Survival of Plants Seeds
Proposal for Modelling Sustainability
Carbon Dioxide Gas Exhausts
Impact on Zener Standard Measurement

Discovering Thoughts, Inventing Future
Global Journals Inc.
(A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089)
Sponsors: Open Association of Research Society
Open Scientific Standards

Publisher’s Headquarters office

Global Journals® Headquarters
945th Concord Streets,
Framingham Massachusetts Pin: 01701,
United States of America
USA Toll Free: +001-888-839-7392
USA Toll Free Fax: +001-888-839-7392

Offset Typesetting

Global Journals Incorporated
2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey,
Pin: CR9 2ER, United Kingdom

Packaging & Continental Dispatching

Global Journals Pvt Ltd
E-3130 Sudama Nagar, Near Gopur Square,
Indore, M.P., Pin:452009, India

Find a correspondence nodal officer near you

To find nodal officer of your country, please email us at local@globaljournals.org

eContacts

Press Inquiries: press@globaljournals.org
Investor Inquiries: investors@globaljournals.org
Technical Support: technology@globaljournals.org
Media & Releases: media@globaljournals.org

Pricing (Excluding Air Parcel Charges):

Yearly Subscription (Personal & Institutional)
250 USD (B/W) & 350 USD (Color)
<table>
<thead>
<tr>
<th>Editorial Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. John Korstad</th>
<th>Dr. Alicia Esther Ares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D., M.S. at Michigan University, Professor of Biology, Department of Biology Oral Roberts University, United States</td>
<td>Ph.D. in Science and Technology, University of General San Martin, Argentina State University of Misiones, United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Sahraoui Chaieb</th>
<th>Tuncel M. Yegulalp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. Physics and Chemical Physics, M.S. Theoretical Physics, B.S. Physics, cole Normale Suprieure, Paris, Associate Professor, Bioscience, King Abdullah University of Science and Technology United States</td>
<td>Professor of Mining, Emeritus, Earth & Environmental Engineering, Henry Krumb School of Mines, Columbia University Director, New York Mining and Mineral, Resources Research Institute, United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Andreas Maletzky</th>
<th>Dr. Gerard G. Dumancas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoologist University of Salzburg, Department of Ecology and Evolution Hellbrunnerstraße Salzburg Austria, Universitat Salzburg, Austria</td>
<td>Postdoctoral Research Fellow, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation Oklahoma City, OK United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Mazeyar Parvinzadeh Gashti</th>
<th>Dr. Indranil Sen Gupta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D., M.Sc., B.Sc. Science and Research Branch of Islamic Azad University, Tehran, Iran Department of Chemistry & Biochemistry, University of Bern, Bern, Switzerland</td>
<td>Ph.D., Mathematics, Texas A & M University, Department of Mathematics, North Dakota State University, North Dakota, United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Richard B Coffin</th>
<th>Dr. A. Heidari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D., in Chemical Oceanography, Department of Physical and Environmental, Texas A&M University United States</td>
<td>Ph.D., D.Sc, Faculty of Chemistry, California South University (CSU), United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Xianghong Qi</th>
<th>Dr. Vladimir Burtman</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Tennessee, Oak Ridge National Laboratory, Center for Molecular Biophysics, Oak Ridge National Laboratory, Knoxville, TN 37922, United States</td>
<td>Research Scientist, The University of Utah, Geophysics Frederick Albert Sutton Building 115 S 1460 E Room 383, Salt Lake City, UT 84112, United States</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Shyny Koshy</th>
<th>Dr. Gayle Calverley</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D. in Cell and Molecular Biology, Kent State University, United States</td>
<td>Ph.D. in Applied Physics, University of Loughborough, United Kingdom</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Bingyun Li</td>
<td>Ph.D. Fellow, IAES, Guest Researcher, NIOSH, CDC, Morgantown, WV Institute of Nano and Biotechnologies, West Virginia University, United States</td>
</tr>
<tr>
<td>Dr. Baziotis Ioannis</td>
<td>Ph.D. in Petrology-Geochemistry-Mineralogy Lipson, Athens, Greece</td>
</tr>
<tr>
<td>Dr. Matheos Santamouris</td>
<td>Prof. Department of Physics, Ph.D., on Energy Physics, Physics Department, University of Patras, Greece</td>
</tr>
<tr>
<td>Dr. Vyacheslav Abramov</td>
<td>Ph.D in Mathematics, BA, M.Sc, Monash University, Australia</td>
</tr>
<tr>
<td>Dr. Moustafa Mohamed Saleh Abbasy</td>
<td>Ph.D., B.Sc, M.Sc in Pesticides Chemistry, Department of Environmental Studies, Institute of Graduate Studies & Research (IGSR), Alexandria University, Egypt</td>
</tr>
<tr>
<td>Dr. Fedor F. Mende</td>
<td>Ph.D in Applied Physics, B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine</td>
</tr>
<tr>
<td>Dr. Yilun Shang</td>
<td>Ph.d in Applied Mathematics, Shanghai Jiao Tong University, China</td>
</tr>
<tr>
<td>Dr. Yaping Ren</td>
<td>School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China</td>
</tr>
<tr>
<td>Dr. T. David A. Forbes</td>
<td>Associate Professor and Range Nutritionist Ph.D. Edinburgh University - Animal Nutrition, M.S. Aberdeen University - Animal Nutrition B.A. University of Dublin-Zoology</td>
</tr>
<tr>
<td>Dr. Bing-Fang Hwang</td>
<td>Department of Occupational, Safety and Health, College of Public Health, China Medical University, Taiwan Ph.D., in Environmental and Occupational Epidemiology, Department of Epidemiology, Johns Hopkins University, USA Taiwan</td>
</tr>
<tr>
<td>Dr. Giuseppe A Provenzano</td>
<td>Irrigation and Water Management, Soil Science, Water Science Hydraulic Engineering , Dept. of Agricultural and Forest Sciences Universita di Palermo, Italy</td>
</tr>
<tr>
<td>Dr. Moaed Almeselmani</td>
<td>Ph.D in Plant Physiology, Molecular Biology, Biotechnology and Biochemistry, M. Sc. in Plant Physiology, Damascus University, Syria</td>
</tr>
<tr>
<td>Dr. Claudio Cuevas</td>
<td>Department of Mathematics, Universidade Federal de Pernambuco, Recife PE, Brazil</td>
</tr>
<tr>
<td>Dr. Eman M. Gouda</td>
<td>Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt</td>
</tr>
<tr>
<td>Dr. Qiang Wu</td>
<td>Ph.D. University of Technology, Sydney, Department of Mathematics, Physics and Electrical Engineering, Northumbria University</td>
</tr>
<tr>
<td>Dr. Arshak Poghossian</td>
<td>Ph.D. Solid-State Physics, Leningrad Electrotechnical Institute, Russia Institute of Nano and Biotechnologies Aachen University of Applied Sciences, Germany</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Lev V. Eppelbaum</td>
<td>Ph.D. Institute of Geophysics, Georgian Academy of Sciences, Tbilisi Assistant Professor Dept Geophys & Planetary Science, Tel Aviv University Israel</td>
</tr>
<tr>
<td>Dr. Linda Gao</td>
<td>Ph.D. in Analytical Chemistry, Texas Tech University, Lubbock, Associate Professor of Chemistry, University of Mary Hardin-Baylor, United States</td>
</tr>
<tr>
<td>Prof. Jordi Sort</td>
<td>ICREA Researcher Professor, Faculty, School or Institute of Sciences, Ph.D., in Materials Science Autonomous, University of Barcelona Spain</td>
</tr>
<tr>
<td>Angelo Basile</td>
<td>Professor, Institute of Membrane Technology (ITM) Italian National Research Council (CNR) Italy</td>
</tr>
<tr>
<td>Dr. Eugene A. Permyakov</td>
<td>Institute for Biological Instrumentation Russian Academy of Sciences, Director Pushchino State Institute of Natural Science, Department of Biomedical Engineering, Ph.D., in Biophysics Moscow Institute of Physics and Technology, Russia</td>
</tr>
<tr>
<td>Dr. Bondage Devanand Dhondiram</td>
<td>Ph.D. No. 8, Alley 2, Lane 9, Hongdao station, Xizhi district, New Taipei city 221, Taiwan (ROC)</td>
</tr>
<tr>
<td>Prof. Dr. Zhang Lifei</td>
<td>Dean, School of Earth and Space Sciences, Ph.D., Peking University, Beijing, China</td>
</tr>
<tr>
<td>Dr. Bingsuo Zou</td>
<td>Ph.D. in Photochemistry and Photophysics of Condensed Matter, Department of Chemistry, Jilin University, Director of Micro- and Nano- technology Center, China</td>
</tr>
<tr>
<td>Prof. Dr. Hai-Linh Tran</td>
<td>Ph.D. in Biological Engineering, Department of Biological Engineering, College of Engineering, Inha University, Incheon, Korea</td>
</tr>
<tr>
<td>Dr. Latifa Oubedda</td>
<td>National School of Applied Sciences, University Ibn Zohr, Agadir, Morocco, Lotissement Elkhier N66, Bettana Sal Marocco</td>
</tr>
<tr>
<td>Dr. Hai-Linh Tran</td>
<td>Ph.D. in Biological Engineering, Department of Biological Engineering, College of Engineering, Inha University, Incheon, Korea</td>
</tr>
<tr>
<td>Dr. Lucian Baia</td>
<td>Ph.D. Julius-Maximilians, Associate professor, Department of Condensed Matter Physics and Advanced Technologies, Department of Condensed Matter Physics and Advanced Technologies, University Wurzburg, Germany</td>
</tr>
<tr>
<td>Dr. Yap Yee Jiun</td>
<td>B.Sc.(Manchester), Ph.D.(Brunel), M.Inst.P.(UK) Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia</td>
</tr>
<tr>
<td>Dr. Maria Gullo</td>
<td>Ph.D., Food Science and Technology Department of Agricultural and Food Sciences, University of Modena and Reggio Emilia, Italy</td>
</tr>
<tr>
<td>Dr. Shengbing Deng</td>
<td>Departamento de Ingeniera Matematica, Universidad de Chile. Facultad de Ciencias Fisicas y Matematicas. Blanco Encalada 2120, Piso 4., Chile</td>
</tr>
<tr>
<td>Name</td>
<td>Details</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Dr. Fabiana Barbi</td>
<td>B.Sc., M.Sc., Ph.D., Environment, and Society, State University of Campinas, Brazil Center for Environmental Studies and Research, State University of Campinas, Brazil</td>
</tr>
<tr>
<td>Prof. Ulrich A. Glasmacher</td>
<td>Institute of Earth Sciences, Director of the Steinbeis Transfer Center, TERRA-Explore, University Heidelberg, Germany</td>
</tr>
<tr>
<td>Dr. Yiping Li</td>
<td>Ph.D. in Molecular Genetics, Shanghai Institute of Biochemistry, The Academy of Sciences of China Senior Vice Director, UAB Center for Metabolic Bone Disease</td>
</tr>
<tr>
<td>Prof. Philippe Dubois</td>
<td>Ph.D. in Sciences, Scientific director of NCC-L, Luxembourg, Full professor, University of Mons UMONS Belgium</td>
</tr>
<tr>
<td>Nora Fung-yee TAM</td>
<td>DPhil University of York, UK, Department of Biology and Chemistry, MPhil (Chinese University of Hong Kong)</td>
</tr>
<tr>
<td>Dr. Rafael Gutirrez Aguilar</td>
<td>Ph.D., M.Sc., B.Sc., Psychology (Physiological), National Autonomous, University of Mexico</td>
</tr>
<tr>
<td>Dr. Sarad Kumar Mishra</td>
<td>Ph.D in Biotechnology, M.Sc in Biotechnology, B.Sc in Botany, Zoology and Chemistry, Gorakhpur University, India</td>
</tr>
<tr>
<td>Ashish Kumar Singh</td>
<td>Applied Science, Bharati Vidyapeeth's College of Engineering, New Delhi, India</td>
</tr>
<tr>
<td>Dr. Ferit Gurbuz</td>
<td>Ph.D., M.Sc, B.S. in Mathematics, Faculty of Education, Department of Mathematics Education, Hakkari 30000, Turkey</td>
</tr>
<tr>
<td>Dr. Maria Kuman</td>
<td>Ph.D, Holistic Research Institute, Department of Physics and Space, United States</td>
</tr>
</tbody>
</table>
CONTENTS OF THE ISSUE

i. Copyright Notice
ii. Editorial Board Members
iii. Chief Author and Dean
iv. Contents of the Issue

1. Design Prototype of Bio-Filter to Treatment of Carbon Dioxide Gas Exhausts. 1-7
2. The Need and Opportunity for Sustainability in a Digital World Proposal for Modelling Sustainability. 9-14
4. Survival of Plants Seeds and Bacteria in a Picosatellite Sent to the Stratosphere. 17-19

v. Fellows
vi. Auxiliary Memberships
vii. Preferred Author Guidelines
viii. Index
Design Prototype of Bio-Filter to Treatment of Carbon Dioxide Gas Exhausts

Nasarawa State University

Abstract- The research aims to design and fabricate prototype of a bio-filter which used to process the emissions of CO and CO\(_2\).That are mainly generated from the combustion of coal, oil and natural gas. These are main energy resources in our daily life whichused in different food activities as food factories and charcoal grills. The prototype consists of cylinder steel with two covers, two tubes welded on the outer face of each cover and candle of filter.Candlwas consisting of two circle walls and the space between two walls was 2cm In the experimentswere conducted on four cases frombio materialssas follows:- 1- grinded ficusgreen leaves 2-grinded green leaves after drying 3-dry sawdust, 4-Wet sawdust.Measurements were done at five times after 2, 4, 6, 8, and 10 min. from starting experiments.The moisture contents was measured to the agricultural residues (bio-materials) before and after experiments. Chemical analysis was done on the bio-material to measure the Co,Co\(_2\)befor and after experiments. Also,Co ,Co\(_2\)were measured in the air befor input prototype and after output.The results with bio.filter were: - with green leaves: Co\(_2\) ratio decreased to18% ,Codecreased to 2 %. And absorb of C ratio bygreen leaves was4.5%.

