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Marine phytoplankton and zooplankton are essential components of marine ecosystems and support the
regular operation of the entire marine ecosystem. The research of marine phytoplankton and animal ecology is
conducive to our comprehensive understanding of the status of an aquatic ecosystem. Marine plankton refers
to the aquatic organisms suspended in the water and moving with water flow, mainly including phytoplankton
and zooplankton, as well as other organisms such as planktonic viruses, planktonic bacteria ,and archaea.
Phytoplankton is the primary producer in the sea; it converts solar energy into organic energy through
photosynthesis, initiates the material circulation and energy flow in the sea, and is the most basic link in the
marine food chain. Zooplankton is an essential consumer in the sea; this part of organic matter is utilized

through the food chain and further transferred to the upper trophic level through secondary production
processes. Therefore, phytoplankton and zooplankton provide food and energy sources for the upper trophic
level organisms through the above primary and secondary production processes, supporting the regular
operation of the entire marine ecosystem.

Phytoplankton is not only the bottom but also the most crucial component of the marine ecosystem. It
is divided into toxic and non-toxic phytoplankton. At the same time, zooplankton can distinguish different
types of phytoplankton. To avoid feeding on toxic phytoplankton, which has a similar synergistic behavior
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Abstract- In recent years, the impact of toxic phytoplankton on ecological balance has attracted more and more 
ecologists to study. In this paper, we develop and analyze a model with three interacting species, poisonous and 
nontoxic phytoplankton, and zooplankton, including zooplankton avoiding toxic phytoplankton in the presence of non-
toxic phytoplankton, and the impact of human harvest on the coexistence of these three species. We first introduce the 
poisonous avoidance coefficient 𝜷𝜷 and the human harvest of nontoxic phytoplankton and zooplankton to investigate its 
impact on species coexistence. We not only find that 𝜷𝜷 has a particular effect on the coexistence of these three species. 
But also that human harvest is an essential factor determining the coexistence of these three species. Secondly, 
pregnancy delay ( ) and toxin onset delay ( ) are introduced to explore the influence of time delay on the behavior of 
dynamic systems. When the delay value exceeds its critical value, the system will lose stability and go through Hopf 
bifurcation. After that, we use the principle of Pontryagin's maximum to study the optimal tax policy without delay. We 
obtained the optimal path of the optimal tax policy. Finally, we carry out numerical simulations to verify the theoretical 
results.

with selective grazing in the predator-prey system [1-5]. In marine plankton ecosystems, the hypothetical
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mechanisms of selective grazing include prey morphology (size, color, shape, and colony formation), intestinal
genetic strains, and poisonous chemicals released by prey [6-12]. Thus, the avoidance effect of zooplankton
on toxins from toxic phytoplankton and the harmful effects of toxic compounds released by toxic species on
their competitors have been studied [13-20].

In this paper, we consider not only the effect of toxin avoidance on species existence, but also the impact
of human beings on the harvest of non-toxic phytoplankton and zooplankton is considered, whereas non-toxic
phytoplankton on species existence and the human harvest has been applied in many models [21-27]. Since
time delay is widely studied in the phytoplankton-zooplankton model [28-31], another essential purpose of our
research is to explore the effect of pregnancy delay and toxin onset delay on the dynamic system. Finally, we
find that optimal strategies are applied in many models to constrain overfishing [32-33]. Through the research
we know that in fisheries, there is a fishing strategy called specific fishing, that is, fishermen catch almost only
one particular type of fish or several species associated with it, such as these three species in our article, so we
need a feedback mechanism to control this particular capture. Based on the dual phytoplankton-zooplankton
system, we consider the optimal tax policy to constrain this particular fishing.

The organizational structure of this paper is as follows. In Section 2, we establish a mathematical model
with double time delays for avoiding toxic species by zooplankton in the presence of non-toxic species. And
give a parameter explanation in Table 2. In Section 3, we analyze the boundedness and stability of the
boundary equilibrium point and the internal equilibrium point in the delay-free model. And obtain the
bistability between the equilibrium points. The results are summarized in Table 1 and Fig 1. In Section 4,
by analyzing different situations of this double delay model, we obtain the critical value of time delay when
the system undergoes Hopf bifurcation. In Section 5, we study the optimal tax policy without time delay
using the principle of Pontryagin’s maximum. In addition, we use the parameters and initial values given in
Table 2 and (6.1) to simulate several cases of double-delay systems in Matlab to verify all theoretical results
in Section 6. Lastly, we end this paper with some conclusions and significance in Section 7.

Considering the toxin refuge of zooplankton, a nontoxic phytoplankton-toxic zooplankton model was
proposed in [14]. They showed that avoidance effects can promote the coexistence of non-toxic phytoplankton,
toxic phytoplankton and zooplankton. Which can be shown as(with symbols slightly varied):



dN

dt
= r1N(1− N + α1T

k1
)− w1NZ

p1 +N
,

dT

dt
= r2T (1− T + α2N

k2
)− w2TZ

p2 + T + βN
,

dZ

dt
=

w1NZ

p1 +N
− w2TZ

p2 + T + βN
− dZ,

N(0) ≥ 0, T (0) ≥ 0, Z(0) ≥ 0,

(2.1)

where N , T ,and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton ,and zooplankton,
respectively. k1 and k2 are the environmental carrying capacities of nontoxic phytoplankton (NTP) and toxin-
producing phytoplankton (TPP) species, respectively. r1 and r2 represent the constant intrinsic growth rates
of N and T , respectively. α1 and α2 measure the competitive effect of T on N , and N on T , respectively. w1

and w2 represent the rates at which N and T are consumed by Z, respectively. p1 and p2 are half- saturation
constants for NTP and TPP, respectively. β represents the intensity of avoidance of T by Z in the presence
of N , and d is the natural mortality of zooplankton. As the research merely focuses on a single time model,
moreover overfishing has an important impact on the stability of marine ecosystems, human harvest and time
delays should be taken into account. The increment in zooplankton population due to predation does not
appear immediately after consuming phytoplankton; it takes some time(say τ1), which can be regarded as
the gestation period in zooplankton. The decrease of zooplankton population caused by ingestion of toxic
phytoplankton does not occur immediately. Still, it requires a certain time(say τ2), which can be regarded as
the reaction time after zooplankton poisoning. Accordingly the bio-economic model with time delays on the
interactions of nontoxic phytoplankton, toxic plankton and zooplankton with toxin avoidance effects, which
can be shown as follows:
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II. Model Formulation
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dN

dt
= r1N(1− N + α1T

k1
)− w1NZ

p1 +N
− q1EN,

dT

dt
= r2T (1− T + α2N

k2
)− w2TZ

p2 + T + βN
,

dZ

dt
=
c1w1N(t− τ1)Z(t− τ1)

p1 +N(t− τ1)
− c2w2T (t− τ2)Z(t− τ2)

p2 + T (t− τ2) + βN(t− τ2)
− dZ − q2EZ,

N(0) ≥ 0, T (0) ≥ 0, Z(0) ≥ 0,

(2.2)

where N , T , and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton and zooplankton,
respectively. τ1(τ1 > 0) and τ2(τ2 > 0) represent the maturation gestation delay and the toxin onset delay,
respectively. c1 and c2 represent the conversion rate of N to Z and T to Z, respectively. Due to the
experience of human capture, we assume that humans can distinguish between toxic phytoplankton and
non-toxic phytoplankton when capturing zooplankton and phytoplankton. So, we put q1 and q2 to represent
the fishing coefficients of nontoxic phytoplankton and zooplankton, respectively. And E is the effort used to
harvest the population. To investigate the effect of time delay on the dynamic behavior of the model, we will

first study the stability of the equilibrium point of the following model without time delay.



dN

dt
= r1N(1− N + α1T

k1
)− w1NZ

p1 +N
− q1EN,

dT

dt
= r2T (1− T + α2N

k2
)− w2TZ

p2 + T + βN
,

dZ

dt
=
c1w1NZ

p1 +N
− c2w2TZ

p2 + T + βN
− dZ − q2EZ,

N(0) ≥ 0, T (0) ≥ 0, Z(0) ≥ 0.

(2.3)

In this subsection, firstly, we shall show the positivity and boundedness of solutions of the system (2.3),
which is vital for the biological understanding of the system and the subsequent analysis.

All the solutions with initial values of system (2.3), which start in R3
+, are always positive and

bounded.

Proof. Firstly, we rewrite the model (2.3) and take the linear as the following form:

dX

dt
= F (X), (3.1)

where X(t) = (N,T, Z)T ∈ R3
+ and F (X) is simplified as the following

F (X) =

F1(X)
F2(X)
F3(X)

 =


r1N(1− N+α1T

k1
)− w1NZ

p1+N − q1EN

r2T (1− T+α2N
k2

)− w2TZ
p2+T+βN

c1w1NZ
p1+N − c2w2TZ

p2+T+βN − dZ − q2EZ

 .
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III. Dynamical Behavior of Non-Delayed Model

a) Positivity and boundedness of the solution

Lemma 3.1. 

Notes



 
 

 
 

 
 

 
  

 
 

 
 

We want to prove that (N (t), T (t), Z(t)) ∈ R3
+ for all t ∈ [0, +∞). For system (2.3) with initial value

N(0) > 0, T (0) > 0 and Z(0) > 0, we have

N(t) = N(0) exp{
∫ t

0
[r1(1− N(s)+α1T (s)

k1
)− w1Z(s)

p1+N(s) − q1E]ds},

T (t) = T (0) exp{
∫ t

0
[r2(1− T (s)+α1N(s)

k2
)− w2Z(s)

p2+T (s)+βN(s) ]ds},

Z(t) = Z(0) exp{
∫ t

0
[ c1w1N(s)
p1+N(s) −

c2w2T (s)
p2+T (s)+βN(s) − d− q2E]ds},

which shows that all the solutions of system (2.3) are always positive for all t > 0.

