µ after the transition. Corresponding
FGT Lagrangian is La of (9), and the FGT gauge field aν is governed by the equation (13):
∂λf

νλ = µ jν . Obviously, the field tensor f νλ is controlled and colored by the fluid current
jν giving an inertial effect (i.e. an inertial influence) on the evolution of the gauge field aν .

In the Kundt tube experiment [1], an interesting anomaly is known, i.e. there existed
two characteristic scales observed in the experiment. One is the wave-length λr of the sound
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where e is the electric charge, λ(> 0) being a constant parameter, and another parameter µ2

Lϕ is invariant under the local U(1) transformation.

For µ2 > 0, the Lagrangian describes physics of a massless gauge field Aµ coupled with a
complex scalar field ϕ of mass µ with ϕ4 self-interaction. This corresponds to the case of our
transparent gauge field considered in § (1), where the transparent gauge field corresponds
to the massless gauge boson in this analogy, while the particle field ϕ corresponds to fluid
current field.

For µ2 < 0, the field will acquire a vacuum expectation value ϕ0 = ⟨ϕ⟩0 = v/
√
2 (v2 =

−µ2/λ > 0), and new symmetries emerge. As traditional, let us take the minimum ϕ0

along the direction of the real part of ϕ and expand the ϕ-field in its vicinity: ϕ(x) =

Lϕ = (Dµϕ)∗Dµϕ− µ2ϕ∗ϕ− λ(ϕ∗ϕ)2, Dµ ≡ ∂µ − ieAµ, (53)

LA = −(1/4)FµνF
µν , Fµν = ∂µAν − ∂νAµ, (54)

VII. Summary

taking positive or negative values (according tothe tradition of field theory). The Lagrangian

IV c)
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Fluid Gauge Theory can represent new mechanism of transverse rotational waves of a
characteristic length scale ℓ, which coexists in the field of longitudinal irrotational acoustic
waves in resonance of another scale λr. This is the case of the dust striation. Since the
oscillation frequencies of both modes share the same excitation frequency, the difference
of the two longitudinal scales might be associated with the difference of respective phase
velocity: one is cs (the sound velocity of irrotational waves) and the other cg (the velocity
of rotational waves of gauge field). Thus, we have ℓ/λr = cg/cs. Before the transition,
there existed only the longitudinal irrotational acoustic waves. This is understood as a
symmetry transition in the acoustic system according to the Fluid Gauge Theory. The
larger acoustic scale of the resonance mode is that described by the Eulerian system. The
second new smaller scales are generated by rotational eddy modes, predicted by the Fluid
Gauge Theory.

It is surprising that the Lagrangian representation of the Fluid Gauge Theory has dis-
closed the similarity of two phenomena observed in quite different physical fields: one is the
spontaneous formation of dust striation in the Kundt’s acoustic experiment and the other
the Higgs Mechanism of the particle physics. 　 It is a quite unexpected finding that an
analogy exists between the Lagrangian structures of both systems: Kundt and Higgs. Each
system is described by a triplet of Lagrangians, each of which has similarity respectively.
Most obvious similarity is seen in the forms of the Lagrangian describing interactions (see
§VI).

When there is a prolonged powerful acoustic excitation, steady streaming is generated
within the tube filled with standing waves. The steady streaming is generated by the com-
bined action of the nonlinear Reynolds stress and the viscous shear effect. Andrade [6]
presented experimental photographs showing this steady streaming. However, this was ob-
served under prolonged intensive sound waves. Lowering the intensity, but still above a
critical intensity, he observed ripple-like striation with using minute cork particles.

Finally, it is emphasized the dust striation is a visualized trace of a background rotational
gauge field existing in the acoustic field of longitudinal irrotational waves. The formation
mechanism of dust striation is understood as a spontaneous transition of symmetry in the
acoustics, analogous to that known in the field theory.

Fluid Gauge Theory has been proposed to explain the formation mechanism of the dust
striation. The new fluid theory is based on the concepts of the gauge theories in Physics.
Although certain fluid motions are described by both of the traditional Eulerian equations
and the new Fluid Gauge Theory, there is a difference between the two. The flow field of
the FGT theory is now accompanied by a gauge field behind it. In this case, the pressure
stress field is isotropic, the gauge field is transparent and the flow field is mainly irrotational.
However, the invisible gauge field acts to guarantee the law of mass conservation.

wave in resonance within the tube, and the other is the dust striations formed in the resonant
standing wave characterized with much shorter longitudinal scales ℓ. Formation mechanism
of the second dust striations has remained unresolved for a long time.