Keywords: air purifier, air pollution, carbon capture, direct air capture.

GJSFR-H Classification: DDC Code: 665.7 LCC Code: TN884

Strictly as per the compliance and regulations of:
Abstract - The research aims to design and fabricate prototype of a bio-filter which used to process the emissions of CO and \(\text{CO}_2 \). That are mainly generated from the combustion of coal, oil and natural gas. These are main energy resources in our daily life which used in different food activities as food factories and charcoal grills. The prototype consists of cylinder steel with two covers, two tubes welded on the outer face of each cover and candle of filter. Candle was consisting of two circle walls and the space between two walls was 2cm. The experiments were conducted on four cases from bio-materials as follows: 1- grinded ficus green leaves 2- grinded green leaves after drying 3- dry sawdust, 4- wet sawdust. Measurements were done at five times after 2, 4, 6, 8, and 10 min. from starting experiments. The moisture contents was measured to the agricultural residues (bio-materials) before and after experiments. Chemical analysis was done on the bio-material to measure the \(\text{CO}_2 \), \(\text{CO}_2 \) before and after experiments. Also, \(\text{CO}_2 \), \(\text{CO}_2 \) were measured in the air before input prototype and after output. The results with bio-filter were: - with dry leaves: \(\text{CO}_2 \) ratio decreased to 18%, Codecreased to 2%. And absorb of C ratio by dry leaves was 4.5%. - With dry leaves: \(\text{CO}_2 \) decreased to 15%, \(\text{CO}_2 \) didn’t change and absorb of C ratio by dry leaves was 0.07%. - With wet sawdust: \(\text{CO}_2 \) decreased 0.03% and \(\text{CO}_2 \) didn’t change. - With dry sawdust: \(\text{CO}_2 \) and \(\text{CO}_2 \) didn’t change. The final conclusion was the ficus green leaves is the best bio-material to use with bio-filter.

Keywords: air purifier, air pollution, carbon capture, direct air capture.

1. Introduction

Exhaust gases emissions from cooking and food processing activities very dangerous because it contain some toxic gases as \(\text{CO}_2 \) that cusses respiratory illness, and other chronic diseases, mental-health problems, asthma and potentially cardiovascular disease and cancer. Moreover, some gases \(\text{CO}_2 \), \(\text{N}_2 \), \(\text{O}_2 \), \(\text{H}_2\text{O} \), PM, HC, \(\text{SO}_2 \), \(\text{NO}_2 \) which produce from unfired fuel is toxic gases.

Hence, it must keep the components of natural air at 78% nitrogen, 21% oxygen, argon 0.9%, carbon dioxide 0.0390%, and water vapor at a variable rate (Singh et al., 2018). Air pollutants can define as any substance emitted into the air from an anthropogenic, biogenic, or gynogenetic source, that is either not part of the natural atmosphere or is present in higher concentrations than the natural atmosphere, and may cause a short-term or long-term adverse effect. Air pollution caused problematic health include breathing problems, respiratory illness, changes in the lung’s defenses, and worsening respiratory, and cardiovascular disease. ElAziz et al. (2015).

World Bank (2016) reported that, in fact, exposure to air pollution is now the fourth in the world. (Ministry of agricultural, 2018-2019) reported that agricultural residues are national wasted wealth and are one of the riches untapped, because of burning and disposing of in different ways. Total agricultural residues in Egypt are about 43 million tons about 8 Million ton horticultural wastes, about 4 Million tons paper waste and can produce, and about 300 thousand tons from ficus paper waste leaves as a residues per year.

Unep (2004) explained that air pollutants can be divided into anthropogenic and natural pollutants according to their sources, or primary and secondary pollutants, which stem from reactions of primary pollutants when taking the production process into account.

Carbon dioxide (\(\text{CO}_2 \)) emissions have become one of the most serious issues and this environmental concern is being faced by our civilization today. The major sources of air pollution are industrial emissions, vehicular emissions, and domestic emissions. Air is very important as it provides oxygen and other gases that are essential to all life on earth. It consists of a mixture of invisible gases that surround the planet. (SEPA, 2019).

These gases can purify before exit to air by using filters or different methods. There are many types of filters can be used based on the types of materials made some filters component is bio-materials to adsorb the emission contents from the exhaust gas. Li et al. (2011) explained that several methods have been developed and used to capture \(\text{CO}_2 \) from high emission sources and store it in different conditions.

Gary (2009) explained that Carbon capture and storage (CCS) involves the separation and capture of \(\text{CO}_2 \) from flue gas or syn gas in the case of IGCC. CCS is a three-step process that includes:

1. \(\text{LiOH} \) absorption solution developed by NASA use the same principle but different compound.
2. Capture of CO₂ from electric generating units (or other industrial processes).
3. Compression and transport of the captured CO₂ (usually in pipeline and underground injection and geologic sequestration (also referred to as storage) of the CO₂ into deep underground rock formations.

Hussain et al. (2009) mentioned that the possibility to clean contaminated air with hyperaccumulator plants has shown great potential. One of the most recently studied species used in phytoremediation applications is woody trees and ornamental plants. These plants can be harvested every 8 to 10 years to generate revenue, along with the added advantage of working as natural air conditioners.

Herzog et al. (2009) explained that carbon dioxide capture and storage (CCS) is the only pathway that can allow the world to continue to enjoy the benefits of using coal while drastically reducing the emissions associated with coal combustion.

To date, all commercial post-combustion CO₂ capture plants use chemical absorption processes with monoethanolamine (MEA)-based solvents. MEA has developed over 70 years ago as a general, non-selective solvent to remove acid gases, such as CO₂ and hydrogen sulfide, from natural gas streams. The amount of carbon dioxide (CO₂) in the atmosphere continues to rise and rather rapidly due to unparalleled cumulative CO₂ emissions. The percentage increased from 382 ppm in 2006 to 408 ppm in the 2018 level over time (Nasa, 2019).

Brethour et al. (2007) cleared that the agricultural residues can include about 6,000 species of cut flowers, potted flowering plants, houseplants, cut foliage, bedding plants, bulbs, cuttings for propagation, food and medicinal plants in greenhouses and outdoor-grown cut flowers and Nursery farmers produce about 9,000 species of annual and perennial plants, woody shrubs, deciduous, coniferous trees, roses, outdoor garden flowers, and Christmas trees. Ficus retusa is a kind of heavy, fast-growing, round-headed, and evergreen ornamental tree that can reach a height of 10 meters.

The research aimed to design and manufacture a locally bio-filter used to process exhaust gases produced by food factories.

II. Materials and Methods

This research was done from 2019 to 2020 at Agricultural Engineering Research Institute “AEEnRI” Min.

a) Design and fabricate prototype device
It was mainly consisting of:

Cylinder steel (12 cm outer diameter and 27.3 cm length) as shown in Figs (1 and 2). Two covers from sheet metal 1.0mm thickness. The bottom cover has a hole 2 cm diameter in the center and the upper cover has a hole in the side. Two tubes (2.8 cm diameter and 3.8 cm length) have been welded on the upper and bottom covers holes. A candle was fabricated from perforated mesh (0.5 mm) as a double-wall cylinder. The outer wall and inner wall diameters were 8 and 6 cm respectively as shown in Fig. (3). It was welded in the center of the bottom cover and four vertical bar (5 mm diameter and 24 cm length) were welded on the inside face of the bottom cover as support of candle.

b) Agriculture residues
- Ficus retusa (Moraceae): It is considered a plant belonging an evergreen trees with a thick shade that grows in various types of soils. It is distinguished as a huge water-loving tree. the grinded of fresh and dried ficus leaves were used in this research as shown in Fig. (4).
- Sawdust: It is relatively abundant and inexpensive. Sawdust or wood dust is an industrial waste obtained by-products from cutting, sawing or grinding of timber in the form of fine particles. Sawdust largely consists of cellulose, it also contains soluble sugar, acids, resins, oils and waxes, and other organic substances.

The theory of the prototype device’s operation is summed up in the passage of air which loaded with exhaust gases from the centrical hole of the lower cover of the device to the inner circumference of device candle. The exhaust gas passes from the center of the candle to the inner circumference of the device cylinder through the filter candle that filled with biomaterial that absorbs gases. The exhaust air exits from the side opening of the upper cover to the outside air without loaded by harmful gasses as CO₂ and Co.
Fig. 1: Schematic diagram of prototype device

1: Cylinder tube steel
2: Cover steel
3: Input
4: Output

Fig. 2: Prototype device

1: Cylinder tube steel
2: Cover steel
3: Input
4: Output
c) Experimental procedures: It was divided into four steps

First step; Preparing a combustion chamber for wood and wastes were resulting from its incineration: carbon dioxide and carbon monoxide. Second steps; includes preparing the residues, of; 1- Washing green ficus leaves and crinding it. 2- drying other green leaves at 70°C for 8 hours. After that grinded it to obtain the granular size less than 4.5 mm. 3- prepare sampl from the dry sawdust and other sample with high moisture by adding the suitable amount of water and determine its moisture contents.

Second step; the bio-filter was constructed to use with grinded green ficus (about 175 g) which put between the double wall of candle (Fig.5) fours step; evaluation of the prototype device under experimental variables by randomized design in three replicates.; moisture content of ficus leaves (green and dry) and sawdust (wet and dry) and air quality with quality of bio.filter materials.
d) Measurements

i. Moisture content (MC)

The moisture content was determined by drying different types of agricultural residues at 70°C until the weight became constant according to the method described by the AOAC, 2000.

\[
MC = \frac{\text{mass of wet sample} - \text{mass of dry sample}}{\text{mass of wet sample}} \times 100, \text{wb%}
\]

ii. Exhaust gases

The gas components measured using the device “Auto check” model 974/5 SPTC to measure CO\(_2\) and CO of air before and after tests.

iii. Chemical analysis of residues

The carbon content of ficus leaves and sawdust was determined before and after tests in the laboratory of Faculty Science, Cairo–University, Egypt.

iv. The exhaust that resulted from the combustion chamber was measured at five times, 2, 4, 6, 8, and 10 min. from the beginning of the combustion process

v. Mathematical analysis

The data were analyzed using excel program 2017 to obtain the best fit curve and coefficient of determination for the relationship between CO\(_2\) and Co as a measurements with the both of residues moisture contents and operating time.

III. Results and Discussions

a) Moisture content

The results of moisture content to different biomaterials before experiments were as shown in table (1) which used as filter media.

Table 1: The moisture contents of some bio-materials.

<table>
<thead>
<tr>
<th>Biological materials</th>
<th>Moisture content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Leaves officus</td>
<td>53</td>
</tr>
<tr>
<td>Dry Leaves officus</td>
<td>34</td>
</tr>
<tr>
<td>Dry sawdust</td>
<td>8</td>
</tr>
<tr>
<td>Wet sawdust</td>
<td>42</td>
</tr>
</tbody>
</table>

b) Chemical analysis of bio-filter media

The results of carbon components from chemical analysis for each ficus green leaves, dry ficus leaves, wet sawdust, and dry sawdust were 44.7%, 48.17%, 98.8%, and 98.87% respectively before the experiment. and there were 49.23%, 48.24%, 81.6% and 98.87% respectively after the experiment as shown in table (2). Noted that, the carbon component with dry sawdust was not changing and it was decreasing from 98.87% to 81.6% with wet sawdust because of increasing the moisture content in the carbon ratio dry mass is decreasing.

