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Balancing Coexistence: Ecological Dynamics
and Optimal Tax Policies in a Dual
Phytoplankton-Zooplankton System Influenced
by Toxin Avoidance and Harvesting

Yuqin, Wensheng Yang

Absiract- In recent years, the impact of toxic phytoplankion on ecological balance has attracted more and more
ecologists to study. In this paper, we develop and analyze a model with three interacting species, poisonous and
nontoxic phytoplankton, and zooplankton, including zooplankton avoiding toxic phytoplankton in the presence of non-
toxic phytoplankton, and the impact of human harvest on the coexistence of these three species. We first introduce the
poisonous avoidance coefficient B and the human harvest of nontoxic phytoplankion and zooplankion to investigate its
impact on species coexistence. We not only find that g has a particular effect on the coexistence of these three species.
But also that human harvest is an essential factor determining the coexistence of these three species. Secondly,
pregnancy delay (71) and toxin onset delay (73) are introduced to explore the influence of time delay on the behavior of
dynamic systems. When the delay value exceeds its critical value, the system will lose stability and go through Hopf
bifurcation. After that, we use the principle of Pontryagin's maximum to study the optimal tax policy without delay. We
obtained the optimal path of the optimal tax policy. Finally, we carry out numerical simulations to verify the theoretical
results.

Keywords: toxic phytoplankton; human harvest, time delay, optimal tax policy; hopf bifurcation.

[. INTRODUCTION

Marine phytoplankton and zooplankton are essential components of marine ecosystems and support the
regular operation of the entire marine ecosystem. The research of marine phytoplankton and animal ecology is
conducive to our comprehensive understanding of the status of an aquatic ecosystem. Marine plankton refers
to the aquatic organisms suspended in the water and moving with water flow, mainly including phytoplankton
and zooplankton, as well as other organisms such as planktonic viruses, planktonic bacteria ,and archaea.
Phytoplankton is the primary producer in the sea; it converts solar energy into organic energy through
photosynthesis, initiates the material circulation and energy flow in the sea, and is the most basic link in the
marine food chain. Zooplankton is an essential consumer in the sea; this part of organic matter is utilized
through the food chain and further transferred to the upper trophic level through secondary production
processes. Therefore, phytoplankton and zooplankton provide food and energy sources for the upper trophic
level organisms through the above primary and secondary production processes, supporting the regular
operation of the entire marine ecosystem.

Phytoplankton is not only the bottom but also the most crucial component of the marine ecosystem. It
is divided into toxic and non-toxic phytoplankton. At the same time, zooplankton can distinguish different
types of phytoplankton. To avoid feeding on toxic phytoplankton, which has a similar synergistic behavior
with selective grazing in the predator-prey system [1-5]. In marine plankton ecosystems, the hypothetical
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mechanisms of selective grazing include prey morphology (size, color, shape, and colony formation), intestinal
genetic strains, and poisonous chemicals released by prey [6-12]. Thus, the avoidance effect of zooplankton
on toxins from toxic phytoplankton and the harmful effects of toxic compounds released by toxic species on
their competitors have been studied [13-20].

In this paper, we consider not only the effect of toxin avoidance on species existence, but also the impact
of human beings on the harvest of non-toxic phytoplankton and zooplankton is considered, whereas non-toxic
phytoplankton on species existence and the human harvest has been applied in many models [21-27]. Since
time delay is widely studied in the phytoplankton-zooplankton model [28-31], another essential purpose of our
research is to explore the effect of pregnancy delay and toxin onset delay on the dynamic system. Finally, we
find that optimal strategies are applied in many models to constrain overfishing [32-33]. Through the research
we know that in fisheries, there is a fishing strategy called specific fishing, that is, fishermen catch almost only
one particular type of fish or several species associated with it, such as these three species in our article, so we
need a feedback mechanism to control this particular capture. Based on the dual phytoplankton-zooplankton
system, we consider the optimal tax policy to constrain this particular fishing.