Fluid Gauge Theory [13] eventually allows transition of the isotropic pressure stress 
field existing in the Eulerian field to anisotropic stress field. Correspondingly, the flow 
field becomes rotational and the trace of gauge field is visualized by eddies. In this case 
too, the mass conservation is ensured by the action of the background gauge field. Owing 
of this, the FGT theory does not set the continuity equation a priori from the outset. 
Transition of the stress field from the isotropic to anisotropic occurs spontaneously. The 
transition from irrotational flow field to rotational one is often caused by the action of 
viscosity (existing in real fluids).



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Suppose a viscous fluid in motion with its thermodynamic state characterized with the
density ρ, pressure p, specific internal energy ε, specific entropy s and specific enthalpy h
(specific denoting per unit mass), and temperature T . The continuity equation (20) and the
equation of motion (30) are

∂tρ+∇ · (ρv) = 0, ρ ∂tvk + ρv · ∇vk = −∂kp+ ∂jσ
jk
vis . (A1)

The stress σjk
vis is rewritten as σ

(vis)
jk below.

Energy density (per unit volume) of the fluid in motion with velocity v = (vk) is given
by E = 1

2 ρv
2 + ρε. Total energy flux Fk passing through unit area in a fluid per unit time

to the xk-direction is given by Fk = ρvk(
1
2 v

2 + h)− vj σ
(vis)
jk − κ∂kT where κ is the thermal

conductivity (from [12], §49). According to the general law of physics, the conservation of
energy is expressed by ∂tE = −∂kFk. Namely, we have

∂t(
1
2 ρv

2 + ρε) = −∂k
(
ρvk(

1
2 v

2 + h)− vj σ
(vis)
jk

)
. (A2)

where the thermal conduction effect (κ∂kT ) is omitted for simplicity because this section
is concerned with only the mechanism of viscous dissipation of kinetic energy 1

2 ρv
2 and

associated increases of the internal energy ε and entropy s.
According to §49 of [12], using the continuity equation and equation of motion of (A1)

helped by thermodynamic relations12, the left-hand side of (A2) can be transformed to

∂t(
1
2 ρv

2 + ρε) = −∂k
(
ρvk(

1
2 v

2 + h)− vj σ
(vis)
jk

)
+ρ T (∂ts+ v · ∇s)− σ

(vis)
jk ∂kvj . (A3)

Comparing both of the right-hand side of (A2) and (A3), the second line of (A3) must
vanish. Hence we have the entropy equation,

ρ T
(
∂ts+ v · ∇s

)
= σ

(vis)
jk ∂kvj , (A4)

in addition to the energy equation (A2). The quantity σ
(vis)
jk ∂kvj on the right-hand side is

shown to be positive by (34) in the main text (§ IV. C. (3)).
The above result states that the total energy is conserved by the equation (A2) if the heat

energy is taken into account, where the heat energy is transformed from the kinetic energy
and an associated increase of the entropy s is given by the equation (A4) characterizing the
thermodynamic state of the fluid.

Lastly, it would be instructive to consider that the last term −vj σ
(vis)
jk on the right of (A2)

is regarded as a energy flux (i.e. a rate of working) due to the viscosity action. Consider a

12 Enthalpy:h = ε + p/ρ; Differentials of state variables: dε = T ds + (p/ρ2) dρ; ∂tε = T ∂ts + (p/ρ2) ∂tρ,

and ∂tρ = −∂k(ρvk). Time derivatives: ∂t(
1
2 ρv

2) = ρvk∂tvk = ρvk(−vk∂kvk − vk∂kp + vk∂jσ
(vis)
jk ),

∂t(ρε) = ρ∂tε+ ε∂tρ = ρT∂ts+ h ∂tρ = ρT∂ts− h ∂k(ρvk). ρvk∂kε = ρvkT ∂ks+ (p/ρ)vk∂kρ.
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Appendix

Appendix A: Energy equation and Entropy equation of a viscous fluid



 
 

 
 

 
 
 
 
 
 
 
 
 
 

fluid volume V surrounded by a closed surface S. The rate at which a work W is done to

outside fluid across the surface S by the fluid in V with the viscous stress σ
(vis)
jk is given by

W =

∫
S
vj σ

(vis)
jk nkdS =

∫
V

∂k(vjσ
(vis)
jk ) dV =

∫
V

[
vj ∂kσ

(vis)
jk +

(
∂kvj

)
σvis
jk

]
dV

=

∫
V
vkF

(vis)
k dV +

∫
V

[ (
∂kvj

)
σ
(vis)
jk

]
dV, F

(vis)
k ≡ ∂jσ

(vis)
jk . (A5)

where σ
(vis)
jk = σ

(vis)
kj , and nk is unit outward normal to the enclosing surface S. Since the

work W is done to external fluid, the work to the fluid inside S is Win = −W . This implies

the term −vj σ
(vis)
jk denotes the work (an energy flux) within the fluid itself.