Table 2: The ratio of carbon contents in bio-filter medias before and after treatments

<table>
<thead>
<tr>
<th>Bio-materials</th>
<th>Before treatment</th>
<th>After Using bio-filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Leaves officus</td>
<td>44.70</td>
<td>49.23</td>
</tr>
<tr>
<td>Dry Leaves officus</td>
<td>48.17</td>
<td>48.24</td>
</tr>
<tr>
<td>Wet sawdust</td>
<td>98.87</td>
<td>81.6</td>
</tr>
<tr>
<td>Dry sawdust</td>
<td>98.87</td>
<td>98.87</td>
</tr>
</tbody>
</table>

c) Influence of using bio-filter on Exhaust gases (CO\(_2\) and Co)

i. Influence of using bio-filter on CO\(_2\)

First with the green leaves of ficus: The moisture content of ficus leaves after grinding it was 53% and 34% after drying it. the relationship between the CO\(_2\) ratio which output from the prototype of bio-filter and different absorption times at different moisture content was as shown in fig.(6). At moisture content 53%: CO\(_2\) ratio were 1.15, 1.09, 1.06, 1.015, and 0.97 at different absorption times 2, 4, 6, 8, and 10 min. respectively. At moisture content 34%: CO\(_2\) ratio were 1.19, 1.15, 1.12, 1.09 and 1.04 at different times 2, 4, 6, 8, and 10 min respectively. CO\(_2\) ratio was reduced from 1.19% to 1.04% when observation time was increased from 2 to 10 min respectively at moisture content 34%.also atmoisture content 53% the CO\(_2\) ratio were decreased from 1.15 to 0.97% by increase the operating time from 2 to 10 min respectively. The previous results were due to an increase in the absorption time, which leads to an increase in the biofilter's ability to absorb a greater amount of CO\(_2\) that present with the exhaust gas which passes through the prototype of the bio-filter.

The best fit curve is the polynomial to describe the effect of residues moisture content (MC) on the CO\(_2\) using ficus leaves bio-filter at different operating times "T". The equations were:

At 34% M.C.CO\(_2\) = -0.0004(T\(^2\)) + 0.0137T + 1.216 R\(^2\) = 0.9930
At 53%M.C.CO\(_2\) = -0.0003(T\(^2\)) + 0.0257T + 1.195 R\(^2\) = 0.9926

From the fitting Eq. It can see inversally relationship between the CO\(_2\) content in used ficus leaves and the operating time. Therefore, the high coefficient of determination was R\(^2\) = 0.9930 occurred at using the ficus leaves with 34% MC, while the other MC "53%" actualized about R\(^2\) = 0.9926.
The effect of using the bio-materials (Ficus leaves) on the absorption of carbon dioxide (CO_2)

Second with the sawdust: The moisture content of sawdust was 8% and 42%. The relationship between the CO_2 ratio which output from the prototype of bio-filter and different absorption times at different moisture content was as shown in Fig. (7). At moisture content 42%: CO_2 ratio were decreased from 1.28%, 1.27%, 1.27% and 1.27% at different absorption times 2, 4, 6, 8 and 10 min respectively. At moisture content 8%: CO_2 ratio was constant at 1.28% with each different absorption times 2, 4, 6, 8 and 10 min respectively. From previous results noted that the increase in the proportion of absorbing CO_2 was slightly with sawdust wet.

Fig. 6: The effect of using the bio-materials (Ficus leaves) on the absorption of carbon dioxide (CO_2)

Fig. 7: The effect of using the bio materials (sawdust) on the absorption of carbon-dioxide (CO_2)

ii. Influence of using bio-filter on CO_2

- **First with the green leaves of ficus:** The moisture content officus leaves after grinding was 53% and 34% after drying it. The relationship between the Co ratio which output from the prototype of bio-filter and different absorption times at different moisture content was shown.

- **At moisture content 53%:** Co ratio were decreased from 1.72%, 1.72%, 1.72%, 1.69% at different absorption times 2, 4, 6, 8 and 10 min respectively.

- **At moisture content 34%:** Co ratio was constant at 1.72% with different absorption times 2, 4, 6, 8, and 10 min respectively.

Second with the sawdust: The moisture content of sawdust was 8% and 42%. The relationship between the CO_2 ratio which output from the prototype of bio-filter...
and different absorption times at different moisture content.

- **At moisture content 42%**: Co ratio were limited for decreasing from 1.28% to 1.27% at different absorption times 2, 4, 6, 8 and 10 min. respectively.

- **At moisture content 8%**: Co ratio was constant at 1.28% with increasing the absorption times from 2, 4, 6, 8 and 10 min. respectively.

IV. Conclusions

The research concluded that the bio. filter were:
- with green leaves decreased Co2 ratio to 18% and Co to 2% and absorb the C ratio by leaves about 4.5%, while with dry green leaves Co2 decreased to 15% and didn’t affect on Co ratio. - with wet sawdust didn’t affect on Co2 and Co, the final conclusion was the ficus green leaves is the best bio. materials used with bio-filter.

Literature Cited

This page is intentionally left blank
The Need and Opportunity for Sustainability in a Digital World
Proposal for Modelling Sustainability

By Dr. Zoltán Verrasztó

Abstract- Our whole life is defined by the SPACE that provides its possibilities, framework and boundaries. For SUSTAINABILITY, it is in this space that we must ensure harmony between natural, social and economic influences and agents.

Today, there are environmental linkages in all of the natural sciences (and beyond!), but they are not built into a system of scientific requirements. The concept of the ENVIRONMENT is changing, legal disputes are based on the nature of environmental data, fact which consists an obstacle in the use of IT technology: exact data interpretation is the basis for the management and organisation of environmental data, for clustering, which is essential in network research - in our practical use,- environmental modelling.

Keywords: sustainability, environmental data, decision support in space, environmental modelling.

GJSFR-H Classification: DDC Code: 628.52 LCC Code: TD898.118

Strictly as per the compliance and regulations of:

© 2022. Dr. Zoltán Verrasztó. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
The Need and Opportunity for Sustainability in a Digital World Proposal for Modelling Sustainability

Dr. Zoltán Verrasztó

Abstract

Our whole life is defined by the **SPACE** that provides its possibilities, framework and boundaries. For **SUSTAINABILITY**, it is in this space that we must ensure harmony between natural, social and economic influences and agents.

Today, there are environmental linkages in all of the natural sciences (and beyond!), but they are not built into a system of scientific requirements. The concept of the **ENVIRONMENT** is changing, legal disputes are based on the nature of environmental data, fact which consists an obstacle in the use of IT technology: exact data interpretation is the basis for the management and organisation of environmental data, for clustering, which is essential in network research - in our practical use, environmental modelling.

Keywords: sustainability, environmental data, decision support in space, environmental modelling.

I. **Sustainable Development**

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." Its practice requires harmony between the living systems of nature and the needs of society. Development must reconcile the needs of society, population growth and the use of natural resources, minimising pollution of the environment.

The moral imperative of humanity and the harmony of the laws of nature should be realised by those who manage the economy. The consequences of technocratic rule are borne by the systems of the environment - society is 'merely' the ultimate agent of all this, significantly distant in space and time from the specific uses of the environment. It is in this 'magic' triangle that many of today’s environmental conflicts become unsolvable.

This can only be changed by conscious planning based on multi-perspective decision-making, starting from an accurate knowledge and systematisation of environmental data. The concept and expectations of a 'liveable environment' are already undefinable, as we know [16]:

- Different social groups have different expectations of the target state of the environment
- The concept of a 'liveable environment' is a non-negotiable global expectation, but it does not allow for the localisation of specific decisions on the definition of specific environmental target states for local land use.
- The formulation of specific local environmental targets and the planning of environmental uses to maintain or restore the 'functionality' of environmental systems cannot be linked to the satisfaction of human health needs.
- The need for a 'liveable environment' does not provide the basis for the exact expectations or the environmental data necessary for planning environmental use, which can consist the basis of environmental modelling.

There is no doubt that the **LANDSCAPE** is the space [15] in which all the activities of our lives take place. All the natural, social and economic processes that are both necessary and intrinsic to our biological and/or social and economic existence take place in the LANDSCAPE.

The essence of this was already formulated a hundred years ago by Pál Teleki[2] [14], and then the "geographical idea" was given an exact geological content by Elemér Szádeczky-Kardoss[3] [13], who, even before J. Lovelock’s Gaia theory[4], recognised that the entire material and spiritual culture of mankind forms an interconnected system, and called it **geonomy**.

"Geonomy is not only the investigative unit of the earth sciences, but also includes the fundamental biological subject of the origin of life, its inorganic determination. The real meaning of geonomy is not in the details, but in the study of the interrelationship of details. The new findings of geonomy show that the Earth is a single active system, with each area interconnected with the others...." [3, 5] He founded environmental science, it would be important to deepen this with the need for network research.

In the world we know in increasing detail, which functions as a unified system, our natural and social environment can only be understood in a unified system,

1 Brundtland Commission, 1987

2 https://hu.wikipedia.org › wiki › Teleki_Pál (politician)
3 https://hu.wikipedia.org › wiki › Szádeczky-Kardoss_El...
4 https://hu.wikipedia.org › wiki › Gaia-theory
as a unified system, and only in a unified system, as a unified system can the future state/[condition of existence] of Homo sapiens, the **SUSTAINABLE DEVELOPMENT**, capable of meeting the natural and social needs of the species, be ensured.

II. **ENVIRONMENTAL MODELLING**

Nowadays, IT technology makes it possible to study this in detail. The application of GIS in many areas expands the possibilities for identifying, interpreting and analysing transdisciplinary relationships in dynamic relationships, but current practice is limited to the visualisation of information [10]: The starting point for environmental modelling is that the processes under investigation take place in a common space - in the interpretive domain of earth sciences, this is the landscape. [Verrasztó, 1979]

Natural, social and economic processes are linked here, and their data components can be modelled by a suitably structured overlay map system that represents their real-world relationships. [6] The assessment of sustainability is a spatial, multidimensional decision task.

A distinction is generally made between the natural and the man-made environment, and the relevant scientific literature to date defines the role of human society and its mechanisms of action as landscape-forming factors in their own right. In contrast to this, we believe that human society can in no way be regarded as an independent landscape-forming factor, since its effects, which are beyond any arguable decisive, and their consequences are *embedded in the mechanisms of action of landscape-forming factors*, and exert their effects and bear the consequences [16] This statement of professional approach also provides the clarifying the concept of environmental data, their digitalisation and thereby the **possibility of their systematisation**.

Population preservation and production objectives must be reconciled with social, cultural, environmental stabilisation and nature conservation objectives. [19] The map-based decision support we propose will ensure that complex, spatially integrated, multi-perspective decisions can be made accurately. The key to solving this task is the clustering of the "Big Data" dataset, the structuring of the data sets and then the harmonization of the data layers.

The practical implementation of this should be based on: [8]

1. To break down the information we have about our environment into data components,
2. The placement of the individual data in the environmental system (according to the classification system of thematic maps, see annex),
3. The specification of the x, y, z coordinates of each data item,
4. Juxtaposition of the date of each data, 'sample',
5. Constructing thematic maps from the spatial, temporal and environmental data,
6. Designing a visualisation system for thematic maps, with particular attention to the need to examine the relationships between thematic overlays
7. However, as society develops, a multitude of interconnected and interacting systems must - or should! – be considered in order that the natural, social and economic factors can be studied and understood together, without which 'sustainable development' will remain an empty slogan.

III. **RESOURCE PROTECTION**

Many people see resource protection as the task of environmental protection, and in many ways we have to agree with this, but we must not forget that the concept of resources varies in space and time, from rock shale to rare earths. And human history is in fact a struggle for resources.

I consider striking the fact that only two of the 17 sustainability objectives adopted by the UN, the protection of oceans and seas (14) and the protection of terrestrial ecosystems (15), are focused on the natural foundations - however there is no doubt that the local specificities of natural resources provide the limits and opportunities for society and the economy.

It is remarkable that there is no attempt to utilise the global social and economic objectives of sustainability in local terms, even though it is the local conditions of the natural environment that provide the constraints and opportunities for society and the economy. It is difficult to reconcile the reduction of the rural way of life and the promotion of urbanisation with the vision of our civilisation! The unbridled energy demand of cities, the vulnerability of their entire supply and the concentrated production of waste, beyond the breakdown of family and social ties, render their future questionable.