The organizational structure of this paper is as follows. In Section 2, we establish a mathematical model
with double time delays for avoiding toxic species by zooplankton in the presence of non-toxic species. And
give a parameter explanation in Table 2. In Section 3, we analyze the boundedness and stability of the
boundary equilibrium point and the internal equilibrium point in the delay-free model. And obtain the
bistability between the equilibrium points. The results are summarized in Table 1 and Fig 1. In Section 4,
by analyzing different situations of this double delay model, we obtain the critical value of time delay when
the system undergoes Hopf bifurcation. In Section 5, we study the optimal tax policy without time delay
using the principle of Pontryagin’s maximum. In addition, we use the parameters and initial values given in
Table 2 and (6.1) to simulate several cases of double-delay systems in Matlab to verify all theoretical results
in Section 6. Lastly, we end this paper with some conclusions and significance in Section 7.

[I. MODEL FORMULATION

Considering the toxin refuge of zooplankton, a nontoxic phytoplankton-toxic zooplankton model was
proposed in [14]. They showed that avoidance effects can promote the coexistence of non-toxic phytoplankton,
toxic phytoplankton and zooplankton. Which can be shown as(with symbols slightly varied):

dN N+OtlT wlNZ

&Y L N(1— _

ar ~ "N PR

dT T—FO&QN ngZ

— =rT(1— — ,

ar T k2 ) T 4BN (2.1)
% - wlNZ . ngZ _dz

dt_p1+N po+ T+ BN ’

N(0) =0, T(0) >0, Z(0)=0,

where N, T ;,and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton ,and zooplankton,
respectively. ki and ko are the environmental carrying capacities of nontoxic phytoplankton (NTP) and toxin-
producing phytoplankton (TPP) species, respectively. 71 and ro represent the constant intrinsic growth rates
of N and T, respectively. a; and as measure the competitive effect of T"on N, and N on T, respectively. w1
and ws represent the rates at which N and T are consumed by Z, respectively. p; and py are half- saturation
constants for NTP and TPP, respectively. § represents the intensity of avoidance of T by Z in the presence
of N, and d is the natural mortality of zooplankton. As the research merely focuses on a single time model,
moreover overfishing has an important impact on the stability of marine ecosystems, human harvest and time
delays should be taken into account. The increment in zooplankton population due to predation does not
appear immediately after consuming phytoplankton; it takes some time(say 71), which can be regarded as
the gestation period in zooplankton. The decrease of zooplankton population caused by ingestion of toxic
phytoplankton does not occur immediately. Still, it requires a certain time(say 72), which can be regarded as
the reaction time after zooplankton poisoning. Accordingly the bio-economic model with time delays on the
interactions of nontoxic phytoplankton, toxic plankton and zooplankton with toxin avoidance effects, which
can be shown as follows:
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dN _ N+aT, wNZ

E—rlN(l o )_p1+N_q1EN’

d—T*TQT(lfT+a2N)f weoT'Z 7

dt o ps + T+ BN (22)
az _ aunNt—m)Z(t—m)  cwTlt-mn)Zt-n) 07 — B7

dt p1+ Nt —1) po +T(t— 1)+ BN(t — 1) ’

N(0) >0, T(0)>0, Z(0)>0,

where N, T, and Z represent the biomass of nontoxic phytoplankton, toxic phytoplankton and zooplankton,
respectively. 71(73 > 0) and 72(72 > 0) represent the maturation gestation delay and the toxin onset delay,
respectively. c¢; and co represent the conversion rate of N to Z and T to Z, respectively. Due to the
experience of human capture, we assume that humans can distinguish between toxic phytoplankton and
non-toxic phytoplankton when capturing zooplankton and phytoplankton. So, we put ¢; and ¢y to represent
the fishing coeflicients of nontoxic phytoplankton and zooplankton, respectively. And F is the effort used to
harvest the population. To investigate the effect of time delay on the dynamic behavior of the model, we will
first study the stability of the equilibrium point of the following model without time delay.

dN N+C¥1T ’lUlNZ

= N1 — - — @EN

o~ ) o N BN

d7T ’I“T( _T—|—O¢2N . ’U)QTZ

a 2 ko po+ T+ BN’ (2.3)

az NZ TZ
@2 _amns o —dZ - EZ,
dt p1+ N po+ T+ BN

N(0) =0, T(0) =0, Z(0)=0.

[I[. DyNAMICAL BEHAVIOR OF NON-DELAYED MODEL

a) Positivity and boundedness of the solution
In this subsection, firstly, we shall show the positivity and boundedness of solutions of the system (2.3),
which is vital for the biological understanding of the system and the subsequent analysis.