The integrand vkF
(vis)
k in the first integral of (A5) denotes the mechanical work done

by the viscous force F
(vis)
k = ∂jσ

jk
vis of (A1), while the integrand (∂kvj) σ

(vis)
jk in the second

integral denotes the energy dissipated into heat by the viscous action. The last is nothing
but the expression of the right-hand side of (A4), confirming the consistence of the theory.

In order to see the difference and transition of the stress fields before and after certain
spontaneous change, simple model analyses are presented in this Appendix B.

Let us consider a fluid in 2d (x, y)-channel with the channel axis to the x-direction and
its width H to the normal y-direction. Not only the sound oscillation in the channel, but
also other special conditions are imposed to consider analogous model problems. The fluid
is supposed to be under pressure pe, which is either uniform (with uniform fluid density ρ0)
in the first case B 1, or subjected to a pressure gradient P ≡ −∂pe/∂x in the x-direction
which is uniform spatially but oscillates sinusoidally in time P (t) in the second case B 2.
Regarding the boundary conditions, the upper wall y = H is kept at rest, while the lower
wall y = 0 is in motion or at rest depending on each case. The fluid observes the no-slip
condition on both walls.

In the third case B 3, P is P (t, x), periodic both temporally and spatially, and the fluid
follows the no-slip condition on both walls at rest. Representative velocity u′ of fluid flow is
assumed very small compared to the sound speed cs, and the density change ∆ρ is related
to the pressure change ∆p isentropically, with the specific entropy s being fixed:

∆p = c2s ∆ρ, c2s = ∂p/∂ρ
∣∣
s:fixed

. (B1)

The relative density change ∆ρ/ρ0 is small,13, of the order of 10−3.
Before the transition, the motion is governed by the equation (18) under the isotropic

pressure stress σjk
I . However in this model analysis, no-slip condition is applied on both of

the upper and lower walls, so that the viscous stress term σjk
vis is included in the equation

of motion. Furthermore, the fluid motion is assumed to take unidirectional velocity field,
vuni = (u(y, t), 0, 0), governed by the Navier-Stokes equation (30).

13 The equation (B2) can be written as ρ ∂tu ≈ −∂xpe out of thin viscous boundary layer. Using ρ∂tu ≈
ρ0iωu

′ = iρ0kcgu
′ and ∂xpe = (∂pe/∂ρ)∂xρ ≈ c 2

s ikρ
′. Then, |ρ′/ρ0| ≈ |u′/cs|(cg/cs) ≈ 10−3.
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Appendix B: Oscillatory Boundary Layers



 
 

 
 

 
 
 
 
 
 
 
 
 
 

For the unidirectional flow field vuni, the NS-eq.(30) reduces to

ρ ∂tu = P + ρ ν ∂2
yu , P = −∂pe/∂x, ν ≡ η/ρ. (B2)

Let us now consider the above three cases, step by step, in order to arrive at desired expres-
sions, with improving boundary conditions imposed at the lower wall and with-and-without
pressure oscillation.

First, the lower wall makes a time periodic motion of a period T with its x-velocity Uw

represented by the real part of uwe
iωt with ω = 2π/T the angular frequency:

Uw(t) = ℜ[uw eiωt] = uw cos 2π(t/T ), (B3)

where uw is real and denotes the amplitude of wall oscillation. Namely the wall is moving in
its own plane with a sinusoidal oscillation. The solution u(y, t) satisfying (B2) is given by

u(y, t) = ℜ
[
uw eiωt

sinh[K(1− Y )]

sinhK

]
; Y =

y

H
,

K

H
=

(iω
ν

)1/2

=

√
ω

2ν
(1 + i). (B4)

One can easily check that this satisfies not only the equation (B2) under P = 0, but the
boundary conditions at y = 0 and H as well.