Secondly, we prove the boundedness of the solution. Let (N (t), T (t), Z(t)) be the solutions of system

(2.3), we define a function

W (t) = c1N(t) + c2T (t) + Z(t). (3.2)

Then, by differentiating (3.2) concerning t, we obtain

dW

dt
+ ηW = c1r1N(1− N + α1T

k1
) + c2r2T (1− T + α1N

k2
)− 2c2w2TZ

p2 + T + βN
− dZ − q2EZ − c1q1EN

+ c1ηN + c2ηT + ηZ,

≤ c1r1N(1− N

k1
) + c2r2T (1− T

k2
)− dZ + c1ηN + c2ηT + ηZ,

= −c1r1N
2

k1
+ (r1 + η)c1N −

c2r2T
2

k2
+ (r2 + η)c2T + (η − d)Z,

≤ c1k1(r1 + η)
2

4r1
+
c2k2(r2 + η)

2

4r2
+ (η − d)Z,

≤ c1r2k1(r1 + η)
2

+ c2r1k2(r2 + η)
2

4r1r2
+ (η − d)Z,

when η − d < 0, we can obtain

dW
dt + ηW ≤ c1r2k1(r1+η)2+c2r1k2(r2+η)2

4r1r2
,

noting κ = c1r2k1(r1+η)2+c2r1k2(r2+η)2

4r1r2
, therefore, applying a theorem on differential inequalities [34], we obtain

0 ≤ W ≤ κ
η + W (N(0),T (0),Z(0))

eηt , let t → +∞, W (N,T, Z) ≤ κ
η . So, all solutions of system (2.3) enter the

region

D = {(N,T, Z) ∈ R3
+ : 0 ≤W (N,T, Z) ≤ κ

η
}. (3.3)

This shows that every solution of the system is bounded.
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System (2.3) possesses six different equilibrium points:

(i) the plankton-free equilibrium, E0 = (0, 0, 0), which always exists;

(ii) TPP and zooplankton-free equilibrium, E1 = (k1, 0, 0), which is always feasible;

(iii) NTP and zooplankton-free equilibrium, E2 = (0, k2, 0), which is always feasible;

(iv) zooplankton-free equilibrium, E3 = (N̂ , T̂ , 0), where

N̂ =
α1k2 − k1

α1α2 − 1
− q1k1E

r1
, T̂ =

α2k1 − k2

α1α2 − 1
;

(v)TPP-free equilibrium E4 = (N̄ , 0, Z̄), where

N̄ =
(q2E + d)p1

c1w1 − d− q2E
, Z̄ =

r1(k1 − N̄)− q1k1E(p1 + E)

k1w1
;

(vi)the interior equilibrium, E∗ = (N∗, T ∗, Z∗), where

T ∗ =
c1w1N

∗ − (d+ q2E)(p1 +N∗)(p2 + βN∗)

(c2w2 + d+ q2E)(p1 +N∗)− c1w1N∗
, Z∗ =

(p1 +N∗)r1(k1 −N∗ − α1T
∗)− q1k1E

k1w1
;

and N∗ can be obtained from

r2(p2 + T ∗ + βN∗)(k2 − T ∗ − α2N
∗)− w2k2Z

∗ = 0. (3.4)

Next, we illustrate the existence and stability of six equilibria when human harvest and avoidance factor
exist simultaneously by solving Jacobi determinant of different equilibria, and summarize them in Table 1.

Equilibria analysis: Obviously, the equilibria E0, E1 and E2 always exist. The zooplankton-free equilib-

rium E3 exists, let N̂ and T̂ both be positive, that is α2 >
k2
k1

and α1 >
(α1α2−1)q1k1E

r1k1
+ k1

k2
. The TPP-free

equilibrium E4 exists, let N̄ and Z̄ both be positive, that is w1 > d+q2E
c1

and k1 > r1N
r1−q1E(p1+E) . The

interior equilibrium point E∗ exists; let N∗, T ∗ and Z∗ all be positive, that is k1 >
q1k1E
r1

+ N∗ + α1T
∗,

c2w2(p1 +N∗) > c1w1N
∗ − (d+ q2E)(p1 +N∗) > 0 and Eq.(3.4) has at least one positive root.

In the following, we summarize the eigenvalues and local stability conditions around the feasible equilib-
rium point of each organism of system (2.3).

(i) The eigenvalues of the plankton-free equilibrium E0 = (0, 0, 0) are r1, r2 and −d− q2E. Therefore, it is a
saddle point and hence always unstable.

(ii) The eigenvalues of the TPP and zooplankton-free equilibrium E1 = (k1, 0, 0) are −r1− q1E, r2(1− k1α2

k2
)

and c1w1k1
p1+k1

−d− q2E. When c1ω1−d− q2E ≤ 0, and α2 >
k2
k1

hold, E1 is LAS(locally asymptotically stable).

On the contrary, if c1ω1 − d− q2E > 0, α2 >
k2
k1

and k1 <
p1(d+q2E)
c1w1−d−q2E hold, we can also obtain E1 is LAS.

(iii) The eigenvalues of the NTP and zooplankton-free equilibrium E2 = (0, k2, 0) are r2(1− k2α1

k1
)−q1E, −r2

and − c2w2k2
p2+k2

− d− q2E, Therefore, E2 is LAS if k1 <
r2α1k2
r2−q1E .

(iv) The eigenvalues of the zooplankton-free equilibrium E3 = (N̂ , T̂ , 0) are c1w1

ˆ
N

p1+N̂
− c2w2

ˆ
T

p2+T̂+βN̂
− d− q2E, λ1

and λ2, where λ1 and λ2 are the roots of the equation

λ2 + b̄1λ+ c̄1 = 0, (1)
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b) Equilibrium points and their stability

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where

b̄1 = −[r2 − r1 +
r1k2(2N̂ + α1T̂ )− r2k1(2T̂ + α2N̂)

k1k2
],

c̄1 = r1r2[1− (2T̂ + α2N̂)(2N̂ + α1T̂ )][
1

(2N̂ + α1T̂ )k2

+
1

(2T̂ + α2N̂)k1

− 1

k1k2
]

+ q1r2E(
k1(2T̂ + α2N̂)− r1α1

2N̂ T̂

k1k2
− 1).

Therefore, let c1w1N̂

p1+N̂
− c2w2T̂

p2+T̂+βN̂
−d− q2E < 0, λ1 and λ2 with negative real parts, that is c1w1N̂

p1+N̂
−d− q2E <

c2w2T̂

p2+T̂+βN̂
, b̄1 > 0 and c̄1 > 0. If the above conditions are satisfied, E3 is LAS.

(v) The eigenvalues of the TPP-free equilibrium E4 = (N̄ , 0, Z̄) are r2(1− α2N̄
k2

)− w2Z̄
p2+βN̄

, λ̄1 and λ̄2, where

λ̄1 and λ̄2 are the roots of the equation

λ2 − (ã2 + b̃2)λ+ ã2b̃2 + c̃2 = 0, (2)

where

ã2 = (r1(1− 2N̄
k1

)− w1p1Z̄

(p1+N̄)2
− q1E),

b̃2 = ( c1w1N̄
p1+N̄

− d− q2E), c̃2 = c1w1
2p1N̄Z̄

(p1+N̄)3
.

Therefore, let r2(1 − α2N̄
k2

) − w2Z̄
p2+βN̄

< 0, λ̄1 and λ̄2 with negative real parts, that is (ã2 + b̃2) < 0 and

ã2b̃2 + c̃2 > 0. If the above conditions are satisfied, E4 is LAS.

(vi)By solving the Jacobi determinant of E∗, we can get its characteristic equation as follows

λ3 +D1λ
2 +D2λ+D3 = 0. (3)

The interior equilibrium E∗ = (N∗, T ∗, Z∗) is LAS if

(a) D1 > 0,

(b) D3 > 0,

(c) D1D2 −D3 > 0,

where

D1 = −{r2[1− (2T ∗ + α2N
∗)

k1
]− w2Z

∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 + r1[1− (2N∗ + α1T

∗)

k1
]− w2p1Z

∗

(p1 +N∗)
2 − q1E}

− (
c1w1N

∗

p1 +N∗
− c2w2T

∗

p2 + T ∗ + βN∗
− d− q2E),

D2 = {c1w1
2p1N

∗Z∗

(p1 +N∗)
3 +

c2w1w2βN
∗T ∗Z∗

(p2 + T ∗ + βN∗)
2
(p1 +N∗)

− c2w2
2T ∗Z∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
3 }
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

+
r1α1N

∗

k1
(
r1α1T

∗

k2
+

w2βT
∗Z∗)

(p2 + T ∗ + βN∗)
2 ) + {r2[1− (2T ∗ + α2N

∗)

k1
]− w2Z

∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2

+ r1[1− (2N∗ + α1T
∗)

k1
]− w2p1Z

∗

(p1 +N∗)
2 − q1E} × {

c1w1N
∗

p1 +N∗
− c2w2T

∗

p2 + T ∗ + βN∗
− d− q2E},

D3 =−{ c1w1p1Z
∗

(p1 +N∗)
2 −

c2w2βT
∗Z∗

(p2 + T ∗ + βN∗)
2 } × {−

r1α1w2T
∗

k1(p2 + T ∗ + βN∗)
+

w1N
∗

p1 +N∗
× (r2(1− (2T ∗ + α2N

∗)

k2
)

− w2Z
∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 )−(

c2w2Z
∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 )×(

w2T
∗

p2 + T ∗ + βN∗
)×[−r1(1− (2N∗ + α1T

∗)

k1
)+

w1p1Z
∗

(p1 +N∗)
2 +q1E]}

+
w1N

∗

p1 +N∗
×(
r1α1T

∗

k2
+

w2βT
∗Z∗

(p2 + T ∗ + βN∗)
2)−(

c2w2Z
∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 )× {− r1w2T

∗

p2 + T ∗ + βN∗
+
r1w2(2N∗ + α1T

∗)T ∗

k1(p2 + T ∗ + βN∗)

+
w1w2p1T

∗Z∗

(p2 + T ∗ + βN∗)(p1 +N∗)
2 +

w2q1ET
∗

p2 + T ∗ + βN∗
+
r1α1w1N

∗T ∗

k2(p1 +N∗)
+

w1w2βN
∗T ∗Z∗

(p2 + T ∗ + βN∗)
2
(p1 +N∗)

}

+ {r1(1− (2N∗ + α1T
∗)

k1
)− w2p1Z

∗

(p1 +N∗)
2 − q1E} × {r2(1− (2T ∗ + α2N

∗)

k1
)− w2Z

∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 }

+
r1α1N

∗

k1
× (

r1α1T
∗

k2
+

w2βT
∗Z∗

(p2 + T ∗ + βN∗)
2 ).

From the calculation of the eigenvalues, obviously, β does not affect the stability of E1 and E2. Still, it
has a significant impact on the stability of E3 and E4 (because the eigenvalues of E1 and E2 are independent
of β, but related to human harvest). On the other hand, we not only find that the equilibrium point of

system (2.3) is affected by human harvest, but also has a particular impact on its stability(it can be seen
from the eigenvalue of each equilibrium point).