Botanical research has shown that the diversity of flora in Central Europe reached its maximum during the industrial revolution. Around 4500 BC, the diversity was less than 50% of this. The massive urbanisation that followed – in fact originated from - the industrial revolution, the concentration of agricultural production, the land use for transportation, mining and industrial production, the overuse of the environment, the disproportionate overuse of energy and the discharge of waste, caused a drastic loss of diversity. What the progressive use of the environment in this respect has built up over 2500 years has been completely destroyed by overuse over the last 250 years. The consequences of continuing this trend are unforeseeable.
Ecological economics tries to draw attention to the indispensability of environmental goods, but in its experiments it mostly [17]:
- lacks an exact analysis in an exact environmental system,
- lacks an extended interpretation and analysis of spatial relationships,
- lacks an explicit assessment, interpretation and examination of the different interests in different environmental target states.

Nowadays, environmental economists prefer multi-perspective and participatory valuation, pointing out that it allows a much richer definition of value than monetary valuation. It cannot be disputed that their practice reflects the value dimensions, opinions and feelings of the social groups they consider to be ‘stakeholders’ in relation to ecosystem services, in contrast to the earlier practice of monetary valuation. They believe that these methods are characterised by a value judgement based on the role of the citizen rather than on individual consumer preferences, which can lead to more responsible action that takes into account long-term processes and the interests of future generations.

On the other hand, while not disputing its advantages over previous practices, we would like to point out that neither this method reflects the needs and opportunities for exploring and communicating the conflicts that arise from real knowledge of science.

We would like to stress that the real value cannot depend on the value judgement of a community, whatever it may be, and that the need for its preservation must not become a function of a social decision whose expertise is very limited and whose interests may be very different from the possible damage to the environmental system. The social interest groups making the decision may also be strongly divided. The spatial and temporal consequences, the advantages and disadvantages, the advantages and the detriments of the environmental use to be implemented are different, as are the advocacy capacities of the social groups concerned.

The practice followed to date has not been able to take into account all the problems arising from:
- The different needs of individuals and social groups in different situations with regard to the environmental target status,
- Different spatial and territorial consequences, benefits and harms of environmental use,
- There are differences in the benefits and harms of environmental use in the short, medium and long term,
- The groups involved in the decision-making process differ significantly not only in their needs, but also in their capacity to assert their interests,
- The groups involved in the decision-making process do not have sufficient knowledge or depth of information about the real consequences of their decisions.

On the other hand, we would like to point out that they do not even express the following as needs:
- The need to examine the complexity of natural systems,
- The need for a professional assessment of the consequences for those affected,
- The need to consider the consequences over time,
- The need to weigh potential consequences, which cannot be condensed into a single unit of measurement,
- The assessment of the unique and ungeneralisable characteristics of the subsystems of the environmental-social system functioning as a network.

IV. Map Decision Support

Our proposed method of map decision support [1, 8, 11]: includes the need and the possibility of multi-criteria decision support, but does not require the result to be compressed into a single "unit of measurement". The method is suitable for the precise analysis of spatial decisions - i.e. the consequences of a decision - that seek to explore, or attempt to explore, in their own context, the complex system - or network - of natural, social and economic relationships that take place in the landscape as a given space. The key word is 'their own context', since there is a sharp distinction between the effects of closed inanimate systems and those of open living systems within their own systems, and their interactions in their interrelationships, but the components of these also require different measurement methods and qualitative and quantitative qualification.

Obviously, the accuracy and technical depth of this depends on the data being uploaded at any given time. By applying our concept of ENVIRONMENT = LANDSCAPE [15, 7], we can lay the foundations for seeing/observing and analysing:
- The exact network of relationships,
- The main- and subsystems of networks,
- The interconnections between society and its environment,
- The components of a holistic system, thus enabling the realisation of an information system,
- Methodological development of the practice of risk analysis through the information system,
- The possibility of a multidisciplinary and multifunctional extension of the information system.

In order to structure the information available on our environment into data components according to the specific needs and possibilities of the real data relations [1, 2, 5] - in fact network subsystems - to be examined. An essential starting point for all this is...
The conceptual sketch of the environmental system (environment = landscape),
Interpretation of the concept of environmental data (characteristics of the landscape components)
landscape characterisation cumulated from exact data (thematic maps)
Structuring thematic map overlays in a goal-oriented way

Harmony in our time should be ensured by conscious planning, exact calculations and environmental modelling.

The following objectives are set for the implementation of the environmental modelling:

- To link or enable the connection of biologically, physically and/or chemically related processes, and to investigate their spatial relationships
- Enable the investigation, evaluation and comparison together of impact factors and the affected
- Enable the examination in coherent data systems the information and data sets arising from legal obligations (e.g. knowledge of environmental status)
- Possibility of examination of changes over space and time
- Causal relationships between the indications observed for each environmental characteristic can be investigated
- The spatial information system to be developed should be able to meet the decision support needs of public authorities requiring, using and generating spatial data
- The spatial information system to be developed should provide a coherent basis for meeting the requirements of EU regulations on sectoral details
- The spatial information system to be developed should be able to provide information to the widest possible areas of society on the state of the environment and its changes
- The spatial information system to be developed must be able to provide the basis for all social decisions that facilitate the adaptation of society to environmental conditions and their changes.

V. Harmony

Rural areas have been reduced to a mere agricultural production area, losing their biological and social functions. As a consequence, land use and other interventions have been guided only by the need to increase the efficiency of production, thereby - eventually visibly - endangering the functions of living space. Under such circumstances, environmental degradation and the destruction of nature not only lead to a decline in production, but also seriously endanger human livelihoods.

The productive, consumption, social, community and cultural functions of rural areas have thus become 'redundant'. To this day, they are still widely debated by economic decision-makers, their land requirements and aspects are seen as an economic burden. We now know that in the long term, only management based on these three aspects can be sustainable.

The production functions, which are essentially market-driven and which, in addition to the production of food, have become the exclusive preserve of non-food products (renewable raw materials, energy sources, etc.), and the natural, social and cultural functions associated with the environment, the landscape and the land have been essentially eroded as a result of these historical changes.

Local adaptation, reliance on local resources, was not only an ecological or socio-regional, but also an economically rational endeavour in the past.

VI. The Basis of Future Development is the Natural, Social and Economic Cohesion

It has already been pointed out that, since the natural environment determines social and economic possibilities, its spatial limits are an essential requirement for systems analysis. The watershed or the geological landscape is suitable for this purpose.

The LANDSCAPE → LANDSCAPE FORMING FACTORS are geological structure - geological topography - relief - climate - hydrology - biota - land cover, but linking social and economic aspects to this system can generate a number of debates. [16] Although the study of social and economic systems is one of the roots of network research, their value-driven nature and analytical practices make the grouping of them less exact and thus more controversial.

As the most important elements of SOCIAL COHESION, attention has been directed towards the study of cultural, religious, linguistic and historical aspects, embodied in traditions, folklore, legends, folk music and elements of folk art. In essence, the notion of COMMON SOCIAL SPACE fills the objective space of the LANDSCAPE, which can be studied by the natural sciences too, with the value-driven functioning of social systems, in which the past, evolution and present of a multitude of common actions, beliefs and constructs provide the points of connection and the possibilities of group formation.

Huntington⁶, with his astonishing foresight, predicted that after the 20th century, built on the struggle of Western ideologies and concepts of life (Nazism, Communism, liberal democracy), history would not end but, on the contrary, would begin anew, with

⁶ https://hu.wikipedia.org › wiki › The Clash of Civilizations
the clashes between religions, cultures and nations that were familiar from the old days. The 21st century will be about the clash of civilisations - *if there are still any left to clash*. There will still be more civilisations and societies, there will be more human beings, because today this is already questionable, at the rate at which we are consuming the Earth's resources and making our living conditions impossible. The examination and interpretation for the future of the relationship between society and its environment cannot be delayed any. We need to find back the harmony we have lost.

An inalienable part of this harmony is our identity, because human identity is made up of many things: gender roles, family patterns, religious beliefs and one of the most important components of human identity: national-cultural identity. Each of these is determined by the landscape that has guided the social development of our families and ethnic groups over the centuries - it is, in fact, the gene of society! *Man's consumerist approach, driven by the gears of today's globalised economy, often homogenises cultures and impoverishes the vast cultural diversity that is the treasure of humanity. Therefore, the tendency to solve all difficulties with uniform regulations or technical interventions leads to a disregard for the complexity of local problems that require the active participation of the population. The new processes that are started cannot always be fitted into an external framework, but must be based on local culture. Just as life and the world are dynamic, care for the world must be flexible and dynamic. Highly technical solutions risk taking into account symptoms that do not correspond to the deepest problems. The perspective of the rights of peoples and cultures must also be taken into account, and thus it must be understood that the development of a social group presupposes a historical process in its own cultural context, and requires that the actors of local society play a leading role on a permanent basis, based on their own culture. Even the notion of quality of life cannot be imposed on others, but must be understood within the context of each group of people's own world of symbols and customs.*

The grouping principles of ECONOMIC COHESION are closely intertwined with the traditional aspects of resources and division of labour, but also with historical relations, natural and social resources, political, institutional and logistical relations, and many elements of social and economic cohesion. Multi-generational family ties are a significant factor in sustainability, but their maintenance and ‘operation’ can only be based on a range of governmental concepts.

Adaptation must be the basis for planning society's use of the environment. The economic, environmental, social and regional functions of space should be taken into account, and specific trade-offs tailored to local specificities and particularities could at least reduce the gap between the exponentially increasing demands of society and the catastrophic rate of environmental degradation. We have also seen that it is not an easy task to enforce these demands against the day-to-day, short-term profit-maximising intentions of decision-makers.

VII. EPilogue

The particularities of environmental conflicts in society are in fact clashes of land use concepts. They are determined by the expectations of interest groups and the diversity of social demands, but also by the clash of past and future needs, opportunities and interests.

One reason for optimism is that, although in the recent past the social mechanisms were exclusively based on ‘one-option decisions’ to exploit our environment as a resource, many public and civil society organisations are now trying to impose environmental requirements on the economic players who determine the way the world works. Schumacher has already shown the way: (Small is Beatiful, 1980): *Each development district must have some kind of inner cohesion and identity! We need a cultural structure as well as an economic structure!* And, we must add, it is essential to know and take into account the links between the natural and landscape factors in the history and present of each element, since we know that the principles of social ordering above the individual are in fact group-forming elements, and the task of adaptation has guided their development over a long history.

This is how the practice of environmental protection brings us to the Europe of the Regions.

References Références Referencias

5. Dudich, E. (Ed.) (2003): Geonomy after the turn of the millennium (Hungarian Academy of Sciences Subcommittee on Geography, Budapest, pp. 1-199.)

Tidal Force Leap May Cause Malignant Impact on Zener Standard Measurement and Even Aircraft Instrumentation System

By Ling-Xiang Liu

Introduction- From 1996 to 1997, the National Metrology Centre of Singapore (NMC) coordinated the 3rd Asia Pacific Metrology Program (APMP) comparison of dc voltage using a Zener traveling standard. The comparison results at 1.018 V showed a zigzag curve among those laboratories that used their Josephson Array Voltage Standards (JAVSs) for this comparison. The amplitude of the zigzag was more than 1 part in 10^7, much larger than the typical uncertainty of such standards. These results motivated NMC to search for an explanation, which finally led to the development of an approximate mathematical model to describe this phenomenon [1]. During this developing period a surprising phenomenon was observed: Continuously measured dc voltage output with a periodic fluctuation pattern correlated with the times of tide high and tide low [2]. In addition to this, [2] also mentioned another observation that some of measurements carried out exhibit vast errors during spring tide. Through water molecules’ adsorption or desorption on the insulation of a wiring harness forming the voltage divider, which is situated in an air sealed thermostat of a measured Zener cell, the dc voltage output was very strongly disturbed by spring tides.

Strictly as per the compliance and regulations of:

© 2022. Ling-Xiang Liu. This research/review article is distributed under the terms of the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You must give appropriate credit to authors and reference this article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.
Tidal Force Leap May Cause Malignant Impact on Zener Standard Measurement and Even Aircraft Instrumentation System

Ling-Xiang Liu

1. Introduction

From 1996 to 1997, the National Metrology Centre of Singapore (NMC) coordinated the 3rd Asia Pacific Metrology Program (APMP) comparison of dc voltage using a Zener traveling standard. The comparison results at 1.018 V showed a zigzag curve among those laboratories that used their Josephson Array Voltage Standards (JAVSs) for this comparison. The amplitude of the zigzag was more than 1 part in 10^7, much larger than the typical uncertainty of such standards. These results motivated NMC to search for an explanation, which finally led to the development of an approximate mathematical model to describe this phenomenon [1]. During this developing period a surprising phenomenon was observed: Continuously measured dc voltage output with a periodic fluctuation pattern correlated with the times of tide high and tide low [2]. In addition to this, [2] also mentioned another observation that some of measurements carried out exhibit vast errors during spring tide. Through water molecules’ adsorption or desorption on the insulation of a wiring harness forming the voltage divider, which is situated in an air sealed thermostat of a measured Zener cell, the dc voltage output was very strongly disturbed by spring tides.