Lemma 3.1. All the solutions with initial values of system (2.8), which start in Ri, are always positive and
bounded.

Proof. Firstly, we rewrite the model (2.3) and take the linear as the following form:

dX
- F(x), (3.1)

where X (t) = (N, T, Z)" € R3 and F(X) is simplified as the following

Fi(X) rN(1 - 8ad) - edg — g EN
F(X)=|F(X)| = T+oayN wyTZ
w0 Fngg r2T(1 = =53) — 5rian
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We want to prove that (N(t),T(t),Z(t)) € R% for all t € [0, 4+00). For system (2.3) with initial value
N(0) >0, T(0) > 0 and Z(0) > 0, we have

N(t) = N(0) exp{ [ [ri (1 — XeteaTl)y w6y, plgs),

k1 p1+N(s)
t 1N(s Z
T(t) = T(0) exp{ fy [ro(1 — FEHRNED) — sl ds),
1 lN 2 2
2(6) = 20 exo{fy [S70 — 5t sons — 4 — a2Elds),

which shows that all the solutions of system (2.3) are always positive for all ¢ > 0.

Secondly, we prove the boundedness of the solution. Let (N(t), T(t), Z(t)) be the solutions of system
(2.3), we define a function

W(t) =1 N(t) + 2T (t) + Z(2). (3.2)
Then, by differentiating (3.2) concerning ¢, we obtain

dW N"‘OélT

T+ o1 N
+ W = N
dt " arN({ - k1

ko

2CQU/2TZ
p2+ 1 + BN

)+ cor2T(1 — ) — —dZ — @EZ —ciqn EN

+ N + conT +nZ,

N T
<erN(1 - k—) + coreT(1 — k—) —dZ + cinN + conT +nZ,
1 2

2 CQ’)"QT2

ko

N
= f”"kl + (14 n)es N —
1

+ (r2 + )T + (n — d)Z,

crky(r +n)? n coka(ry +1)°
47"1 47’2

IN

+(n—d)Z,

crroky (ry + 1) + carrka(rg + 1)
4’/’17"2

when 1 — d < 0, we can obtain

aw. +gW < 0172k1(71+77) +6271k2(72+77)2

4’)"1 T2

ciraki(ri+n)? +62 rika(ra+n)?

noting k = i , therefore, applying a theorem on differential inequalities [34], we obtain
0<W <o+ w let t — +oo, W(N,T,Z) < 7. So, all solutions of system (2.3) enter the

ent
region

D={(N,T,Z) R} : 0<W(N,T,Z) < —}. (3.3)

3| =

This shows that every solution of the system is bounded.
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b) Equilibrium points and their stability

System (2.3) possesses six different equilibrium points:

(i) the plankton-free equilibrium, Ey = (0,0, 0), which always exists;

(ii) TPP and zooplankton-free equilibrium, Fy = (kq,0,0), which is always feasible;
(iii) NTP and zooplankton-free equilibrium, Es = (0, k2, 0), which is always feasible;
(iv) zooplankton-free equilibrium, E5 = (1\7 , T ,0), where

ks —ki @k E 5 ook — ko

) T: )
10 — 1 1 10 — 1

]v:

(v)TPP-free equilibrium E; = (N,0, Z), where

(2 + d)ps _
C1w1 —d—QQE’ k1w1

ri(ki = N) — gk E(p1 + E) |

)

\N]

N:

(vi)the interior equilibrium, E* = (N*,T*, Z*), where

oI N* — (d+ @ F)(p1 + N*)(p2 + BN*) (pr+ N*)ri(k1 — N* —onT*) — k1 B

T = , Z4F= ;
(cows +d+ @2E)(p1 + N*) — cpw N* k1w,
and N* can be obtained from
Tz(pz—i—T* +5N*)<k2 -T* —OéQN*) —’U}QI{JQZ* =0. (34)

Next, we illustrate the existence and stability of six equilibria when human harvest and avoidance factor
exist simultaneously by solving Jacobi determinant of different equilibria, and summarize them in Table 1.