Next, the biological explanations of the above different equilibria are discussed below. Since all these
interpretations are mainly based on local asymptotic stability conditions, initial abundance of all the pop-
ulations may also play an essential role for the system’s dynamics together with the parameters. Different
from the biological explanation in [14], we not only consider the effect of β on species coexistence, but also
human harvest as an essential factor in species coexistence.

(i)E0: Extinction of all the populations at a time is impossible.

(ii)E1: From the analysis of research results, whenever the carrying capacity of the NTP population

(k1) stays within the specific threshold values of k2
α2

< k1 <
p1(d+q2E)
c1w1−d−q2E , both TPP and zooplankton will

eventually become extinct from the system. Now, through the analysis of the k1 threshold range, as the
intensification of the harvest for zooplankton, the equilibrium point E1 remains stable for a more extensive
range of k1, and we can say that over-fishing of zooplankton (q2E) may accelerate the extinction of TPP and
zooplankton.
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+ {r1[1− (2N∗ + α1T
∗)

k1
]− w2p1Z

∗

(p1 +N∗)
2 − q1E} × {r2[1− (2T ∗ + α2N

∗)

k1
]− w2Z

∗(p2 + βN∗)

(p2 + T ∗ + βN∗)
2 }

(iii)E2: If the carrying capacity of NTP population (k1) stays below the threshold value r2α1k2
r2−q1E , both NTP

and zooplankton eventually extinct. With the competitive effect of TPP on NTP (α1), the environmental
carrying capacities of toxin-producing phytoplankton (k2) and harvesting term for NTP and zooplankton
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(q1E) increase, respectively. The equilibrium point E2 remains stable for a larger scale of k1; we can say that
the possibility of deracinating NTP and zooplankton at a time increases with the increase in α1, k2 and q1E.

(iv)E3: When the carrying capacity of NTP population (k1) remains within two threshold values r2α1k2
r2−q1E <

k1 < k2
α2

(it can be obtained by the threshold value (k1) of E1 and E2) together with the competitive
effects (α1, α2), the harvesting term on NTP (q1E) are present and the values of all three are small, the

zooplankton population will go extinct on the condition that c1w1N̂

p1+N̂
− d − q2E < c2w2T̂

p2+T̂+βN̂
, whereas both

NTP and TPP persist in the system. The chance of zooplankton extinction increases with the decrease in
avoidance of TPP by zooplankton (β), TPP consumption rate (w1), the half-saturation constant for TPP
(p2), the harvesting term on zooplankton (q2E) and the zooplankton mortality(d). For a specific parameter

setup ( c1w1N̂

p1+N̂
− (d + q2E) > 0), we can find a threshold value of the avoidance of TPP by zooplankton

(β < (c2w2T̂ )(p1+N̂)

(N̂)(c1w1N̂−(d+q2E)(p1+N̂))
− p2+T̂

N̂
), below which the zooplankton population will become extinct. On

the contrary, for c1w1N̂

p1+N̂
− (d + q2E) < 0, the extinction of zooplankton dose not depend on the intensity of

avoidance; it maybe has something relationship with the harvest term on zooplankton (q2E).

(v)E4: If the carrying capacity of NTP population (k1) remains within two threshold values ( (d+q2E)p1
c1w1−d−q2E <

k1 <
(d+q2E)(p1)+c1w1p1

c1w1−d−q2E ), then TPP becomes extinct under the condition ( r2(k2−α2N̄)
k2

< w2Z̄
p2+βN̄

), whereas both

NTP and zooplankton persist in the system. The possibility of TPP extinction increases with the reduction
in the avoidance of TPP by zooplankton (β), the half-saturation constant for TPP (p2), and the growth rate
of TPP (r2), decreases with the rise of the competitive effect of N on T (α2) and the TPP consumption
rate (w2). Similarly, for a particular parameter setup (k2 − α2N̄ > 0), we can find a threshold value of

the avoidance of TPP by zooplankton (β < k2w2Z̄
N̄r2(k2−α2N̄)

− p2
N̄

), below which TPP may become extinct. On

the contrary, for k2 − α2N̄ < 0, TPP extinction dose not depend on the avoidance. Because the biological
analysis of E4 found that the harvesting term has little impact on the extinction of TPP compared with
other equilibrium points. In conclusion, for k2−α2N̄ < 0, TPP extinction dose not depend on the avoidance
of TPP by zooplankton (β) and harvest term on zooplankton (q2E).

(vi)E∗ = (N∗, T ∗, Z∗): When the competitive effects (α1), the fishing coefficients of nontoxic phytoplank-
ton (q1), the environmental carrying capacities of nontoxic phytoplankton (k1), and the effort used to harvest
the population (E) remain very small, whereas the constant intrinsic growth rates of N (r1), there may be
a possibility of coexistence of all the three species.

Existence and stability conditions of the equilibrium points.
Equilibrium Existence conditions Stability conditions
E0 = (0, 0, 0) Always exist Always unstable

E1 = (k1, 0, 0) Always exist

(i) c1w1 − d− q2E > 0, α2 >
k2
k1

,

k1 <
p1(d+q2E)
c1w1−d−q2E ,

or (ii) c1w1 − d− q2E ≤ 0, α2 >
k2
k1

E2 = (0, k2, 0) Always exist (i) k1 <
r2α1k2
r2−q1E

E3 = (N̂ , T̂ , 0)
(i) α2 >

k2
k1

,

(ii) α1 >
(α1α2−1)q1k1E

r1k1
+ k1

k2

(i) c1w1N̂

p1+N̂
− d− q2E < c2w2T̂

p2+T̂+βN̂
,

(ii) b̄1 > 0, c̄1 > 0

E4 = (N̄ , 0, Z̄)
(i) w1 >

d+q2E
c1

,

(ii) k1 >
r1N

r1−q1E(p1+E)

(i) r2(1− α2N̄
k2

) < w2Z̄
p2+βN̄

,

(ii) ã2 + b̃2 < 0, ã2b̃2 + c̃2 > 0

E∗ = (N∗, T ∗, Z∗)

(i) k1 >
q1k1E
r1

+N∗ + α1T
∗,

(ii) c2w2(p1 +N∗) > c1w1N
∗ − (d+ q2E)(p1 +N∗) > 0,

(iii) positive root of Eq.(3.4) exists

(i) D1 > 0 ,

(ii) D3 > 0,

(iii) D1D2 −D3 > 0
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Table 1: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The existence and stability of these equilibrium points are summarized in Table 1 and Fig 1. When
c1w1 − d− q2E > 0, equilibria E2 = (0, k2, 0), E3 = (N̂ , T̂ , 0), E1 = (k1, 0, 0) and E4 = (N̄ , 0, Z̄) keep

stable for (0 < k1 < r2α1k2
r2−q1E ), ( r2α1k2

r2−q1E < k1 < k2
α2

), ( k2α2
< k1 < p1(d+q2E)

c1w1−d−q2E ) and ( (d+q2E)p1
c1w1−d−q2E < k1 <

(d+q2E)(p1)+c1w1p1
c1w1−d−q2E ), respectively(Fig.1(a)). Obviously, for k1 at the different equilibria above, the coexistence

of NTP, TPP, and zooplankton requires the three ranges (k1 >
r2α1k2
r2−q1E ), (k1 <

k2
α2

), and (k1 >
(d+q2E)p1
c1w1−d−q2E ),

respectively. Therefore, the system exhibits these three possible types of bistability,
where

(i)E1 and E2.

(ii)E2 and E4.

(iii)E3 and E4.

The above three types are locally asymptotically stable for different ranges of k1.

For k2
α2

< k1 < min{ r2α1k2
r2−q1E ,

(d+q2E)p1
c1w1−d−q2E }, we can observe the bistability of E1 and E2 (Fig.1(b)(c)).

If conditions (d+q2E)p1
c1w1−d−q2E < k1 < min{ r2α1k2

r2−q1E ,
(d+q2E)p1+c1w1p1

c1w1−d−q2E } and ( r2(k2−α2N̄)
k2

< w2Z̄
p2+βN̄

) hold simultane-

ous, we can find the bistability of E2 and E4 (Fig.1(d)(e)). On the contrary, if (d+q2E)p1
c1w1−d−q2E < k1 <

r2α1k2
r2−q1E

holds, for either k1 >
(d+q2E)(p1)+c1w1p1

c1w1−d−q2E or r2(k2−α2N̄)
k2

> w2Z̄
p2+βN̄

, we’ll get the existence of stable E2 together

with unstable E4. Identically, for max{ r2α1k2
r2−q1E ,

(d+q2E)p1
c1w1−d−q2E } < k1 < min{ k2α2

, (d+q2E)p1+c1w1p1
c1w1−d−q2E } together with

α1α2 < 1, c1w1N̂

p1+N̂
− d − q2E < c2w2T̂

p2+T̂+βN̂
and r2(k2−α2N̄)

k2
< w2Z̄

p2+βN̄
, we can observe the bistability of E3 and

E4 (Fig.1(f)-(i)).

Now, let’s discuss the importance of avoiding toxic species by zooplankton (β) together with the harvesting
term (q1E, q2E) for the survival of the different species groups.

Firstly, let’s discuss the effect of β on three types of bistability. It can be seen from the previous analysis
that the stability of E1 and E2 does not depend on the value of β. However, for the stability of E3 and
E4, it is related to the critical value of β. When β is less than this critical value, E3 and E4 remain stable.
Thus, β does not affect the bistability of (E1, E2); when β is below some threshold value, we will observe
the bistability of (E2, E4) and (E3, E4), and as the β value increases, the original bistability may disappear.

( r2(k2−α2N̄)
k2

> w2Z̄
p2+βN̄

, c1w1N̂

p1+N̂
− d− q2E < c2w2T̂

p2+T̂+βN̂
and r2(k2−α2N̄)

k2
< w2Z̄

p2+βN̄
. From these conditions, we can

see the establishment of the above conclusion.)

Secondly, let’s discuss the effect of the harvesting term (q1E, q2E) on three types of bistability. From the
analysis of the previous data, it can be seen that although the stability of E1 and E2 does not depend on the
value of β, when humans overfish NTP and zooplankton, that is, q1E and q2E are too large, it may affect
the bistability of E1 and E2. For E3 and E4, although their stability is directly related to the threshold value
of β, the existence of q1E and q2E will also affect the threshold value of β, further influencing the stability
of E3 and E4. Therefore, q1E and q2E may affect the bistability of (E1, E2), (E2, E4) and (E3, E4); the
increase of q1E and q2E may also lead to the disappearance of this bistability.