Also, in 2002, there were some reports of more amazing effects due to tidal changes: Hinderer et al. reported tides, earthquakes, and ground noise as seen by the absolute gravity measurements using different measurement methods: The results have very evidently shown the tidal gravity change in Strasbourg in June 1997 as an example [3]. Kasahara explains in his Perspective: Studies provide evidence that tidal forces influence earthquakes associated with volcanic activity, and new results from the Juan de Fuca Ridge in the Pacific show an obvious diurnal pattern attributed to ocean tides [4].

It is worth for a further consideration: there may be a terrible impact on some elements; especially they have a crucial function in a very powerful system; when, a spring tide, earthquake, or any other acute external condition change is just coming, it may cause a catastrophe! A sensitive example that should attract attention is the issue of safe flight of passenger airlines regarding aircraft instrumentation. The pilot’s dependence on flight instruments is relatively high, because they often wholly lose the external visual reference. Most, the aircraft instrumentation system becomes their only source of visual information to determine the aerodynamic state of the aircraft.

Measurements of an airplane’s speed, altitude, and angle of attack, for instance, are imperative. Usually, the airspeed indicator works by comparing dynamic pressure from the pitot tube and static pressure; measuring the air pressure is a simple and effective way of measuring altitude, and; the angle of attack can be measured using a mechanical wind vane. Tidal forcing of airplane’s instrumentation may not be more insensitive than of Zener measurement, and of zone earthquakes with volcanic activity. When a spring tide, earthquake or any other acute external condition change is just coming, especially on the Pacific “Ring of Fire,” where Earth plate collisions, volcanic eruptions, tsunamis, and earthquakes are frequent, what would happen: the cockpit controls would be overwhelmed and even totally at a loss. Maybe that is why Boesser has so suggested [5]: While detailed causes of the stalls often vary, it is assumed by the General Aviation Joint Steering Committee (GAJSC) in 2012 that a significant contributing factor to some stall accidents may be a deficit in the pilot’s aerodynamic state awareness caused by limitations or gaps in aircraft instrumentation.

To compensate for the deficit mentioned by GAJSC, it may be more helpful for the judgment of pilots when they encounter abnormal instrumentation indications: If an instrument based on entirely different physical working principle can be introduced into the instrumentation system or just as a reference, for example, a laser airspeed sensing instrument. A reliable instrumentation system with anti-interference ability is the most crucial fundamental trust to allow pilots to fly safely for either automatic or manual control even when they cannot see the ground or horizon. From the latest media reports, “The number of deaths from global plane crashes rose sharply in 2018”, a revelation would be: To make the aircraft instrumentation more reliable.

The largest annual tidal range can be expected around the time of the equinox if it coincides with a

Author: Retired from National Metrology Centre of Singapore since Nov. 2008; Corneliusstr. 12, 10787 Berlin, Germany.
e-mail: liulingxiang08@gmail.com
Tidal Force Leap May Cause Malignant Impact on Zener Standard Measurement and Even Aircraft Instrumentation System

According to the Chinese lunar calendar:
Spring equinox: March 20, 2022, at 23:29
Perigee spring tide: March 21, 2022, at 14:05
(based on the data of the world's largest astronomical tide spectacle — — Qiantang River tide in Zhejiang province of China [6]); Flight 5735 departed Kunming Changshui International Airport, at 13:15 for Guangzhou Baiyun International Airport scheduled to land at 15:05, and crashed in the mountainous regions of Teng County, Guangxi Zhuang Autonomous Region:
March 21, 2022, at 14:22.

Usually, high tides are called spring tides, but they have nothing to do with the season. Perhaps the name comes from the German word "Springen," meaning "to leap."

The most extensive annual tidal range, namely, the most giant tidal force leap, may cause the pilot’s aerodynamic state awareness to stuck in blind spot, even under an automatic control, it is not impossible, suddenly to enter an almost vertical dive, until the horizon being vaguely recognized, it seems too late to try a cockpit manual control — unable to return to the sky.

Maybe in this way, really a gravitational force jump may cause a malignant impact on an aircraft instrumentation system and, therefore, on flight safety, finally leading to a catastrophe.

REFERENCES

Survival of Plants Seeds and Bacteria in a Picosatellite Sent to the Stratosphere

By Juan Manuel Sánchez-Yañez & Christian Martinez-Cámara

Michoacan University of San Nicolas de Hidalgo

Summary- The theory that life on planet Earth is based on the fact that plant seeds and prokaryotes have shown the ability to survive extreme environmental conditions. The objective of this research was to analyze the survival of plant seeds and genera of probiotic bacteria released in a picosatellite to the atmosphere. In that sense seeds of Beta vulgaris (beet), Lactuca sativa (lettuce), Solaneum lycopersicum, as well as probiotics Lactobacillus plantarum, Leuconostoc lactis, Bifidiobacterium citreum, were prepared in petri dishes and placed in a container of a picosatellite sent from the city of Morelia, Michoacan, Mexico: the seeds were germinated and the probiotic bacteria were evaluated before and after of the trip by the picosatellite, the experimental data were analyzed by ANNOVA-Tukey. The results indicated that only survival the seeds of B. vulgaris as well as the genera of La. plantarum and Le. lactis. This shows that in seeds and bacteria there are mechanisms that prevent the death of both in extreme conditions of the stratosphere.

Keywords: extreme physical conditions, life. latency, prokaryote.

GJSFR-H Classification: DDC Code: 579.3012 LCC Code: QR72.5

Strictly as per the compliance and regulations of:
Survival of Plants Seeds and Bacteria in a Picosatellite Sent to the Stratosphere

Juan Manuel Sánchez-Yañez & Christian Martinez-Cámara

Summary: The theory that life on planet Earth is based on the fact that plant seeds and prokaryotes have shown the ability to survive extreme environmental conditions. The objective of this research was to analyze the survival of plant seeds and genera of probiotic bacteria released in a picosatellite to the atmosphere. In that sense seeds of Beta vulgaris (beet), Lactuca sativa (lettuce), Solanum lycopersicum, as well as probiotics Lactobacillus plantarum, Leuconostoc lactis, Bifidobacterium citreum, were prepared in petri dishes and placed in a container of a picosatellite sent from the city of Morelia, Michoacan, Mexico: the seeds were germinated and the probiotic bacteria were evaluated before and after of the trip by the picosatellite, the experimental data were analyzed by ANNOVA-Tukey. The results indicated that only survival the seeds of B. vulgaris as well as the genera of L. planatrum and Le. lactis. This shows that in seeds and bacteria there are mechanisms that prevent the death of both in extreme conditions of the stratosphere.

Keywords: extreme physical conditions, life, latency, prokaryote.

I. Introduction

There is a theory that the origin of life on planet Earth comes from outer space, at the same time it has been shown that genetically both plants and microorganisms on this planet have information that allows them to survive extreme conditions of temperature, pressure, UV radiation and other that they prevent it (Rothchild and Mancinelli, 2001; Beck-Winchatz and Bramble, 2014; Coleman and Mitchell, 2014; Caro et al., 2019; Antunes, 2020; DasSarma et al., 2020; Diez et al., 2020.). The foregoing is supported by the response of both life lines subjected to such conditions (Berry et al., 2010) in addition to the research known as exobiology that endorses it with tests of seeds and microorganisms launched into the stratosphere by means of spikes and nanosatiles (Murcray et al., 1969; Coleman and Mitchell, 2014; Caro et al., 2019). The objective of this research was to demonstrate the survival capacity of seeds of Beta vulgaris, Lactuca sativa, Solanum lycopersicum, Bifidibacterium citreum, Lactobacillus plantarum and Leuconostoc lactis in a Picosatellite trip to the stratosphere.

II. Material and Methods

a) CanSat-type picosatellite

The biological samples were sent to stratosphere in CanSat-type picosatellite was made by students of directed by Dr. Edgar Cárdenas-Escamilla from Engineering Electronic. National Technology of Morelia, Morelia, Michoacan, México. Have three prefabricate printed circuit board. The sensor board has two analogues sensors, one pressure sensor to calculate the altitude of the CanSat. Also, to program the processor board to handle data the transmission frequency is adjusted in the program and container with two Petri dishes containing plant seeds and bacterial samples that were exposed to direct stratospheric environmental conditions (Smith et al., 2014; Smith and Sowa, 2017).

The CanSat picosatellite was launched on February 20 of 2020 at 11 am from Morelia, capital of State of Michoacan, México (video playback https://youtu.be/ICQQFuayN2w). The balloon ascended for 2.5 h to a mean float altitude of 38.2 km where it remained for 4 h, followed by a 35 min parachute descent, at Ciudad Hidalgo, Michoacan, México landing at 97 km from Morelia at the northwest of the launch site 19-42 north latitude l00-33. The sample exposure began during the ascent to 21.4 km with the opening of the Trex-Box shutter at 1521 UTC and ended 6 h and 10 min later with the closing of the Trex-Box shutter during the descent to 22.0 km at 2040 UTC. To evaluate the effect of the environmental conditions: 20-25km high, -70°C, 10-12% relative humidity; 0.0042, including the UVB radiation estimated total of 1148kJ m⁻² of UVA. The CanSat was transferred from Ciudad Hidalgo to Morelia for 1.50 minutes, but the petri dishes with plant seeds and bacteria in a container with ice at 50°C to measure the viability of both, plant seed and bacteria at the stratosphere on the viability of seeds of B. vulgaris (beetroot), S. lycopersicum (tomato), and L. sativa (lettuce). A viability test was performed before and after (Saruyama and Tanida, 1995), being sent to the stratosphere on the CanSat 6 picosatellite (Beck-Winchatz and Bramble, 2014; Caro et al., 2019). As well as the genera and species of probiotic bacteria isolated from natural yogurt: B. citreum, L. plantarum, Le. lactis by viable plate count in nutrient agar (g/L): 10.0, glucose; 5.0, casein peptone; 1.0, yeast extract; 18.0, bacteriological agar, the concentration of each was...
reported as colony-forming units per ml (Smith et al., 2014).

Table 1: Percentage of germination of Lactuca sativa, Solanum lycopersicum and Beta vulgaris at solarium and sent to the stratosphere

<table>
<thead>
<tr>
<th>Seed+</th>
<th>Germination percentage (%)</th>
<th>In solarium</th>
<th>sent to the stratosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum lycopersicum</td>
<td>96.66**</td>
<td></td>
<td>0.0c*</td>
</tr>
<tr>
<td>Lactuca sativa</td>
<td>90.33b</td>
<td></td>
<td>0.0b</td>
</tr>
<tr>
<td>Beta vulgaris</td>
<td>96.66ª</td>
<td></td>
<td>46.6ª</td>
</tr>
</tbody>
</table>

+n=4 *values with different letters had a statistical difference (P<0.05) according to ANOVA-Tukey

III. RESULTS AND DISCUSSION

Table 1 shows the survival of 46.6% of the B. vulgaris seed in the picosatellite at the environmental conditions of the stratosphere 25 km high at a temperature of -60 C as well as UV radiation and cosmic rays for a interval between 2 hours before declining, it is possible that the type of crioprotector, combined with the relatively short time of exposure to these conditions, favored the survival of the B. vulgaris seed in contrast to the total loss of viability of the L. sativa seeds. and Solanum lycopersicum (Saruyama and Tanida, 1995; Wang et al., 2018) compared to the high viability of all seeds under controlled conditions of temperature 25 C in the absence of light and normal atmospheric pressure in a terrestrial environment.

Table 2 shows the survival of the genera and species of probiotic bacteria B. citreum that, launched in the satellite peak into the stratosphere, did not survive in that environment, in contrast, La. plantarum of the original total exposed survived 3%, while Le. lactis reach 6.9%. It is possible that the cryoprotectants that they possess as well as the DNA repair enzymes have prevented the death of these probiotics based on the relatively short time in which they were exposed (Berry et al., 2010; Smith and Sowa, 2017 DasSarma et al., 2020).

Table 2: Survival of Bifidobacterium citreum, Lactobacillus plantarum and Leuconostoc lactis sent to the stratosphere

<table>
<thead>
<tr>
<th>Probiotic strain tested</th>
<th>Probiotic strain (control)</th>
<th>Bacteria UFC X10^7</th>
<th>Bacteria UFC X10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute control (AC)</td>
<td>0c*</td>
<td></td>
<td>0b**</td>
</tr>
<tr>
<td>Lactobacillus plantarum</td>
<td>263a</td>
<td></td>
<td>102a</td>
</tr>
<tr>
<td>Bifidobacterium citreum</td>
<td>107b</td>
<td></td>
<td>0b</td>
</tr>
<tr>
<td>Leuconostoc lactis</td>
<td>133b</td>
<td></td>
<td>92a</td>
</tr>
</tbody>
</table>

+n=4, *values with different letters had statistically difference (P<0.05) according ANOVA-Tukey

III. CONCLUSION

Experimentation with picosatellites launched into the stratosphere containing plant seeds and probiotic genera and species that do not produce spores are a model for the survival of life on Earth despite adverse conditions. What can help the understanding of diseases in humans, plants and animals that are dispersed by the wind in the different environments of the planet. Ongoing research will help establish public policy in human and plant epidemiology.