Equilibria analysis: Obviously, the equilibria Ey, F4 and E5 always exist. The zooplankton-free equilib-

rium Ej exists, let N and T both be positive, that is as > ’;—j and a1 > W + kl The TPP-free

equilibrium E, exists, let N and Z both be positive, that is w; > d+qu and k1 > #ﬁ)ﬁl@)' The

interior equilibrium point E* exists; let N*, T* and Z* all be positive, that is k; > qlfl + N* + an T,
cows(p1 + N*) > cowi N* — (d + qQE)(P1 + N*) > 0 and Eq.(3.4) has at least one positive root.
In the following, we summarize the eigenvalues and local stability conditions around the feasible equilib-

rium point of each organism of system (2.3).

(i) The eigenvalues of the plankton-free equilibrium Ey = (0,0,0) are 1, ro and —d — g2 E. Therefore, it is a
saddle point and hence always unstable.

(ii) The eigenvalues of the TPP and zooplankton-free equilibrium E; = (k1,0,0) are —ry — 1 F, ro(1 — %)

and % d—qFE. When cqw; —d—qE <0, and oo > ’” hold, E; is LAS(locally asymptotically stable).

On the contrary, if ciw; —d — @ E > 0, ag > kf and k; < % hold, we can also obtain E; is LAS.

(iii) The eigenvalues of the NTP and zooplankton-free equilibrium Ey = (0, k2, 0) are ro(1 — kQO‘l) akE, —re

and —% —d — ¢ E, Therefore, E5 is LAS if k; < Tzaclzf%

. . _ 1ol . _ S clw11y o C2’g)2T =
(iv) The eigenvalues of the zooplankton-free equilibrium F5 = (N,T,0) are powry Al T d—qoFE, M\

and Ao, where A\; and Ay are the roots of the equation

AN b A+¢ =0, (1)

© 2023 Global Journals

Global Journal of Science Frontier Research (F) Volume XXIII Issue VIII Version I H Year 2023



Global Journal of Science Frontier Research (F) Volume XXIII Issue VIII Version I H Year 2023

where

_ ko(2N T) — rok1 (2T N
61:7[7‘2*7’14»7,1 2( +to le;? 1( + ag )

J,

1 1 1
= - + — = -
(2]\7 + OélT)k‘g (2T + OéQN)kl kle

¢ =rira[l — (2T + auN)(2N 4 a7

]

k1(2T + OéQN) — 7’10[12NT
kiko

+ qira B( —1).

clwlN _ CQ'UJQT _ _ . M s Cl’wl{v _ _
Therefore, let P e T d—q2E < 0, A1 and A2 with negative real parts, that is Py d—q@pFE <

02w2’f’ 7 — .. . .
pw oy L b1 > 0 and ¢; > 0. If the above conditions are satisfied, E3 is LAS.

(v) The eigenvalues of the TPP-free equilibrium E, = (N,0, Z) are r2(1 — agjv) - %,

A1 and 5\2, where

A1 and Ao are the roots of the equation

A2 — (ag + 52))\ + Ggby + ¢ = 0, (2)

where

ag = (ri(1—3%) - 7(;1f}vz)z - kb)),

_ (awN _ 5 _ = _ aw’piNZ
b2 - (pl-‘,-N d qQE)a C2 (;D1+N)3 .

Therefore, let ro(1 — O‘EQN) — p;UjBZN < 0, A\; and )\ with negative real parts, that is (ao + 52) < 0 and

Gabs + Gy > 0. If the above conditions are satisfied, F4 is LAS.

(vi)By solving the Jacobi determinant of E*, we can get its characteristic equation as follows
A3 + D122 + DoA + D3 = 0. (3)

The interior equilibrium E* = (N*,T*, Z*) is LAS if

(a) Dy >0,
(b) Ds >0,
(C) D1Dy — D3 > 0,
where
27T N* z* N* 2N* T* z*
D1=—{7“2[1—( + aaN™) w2 (p2 +8 )2 rl[l—( +a,T*) __Wwapy QE)
k1 (p2 +T* + BN*) Ky (p1 +N¥)
N* T*
_ (01101 - C2U/*2 - fdfng),
p1+N*  pa+T*+ BN
D, — {clwlzplN*Z* CQ’UJl’wQﬂN*T*Z* CQwQQT*Z*(p2 + ﬂN*)}
g = _