In this section, we focus on the local stability and Hopf bifurcation of the delayed model; the delayed
system (2.2) has the following form

dU(t)

dt
= F (U(t), U(t− τ1), U(t− τ2)), (4.1)

where

U(t) = [N(t), T (t), Z(t)], U(t− τ1) = [N(t− τ1), T (t− τ1), Z(t− τ1)],

U(t− τ2) = [N(t− τ2), T (t− τ2), Z(t− τ2)].
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c) Bistability analysis of equilibrium point

IV. Dynamical Behavior of the Delayed Model

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Next, assuming Λ1(t) = N(t) − N∗, Λ2(t) = T (t) − T ∗, Λ3(t) = Z(t) − Z∗ at the positive equilibrium
point, and linearizing the system (2.2), we can obtain

d

dt

Λ1(t)
Λ2(t)
Λ3(t)

 = L

N(t)
T (t)
Z(t)

+M

N(t− τ1)
T (t− τ1)
Z(t− τ1)

+ S

N(t− τ2)
T (t− τ2)
Z(t− τ2)

 , (4.2)

where

L =

(
∂F

∂U(t)

)
E∗
, M =

(
∂F

∂U(t− τ1)

)
E∗
, S =

(
∂F

∂U(t− τ2)

)
E∗
.

We linearize the system(2.2) about positive equilibrium E∗ = (N∗, T ∗, Z∗), and get

dU(t)

dt
= LU(t) +MU(t− τ1) + SU(t− τ2), (4.3)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Stability of different equilibria for different ranges of k1. The dotted arrow indicates the range where
bistability occurs, (a) means no bistability, (b) and (c) bistability of E1 and E2, (d) and (e) bistability of E2

and E4, (f)-(i) bistability of E3 and E4.
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Fig. 1:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where

L =

l11 l12 l13

l21 l22 l23

0 0 l33

 , M =

 0 0 0
0 0 0
m31 0 m33

 , S =

 0 0 0
0 0 0
s31 s32 s33

 , U =


N1(·)
T1(·)
Z1(·)

 ,

where N1 , T1 , Z1 are small perturbations around the equilibrium point E∗ = (N∗, T ∗, Z∗). We have

l11 =
−rN
k1

+
w1ZN

(p1 +N)2
− q1E, l12 =

r1α1N

k1
, l13 = − w1N

p1 +N
,

l21 =
r2α2T

k1
+

w2βTZ

(p2 + T + βN)2
, l22 = r2 −

(2r2T + r2α1N)

k2
,

l23 = − w2T

(p2 + T + βN)
, l33 = −d− q2E, m31 =

c1w1p1Z

(p1 +N)2
, m33 =

c1w1N

(p1 +N)
,

s31 =
c2w2βTZ

(p2 + T + βN)2
, s32 =

c2w2Z(p2 + βN)

(p2 + T + βN)2
, s33 =

c2w2T

(p2 + T + βN)
.

The characteristic equation for the linearized system (2.2) is obtained as

D(ξ, τ1, τ2) ≡ P (ξ) +Q(ξ)e−ξτ1 +R(ξ)e−ξτ2 = 0, (4.4)

where

P (ξ) = ξ3 +A2ξ
2 +A1ξ +A0, Q(ξ) = B2ξ

2 +B1ξ +B0, R(ξ) = C2ξ
2 + C1ξ + C0,

with

A2 = −(l33 + l22 − l11), A1 = l11l22 + l11l33 + l22l33 − l12l21, A0 = −l11l22l33 + l12l21l33

B2 = −m33, B1 = −l11m33 − l22m33 − l13m31, B0 = +l13l22m31 + l11l22m33 + l12l21m33 − l12l23m31,

C2 = −s33, C1 = −l13s31 + l11s33 − l22l23s32 − l22s33,

C0 = l11s33 + l11l23s32 + l12l21s33 + l13l22s31 − l12l23s31 − l13l21s32.

Case (1): τ1 = τ2 = 0.

In this case, Section 3 covers the analysis of the system when τ1 = τ2 = 0.

Case (2): τ1 = 0, τ2 > 0.

In this case, the characteristic equation(4.4) becomes

D(ξ, τ2) ≡ P (ξ) +Q(ξ) +R(ξ)e−ξτ2

≡ ξ3 +A2ξ
2 +A1ξ +A0 +B2ξ

2 +B1ξ +B0 + (C2ξ
2 + C1ξ + C0)e−ξτ2 = 0, (4.5)

putting ξ = iω(ω > 0) in Eq.(4.5), and separating the real and imaginary parts, we have

− (A2 +B2)ω2 + (A0 +B0) = (C2ω
2 − C0) cos(ωτ2)− C1ω sin(ωτ2),

− ω3 + (A1 +B1)ω = (C0 − C2ω
2) sin(ωτ2)− C1ω cos(ωτ2).

(4.6)
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Squaring and adding the equation(4.6), we obtain

[−(A2 +B2)ω2 + (A0 +B0)]2 + [−ω3 + (A1 +B1)ω]2 = (C2ω
2 − C0)2 + (C1ω)2. (4.7)

Simplifying Eq.(4.7) and substituting ω2 = , the above equation can be written as

Ψ( ) ≡ 3 + a2
2 + a1 + a0 = 0, (4.8)

where

a2 = −(A2 +B2)2 − 2(A1 +B1)− C2
2 , a1 = (A1 +B1)2 − 2(A0 +B0)(A2 +B2)− 2C0C2 − C2

1 , a0 = −C2
0 .

(H1): a2 > 0, a0 > 0, a2a1 − a0 > 0.

If (H1) holds, Eq.(4.8) has no positive roots, which implies all the roots of Eq.(4.5) have negative real parts.
Therefore, E∗ is asymptotically stable for all τ2 > 0 when (H1) holds.

(H2): a2 < 0, a1 < 0, a0 < 0 or a2 > 0, a1 < 0, a0 < 0 or a2 > 0, a1 > 0, a0 < 0.
If (H2) holds, Eq.(4.8) has exactly one positive root ω0, substituting ω0 in Eq.(4.6), we obtain

− (A2 +B2)ω0
2 + (A0 +B0) = (C2ω0

2 − C0) cos(ω0τ2)− C1ω0 sin(ω0τ2),

− ω0
3 + (A1 +B1)ω0 = (C0 − C2ω0

2) sin(ω0τ2)− C1ω0 cos(ω0τ2). (4.9)

For the critical value of τ2, we can obtain

τ2j=
1

ω0
arccos { [C1+C2(A2+B2)]ω0

4+ [C1(A1 +B1)− C0(A2+B2)− C2(A0+B0)]ω0
2+ C0(A0 +B0)

−(C0 − C2ω0
2)

2 − (C1ω0)
2 }+ 2jπ

ω0
,

j = 0, 1, 2 · · · . (4.10)

For the transversality condition, differentiating Eq.(4.5) with respect to τ2, we get

dξ

dτ2
=

ξ(C2ξ
2 + C1ξ + C0)e−ξτ2

3ξ2 + 2A2ξ +A1 + (2B2ξ +B1) + (2C2ξ + C1)e−ξτ2
.

Solving ( dξdτ2 )−1, we obtain

(
dξ

dτ2
)−1 =

3ξ2 + 2A2ξ +A1 + (2B2ξ +B1) + (2C2ξ + C1)e−ξτ2

ξ(C2ξ2 + C1ξ + C0)e−ξτ2
.

Then at τ2 = τ20 and ξ = iω0, we can get

[Re(
dξ

dτ2
)τ2=τ20,ξ=iω0

]−1 = Re[
3(iω0)

2
+ (2A2 +B2)(iω0) +A1 +B1

(iω0)(C2(iω0)
2

+ C1(iω0) + C0)(cos(ω0τ20)− i sin(ω0τ20))
]

+ Re[
2C2(iω0) + C1

(iω0)(C2(iω0)
2

+ C1(iω0) + C0)
].

Now

[Re(
dξ

dτ2
)τ2=τ20,ξ=iω0

]−1 = Re[
MR +MI i

NR +NI i
] + Re[

QR +QI i

PR + PI i
] =

MRNR +MINI

NR
2 +NI

2 +
QRPR +QIPI

PR
2 + PI

2 ,
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where

MR = −3ω0
2 +A1 +B1, MI = 2(A2 +B2)ω0, NR = (C0ω0 − C2ω0

3) sin(ω0τ20)− C1ω0
2 cos(ω0τ20),

NI = (C0ω0 − C2ω0
3) cos(ω0τ20) + C1ω0

2 sin(ω0τ20), QR = C1, QI = 2C2ω0,

PR = −C1ω0
2, PI = C0ω0 − C2ω0

3.

Then

[Re(
dξ

dτ2
)τ2=τ20,ξ=iω0

]−1 =
A

B
+
C

D
=
AD +BC

BD
, (4.11)

here

A = MRNR +MINI , B = NR
2 +NI

2,

C = QRPR +QIPI , D = PR
2 + PI

2.

From this, we can get

sgn[Re(
dξ

dτ2
)τ2=τ20,ξ=iω0

]−1 = sgn[AD +BC].

If (H3): AD + BC 6= 0 holds, the transversal condition sgn[Re( dξdτ2 )τ2=τ20,ξ=iω0
]−1 6= 0. From the above

analysis, the following theorem can be drawn

For τ1 = 0 and τ2 > 0, we have the following results:

(i)If (H1) holds, then the equilibrium E∗ is asymptotically stable for all τ2 > 0.

(ii)If (H3) holds, and (H2) holds, then the equilibrium E∗ is locally asymptotically stable for all τ2 < τ20

together with unstable for τ2 > τ20 and undergoes Hopf bifurcation at τ2 = τ20.

Case (3): τ1 > 0, τ2 = 0.