ACKNOWLEDGMENTS

To project 2.7 of the CIC-UMSNH (2022) for the facilities for the publication. To Phytonutrimientos de México and BIONUTRA, S.A, de C V Maravatio, Mich; México to support this publication.

REFERENCES RÉFÉRENCES REFERENCIAS

MEMBERSHIPS
FELLOWS/ASSOCIATES OF SCIENCE FRONTIER RESEARCH COUNCIL
FSFRC/ASFRC MEMBERSHIPS

INTRODUCTION

FSFRC/ASFRC is the most prestigious membership of Global Journals accredited by Open Association of Research Society, U.S.A (OARS). The credentials of Fellow and Associate designations signify that the researcher has gained the knowledge of the fundamental and high-level concepts, and is a subject matter expert, proficient in an expertise course covering the professional code of conduct, and follows recognized standards of practice. The credentials are designated only to the researchers, scientists, and professionals that have been selected by a rigorous process by our Editorial Board and Management Board.

Associates of FSFRC/ASFRC are scientists and researchers from around the world are working on projects/researches that have huge potentials. Members support Global Journals’ mission to advance technology for humanity and the profession.

FSFRC

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL

FELLOW OF SCIENCE FRONTIER RESEARCH COUNCIL is the most prestigious membership of Global Journals. It is an award and membership granted to individuals that the Open Association of Research Society judges to have made a ‘substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Fellows are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Fellow Members.
Benefit

To the institution

Get letter of appreciation

Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive network

Get access to a closed network

A FSFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Fellows can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate

Receive a printed copy of a certificate

Fellows receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member’s university.

Designation

Get honored title of membership

Fellows can use the honored title of membership. The “FSFRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., FSFRC or William Walldroff, M.S., FSFRC.

Recognition on the platform

Better visibility and citation

All the Fellow members of FSFRC get a badge of “Leading Member of Global Journals” on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All fellows get a dedicated page on the website with their biography.

© Copyright by Global Journals | Guidelines Handbook
FUTURE WORK

GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Fellows receive discounts on future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ INTERNAL ACCOUNT

UNLIMITED FORWARD OF EMAILS
Fellows get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS

ACCESS TO ALL THE PREMIUM TOOLS
To take future researches to the zenith, fellows and associates receive access to all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS

ORGANIZE SEMINAR/CONFERENCE
Fellows are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS

EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES
All fellows receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.
PUBLISHING ARTICLES & BOOKS

EARN 60% OF SALES PROCEEDS
Fellows can publish articles (limited) without any fees. Also, they can earn up to 60% of sales proceeds from the sale of reference/review books/literature/publishing of research paper. The FSFRC member can decide its price and we can help in making the right decision.

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES
Fellow members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

ACCESS TO EDITORIAL BOARD

BECOME A MEMBER OF THE EDITORIAL BOARD
Fellows may join as a member of the Editorial Board of Global Journals Incorporation (USA) after successful completion of three years as Fellow and as Peer Reviewer. Additionally, Fellows get a chance to nominate other members for Editorial Board.

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE
All members get access to 5 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 10 GB free secure cloud access for storing research files.
ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL

ASSOCIATE OF SCIENCE FRONTIER RESEARCH COUNCIL is the membership of Global Journals awarded to individuals that the Open Association of Research Society judges to have made a substantial contribution to the improvement of computer science, technology, and electronics engineering.

The primary objective is to recognize the leaders in research and scientific fields of the current era with a global perspective and to create a channel between them and other researchers for better exposure and knowledge sharing. Members are most eminent scientists, engineers, and technologists from all across the world. Associate membership can later be promoted to Fellow Membership. Associates are elected for life through a peer review process on the basis of excellence in the respective domain. There is no limit on the number of new nominations made in any year. Each year, the Open Association of Research Society elect up to 12 new Associate Members.
Benefit

To the Institution

Get letter of appreciation
Global Journals sends a letter of appreciation of author to the Dean or CEO of the University or Company of which author is a part, signed by editor in chief or chief author.

Exclusive network

Get access to a closed network
A ASFRC member gets access to a closed network of Tier 1 researchers and scientists with direct communication channel through our website. Associates can reach out to other members or researchers directly. They should also be open to reaching out by other.

Certificate

Receive a printed copy of a certificate
Associates receive a printed copy of a certificate signed by our Chief Author that may be used for academic purposes and a personal recommendation letter to the dean of member's university.

Designation

Get honored title of membership
Associates can use the honored title of membership. The “ASFRC” is an honored title which is accorded to a person’s name viz. Dr. John E. Hall, Ph.D., ASFRC or William Walldroff, M.S., ASFRC.

Recognition on the platform

Better visibility and citation
All the Associate members of ASFRC get a badge of "Leading Member of Global Journals" on the Research Community that distinguishes them from others. Additionally, the profile is also partially maintained by our team for better visibility and citation. All associates get a dedicated page on the website with their biography.
FUTURE WORK
GET DISCOUNTS ON THE FUTURE PUBLICATIONS
Associates receive discounts on the future publications with Global Journals up to 60%. Through our recommendation programs, members also receive discounts on publications made with OARS affiliated organizations.

GJ INTERNAL ACCOUNT
UNLIMITED FORWARD OF EMAILS
Associates get secure and fast GJ work emails with unlimited forward of emails that they may use them as their primary email. For example, john [AT] globaljournals [DOT] org.

PREMIUM TOOLS
ACCESS TO ALL THE PREMIUM TOOLS
To take future researches to the zenith, fellows receive access to almost all the premium tools that Global Journals have to offer along with the partnership with some of the best marketing leading tools out there.

CONFERENCES & EVENTS
ORGANIZE SEMINAR/CONFERENCE
Associates are authorized to organize symposium/seminar/conference on behalf of Global Journal Incorporation (USA). They can also participate in the same organized by another institution as representative of Global Journal. In both the cases, it is mandatory for him to discuss with us and obtain our consent. Additionally, they get free research conferences (and others) alerts.

EARLY INVITATIONS
EARLY INVITATIONS TO ALL THE SYMPOSIUMS, SEMINARS, CONFERENCES
All associates receive the early invitations to all the symposiums, seminars, conferences and webinars hosted by Global Journals in their subject.

© Copyright by Global Journals | Guidelines Handbook
PUBLISHING ARTICLES & BOOKS

EARN 30-40% OF SALES PROCEEDS

Associates can publish articles (limited) without any fees. Also, they can earn up to 30-40% of sales proceeds from the sale of reference/review books/literature/publishing of research paper.

REVIEWERS

GET A REMUNERATION OF 15% OF AUTHOR FEES

Associate members are eligible to join as a paid peer reviewer at Global Journals Incorporation (USA) and can get a remuneration of 15% of author fees, taken from the author of a respective paper.

AND MUCH MORE

GET ACCESS TO SCIENTIFIC MUSEUMS AND OBSERVATORIES ACROSS THE GLOBE

All members get access to 2 selected scientific museums and observatories across the globe. All researches published with Global Journals will be kept under deep archival facilities across regions for future protections and disaster recovery. They get 5 GB free secure cloud access for storing research files.
<table>
<thead>
<tr>
<th>ASSOCIATE</th>
<th>FELLOW</th>
<th>RESEARCH GROUP</th>
<th>BASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4800</td>
<td>$6800</td>
<td>$12500.00</td>
<td>APC</td>
</tr>
<tr>
<td>lifetime designation</td>
<td>lifetime designation</td>
<td>organizational</td>
<td>per article</td>
</tr>
<tr>
<td>Certificate, LoR and Momento</td>
<td>Certificate, LoR and Momento</td>
<td>Certificate, LoRs and Momentos</td>
<td>GJ Community Access</td>
</tr>
<tr>
<td>2 discounted publishing/year</td>
<td>Unlimited discounted publishing/year</td>
<td>Unlimited free publishing/year</td>
<td></td>
</tr>
<tr>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td>Gradation of Research</td>
<td></td>
</tr>
<tr>
<td>10 research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td>Unlimited research contacts/day</td>
<td></td>
</tr>
<tr>
<td>1 GB Cloud Storage</td>
<td>5 GB Cloud Storage</td>
<td>Unlimited Cloud Storage</td>
<td></td>
</tr>
<tr>
<td>GJ Community Access</td>
<td>GJ Community Access</td>
<td>GJ Community Access</td>
<td></td>
</tr>
</tbody>
</table>

© Copyright by Global Journals | Guidelines Handbook
Preferred Author Guidelines

We accept the manuscript submissions in any standard (generic) format.

We typeset manuscripts using advanced typesetting tools like Adobe InDesign, CorelDraw, TeXnicCenter, and TeXStudio. We usually recommend authors submit their research using any standard format they are comfortable with, and let Global Journals do the rest.

Alternatively, you can download our basic template from https://globaljournals.org/Template.zip

Authors should submit their complete paper/article, including text illustrations, graphics, conclusions, artwork, and tables. Authors who are not able to submit manuscript using the form above can email the manuscript department at submit@globaljournals.org or get in touch with chiefeditor@globaljournals.org if they wish to send the abstract before submission.

Before and During Submission

Authors must ensure the information provided during the submission of a paper is authentic. Please go through the following checklist before submitting:

1. Authors must go through the complete author guideline and understand and agree to Global Journals’ ethics and code of conduct, along with author responsibilities.
2. Authors must accept the privacy policy, terms, and conditions of Global Journals.
3. Ensure corresponding author’s email address and postal address are accurate and reachable.
4. Manuscript to be submitted must include keywords, an abstract, a paper title, co-author(s’) names and details (email address, name, phone number, and institution), figures and illustrations in vector format including appropriate captions, tables, including titles and footnotes, a conclusion, results, acknowledgments and references.
5. Authors should submit paper in a ZIP archive if any supplementary files are required along with the paper.
6. Proper permissions must be acquired for the use of any copyrighted material.
7. Manuscript submitted must not have been submitted or published elsewhere and all authors must be aware of the submission.

Declaration of Conflicts of Interest

It is required for authors to declare all financial, institutional, and personal relationships with other individuals and organizations that could influence (bias) their research.

Policy on Plagiarism

Plagiarism is not acceptable in Global Journals submissions at all.

Plagiarized content will not be considered for publication. We reserve the right to inform authors’ institutions about plagiarism detected either before or after publication. If plagiarism is identified, we will follow COPE guidelines:

Authors are solely responsible for all the plagiarism that is found. The author must not fabricate, falsify or plagiarize existing research data. The following, if copied, will be considered plagiarism:

- Words (language)
- Ideas
- Findings
- Writings
- Diagrams
- Graphs
- Illustrations
- Lectures
Global Journals follows the definition of authorship set up by the Open Association of Research Society, USA. According to its guidelines, authorship criteria must be based on:

1. Substantial contributions to the conception and acquisition of data, analysis, and interpretation of findings.
2. Drafting the paper and revising it critically regarding important academic content.
3. Final approval of the version of the paper to be published.

Changes in Authorship

The corresponding author should mention the name and complete details of all co-authors during submission and in manuscript. We support addition, rearrangement, manipulation, and deletions in authors list till the early view publication of the journal. We expect that corresponding author will notify all co-authors of submission. We follow COPE guidelines for changes in authorship.

Copyright

During submission of the manuscript, the author is confirming an exclusive license agreement with Global Journals which gives Global Journals the authority to reproduce, reuse, and republish authors’ research. We also believe in flexible copyright terms where copyright may remain with authors/employers/institutions as well. Contact your editor after acceptance to choose your copyright policy. You may follow this form for copyright transfers.

Appealing Decisions

Unless specified in the notification, the Editorial Board’s decision on publication of the paper is final and cannot be appealed before making the major change in the manuscript.

Acknowledgments

Contributors to the research other than authors credited should be mentioned in Acknowledgments. The source of funding for the research can be included. Suppliers of resources may be mentioned along with their addresses.

Declaration of funding sources

Global Journals is in partnership with various universities, laboratories, and other institutions worldwide in the research domain. Authors are requested to disclose their source of funding during every stage of their research, such as making analysis, performing laboratory operations, computing data, and using institutional resources, from writing an article to its submission. This will also help authors to get reimbursements by requesting an open access publication letter from Global Journals and submitting to the respective funding source.