(p+N*)*  (pa+T* + BN*)*(p1 + N*) (p2 + T* + BN*)?
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p1+ N* ko (p2 +T* + BN*)* * (po +T* + BN*)? Cpo+ T+ BN* " ki(po + T* + BN¥)

wlwgplT*Z* wgqlET* TlalwlN*T* wleﬂN*T*Z*
+ 2 * * * 2
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b (- YTy T gy sy - BTN, et PV
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rlalN* 7‘10[1T* wgﬁT*Z*
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From the calculation of the eigenvalues, obviously, 8 does not affect the stability of F; and Fs. Still, it
has a significant impact on the stability of F3 and E, (because the eigenvalues of F; and Es are independent

of B, but related to human harvest). On the other hand, we not only find that the equilibrium point of

system (2.3) is affected by human harvest, but also has a particular impact on its stability(it can be seen
from the eigenvalue of each equilibrium point).

Next, the biological explanations of the above different equilibria are discussed below. Since all these
interpretations are mainly based on local asymptotic stability conditions, initial abundance of all the pop-
ulations may also play an essential role for the system’s dynamics together with the parameters. Different
from the biological explanation in [14], we not only consider the effect of § on species coexistence, but also
human harvest as an essential factor in species coexistence.

(i) Eo: Extinction of all the populations at a time is impossible.

(ii)Ey: From the analysis of research results, whenever the carrying capacity of the NTP population
(k1) stays within the specific threshold values of % <k < 2ldteB) po0n TPP and zooplankton will

ciwi—d—qa B
eventually become extinct from the system. Now, through the zlmalysis of the k; threshold range, as the
intensification of the harvest for zooplankton, the equilibrium point F; remains stable for a more extensive
range of k1, and we can say that over-fishing of zooplankton (g2 F) may accelerate the extinction of TPP and

zooplankton.

(iii) Eq: If the carrying capacity of NTP population (k1) stays below the threshold value %, both NTP

and zooplankton eventually extinct. With the competitive effect of TPP on NTP («ay), the environmental
carrying capacities of toxin-producing phytoplankton (k2) and harvesting term for NTP and zooplankton
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(¢1 F) increase, respectively. The equilibrium point Fs remains stable for a larger scale of k1; we can say that
the possibility of deracinating NTP and zooplankton at a time increases with the increase in aq, ko and ¢1 E.

(iv) E3: When the carrying capacity of NTP population (k;) remains within two threshold values % <
ki < % (it can be obtained by the threshold value (ki) of E; and FEs) together with the competitive

effects Oﬁal, a), the harvesting term on NTP (¢ F) are present and the values of all three are small, the

clwlN _ d _ q E C2w2T
1+ N 2 pa+T+BN’
NTP and TPP persist in the system. The chance of zooplankton extinction 1ncreases with the decrease in

avoidance of TPP by zooplankton (8), TPP consumption rate (w;), the half-saturation constant for TPP
(p2), the harvesting term on zooplankton (g2 F) and the zooplankton mortality(d). For a specific parameter

setup (% (d+ ¢2E) > 0), we can find a threshold value of the avoidance of TPP by zooplankton

zooplankton population will go extinct on the condition that whereas both

(M (cror N—(d+@:2E)(p1+N)) N
(/1’(1}1
p1t+

(B < (cawaT)(pr4N) P 2+T) below which the zooplankton population will become extinct. On

the contrary, for — (d+ ¢2E) < 0, the extinction of zooplankton dose not depend on the intensity of

avoidance; it maybe has something relationship with the harvest term on zooplankton (g2 F).
(d+q2E)p
Cl’wlfrzdfqzlE <

), then TPP becomes extinct under the condition (TZ(I€2 QQQN) < p“’f[jZN) whereas both

NTP and zooplankton persist in the system. The possibility of TPP extinction increases with the reduction
in the avoidance of TPP by zooplankton (3), the half-saturation constant for TPP (p2), and the growth rate
of TPP (rqp), decreases with the rise of the competitive effect of N on T (az) and the TPP consumption
rate (ws). Similarly, for a particular parameter setup (ko — asN > 0), we can find a threshold value of

the avoidance of TPP by zooplankton (8 < % — %2), below which TPP may become extinct. On

the contrary, for ks — aoN < 0, TPP extinction dose not depend on the avoidance. Because the biological
analysis of F4 found that the harvesting term has little impact on the extinction of TPP compared with
other equilibrium points. In conclusion, for ks —asN < 0, TPP extinction dose not depend on the avoidance
of TPP by zooplankton () and harvest term on zooplankton (g2 F).