In this case, the characteristic equation(4.4) becomes as follows

D(ξ, τ1) ≡ P (ξ) +R(ξ) +Q(ξ)e−ξτ1

≡ ξ3 +A2ξ
2 +A1ξ +A0 + (B2ξ

2 + (C2ξ
2 + C1ξ + C0) +B1ξ +B0)e−ξτ1 = 0. (4.12)

putting ξ = iω(ω > 0) in Eq.(4.12), and separating the real and imaginary parts, we have

− (A2 + C2)ω2 + (A0 + C0) = (B2ω
2 −B0) cos(ωτ1)−B1ω sin(ωτ1),

− ω3 + (A1 + C1)ω = (B0 −B2ω
2) sin(ωτ1)−B1ω cos(ωτ1). (4.13)

Squaring and adding the equation(4.13), we obtain

[−(A2 + C2)ω2 + (A0 + C0)]2 + [−ω3 + (A1 + C1)ω]2 = (B2ω
2 −B0)2 + (B1ω)2. (4.14)

Based on the calculation method for case (2), we can simplify (4.14) to the following

Ψ( ) ≡ 3 + b2
2 + b1 + b0 = 0, (4.15)

where

b2 = −(A2 + C2)2 − 2(A1 + C1)−B2
2 , b1 = (A1 + C1)2− 2(A0 + C0)(A2 + C2)− 2B0B2 −B2

1 , b0 = −B2
0 .
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(H4): b2 > 0, b0 > 0, b2b1 − b0 > 0.

If (H4) holds, Eq.(4.15) has no positive roots, which implies all the roots of Eq.(4.12) have negative real
parts. Therefore, E∗ is asymptotically stable for all τ1 > 0 when (H4) holds.

(H5): b2 < 0, b1 < 0, b0 < 0 or b2 > 0, b1 < 0, b0 < 0 or b2 > 0, b1 > 0, b0 < 0.
If (H5) holds, Eq.(4.15) has exactly one positive root ω̂0, substituting ω̂0 in Eq.(4.13), we obtain

− (A2 + C2)ω̂0
2 + (A0 + C0) = (B2ω̂0

2 −B0) cos(ω̂0τ1)−B1ω̂0 sin(ω̂0τ1),

− ω̂0
3 + (A1 + C1)ω̂0 = (B0 −B2ω̂0

2) sin(ω̂0τ1)−B1ω̂0 cos(ω̂0τ1). (4.16)

For the critical value of τ1, we can obtain

τ1j=
1

ω̂0
arccos{ [B1+B2(A2+ C2)]ω̂0

4+ [B1(A1 + C1)− C0(A2 + C2)−B2(A0 + C0)]ω̂0
2+B0(A0 + C0)

−(B0 −B2ω̂0
2)

2 − (B1ω̂0)
2

}+ 2jπ

ω̂0
,

j = 0, 1, 2 · · · . (4.17)

For the transversality condition, differentiating Eq.(4.13) with respect to τ1, we get

dξ

dτ1
=

ξ(B2ξ
2 +B1ξ +B0)e−ξτ1

3ξ2 + 2A2ξ +A1 + (2C2ξ + C1) + (2B2ξ +B1)e−ξτ1
.

Solving ( dξdτ1 )−1, we obtain

(
dξ

dτ1
)−1 =

3ξ2 + 2A2ξ +A1 + (2C2ξ + C1) + (2B2ξ +B1)e−ξτ1

ξ(B2ξ2 +B1ξ +B0)e−ξτ1
.

Then at τ1 = τ10 and ξ = iω̂0, we can get

[Re(
dξ

dτ1
)τ1=τ10,ξ=iω̂0

]−1 = Re[
3(iω̂0)

2
+ (2A2 + C2)(iω̂0) +A1 + C1

(iω̂0)(B2(iω̂0)
2

+B1(iω̂0) +B0)(cos(ω̂0τ10)− i sin(ω̂0τ10))
]

+ Re[
2B2(iω̂0) +B1

(iω̂0)(B2(iω̂0)
2

+B1(iω̂0) +B0)
].

Now

[Re(
dξ

dτ1
)τ1=τ10,ξ=iω̂0 ]−1 = Re[

M̂R + M̂I i

N̂R + N̂I i
] + Re[

Q̂R + Q̂I i

P̂R + P̂I i
] =

M̂RN̂R + M̂IN̂I

N̂R
2

+ N̂I
2 +

Q̂RP̂R + Q̂I P̂I

P̂R
2

+ P̂I
2 ,

where

M̂R = −3ω̂0
2 +A1 + C1, M̂I = 2(A2 + C2)ω̂0, N̂R = (B0ω̂0 −B2ω̂0

3) sin(ω̂0τ10)− C1ω̂0
2 cos(ω̂0τ10),

N̂I = (B0ω̂0 −B2ω̂0
3) cos(ω̂0τ10) +B1ω̂0

2 sin(ω̂0τ10), Q̂R = B1, Q̂I = 2B2ω̂0,

P̂R = −B1ω̂0
2, P̂I = B0ω̂0 −B2ω̂0

3.

Then

[Re(
dξ

dτ1
)τ1=τ10,ξ=iω̂]−1 =

A∗
B∗

+
C∗
D∗

=
A∗D∗ +B∗C∗

B∗D∗
, (4.18)
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here

A∗ = M̂RN̂R + M̂IN̂I , B∗ = N̂R
2

+ N̂I
2
,

C∗ = Q̂RP̂R + Q̂I P̂I , D∗ = P̂R
2

+ P̂I
2
.

From this, we can get

[Re(
dξ

dτ1
)τ1=τ10,ξ=iω̂]−1 = sgn[A∗D∗ +B∗C∗].

If (H6): A∗D∗ + B∗C∗ 6= 0 holds, the transversal condition [Re( dξdτ1 )τ1=τ10,ξ=iω̂]−1 6= 0. From the above
analysis, the following theorem can be drawn

For τ2 = 0 and τ1 > 0, we have the following results:
(i)If (H4) holds, then the equilibrium E∗ is asymptotically stable for all τ1 > 0.
(ii)If (H6) and (H5) hold, then the equilibrium E∗ is locally asymptotically stable for all τ1 < τ10 together
with unstable for τ1 > τ10 and undergoes Hopf bifurcation at τ1 = τ10.

τ1 is fixed in (0, τ10] and τ2 > 0.

We consider the gestation delay τ1 to be stable in the interval (0, τ10], taking τ2 as a control parameter.
Let ξ = u + iω be the root of Eq.(4.4). Putting this value in Eq.(4.4), separating real and imaginary parts,
we obtain

u3 − 3uω2 +A2(u2 − ω2) +A1u+A0 + (B2u
2 −B2ω

2 +B1u+B0)e−uτ1 cos(ωτ1)

+(2B2uω +B1ω)e−uτ1 sin(ωτ1) + (C2u
2 − C2ω

2 + C1u+ C0)e−uτ1

cos(ωτ2) + (2C2uω + C1ω) sin(ωτ2) = 0.

(4.19)

3u2ω − ω3 + 2A2uω +A1ω − (B2u
2 −B2ω

2 +B1u+B0) sin(ωτ1) + (2B2uω

+B1ω)e−uτ1 cos(ωτ1)− (C2u
2 − C2ω

2 + C1u+ C0) sin(ωτ2) + (2C2uω

+C1ω)e−uτ2 cos(ωτ2) = 0.

(4.20)

Putting u = 0 in Eqs.(4.19) and (4.20), we obtain

A2ω
2 −A0 = (−B2ω

2 +B0) cos(ωτ1) + (C0 − C2ω
2) cos(ωτ2) +B1ω sin(ωτ1) + C1ω sin(ωτ2). (4.21)

ω3 −A1ω = −(B0 −B2ω
2) sin(ωτ1) +B1ω cos(ωτ1)− (C0 − C2ω

2) sin(ωτ2) + C1ω cos(ωτ2). (4.22)

Squaring and adding Eqs.(4.21) and (4.22) to eliminate τ2, we get

ω6 + ã4ω
4 + ã3ω

3 + ã2ω
2 + ã0 = 0, (4.23)

where

ã4 = −(B2
2 + C2

2 −A2
2), ã3 = −2(B2C1 −B1C2) sin(ωτ1 − ωτ2),

ã2 = −((B1
2 − 2B0B2 + C1

2 − 2C0C2) + 2(B1C1 − 2A0A2 −A2
1 −B2)) cos(ωτ1 − ωτ2),

ã0 = −(B0
2 + C0

2 −A0
2).

Noting that Eq.(4.23) is transcedental. Now, Eqs.(4.21) and (4.22) can be written as

δ1 cos(ωτ2) + δ2 sin(ωτ2) = δ3 + δ4 cos(ωτ1) + δ5 sin(ωτ1), (4.24)
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−δ2 cos(ωτ2) + δ1 sin(ωτ2) = δ6 − δ5 cos(ωτ1) + δ4 sin(ωτ1), (4.25)

where

δ1 = C2ω
2 − C0, δ2 = −C1ω,

δ3 = A0 −A2ω
2, δ4 = B0 −B2ω

2,

δ5 = B1ω, δ6 = ω3 −A1ω.

Without losing generality, the Eq.(4.23) has finite positive roots ω̃1, ω̃2, · · · , ω̃k, for every fixed ω̃, there exists
a sequence {τ j2i|j = 0, 1, 2...}, where

τ
(j)
2i =

1

ω̃i
tan−1[

(δ1δ4 + δ2δ4) sin(ω̃iτ1)− (δ1δ5 − δ2δ4) cos(ω̃iτ1) + δ1δ6 + δ2δ3
(δ1δ5 − δ2δ4) sin(ω̃iτ1) + (δ2δ5 + δ1δ4) cos(ω̃iτ1) + δ1δ3 − δ2δ4

+
kπ

ω̃i

j = 0, 1, 2, · · ·

(4.26)

let τ̃2 = min{τ (j)
2i |i = 0, 1, 2, ...k, j = 0, 1, 2...}, when τ2 = τ̃2, ω̃ = ω̃i|τ2=τ̃2 , i = 1, 2, 3, ..., the characteristic e-

quation (4.4) has purely imaginary roots ±iω̃. Then, we will verify the transversality condition, differentiating
the characteristic equation (4.4) with respect to τ2, we can obtain

[Re(
dξ

dτ2
)τ2=τ̃2,ξ=iω̃]−1 = Re[

3(iω̃)
2

+ 2A2(iω̃) +A1

(iω̃)(C2(iω̃)
2

+ C1(iω̃) + C0)(cos(ω̃τ̃2)− i sin(ω̃τ̃2))
]

+ Re[
2C2(iω̃) + C1

(iω̃)(C2(iω̃)
2

+ C1(iω̃) + C0)
].