Preparing your Manuscript

Authors can submit papers and articles in an acceptable file format: MS Word (doc, docx), LaTeX (.tex, .zip or .rar including all of your files), Adobe PDF (.pdf), rich text format (.rtf), simple text document (.txt), Open Document Text (.odt), and Apple Pages (.pages). Our professional layout editors will format the entire paper according to our official guidelines. This is one of the highlights of publishing with Global Journals—authors should not be concerned about the formatting of their paper. Global Journals accepts articles and manuscripts in every major language, be it Spanish, Chinese, Japanese, Portuguese, Russian, French, German, Dutch, Italian, Greek, or any other national language, but the title, subtitle, and abstract should be in English. This will facilitate indexing and the pre-peer review process.

The following is the official style and template developed for publication of a research paper. Authors are not required to follow this style during the submission of the paper. It is just for reference purposes.
Manuscript Style Instruction (Optional)

- Microsoft Word Document Setting Instructions.
- Font type of all text should be Swis721 Lt BT.
- Page size: 8.27” x 11”*, left margin: 0.65, right margin: 0.65, bottom margin: 0.75.
- Paper title should be in one column of font size 24.
- Author name in font size of 11 in one column.
- Abstract: font size 9 with the word “Abstract” in bold italics.
- Main text: font size 10 with two justified columns.
- Two columns with equal column width of 3.38 and spacing of 0.2.
- First character must be three lines drop-capped.
- The paragraph before spacing of 1 pt and after of 0 pt.
- Line spacing of 1 pt.
- Large images must be in one column.
- The names of first main headings (Heading 1) must be in Roman font, capital letters, and font size of 10.
- The names of second main headings (Heading 2) must not include numbers and must be in italics with a font size of 10.

Structure and Format of Manuscript

The recommended size of an original research paper is under 15,000 words and review papers under 7,000 words. Research articles should be less than 10,000 words. Research papers are usually longer than review papers. Review papers are reports of significant research (typically less than 7,000 words, including tables, figures, and references)

A research paper must include:

a) A title which should be relevant to the theme of the paper.
b) A summary, known as an abstract (less than 150 words), containing the major results and conclusions.
c) Up to 10 keywords that precisely identify the paper’s subject, purpose, and focus.
d) An introduction, giving fundamental background objectives.
e) Resources and techniques with sufficient complete experimental details (wherever possible by reference) to permit repetition, sources of information must be given, and numerical methods must be specified by reference.
f) Results which should be presented concisely by well-designed tables and figures.
g) Suitable statistical data should also be given.
h) All data must have been gathered with attention to numerical detail in the planning stage.

Design has been recognized to be essential to experiments for a considerable time, and the editor has decided that any paper that appears not to have adequate numerical treatments of the data will be returned unrefereed.

i) Discussion should cover implications and consequences and not just recapitulate the results; conclusions should also be summarized.
j) There should be brief acknowledgments.
k) There ought to be references in the conventional format. Global Journals recommends APA format.

Authors should carefully consider the preparation of papers to ensure that they communicate effectively. Papers are much more likely to be accepted if they are carefully designed and laid out, contain few or no errors, are summarizing, and follow instructions. They will also be published with much fewer delays than those that require much technical and editorial correction.

The Editorial Board reserves the right to make literary corrections and suggestions to improve brevity.
Format Structure

It is necessary that authors take care in submitting a manuscript that is written in simple language and adheres to published guidelines.

All manuscripts submitted to Global Journals should include:

Title

The title page must carry an informative title that reflects the content, a running title (less than 45 characters together with spaces), names of the authors and co-authors, and the place(s) where the work was carried out.

Author details

The full postal address of any related author(s) must be specified.

Abstract

The abstract is the foundation of the research paper. It should be clear and concise and must contain the objective of the paper and inferences drawn. It is advised to not include big mathematical equations or complicated jargon.

Many researchers searching for information online will use search engines such as Google, Yahoo or others. By optimizing your paper for search engines, you will amplify the chance of someone finding it. In turn, this will make it more likely to be viewed and cited in further works. Global Journals has compiled these guidelines to facilitate you to maximize the web-friendliness of the most public part of your paper.

Keywords

A major lynchpin of research work for the writing of research papers is the keyword search, which one will employ to find both library and internet resources. Up to eleven keywords or very brief phrases have to be given to help data retrieval, mining, and indexing.

One must be persistent and creative in using keywords. An effective keyword search requires a strategy: planning of a list of possible keywords and phrases to try.

Choice of the main keywords is the first tool of writing a research paper. Research paper writing is an art. Keyword search should be as strategic as possible.

One should start brainstorming lists of potential keywords before even beginning searching. Think about the most important concepts related to research work. Ask, “What words would a source have to include to be truly valuable in a research paper?” Then consider synonyms for the important words.

It may take the discovery of only one important paper to steer in the right keyword direction because, in most databases, the keywords under which a research paper is abstracted are listed with the paper.

Numerical Methods

Numerical methods used should be transparent and, where appropriate, supported by references.

Abbreviations

Authors must list all the abbreviations used in the paper at the end of the paper or in a separate table before using them.

Formulas and equations

Authors are advised to submit any mathematical equation using either MathJax, KaTeX, or LaTeX, or in a very high-quality image.

Tables, Figures, and Figure Legends

Tables: Tables should be cautiously designed, uncrowned, and include only essential data. Each must have an Arabic number, e.g., Table 4, a self-explanatory caption, and be on a separate sheet. Authors must submit tables in an editable format and not as images. References to these tables (if any) must be mentioned accurately.
Figures

Figures are supposed to be submitted as separate files. Always include a citation in the text for each figure using Arabic numbers, e.g., Fig. 4. Artwork must be submitted online in vector electronic form or by emailing it.

Preparation of Electronic Figures for Publication

Although low-quality images are sufficient for review purposes, print publication requires high-quality images to prevent the final product being blurred or fuzzy. Submit (possibly by e-mail) EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Avoid using pixel-oriented software. Scans (TIFF only) should have a resolution of at least 350 dpi (halftone) or 700 to 1100 dpi (line drawings). Please give the data for figures in black and white or submit a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

For scanned images, the scanning resolution at final image size ought to be as follows to ensure good reproduction: line art: >650 dpi; halftones (including gel photographs): >350 dpi; figures containing both halftone and line images: >650 dpi.

Color charges: Authors are advised to pay the full cost for the reproduction of their color artwork. Hence, please note that if there is color artwork in your manuscript when it is accepted for publication, we would require you to complete and return a Color Work Agreement form. EPS files must be saved with fonts embedded (and with a TIFF preview, if possible).

Tips for Writing a Good Quality Science Frontier Research Paper

Techniques for writing a good quality Science Frontier Research paper:

1. Choosing the topic: In most cases, the topic is selected by the interests of the author, but it can also be suggested by the guides. You can have several topics, and then judge which you are most comfortable with. This may be done by asking several questions of yourself, like "Will I be able to carry out a search in this area? Will I find all necessary resources to accomplish the search? Will I be able to find all information in this field area?" If the answer to this type of question is "yes," then you ought to choose that topic. In most cases, you may have to conduct surveys and visit several places. Also, you might have to do a lot of work to find all the rises and falls of the various data on that subject. Sometimes, detailed information plays a vital role, instead of short information. Evaluators are human: The first thing to remember is that evaluators are also human beings. They are not only meant for rejecting a paper. They are here to evaluate your paper. So present your best aspect.

2. Think like evaluators: If you are in confusion or getting demotivated because your paper may not be accepted by the evaluators, then think, and try to evaluate your paper like an evaluator. Try to understand what an evaluator wants in your research paper, and you will automatically have your answer. Make blueprints of paper: The outline is the plan or framework that will help you to arrange your thoughts. It will make your paper logical. But remember that all points of your outline must be related to the topic you have chosen.

3. Ask your guides: If you are having any difficulty with your research, then do not hesitate to share your difficulty with your guide (if you have one). They will surely help you out and resolve your doubts. If you can’t clarify what exactly you require for your work, then ask your supervisor to help you with an alternative. He or she might also provide you with a list of essential readings.

4. Use of computer is recommended: As you are doing research in the field of science frontier then this point is quite obvious. Use right software: Always use good quality software packages. If you are not capable of judging good software, then you can lose the quality of your paper unknowingly. There are various programs available to help you which you can get through the internet.

5. Use the internet for help: An excellent start for your paper is using Google. It is a wondrous search engine, where you can have your doubts resolved. You may also read some answers for the frequent question of how to write your research paper or find a model research paper. You can download books from the internet. If you have all the required books, place importance on reading, selecting, and analyzing the specified information. Then sketch out your research paper. Use big pictures: You may use encyclopedias like Wikipedia to get pictures with the best resolution. At Global Journals, you should strictly follow here.
6. **Bookmarks are useful:** When you read any book or magazine, you generally use bookmarks, right? It is a good habit which helps to not lose your continuity. You should always use bookmarks while searching on the internet also, which will make your search easier.

7. **Revise what you wrote:** When you write anything, always read it, summarize it, and then finalize it.

8. **Make every effort:** Make every effort to mention what you are going to write in your paper. That means always have a good start. Try to mention everything in the introduction—what is the need for a particular research paper. Polish your work with good writing skills and always give an evaluator what he wants. Make backups: When you are going to do any important thing like making a research paper, you should always have backup copies of it either on your computer or on paper. This protects you from losing any portion of your important data.

9. **Produce good diagrams of your own:** Always try to include good charts or diagrams in your paper to improve quality. Using several unnecessary diagrams will degrade the quality of your paper by creating a hodgepodge. So always try to include diagrams which were made by you to improve the readability of your paper. Use of direct quotes: When you do research relevant to literature, history, or current affairs, then use of quotes becomes essential, but if the study is relevant to science, use of quotes is not preferable.

10. **Use proper verb tense:** Use proper verb tenses in your paper. Use past tense to present those events that have happened. Use present tense to indicate events that are going on. Use future tense to indicate events that will happen in the future. Use of wrong tenses will confuse the evaluator. Avoid sentences that are incomplete.

11. **Pick a good study spot:** Always try to pick a spot for your research which is quiet. Not every spot is good for studying.

12. **Know what you know:** Always try to know what you know by making objectives, otherwise you will be confused and unable to achieve your target.

13. **Use good grammar:** Always use good grammar and words that will have a positive impact on the evaluator; use of good vocabulary does not mean using tough words which the evaluator has to find in a dictionary. Do not fragment sentences. Eliminate one-word sentences. Do not ever use a big word when a smaller one would suffice. Verbs have to be in agreement with their subjects. In a research paper, do not start sentences with conjunctions or finish them with prepositions. When writing formally, it is advisable to never split an infinitive because someone will (wrongly) complain. Avoid clichés like a disease. Always shun irritating alliteration. Use language which is simple and straightforward. Put together a neat summary.

14. **Arrangement of information:** Each section of the main body should start with an opening sentence, and there should be a changeover at the end of the section. Give only valid and powerful arguments for your topic. You may also maintain your arguments with records.

15. **Never start at the last minute:** Always allow enough time for research work. Leaving everything to the last minute will degrade your paper and spoil your work.

16. **Multitasking in research is not good:** Doing several things at the same time is a bad habit in the case of research activity. Research is an area where everything has a particular time slot. Divide your research work into parts, and do a particular part in a particular time slot.

17. **Never copy others’ work:** Never copy others' work and give it your name because if the evaluator has seen it anywhere, you will be in trouble. Take proper rest and food: No matter how many hours you spend on your research activity, if you are not taking care of your health, then all your efforts will have been in vain. For quality research, take proper rest and food.

18. **Go to seminars:** Attend seminars if the topic is relevant to your research area. Utilize all your resources.

19. **Refresh your mind after intervals:** Try to give your mind a rest by listening to soft music or sleeping in intervals. This will also improve your memory. Acquire colleagues: Always try to acquire colleagues. No matter how sharp you are, if you acquire colleagues, they can give you ideas which will be helpful to your research.
20. **Think technically:** Always think technically. If anything happens, search for its reasons, benefits, and demerits. Think and then print: When you go to print your paper, check that tables are not split, headings are not detached from their descriptions, and page sequence is maintained.

21. **Adding unnecessary information:** Do not add unnecessary information like "I have used MS Excel to draw graphs." Irrelevant and inappropriate material is superfluous. Foreign terminology and phrases are not apropos. One should never take a broad view. Analogy is like feathers on a snake. Use words properly, regardless of how others use them. Remove quotations. Puns are for kids, not grunt readers. Never oversimplify: When adding material to your research paper, never go for oversimplification; this will definitely irritate the evaluator. Be specific. Never use rhythmic redundancies. Contractions shouldn't be used in a research paper. Comparisons are as terrible as clichés. Give up ampersands, abbreviations, and so on. Remove commas that are not necessary. Parenthetical words should be between brackets or commas. Understatement is always the best way to put forward earth-shaking thoughts. Give a detailed literary review.