(Vi)E* = (N*,T*, Z*): When the competitive effects (a1 ), the fishing coefficients of nontoxic phytoplank-
ton (q1), the environmental carrying capacities of nontoxic phytoplankton (k1), and the effort used to harvest
the population (F) remain very small, whereas the constant intrinsic growth rates of N (r1), there may be
a possibility of coexistence of all the three species.

(v)Ey4: If the carrying capacity of NTP population (k1) remains within two threshold values (

(d+g2E)(p1)+ciwips
k < crwi—d—q2 E

Table 1: Existence and stability conditions of the equilibrium points.

Equilibrium Existence conditions Stability conditions
Ey=1(0,0,0) Always exist Always unstable
(i) cw—d-g@E>0 0> %,
Ey = (k1,0,0) Always exist ky < %,
or (ii) cqw; —d—gE <0, a9 > Z—f
Ey = (0,ky,0) Always exist i) k< :;a;fg
(i) 1> 7("1“11})1‘11’“E +h (i) b>0,6>0
Bye (0.0 (i) w > e i)t oall) ¢ Zzgxfﬁ,
(i) k> i (i) g +by <0, dgby+é >0
() k> BBE 4 N T, (i) Di>0,
E* = (N*T%,Z%) (i) cowy(py + N*) > cywi N* = (d + ¢ E)(p1 + N*) > 0, (i) D3>0,
(iii) positive root of Eq.(3.4) exists (iii) DiDy =D >0
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¢) Bistability analysis of equilibrium point
The existence and stability of these equilibrium points are summarized in Table 1 and Fig 1. When
ciw; —d — guE > 0, equilibria By = (0,ks,0), Es = (N, T ,0), By = (k1,0,0) and E4 = (N,0,Z) keep

rocn k roark ko ko p1(d+q2E) (d+g2E)p1
stable for (0 < ky < [2eL%), (2018 < ky < 2), (2 < k1 < o "ites) ad (Gotras < k1 <
(d4+q2E)(p1)+ciwipr

Cl’wlfd*qu

of NTP, TPP, and zooplankton requires the three ranges (k1 > %), (k1 < %), and (k > %)’

respectively. Therefore, the system exhibits these three possible types of bistability,
where

(I)El and EQ.
(ii)E and Ej.
(iii)E5 and Ej.

), respectively(Fig.1(a)). Obviously, for k; at the different equilibria above, the coexistence

The above three types are locally asymptotically stable for different ranges of k.

For %2 2 < ki < min{ :225}{37 cfiTquE)qp;E} we can observe the bistability of E; and Es (Fig.1(b)(c)).

If Condltlons ME)’”E < ki < min{ 2ok (d+q2E)p1+clw1p1} and (7“2(]‘32 V) w2Z_Y hold simultane-

ciwi—d—q2 ro—q1 B crwi—d—q2 E ko p2+BN
ous, we can find the bistability of Fy and E4 (Fig.1(d)(e)). On the contrary, if % <k < :220‘;5}23

holds, for either k; > (d+?;215)1(p2)22g1p1 or ”(kzl;a?N) > pwfﬂZN, we’ll get the existence of stable E, together
ky _(d+gq2E)py

with unstable Fy. Identically, for max{;201%, — "2 =M} < kg < mind k2 W} together with

CQWzT ro(ke—asN) waZ
—~ and =
pa+T+BN ko < p2+BN’

o < 1 761w1N

P
By (Fig 1(5)-()).

Now, let’s discuss the importance of avoiding toxic species by zooplankton (5) together with the harvesting
term (q1 F, g2 F) for the survival of the different species groups.

—d—qFE < we can observe the bistability of F3 and

Firstly, let’s discuss the effect of 5 on three types of bistability. It can be seen from the previous analysis
that the stability of F7 and E5 does not depend on the value of 3. However, for the stability of E3 and
Ey4, it is related to the critical value of 5. When S is less than this critical value, F3 and F4 remain stable.
Thus, S does not affect the bistability of (Ey, E2); when S is below some threshold value, we will observe

the bistability of (Eq, E4) and (E3, Ey), and as the § value increases, the original bistability may disappear.
(7‘2(162 asN) weZ lelN —d— 0 cowsT and ro(ka—asN) < waZ

k2 p2+BN’ pi+N E< po+T+BN ka2 p2+BN°
see the establishment of the above conclusion.)