Now

[Re(
dξ

dτ2
)τ2=τ̃2,ξ=iω̃]−1 = Re[

MR +MI i

NR +NI i
] + Re[

QR +QI i

PR + PI i
] =

MRNR +MINI

NR
2 +NI

2 +
QRPR +QIPI

PR
2 + PI

2 ,

where

MR = −3ω̃2 +A1, MI = 2A2ω̃, NR = (C0ω̃ − C1ω̃
2 − C2ω̃

3) sin(ω̃τ̄2)

,

NI = (C0ω̃ − C2ω̃
3) cos(ω̃τ̄2) + C1ω̃

2 sin(ω̃τ̄2), QR = C1, QI = 2C2ω̃,

PR = −C1ω̃
2, PI = C0ω̃ − C2ω̃

3.

Then

[Re(
dξ

dτ2
)τ2=τ̃2,ξ=iω̃]−1 =

E

F
+
G

H
=
EH + FG

FH
, (4.27)

here

E = MRNR +MINI , F = NR
2 +NI

2,

G = QRPR +QIPI , H = PR
2 + PI

2.
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For system(2.2), assume (H7) holds with τ1 is fixed in (0, τ10] and τ2 > 0, then the equilib-
rium E∗ is locally asymptotically stable for τ2 ∈ (0, τ̃2) whereas system (2.2) undergoes Hopf bifurcation at
τ2 = τ̃2.

Case(5): τ2 is fixed in (0, τ20] and τ1 > 0, so take τ1 as a control parameter; the analysis is the same as
case(4), so we omit it.

From previous studies, overfishing may lead to the extinction of populations. However, in the society, the
adequate protection of the ecosystem is a common problem we need to face. In the face of the increasingly
severe harmful effects of overfishing on ecosystems, people began to find the most suitable methods for fishery
control in various areas of sustainable development policies, for example, seasonal fishing, property leasing,
taxation, licensing fees, etc. Taxes are generally considered to be better than other regulatory approaches,
so that we will view the optimal tax policy for the double phytoplankton - single zooplankton system based
on model (2.3). Here, we take E as a time-dependent dynamic variable controlled by equations. Therefore,
there is the following equation.

E(t) = εQ(t), 0 ≤ ε ≤ 1,
dQ

dt
= I(t)− γQ(t), Q(0) = Q0. (5.1)

Where Q(t) is the amount of capital invested in fisheries at time t, I(t) is the total investment rate(in physical
form) at time t and γ is the constant depreciation rate of capital. Suppose that the effort E at any time is
proportional to the instantaneous amount of investment capital. For example, if Q(t) represents the number
of standard fishing vessels that can be used, it is reasonable to assume that Q(t) and E should be proportional.
When ε = 1, it can be considered that the maximum fishing capacity(E)is equal to the number of available
vessels at time t (Q(t)). When ε = 0, it means that even though there may be fishing boats, the fishing is not
expanded; it also reflects the over-exploitation of fisheries. At this time the fish population has been seriously
depleted, so fishing vessels can no longer be used. These are simulated capital levels may be adjusted, thus
prove the reasonableness of the equation (5.2). Regulators control the development of fisheries by imposing
a tax (v > 0) on the unit biomass of terrestrial fish. When (v < 0) can be understood as any subsidy to
fishermen. Net income of fishermen(’Net income’ for short) is E[(u1 − v)q1N + (u2 − v)q2N − C], where ui,
i = 1, 2 is the constant price of unit biomass of nontoxic phytoplankton and zooplankton, respectively. C is
the fixed cost per unit of harvesting effort.

We assume the gross profit margin on capital investment is proportional to this ’Net income.’ So, we
have

I = Eϕ[(u1 − v)q1N + (u2 − v)q2Z − C], 0 ≤ ϕ < 1. (5.2)

For ϕ = 1, Eq.(5.2) shows that the highest investment rate at any time is equal to the net income of the
fishermen at that time. ϕ = 0 can only be used when the net income of fishermen is negative; that is, current
capital assets cannot be divested. If the fishery is operating at a loss and allows capital to be withdrawn, the
only owner of the fishery will benefit by allowing the capital assets to be continuously withdrawn, because
negative investment means withdrawal of investment, so it is the case of I < 0, ϕ > 0. By combining Eqs.(5.1)
and (5.2), we can get

dE

dt
= E{εϕ[(u1 − v)q1N + (u2 − v)q2Z − C]− γ}. (5.3)

From this we can get

sgn[Re(
dξ

dτ2
)τ2=τ̃2,ξ=iω̃]−1 = sgn[EH + FG].

If (H7): EH + FG 6= 0 holds, the transversal condition sgn[Re( dξdτ2 )τ2=τ̃2,ξ=iω̃]−1 6= 0. From the above
analysis, we have the following theorem.
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Theorem 4.3.

V. Optimal Tax Policy

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fishermen and regulators are two different parts of society. Therefore, the income they receive is society’s
income accumulated through fisheries. The net economic income to society is

ME = E[(u1 − v)q1N + (u2 − v)q2Z − C] + E[v(q1N) + v(q2N)],

this is equal to the net economic income of fishermen plus the economic income of regulators. Therefore
without considering the time delay, Eq.(2.3) can be rewritten as



dN

dt
= r1N(1− N + α1T

k1
)− w1NZ

p1 +N
− q1EN,

dT

dt
= r2N(1− T + α2N

k2
)− w2TZ

p2 + T + βN
,

dZ

dt
=
c1w1NZ

p1 +N
− c2w2TZ

p2 + T + βN
− dZ − q2EZ,

dE

dt
= E{εϕ[(u1 − v)q1N + (u2 − v)q2Z − C]− γ}.

(5.4)

Next, we will use the principle of Pontryagin’s maximum to get the path of the best tax policy. If the
fish population stays along this path, then regulators can ensure that their goals are achieved. The goal
of regulatory agencies is to maximize the total net income of society as a result of harvesting activities.
Specifically, the goal is to maximize revenue over a continuous time stream (J ).

J =

∫ +∞

0

E(t)e−δt[u1q1N + u2q2Z − C]dt, (5.5)

where δ is the discounting factor. Therefore, our goal is to determine an optimal tax v = v(t) that maximizes
compliance with Eq.(5.4) and constrains vmin ≤ v(t) ≤ vmax on the control variable v(t). When vmin < 0, it
will have the effect of accelerating the rate of fishery expansion. The Hamiltonian of the problem is obtained
by

H = (u1q1N + u2q2Z − C)Ee−δt + λ1N [r1(1− N + α1T

k1
)− w1Z

p1 +N
− q1E]

+λ2[r2T (1− T+α1N
k2

)− w2TZ
p2+T+βN ] + λ3[ c1w1NZ

p1+N − c2w2TZ
p2+T+βN − dZ − q2EZ]

+λ4E{εϕ[(u1 − v)q1N + (u2 − v)q2Z − C]− γ},

(5.6)

where λ1, λ2, λ3 and λ4 are the adjoint variables. For v ∈ [vmin, vmax], the Hamiltonian must be maximized.
Assuming that the control constraint is not bound, that is, the optimal solution does not appear as v = vmin

or v = vmax. We can get by singular control [9]

∂H

∂v
= −λ4Eεϕ(q1N + q2Z) = 0⇒ λ4 = 0. (5.7)

Now, the adjoint equations are

dλ1

dt
=−∂H

∂N
= −[u1q1Ee

−δt+λ1(r1 −
2r1N + r1α1T

k1
− w1p1Z

(p1 +N)
2 − q1E) + λ2[

w2βTZ

(p2 + T + βN)
2 −

r2α2T

k2
]

+ λ3(
c1w1p1Z

(p1 +N)
2 +

c2w2βTZ

(p2 + T + βN)
2 ),
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dλ2

dt
= −∂H

∂T
= −[λ1(

r1α1N

k1
) + λ2[r2(1− 2T + α2N

k2
)− w2Z(p2 + βN)

(p2 + T + βN)
2 ]− λ3(

c2w2Z(p2 + βN)

(p2 + T + βN)
2 ),

dλ3

dt
= −∂H

∂Z
= −[u2q2Ee

−δt − λ1(
w1N

p1 +N
)− λ2(

w2T

p2 + T + βN
) + λ3(

c1w1N

p1 +N
− c2w2T

p2 + T + βN
− d− q2E)],

dλ4

dt
= −∂H

∂E
= −[(u1q1N + u2q2Z − C)e−δt − λ1q1N − λ3q2Z]. (5.8)

Now start with Eqs.(5.8) and (5.7), using the equilibrium equation we have

dλ1

dt
=−u1q1Ee

−δt−λ1[−r1N

k1
+

w1NZ

(p1 +N)
2 ]−λ2[

w2βTZ

(p2 + T + βN)
2 −

r2α2T

k2
]−λ3[

c1w1p1Z

(p1 +N)
2 +

c2w2βTZ

(p2 + T + βN)
2 ],

dλ2

dt
= −λ1[

r1α1N

k1
]− λ2[

w2TZ

(p2 + T + βN)
2 ]− λ3[

c2w2Z(p2 + βN)

(p2 + T + βN)
2 ],

dλ3

dt
= −u2q2Ee

−δt + λ1(
w1N

p1 +N
) + λ2(

w2T

p2 + T + βN
). (5.9)

Using the second and third equations of Equation (5.9) from the fourth equation of Equation (5.8), we can
obtain dλ1

dt = M1e
−δt +M2λ1 +M3λ2, where

M1 =
(C − u1q1N)δ + u2q2Z(q2E − δ)

q1N
, M2 = − w1q2NZ

(p1 +N)q1N
, M3 = − w2q2TZ

(p2 + T + βN)q1N
.

The solution of this linear equation is

λ1 = N0e
−M2t − M1e

−δt

M2 + δ
− M3λ2

M2
. (5.10)

Using the same method as above, we can get

λ3 = I0e
H2t − H1e

−δt

H2 + δ
, (5.11)

where

H1 = [
(C − u2q2Z)δ − q1N(u1δ +M1)

q2Z
+

M1M2q1N

(M2 + δ)q2Z
], H2 =

M2M3q1N

q2M2Z
.

Identically

dλ2

dt
= R1e

−δt +R2λ2, (5.12)

where

R1 =
M1

M2 + δ
+

H1

H2 + δ
(
c2w2Z(p2 + βN)

(p2 + T + βN)
2 ), R2 =

M3

M2
(
r2α1N

k1
)− w2TZ

(p2 + T + βN)
2 .
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So we can get λ1

λ1 = N0e
M2t − M1e

−δt

M2 + δ
−
M3(W0e

R2t − R1e
−δt

R2+δ )

M2
.