22. **Report concluded results:** Use concluded results. From raw data, filter the results, and then conclude your studies based on measurements and observations taken. An appropriate number of decimal places should be used. Parenthetical remarks are prohibited here. Proofread carefully at the final stage. At the end, give an outline to your arguments. Spot perspectives of further study of the subject. Justify your conclusion at the bottom sufficiently, which will probably include examples.

23. **Upon conclusion:** Once you have concluded your research, the next most important step is to present your findings. Presentation is extremely important as it is the definite medium though which your research is going to be in print for the rest of the crowd. Care should be taken to categorize your thoughts well and present them in a logical and neat manner. A good quality research paper format is essential because it serves to highlight your research paper and bring to light all necessary aspects of your research.

Informal Guidelines of Research Paper Writing

Key points to remember:
- Submit all work in its final form.
- Write your paper in the form which is presented in the guidelines using the template.
- Please note the criteria peer reviewers will use for grading the final paper.

Final points:

One purpose of organizing a research paper is to let people interpret your efforts selectively. The journal requires the following sections, submitted in the order listed, with each section starting on a new page:

The introduction: This will be compiled from reference matter and reflect the design processes or outline of basis that directed you to make a study. As you carry out the process of study, the method and process section will be constructed like that. The results segment will show related statistics in nearly sequential order and direct reviewers to similar intellectual paths throughout the data that you gathered to carry out your study.

The discussion section:

This will provide understanding of the data and projections as to the implications of the results. The use of good quality references throughout the paper will give the effort trustworthiness by representing an alertness to prior workings.

Writing a research paper is not an easy job, no matter how trouble-free the actual research or concept. Practice, excellent preparation, and controlled record-keeping are the only means to make straightforward progression.

General style:

Specific editorial column necessities for compliance of a manuscript will always take over from directions in these general guidelines.

To make a paper clear: Adhere to recommended page limits.
Mistakes to avoid:

• Insertion of a title at the foot of a page with subsequent text on the next page.
• Separating a table, chart, or figure—confine each to a single page.
• Submitting a manuscript with pages out of sequence.
• In every section of your document, use standard writing style, including articles ("a" and "the").
• Keep paying attention to the topic of the paper.
• Use paragraphs to split each significant point (excluding the abstract).
• Align the primary line of each section.
• Present your points in sound order.
• Use present tense to report well-accepted matters.
• Use past tense to describe specific results.
• Do not use familiar wording; don’t address the reviewer directly. Don’t use slang or superlatives.
• Avoid use of extra pictures—include only those figures essential to presenting results.

Title page:
Choose a revealing title. It should be short and include the name(s) and address(es) of all authors. It should not have acronyms or abbreviations or exceed two printed lines.

Abstract: This summary should be two hundred words or less. It should clearly and briefly explain the key findings reported in the manuscript and must have precise statistics. It should not have acronyms or abbreviations. It should be logical in itself. Do not cite references at this point.

An abstract is a brief, distinct paragraph summary of finished work or work in development. In a minute or less, a reviewer can be taught the foundation behind the study, common approaches to the problem, relevant results, and significant conclusions or new questions.

Write your summary when your paper is completed because how can you write the summary of anything which is not yet written? Wealth of terminology is very essential in abstract. Use comprehensive sentences, and do not sacrifice readability for brevity; you can maintain it succinctly by phrasing sentences so that they provide more than a lone rationale. The author can at this moment go straight to shortening the outcome. Sum up the study with the subsequent elements in any summary. Try to limit the initial two items to no more than one line each.

Reason for writing the article—theory, overall issue, purpose.

• Fundamental goal.
• To-the-point depiction of the research.
• Consequences, including definite statistics—if the consequences are quantitative in nature, account for this; results of any numerical analysis should be reported. Significant conclusions or questions that emerge from the research.

Approach:

○ Single section and succinct.
○ An outline of the job done is always written in past tense.
○ Concentrate on shortening results—limit background information to a verdict or two.
○ Exact spelling, clarity of sentences and phrases, and appropriate reporting of quantities (proper units, important statistics) are just as significant in an abstract as they are anywhere else.

Introduction:
The introduction should "introduce" the manuscript. The reviewer should be presented with sufficient background information to be capable of comprehending and calculating the purpose of your study without having to refer to other works. The basis for the study should be offered. Give the most important references, but avoid making a comprehensive appraisal of the topic. Describe the problem visibly. If the problem is not acknowledged in a logical, reasonable way, the reviewer will give no attention to your results. Speak in common terms about techniques used to explain the problem, if needed, but do not present any particulars about the protocols here.
The following approach can create a valuable beginning:

- Explain the value (significance) of the study.
- Defend the model—why did you employ this particular system or method? What is its compensation? Remark upon its appropriateness from an abstract point of view as well as pointing out sensible reasons for using it.
- Present a justification. State your particular theory(-ies) or aim(s), and describe the logic that led you to choose them.
- Briefly explain the study's tentative purpose and how it meets the declared objectives.

Approach:

Use past tense except for when referring to recognized facts. After all, the manuscript will be submitted after the entire job is done. Sort out your thoughts; manufacture one key point for every section. If you make the four points listed above, you will need at least four paragraphs. Present surrounding information only when it is necessary to support a situation. The reviewer does not desire to read everything you know about a topic. Shape the theory specifically—do not take a broad view.

As always, give awareness to spelling, simplicity, and correctness of sentences and phrases.

Procedures (methods and materials):

This part is supposed to be the easiest to carve if you have good skills. A soundly written procedures segment allows a capable scientist to replicate your results. Present precise information about your supplies. The suppliers and clarity of reagents can be helpful bits of information. Present methods in sequential order, but linked methodologies can be grouped as a segment. Be concise when relating the protocols. Attempt to give the least amount of information that would permit another capable scientist to replicate your outcome, but be cautious that vital information is integrated. The use of subheadings is suggested and ought to be synchronized with the results section.

When a technique is used that has been well-described in another section, mention the specific item describing the way, but draw the basic principle while stating the situation. The purpose is to show all particular resources and broad procedures so that another person may use some or all of the methods in one more study or referee the scientific value of your work. It is not to be a step-by-step report of the whole thing you did, nor is a methods section a set of orders.

Materials:

Materials may be reported in part of a section or else they may be recognized along with your measures.

Methods:

- Report the method and not the particulars of each process that engaged the same methodology.
- Describe the method entirely.
- To be succinct, present methods under headings dedicated to specific dealings or groups of measures.
- Simplify—detail how procedures were completed, not how they were performed on a particular day.
- If well-known procedures were used, account for the procedure by name, possibly with a reference, and that's all.

Approach:

It is embarrassing to use vigorous voice when documenting methods without using first person, which would focus the reviewer's interest on the researcher rather than the job. As a result, when writing up the methods, most authors use third person passive voice.

Use standard style in this and every other part of the paper—avoid familiar lists, and use full sentences.

What to keep away from:

- Resources and methods are not a set of information.
- Skip all descriptive information and surroundings—save it for the argument.
- Leave out information that is immaterial to a third party.
Results:

The principle of a results segment is to present and demonstrate your conclusion. Create this part as entirely objective details of the outcome, and save all understanding for the discussion.

The page length of this segment is set by the sum and types of data to be reported. Use statistics and tables, if suitable, to present consequences most efficiently.

You must clearly differentiate material which would usually be incorporated in a study editorial from any unprocessed data or additional appendix matter that would not be available. In fact, such matters should not be submitted at all except if requested by the instructor.

Content:

- Sum up your conclusions in text and demonstrate them, if suitable, with figures and tables.
- In the manuscript, explain each of your consequences, and point the reader to remarks that are most appropriate.
- Present a background, such as by describing the question that was addressed by creation of an exacting study.
- Explain results of control experiments and give remarks that are not accessible in a prescribed figure or table, if appropriate.
- Examine your data, then prepare the analyzed (transformed) data in the form of a figure (graph), table, or manuscript.

What to stay away from:

- Do not discuss or infer your outcome, report surrounding information, or try to explain anything.
- Do not include raw data or intermediate calculations in a research manuscript.
- Do not present similar data more than once.
- A manuscript should complement any figures or tables, not duplicate information.
- Never confuse figures with tables—there is a difference.

Approach:

As always, use past tense when you submit your results, and put the whole thing in a reasonable order.

Put figures and tables, appropriately numbered, in order at the end of the report.

If you desire, you may place your figures and tables properly within the text of your results section.

Figures and tables:

If you put figures and tables at the end of some details, make certain that they are visibly distinguished from any attached appendix materials, such as raw facts. Whatever the position, each table must be titled, numbered one after the other, and include a heading. All figures and tables must be divided from the text.

Discussion:

The discussion is expected to be the trickiest segment to write. A lot of papers submitted to the journal are discarded based on problems with the discussion. There is no rule for how long an argument should be.

Position your understanding of the outcome visibly to lead the reviewer through your conclusions, and then finish the paper with a summing up of the implications of the study. The purpose here is to offer an understanding of your results and support all of your conclusions, using facts from your research and generally accepted information, if suitable. The implication of results should be fully described.

Infer your data in the conversation in suitable depth. This means that when you clarify an observable fact, you must explain mechanisms that may account for the observation. If your results vary from your prospect, make clear why that may have happened. If your results agree, then explain the theory that the proof supported. It is never suitable to just state that the data approved the prospect, and let it drop at that. Make a decision as to whether each premise is supported or discarded or if you cannot make a conclusion with assurance. Do not just dismiss a study or part of a study as "uncertain."
Research papers are not acknowledged if the work is imperfect. Draw what conclusions you can based upon the results that you have, and take care of the study as a finished work.

- You may propose future guidelines, such as how an experiment might be personalized to accomplish a new idea.
- Give details of all of your remarks as much as possible, focusing on mechanisms.
- Make a decision as to whether the tentative design sufficiently addressed the theory and whether or not it was correctly restricted. Try to present substitute explanations if they are sensible alternatives.
- One piece of research will not counter an overall question, so maintain the large picture in mind. Where do you go next? The best studies unlock new avenues of study. What questions remain?
- Recommendations for detailed papers will offer supplementary suggestions.

Approach:

When you refer to information, differentiate data generated by your own studies from other available information. Present work done by specific persons (including you) in past tense.

Describe generally acknowledged facts and main beliefs in present tense.

The Administration Rules

Administration Rules to Be Strictly Followed before Submitting Your Research Paper to Global Journals Inc.

Please read the following rules and regulations carefully before submitting your research paper to Global Journals Inc. to avoid rejection.

Segment draft and final research paper: You have to strictly follow the template of a research paper, failing which your paper may get rejected. You are expected to write each part of the paper wholly on your own. The peer reviewers need to identify your own perspective of the concepts in your own terms. Please do not extract straight from any other source, and do not rephrase someone else's analysis. Do not allow anyone else to proofread your manuscript.

Written material: You may discuss this with your guides and key sources. Do not copy anyone else's paper, even if this is only imitation, otherwise it will be rejected on the grounds of plagiarism, which is illegal. Various methods to avoid plagiarism are strictly applied by us to every paper, and, if found guilty, you may be blacklisted, which could affect your career adversely. To guard yourself and others from possible illegal use, please do not permit anyone to use or even read your paper and file.
<table>
<thead>
<tr>
<th>Topics</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-B</td>
</tr>
<tr>
<td>Abstract</td>
<td>Clear and concise with appropriate content, Correct format. 200 words or below</td>
</tr>
<tr>
<td></td>
<td>Containing all background details with clear goal and appropriate details, flow specification, no grammar and spelling mistake, well organized sentence and paragraph, reference cited</td>
</tr>
<tr>
<td>Introduction</td>
<td>Clear and to the point with well arranged paragraph, precision and accuracy of facts and figures, well organized subheads</td>
</tr>
<tr>
<td>Methods and Procedures</td>
<td>Well organized, Clear and specific, Correct units with precision, correct data, well structuring of paragraph, no grammar and spelling mistake</td>
</tr>
<tr>
<td>Result</td>
<td>Well organized, meaningful specification, sound conclusion, logical and concise explanation, highly structured paragraph reference cited</td>
</tr>
<tr>
<td>Discussion</td>
<td>Complete and correct format, well organized</td>
</tr>
<tr>
<td>References</td>
<td>Complete and correct format, well organized</td>
</tr>
</tbody>
</table>
INDEX

A
Anthropogenic · 1
Astonishing · 13

C
Catastrophe · 16, 17

E
Eruptions · 16
Eutrophication · 18, 26, 28

I
Impetus · 28
Incineration · 4

L
Leuconostoc · 37, 38

M
Malignant · 15

P
Perennial · 2

R
Replicates · 4

W
Worsening · 1