As H → ∞, this tends to the solution found by Stokes:

u(y, t) → ℜ
[
uw eiωt exp [−(i ω/ν)1/2 y]

]
, (B5)

This solution represents an oscillating motion adjacent to the wall, called the Stokes’ os-
cillatory boundary layer (see §4.3 of [10], or §4.7 of [11]). This is generated by the viscous
dragging effect caused by the oscillating boundary wall at y = 0. The viscous dragging is
expressed by the exponential factor:

exp [−(i ω/ν)1/2 y] = exp [−(ω/2ν)1/2 y] · exp [−i(ω/2ν)1/2 y]

since
√
i = (1 + i)/

√
2. The effective thickness δvis of the viscous layer is found from

the first factor exp [−(1/δvis) y] where δvis =
√

2ν/ω. The second factor exp [−i (y/δvis)],
combined with the time factor eiωt of (B5), represents a wave propagating away from the
wall: exp [i(ωt− (y/δvis) ) ].

The thickness δvis =
√

2ν/ω is found very small, compared with an experimental channel
width H ≈ 5 cm, if we take the experimental frequency f = ω/(2π) of the order 103 s−1 and
the air kinematic viscosity νair = 0.15 cm2s−1 (at normal conditions): δvis ≈ 10−2 cm, and
H/δvis ≈ 103.

In the previous section B 1, the time periodic oscillation eiωt is imposed uniformly to the
lower wall. Here, instead of the wall motion, a pressure oscillation is applied to the whole
fluid (in the channel) uniformly with P (t) = P0 e

iωt at all points, with the static condition
Uw = 0 applied at the wall boundaries.
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1. Lower wall oscillates in its own plane while upper wall kept at rest

2. Time-periodic oscillation of pressure gradient with walls at rest



 
 

 
 

 
 
 
 
 
 
 
 
 
 

First, we consider the case H → ∞ and use the solution (B5) in order to find a solution
of the present case. Far away from the lower wall (y/δvis ≫ 1), the viscous dragging effect
by the no-slip condition at the wall y = 0 decays exponentially as y/δvis increases, and the
equation (B2) tends to be approximated by ρ ∂tu = P (t). Assuming u ∝ eiωt, this is solved
by u∞ = (ρ i ω)−1P (t), where ∂tu = iωu is used.

Regarding the full equation (B2), let us assume u(y, t) having the time factor eiωt and
write as u(y, t)− u∞ = u∞ f(y) by using unknown function f(y), the equation (B2) can be
written as (ρ iω)

(
u∞ + u∞ f(y)

)
= (ρ i ω)u∞ + ρ ν u∞∂2

yf with using P = (ρ iω) u∞. This
reduces to an ordinary differential equation for f(y):

f ′′(y)− (iω/ν) f(y) = 0. (B6)

where the boundary conditions are: f(0) = −1 to satisfy u(0, t) = 0 and f(∞) = 0 to satisfy
u(0, t) = u∞. Thus, the solution u(y, t) of (B2), tending to u∞ as y/δvis → ∞, is given by

u(y, t) = ℜ
[
(ρ i ω)−1P (t) [1− exp {−(i ω/ν)1/2 y}]

]
, P (t) = P0 e

iωt. (B7)

This solution (B7) has been found for the infinite fluid layer with H → ∞. However, in view
of the estimate given in the last paragraph of B 1 where H/δvis ≈ 103, one may use (B7)
for a finite H with sufficient accuracy. This solution (B7) can be used practically as the
u(y, t) for the lower half 0 < y ≤ 1

2 H of the channel under the oscillation pressure gradient
P (simulating an acoustic oscillation),

Here, in addition to the time periodic motion (of period T ), a space-periodic structure
(with a wavelength λg)

14 is imposed for the pressure gradient P ≡ −∂pe/∂x to the x-
direction, represented as15

P+(t, x) = P0 e
iωt e+ikx, ω = 2π/T, k = 2π/λg, (B8)

with the condition Uw = 0 applied at the wall boundaries. The solution u(t, x, y) to

ρ ∂tu = P+ + ρ ν ∂2
yu , P+ = −∂pe/∂x, (B9)

(equivalent to (B2)), tending to U †
ex(t, x) as y/δvis → ∞, is given by

u+(t, x, y) = ℜ
[
U †
ex(t, x) F (y)

]
, U †

ex(t, x) = (ρ i ω)−1P+(t, x), (B10)

F (y) = 1− exp {−(i ω/ν)1/2 y}. (B11)