The shadow price λ1e
−δt is bounded as t→∞, N0 = 0 and W0 = 0, then we can obtain

λ1 = −M1e
−δt

M2 + δ
− M3

M2
(eR2t − R1e

−δt

R2 + δ
). (5.13)

Now use Eqs.(5.11), (5.12) and (5.13) in the first of Eq.(5.9), we have

[
(C − u1q1N

∗)δ + u2q2Z
∗(q2E

∗ − δ)
q1N∗

]e−δt +
w2q2N

∗Z∗

(p1 +N∗)q1N∗
[
M1e

−δt

M2 + δ
− M3

M2
(eR2t − R1e

−δt

R2 + δ
)]

+[ w2q2T
∗Z∗

(p2+T∗+βN∗)q1N∗ ][R1e
−δt

R2+δ ] + u1q1E
∗e−δt + [M1e

−δt

M2+δ −
M3

M2
(eR2t − R1e

−δt

R2+δ )][− r1N
∗

k1
+ w1N

∗Z∗

(p1+N∗)2
]

= (R1e
−δt

R2+δ )[ w2βT
∗Z∗

(p2+T∗+βN∗)2
− r2α2T

∗

k2
] + (H1e

−δt

H2+δ )[ c2w2Z
∗(p2+βN∗)

(p2+T∗+βN∗)2
].

(5.14)

Because of the computational complexity, our optimal equilibrium solution can be expressed as

T ∗ =
[(c1w1 − δ)N∗ − δp1](p2 + βN∗)

[(c2w2 − δ)p1 + (c2w2 − c1w2 − δ)N∗]
,

Z∗ = r1(p1+N∗

w1k1
)(k1 −N∗ − α1T

∗). (5.15)

N∗ available from the following equation

r2(k2 − T ∗ − α2N
∗)(p2 + T ∗ + βN∗)− w2k2Z

∗ = 0. (5.16)

E∗ available from the following equation

r1

q1
(1− N∗ + α1T

∗

k1
)− w1Z

∗

q1(p1 +N∗)
=

c1w1N
∗

q2(p1 +N∗)
− c2w2T

∗

q2(p2 + T ∗ + βN∗)
− d

q2
. (5.17)

From the complex calculation results, it can be seen that T ∗ and Z∗ are functions of v. Therefore, we can
express this function as follows

[
(C − u1q1N

∗)δ + u2q2Z
∗(q2E

∗ − δ)
q1N∗

]e−δt +
w2q2N

∗Z∗

(p1 +N∗)q1N∗
[
M1e

−δt

M2 + δ
− M3

M2
(eR2t − R1e

−δt

R2 + δ
)]

+[ w2q2T
∗Z∗

(p2+T∗+βN∗)q1N∗ ][R1e
−δt

R2+δ ] + u1q1E
∗e−δt + [M1e

−δt

M2+δ −
M3

M2
(eR2t − R1e

−δt

R2+δ )][− r1N
∗

k1
+ w1N

∗Z∗

(p1+N∗)2
]

−(R1e
−δt

R2+δ )[ w2βT
∗Z∗

(p2+T∗+βN∗)2
− r2α2T

∗

k2
]− (H1e

−δt

H2+δ )[ c2w2Z
∗(p2+βN∗)

(p2+T∗+βN∗)2
] = f(v).

(5.18)

If v∗ exists, let v = v∗ be the solution of f(v). Using the value of v∗, we can get the optimal solution
(N(v∗), T (v∗), Z(v∗), E(v∗)). Here, we establish the existence of an optimal equilibrium solution satisfying
the necessary condition of the maximum principle. As Clark [23] pointed out, it is complicated to find the
optimal path composed of explosive control and unbalanced singular control. Because the current model is
much more complex than Clark’s model, we only consider an optimal equilibrium solution. If we can begin to
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get F ∗c = (N(v∗), T (v∗), Z(v∗), E(v∗)) at any initial state in [0, S] to reach its maximum benefit in a limited
time S0. The period [0, S] may be a planning cycle, or it may be the shortest cycle closest to F ∗c, so we take S
to be the shortest time to reach F ∗c. Let (N0, T0, Z0, E0) ∈ R4

+/{0}, (N(v∗), T (v∗), Z(v∗), E(v∗)) ∈ R4
+/{0}

be the optimal equilibrium. Now, we seek min S0(v) subject to the solution to Eq.(5.5).

N(0) = N0, T (0) = T0, Z(0) = Z0, E(0) = E0, N(S0) = N(v∗), T (S0) = T (v∗), Z(S0) = Z(v∗),

E(S0) = E(v∗), (N,T, Z,E) ∈ R4
+/{0}, t ∈ [0, S0]. (5.19)

Using the maximum principle, we will get the adjoint variables λ1, λ2, λ3 and λ4 as

λ1
′ = −∂H

∂N
, λ2

′ = −∂H
∂T

, λ3
′ = −∂H

∂Z
, λ4

′ = −∂H
∂E

. (5.20)

The adjoint variables λ1, λ2, λ3 and λ4 satisfies the another condition

M{N(t), T (t), Z(t), E(t), λ1(t), λ2(t), λ3(t), λ4(t)} = 0, t ∈ [0, S0], (5.21)

where

M{N(t), T(t), Z(t), E(t), λ1(t), λ2(t), λ3(t), λ4(t), t}=
[

sup
vmin,vmax

]
H(N(t), T(t), Z(t), E(t), λ1(t), λ2(t), λ3(t), λ4(t), v).

Eq.(5.19) specifies a set of initial conditions for λ1, λ2, λ3 and λ4, and Eq.(5.20) uses these initial conditions
to determine the unique solution of λ1, λ2, λ3 and λ4. Therefore, it is easy to obtain the optimal tax policy
as follows:

v̄(t) =

 vmax, for all t ∈ [0, S0] if ∂H
∂v > 0,

vmin, for all t ∈ [0, S0] if ∂H
∂v < 0.

(5.22)

The optimal path in [0, S] is the solution of Eq.(5.5) in its elementary state. We will now combine these two
stages to obtain the optimal tax policy and optimal path in an infinite range:

v(t) = v̄(t), t ∈ [0, S0], v(t) = v∗, t > S0, Γ(t) = Γ̄(t), t ∈ [0, S0], Γ(t) = Fc = (Nb, Tb, Zb, Eb), t > S0.

From the above analysis, we can easily observe the following points:

(i) From Eqs.(5.7) and (5.11)-(5.13), we note that λie
−δt, (i = 1, 2, 3, 4), where λi is an adjoint variable,

which remains unchanged in an optimal balance time interval, therefore, they satisfy the transversal condition,
that is, they remain bounded to t→∞.

(ii) Considering the coexistence equilibrium point Fc = (Nb, Tb, Zb, Eb), The fourth equation of Eq.(5.8)
can be written as

(λ1q1Nb + λ2q2Zb) = (u1q1Nb + u2q2Zb − C)e−δt.

This means that the total harvest cost per unit of user’s effort is equal to the discount value of the future
price under the steady state effort level.

(iii) From Eqs.(5.11) and (5.13), we can obtain

u1q1Nb + u2q2Zb − C = −[(
M1e

−δt

M2 + δ
− M3

M2
(
R1e

−δt

R2 + δ
))q1N + (

H1e
−δt

H2 + δ
)q2Z]→ 0, as δ →∞.
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Zooplankton System Influenced by Toxin Avoidance and Harvesting

© 2023   Global Journals

1

Y
ea

r
20

23

22

Fr
on

tie
r

R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
  
 e

rs
io
n 

I 
 

V
V
III

  
 

( F
)

Sc
ie
nc

e
G
lo
ba

l
Jo

ur
na

l
of

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The optimal solution of (5.5) forv = 0.867.

This shows that the unlimited discount rate leads to the complete dissipation of the net economic income
to the society, (u1q1Nb + u2q2Zb−C)E = 0. We also observe that for a zero discount rate, the present value
of the continuous time flow reaches its maximum.

Due to the complexity of its calculation and to explain our optimal tax policy more intuitively, we continue
to study it through numerical simulation. If r1 = 6, r2 = 5, α1 = 0.2, α2 = 0.2, k1 = 100, k2 = 190, w1 =
0.3, w2 = 0.3, p1 = 50, p2 = 50, d = 0.2, c1 = 0.45, c2 = 0.45, β = 0.3, q1 = 0.2, q2 = 0.2, ε = 0.2, ϕ = 0.5, γ =
0.2, C = 2, u1 = 0.1, u2 = 0.2, and the discounting factor δ = 0.045 in appropriate units, based on the
selection of the above parameter values, we can get the optimal tax is v = 0.867. In Fig.2, we get the optimal
solution. Therefore, we have used the principle of Pontryagin’s maximum to obtain the optimal path of
the optimal tax policy, which not only ensures the maximum goal of the regulatory authority, but also the
stability of the ecosystem.

In this section, we will use Matlab to numerically simulate the impact of various parameters on species
and the stability of steady state. Therefore, the initial conditions and parameter settings in Table 2 are used
for the numerical analysis of the system (2.3). First, we give the time series diagram of N , T and Z with
short period and long period, then the impact of different β, q1E and q2E on the survival of species were
investigated. Lastly, we study the changes in equilibrium stability with varying delays of time.

All the biological descriptions of the parameters are given below:
Parameter Environmental Interpretation Value

(N0, T 0, Z0) Initial concentrations (500,200,1000)
r1 Intrinsic growth rate of NTP 0.56
r2 Intrinsic growth rate of TPP 0.49
α1 Competitive effect of TPP on NTP 0.1
α2 Competitive effect of NTP on TPP 0.1
k1 Carrying capacity of NTP 5600
k2 Carrying capacity of TPP 4900
w1 NTP consumption rate 0.5
w2 TPP consumption rate 0.5
p1 Half saturation constants for NTP 30
p2 Half saturation constants for TPP 30
c1 the conversion rate of N to Z 0.45
c2 the conversion rate of T to Z 0.45
β Intensity of avoidance -
d Zooplankton mortality rate 0.05
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Fig. 2:

Table 2:

VI. Numerical Simulations

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In Fig.3, we plot the time series of β = 0, β = 10, β = 1000 in the first ten days, where the other parameter
values and initial conditions are the same as in Table 2. When q1 = q2 = 0 and β = 0, we can observe that
NTP and TPP tend to perish at a fast linear speed. It is obvious that when β increases to 10, the concentrate
of TPP will first increase to a certain concentration, then decrease and finally tend to extinction, while at
this time, NTP still maintains a rapid decline rate until it is extinct(fig.3(a)(b)). On the contrary, when
β = 0, we take q1 = 0.4, q2 = 1.2, and q1 = 2, q2 = 2.5, respectively. We can observe that with the increase
of q1 and q2, NTP and zooplankton tend to become extinct at a faster rate of decline, while TPP increases
more rapidly(fig.3(c)(d)). Based on the values of q1 and q2 of (fig.3(c)(d)), we increase β to 10. Through
comparison, we can find that the curves of NTP and zooplankton have almost no change, but the increasing
speed of TPP is still accelerated(fig.3(e)(f)). To further explore the influence of β, we fixed q1 and q2 as 2
and 2.5, respectively. And increased the value of β from 10 to 1000. At this time, We can observe that the
concentration of NTP, TPP and zooplankton has almost no change(fig.3(g)(h)). Finally, when β exists and is
fixed at 10, we increase the concentrations of q1 and q2 to 6 and 8, respectively. At this time, we can observe
that NTP and zooplankton accelerate the decline rate, while TPP has no obvious change(fig.3(i)(j)).

In Fig.4, we draw a long-term time series diagram of the system (2.3). We fixed that q1 and q2 are both
0. In fig.4(a)(b), we can observe the dynamic change of β from 0 to 10. First, we take β = 0, in fig.4(a), we
will find the extinction of TPP, while NTP and zooplankton oscillate in the form of limit cycles. Next, we
increase β to 10, observe the fig.4(b), all species are in a coexistence state, and the system is stabilized to
a periodic orbit. These periods show large oscillations of all populations. Secondly, when we fix β = 0 and
increase q1 = q2 = 0.1 to q1 = q2 = 0.36, we can find that when q1 and q2 are within a certain range, NTP
and TPP will coexist, and zooplankton will tend to become extinct(fig.4(c)(d)). Finally, when we fix β = 10

and increase q1 = q2 = 0.36 to q1 = q2 = 0.37, we will find that the coexistence of NTP and TPP disappears,
and then only TPP exists and tends to be stable, while NTP and zooplankton tend to be extinct(fig.4(e)(f)).

Now, to explore the influence of pregnancy delay (τ1) and toxin onset delay(τ2) on the stability of equi-
librium point in different cases. First, we need to set a set of parameters as follows

r1 = 2, r2 = 3, α1 = 0.3, α2 = 0.1, k1 = 2500, k2 = 3000, w1 = w2 = 0.5, p1 = p2 = 50,

c1 = c2 = 0.45, d = 0.05, β = 0.5, q1 = 0.2, q2 = 0.3, E = 1. (6 1)

With initial values (N0, T0, Z0) = (400, 300, 500), we perform numerical simulations to verify the theoretical
results of the previous delayed system (2.2). For these parameters, we take (6.1) into the delayed system
(2.2), the complex dynamical behavior of the system has been observed with time delay.

Case i: when τ1 = 0, τ2 > 0, in this case, [Re( dξdτ2 )τ2=τ20,ξ=iω0
]−1 > 0, the transversality condition is

contented. So when τ2 < τ20(Fig.5(a)(b)), the positive equilibrium E∗ is locally asymptotically stable, the
positive equilibrium E∗ is unstable when τ2 > τ20(Fig.6(a)(b)), when τ2 = τ20, the system undergoes Hopf
bifurcation around the positive equilibrium E∗. (Fig.5(a)(b)) shows the trajectories and phase portrait of
system (2.2) for τ1 = 0, τ2 = 1. It can be clearly seen that the system (2.2) will converge to the positive
equilibrium point E∗. And (Fig.6(a)(b)) shows the trajectories and phase portrait of the system (2.2) for
τ1 = 0, τ2 = 1.08. In this case, the delay system (2.2) has a periodic solution near the positive equilibrium
point (E∗).

Case ii : when τ1 > 0, τ2 = 0, we change the values of k1 and k2 in (6.1) to k1 = 150, k2 = 250, and the
others remain unchanged. [Re( dξdτ1 )τ1=τ10,ξ=iω̂0

]−1 > 0, the transversality condition is satisfied. (Fig.7(a)(b))
shows the trajectories and phase portrait of the system (2.2) for τ1 = 0.7, τ2 = 0. It can be seen that
although the final equilibrium point tends to be stable, there is no oscillation, indicating that there is no
periodic solution in this case.

Case iii : when τ1 = 0.9 in stable interval (0, τ10), and take τ2 > 0 as the parameter, [Re( dξdτ2 )τ2=τ̃2,ξ=iω̃]−1 6=
0, the transversality condition is satisfied. So when

τ2 < τ̃2

Balancing Coexistence: Ecological Dynamics and Optimal Tax Policies in a Dual Phytoplankton-
Zooplankton System Influenced by Toxin Avoidance and Harvesting

a) Time series analysis

b) Double time delay analysis 
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(Fig.8(a)(b)), the positive equilibrium E∗ is locally asymptotically stable, the positive equilibrium E∗ is
unstable when τ2 > τ̃2(Fig.9(a)(b)), when τ2 = τ̃2, the system undergoes Hopf bifurcation around the
positive equilibrium E∗. (Fig.8(a)(b)) shows the trajectories and phase portrait of the system (2.2) for
τ1 = 0.9, τ2 = 1.06. It can be clearly seen that the system (2.2) will converge to the positive equilibrium
point E∗. And (Fig.9(a)(b)) shows the trajectories and phase portrait of the system (2.2) for τ1 = 0.9,
τ2 = 1.09; we find the delayed system (2.2) has periodic solutions near the positive equilibrium point E∗ in
this case.

Therefore, through the above numerical simulation, we can evidently find the system is stable for small
values of the delay, but as the value of delay crosses its critical value, the system loses its stability and
undergoes Hopf-bifurcation. Thus the limit cycle exists for τ1 > τ10, τ2 > τ20 and τ2 > τ̃2.
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VII. Discussion

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The dynamic changes of the system ( 1 ) with different β, q1 and q2 in the first 10 days, other
parameter values and initial conditions are the same as Table 2. (a)(b) : In the case of q1 = q2 = 0, β = 0
and β = 10, the TPP concentration will fluctuate and the NTP concentration will barely change. (c)(d) : For
β = 0, the concentrations of q1 and q2 increase, and both NTP and TPP concentrations accelerate towards
extinction. (e)(f) : Based on (c)(d), for β = 10, TPP reached a higher flowering concentration, while NTP
still maintained a lower concentration. (g)(h) : Based on (f), for β = 1000, NTP and TPP concentrations
are almost unchanged. (i)(j): for β = 10, we increase the concentrations of q1 and q2 to 6 and 8, respectively.
NTP and zooplankton accelerate the decline rate, while TPP has no obvious change.
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Fig. 3:
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The long-term dynamics of the system (2.1), all other parameter values are the same as Table 2.
(a): When q1 = q2 = 0, NTP and zooplankton with initial concentrations (500,200,1000) oscillate and TPP
populations become extinct. (b): For β = 10, all populations survive and the system stabilizes to a limit
cycle. (c)(d) : For β = 0, 0 ≤ q1=q2 ≤ 0.36, NTP and TPP can coexist. (e)(f): when we fix β = 10 and
increase q1 = q2 = 0.36 to q1 = q2 = 0.37 , we will find that the coexistence of NTP and TPP disappears,
and then only TPP exists and tends to be stable, while NTP and zooplankton tend to be extinct.
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Fig. 4:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The behavior of the system(2.2) for τ1 = 0,τ2 = 1 with other parameters chosen in (6.1).

The behavior of the system(2.2) for τ1 = 0,τ2 = 1.08 with other parameters chosen in (6.1).

The behavior of the system(2.2) for τ1 = 0.7,τ2 = 0 with other parameters chosen in (6.1).
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Fig. 5:

Fig. 6:

Fig. 7:
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The behavior of the system(2.2) for τ1 = 0.9,τ2 = 1.06 with other parameters chosen in (6.1).

The behavior of the system(2.2) for τ1 = 0.9,τ2 = 1.09 with other parameters chosen in (6.1).

The predator avoidance effect always attracts ecologists to investigate it. In the aquatic system, zooplank-
ton lives in the environment full of toxic and non-toxic bait (phytoplankton). To make toxic phytoplankton,
nontoxic phytoplankton and zooplankton coexist, the avoidance behavior of zooplankton against toxic phy-
toplankton is an important research topic. In this paper, we consider a biological model with two delays in
which zooplankton avoids poisonous phytoplankton in the presence of nontoxic phytoplankton. For this mod-
el of poisonous avoidance, due to the avoidance coefficient of zooplankton to toxic phytoplankton, the growth
density of zooplankton and toxic phytoplankton is nonlinear. When the poisonous avoidance coefficient is
high, the density of poisonous phytoplankton will increase in proportion, and finally tend to be stable. we
also consider the impact of human harvest on the coexistence of these three species, the form of avoidance
and human harvest have biological significance, which we also analyzed.

According to this article, we analyze the positive and boundedness of the system solution without time
delay at first. In the bounded area, the densities of nontoxic phytoplankton (NTP), toxic phytoplankton
(TPP) and zooplankton (zooplankton) are all non negative. Then we analyze the bistability of the equilibrium
points. From fig.1, we can see the bistability of each equilibrium point in different k1 ranges. For the dynamic
behavior of double time-delay systems, we analyze the local stability and the existence of Hopf bifurcation.
Taking the pregnancy delay τ1 and the toxin onset delay τ2 as the bifurcation parameters, the critical value
of the time delay for the Hopf bifurcation of the system under different conditions is obtained. We find that
the system is stable when the time delay is less than this critical value(τ 0

1 , τ0
2 , τ∗10 and τ∗20, respectively), but
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Fig. 8:

Fig. 9:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

when we increase the time delay to more than this critical value, the system will become unstable, and then
Hopf bifurcation occurs at the critical time. Considering the practical significance of the research, in section
5, we use the principle of Pontryagin’s maximum to study the optimal tax policy of the system without time
delay, we obtained the optimal path of the optimal tax policy. In addition, we use the parameters and initial
values given in Table 2 and (6.1) to simulate several cases of double-delay systems in Matlab to verify all
theoretical results.
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