14 The wavelength λg is defined by cg T , where cg is the phase speed of the gauge field aν and T denotes the
same period of sound vibration. For the sound speed cs = 344 m/s (at 20◦ C), the sound wavelength λs

is given by cs T , and the following parameters are used: cg/cs = λg/λs = 0.031 and uw/cg = 0.05.
15 The suffices ”+” or ”†” denote the expressions derived from the x-space periodicity e+ikx. This is to

discriminate those derived from the e−ikx periodicity to be given next.
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3. Pressure oscillation both time-periodic and space-periodic



 
 

 
 

 
 
 
 
 
 
 
 
 
 

since P †
ex = −∂xp

†
ex = ik(c2sρ

†
ex) = i(ω2/k)ρ†ex and ω = kcs. The last expression implies the

following linearized continuity equation:

∂tρ
†
ex + ρ0(∂xu+ + ∂yv+) = 0. (B14)

Next, under another pressure gradient given by P−(t, x) = P0 e
iωt e−ikx, one can easily

find the solution u−(t, x, y) with the parallel analysis, represented as

u−(t, x, y) = ℜ
[
U−
ex(t, x) F (y)

]
, U−

ex(t, x) = (ρ i ω)−1P−(t, x), (B15)

Thus, we can give a representation of the external x-velocity in a resonant sound wave by
the linear combination of u+(t, x, y) and u−(t, x, y):

ures(t, x, y) = u+ + u− = ℜ
[
U †
ex(t, x) F (y)

]
+ ℜ

[
U−
ex(t, x) F (y)

]
= ℜ

[
uex(x) e

iωt F (y)
]
, uex(x) =

2

i ρ0 ω
P0 cos kx. (B16)

Lower wall oscillates tangentially with both time-periodic eiωt and space-periodic cos kx,
with a period T (ω = 2π/T ) and a wave-length λg = 2π/k. The wall velocity u|y=0 is

Uw(t, x) = ℜ[uw cos kx eiωt] = uw cos kx cos 2π(t/T ), k = 2π/λg, (B17)

where uw is real, denoting the amplitude of wall oscillation. Figure 3 compares two velocity
fields generated by two different stress fields for the same wall motion of (B17). The figure
(a) on the left is the Stokes-type oscillatory layer (Eulerian + viscosity: under transparent
gauge field):

u(t, x, y, ) = uw cos kx ℜ
[
eiωt exp {−(i ω/ν)1/2 y}

]
, (B18)

derived from (41) ∼ (43) of §V, with deleting uex(x) and the sign reversed.

Next, the figure (b) on the right is the wavy layer obtained from the FGT system
(FGT+viscosity under vectorial (colored) gauge field aν). One can see remarkable difference
between the two fields.
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Corresponding y-component v+(t, x, y) is given by

v+(t, x, y) = ℜ
[
(ν/iω)1/2

(
∂U †

ex/∂x
)
F (y)

]
, (B12)

We can calculate ∂xu+ + ∂yv+, which is found as

∂xu+ + ∂yv+ = ℜ
[
∂xU

†
ex

(
(1− e−κy) + e−κy

)]
= ℜ

[
∂xU

†
ex

]
= ℜ

[
− ik/(ρ i ω)P †

ex

]
= ℜ

[
− (1/ρ0) iωρ

†
ex

]
= −(1/ρ0) ∂tρ

†
ex. (B13)

Lower wall tangential oscillation both time-periodic and space-periodic4.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions

       

1

Y
ea

r
20

22

85

© 2022 Global Journals

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
II  
 I
ss
ue

  
  
  
er

sio
n 

I 
 

V
  

 
( A

)
V
I

The author would like to express gratitude to the Royal Society and the journal Philo-
sophical Transactions of the Royal Society for permission to use the FIG.1 and FIG.2 cited
from [7] and FIG.5 cited from [6], both paper published ninety years ago.

The finite element analysis of the present study was carried out by the courtesy of Mr.
Masanori Hashiguchi (Professional Engineer Japan; Former researcher of iCFD). Concern-
ing the financial support to carry out the present study, the author would like to express
heartfelt thanks to Mr. Kousuke Umadume, President of Institute of Japan Ship Model
(WASEN).

Acknowledgments

References  Références Referencias

                     

1. August Kundt, Ueber eine neue Art akustischer Staubfiguren und über die 
Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern 
und Gasen, Ann. der Physik & Chemie, vol.127, 497 - 523 (1866).

2. Dvorak, Ann. der Physik, vol.153, 102 - 115 (1874);
3. V. Dvorak, Ann. der Physik, vol.157, 42 - 73 (1876).
4. J. W. S. Rayleigh, The Theory of Sound, Vol. Two (1896).
5. E. N. Da C. Andrade, Phenomena in a sounding tube, Nature, p.438, March 21 

(1931).
6. E. N. Da C. Andrade, On the circulations caused by the vibration of air in a tube, 

Proc. Roy. Soc. A134,                      445 - 470 (1931).
7. E. N. Da C. Andrade, On the groupings and general behaviour of solid particles 

under the influence of air vibrations in tubes, Phil. Trans. Roy. Soc. A230, 413-445 
(1932).

8. R. A. Carman, Kundt Tube Dust Striations, American J. of Phys. 23, 505 - 507 
(1955)

9. G. K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University 
Press (1953).

10. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 
(1967).

11. James Lighthill, Waves in fluids, Cambridge University Press (1978).
12. L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 2nd ed.) (1987).
13. T. Kambe, Fluid Gauge Theory. Global Journal of Sci. Front. Res. A, vol.21 (4),               

113-147 (2021)
14. T. Kambe, Gauge symmetries in physical fields (Review), Global Journal of Sci. 

Front. Res. A, vol.21 (4), 1‐44.
15. R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101, 1597 

- 1607(1956).
16. R. Utiyama, Introduction to General Gauge Field Theory [book in Japanese], 

(Iwanami, Tokyo) (1987).

17. Kambe T., New representation of rotational flow fields satisfying Euler’s equation of 
an ideal compressible fluid, Fluid Dyn. Res. 45, 015505 (16pp) (2013).

18. Scofield D. F. and Pablo Huq, Fluid dynamical Lorentz force law and Poynting 

theorem – derivation and implications. Fluid Dyn. Res., 46, 055514 (22pp) (2014).
19. Kambe T., New scenario of turbulence theory and wall-bounded turbulence: 

Theoretical significance, Geophys. Astrophys. Fluid Dyn. 111, 448-507, (2017).



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Gauge-Theoretic Study of Kundt Tube Experiment and Spontaneous Symmetry Transitions

1

Y
ea

r
20

22

86

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
II  
 I
ss
ue

  
  
  
er

sio
n 

I 
 

V
V
I

  
 

( A
)

© 2022 Global Journals

20. Kambe T 2020 New perspectives on mass conservation law and waves in fluid 
mechanics, Fluid Dyn. Res. 52, 1 - 34 (2020).

21. Djouadi A. 2008: The anatomy of electro-weak symmetry breaking, I: The Higgs 
boson in the standard model, Phys. Rept. 457: 1-216; LPT-Orsay-05-18,

22. Laura Reina 2011: lectures on Higgs-Boson Physics, Proc. of TASI 2011, arXiv:
1208.5504 [hep-ph].

23. Y. Nambu, Spontaneous Symmetry Breaking in Particle Physics: A Case of Cross 
Fertilization, Nobel Lecture (2008).

The spontaneous symmetry breaking (SSB) is explained by the Nobel Laureate Yoichiro
NAMBU in his Nobel Lecture [23] in 2008: ”Spontaneous Symmetry Breaking in Particle
Physics: A Case of Cross Fertilization”, in which the following illustrative example is given:

”· · · In fact, it (SSB) is a very familiar one in our daily life. For example,
consider an elastic straight rod (of circular cross-section) standing vertically. It
has a rotational symmetry; it looks the same from any horizontal direction. But
if one applies increasing pressure (pressing stress) to squeeze it, it will bend in
some direction, and the symmetry is lost. The bending can occur in principle in
any (horizontal) direction since all directions are equivalent. But you do not see
it unless you repeat the experiment many times. This is SSB. · · · · · · ”

One can compare this example with our case of spontaneous symmetry transition in the
Kundt’s experiment. The initial state of the elastic straight rod (of circular cross-section)
standing vertically corresponds, in our case, to the acoustic pure resonance of wavelength λr

in a closed tube, which is governed by the Euler’s equation of motion in a tranparent gauge

field a
(0)
ν = ∂νΨ.

As the acoustic intensity increases, the gauge field aν shows spontaneously its appearance
at a transition when the field aν is colored with a characteristic wave-length ℓ of transverse
rotational waves, coexisting in the irrotational resonant acoustic waves of wave-length λr.
The length ℓ is not unique, but depends on the fluid state concerning distributioin and degree
of the rotational component of the background fluid motion. This is analogous to the case
of rod bending. The horizontal direction of bending depends on the internal microscopic
structure within the elastic rod.

Thus, it is understood that the elastic rod could be an illustrative example to our Kundt’s
experiment as well.

Note Added in Proof:
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