From these conditions, we can

Secondly, let’s discuss the effect of the harvesting term (¢ F, g2 E) on three types of bistability. From the
analysis of the previous data, it can be seen that although the stability of F; and F5 does not depend on the
value of 3, when humans overfish NTP and zooplankton, that is, ¢; F and ¢ F are too large, it may affect
the bistability of Ey and Fs. For F3 and E4, although their stability is directly related to the threshold value
of B, the existence of ¢1 E and ¢ FF will also affect the threshold value of 8, further influencing the stability
of E5 and E4. Therefore, ¢ F and g2 F may affect the bistability of (Ey, Es), (F2, E4) and (E3, Ey); the
increase of g1 F and g2 F may also lead to the disappearance of this bistability.

[V. DYNAMICAL BEHAVIOR OF THE DELAYED MODEL

In this section, we focus on the local stability and Hopf bifurcation of the delayed model; the delayed
system (2.2) has the following form

where
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Next, assuming Ai(t) = N(t) — N*, Aq(t) = T(t) = T*, As(t) = Z(t) — Z* at the positive equilibrium
point, and linearizing the system (2.2), we can obtain

d Ay (t) N(t) N(t—m) N(t—m1)
Sl | =2 (1@ |+ ar (T —m) ) 45| T-m) |, (4.2)
As(1) Z(t) Z(t— 1) Z(t —12)

where

We linearize the system(2.2) about positive equilibrium E* = (N*,T*, Z*), and get

PO _ Lo+ MUG ) + U~ 7), (43)
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BALANCING COEXISTENCE: ECOLOGICAL DYNAMICS AND OPTIMAL TAX POLICIES IN A DUAL PHYTOPLANKTON-
ZOOPLANKTON SYSTEM INFLUENCED BY TOXIN AVOIDANCE AND HARVESTING

11

Fig. 1: Stability of different equilibria for different ranges of k1. The dotted arrow indicates the range where
bistability occurs, (a) means no bistability, (b) and (c) bistability of E; and Es, (d) and (e) bistability of Fy
and Fjy, (f)-(i) bistability of F3 and Ey.
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where

N
lin liz lis 0 0 O 0 0 0 10)
L=l loo las|, M= 0 0 0 R S = 0 0 0 , U= Tl() s
0 0 s mz1 0 mas3 $31 S32 833 Z1(+)

where Ny , Ty , Z; are small perturbations around the equilibrium point E* = (N*,T*, Z*). We have

—rN w1 ZN riag N w N

li1 = —qFE, s =——, l13=—

11 e + 1+ N2 Q1ty, l12 P N

lon — TQQQT + ’wgﬂTZ Lo — 1o — (27’2T -+ T‘QOélN)

21 — kjl (p2+T+6N)27 22 — 12 k2 Y

e w2 e awipZ  awlN

23 (p2 + T + AN)’ 33 Q2 L, 31 (1 + N2’ 33 (1 + N)’

s o ngQﬁTZ s - CQ’IUQZ(]JQ + 5N) s o CQ’U.)QT

31 2+ T+ BN 32 (pa + T+ BN’ 33 T+ BN
The characteristic equation for the linearized system (2.2) is obtained as

D& 7,7m2) = P(€) + Q(€)e™™ + R(¢)e™™ =0, (4.4)
where
P(€) = &€ + A8 + A1l + Ao, Q(E) = Bo&® + Bi& + By,  R(€) = Co&® + C1& + G,

with

Ay = —(lzz +1log —l11), A1 = lilas + lialss + loolss — lizlor, Ao = —lirloalss + lialoalss
By = —ma3, By = —liimaz — laamaz — l13ms1, By = +Hizloamar + liloamas + lialaimas — lialagman,

Cy = —s33, C1 = —li3s31 + 111533 — laalagsza — 22533,

Co = l11533 + l11la3s32 + lialo1533 + li3laassr — lialagsst — lisla1532.

Case (1): 1, =12 =0.

In this case, Section 3 covers the analysis of the system when 7, = 75 = 0.
Case (2): 7, =0,72 > 0.
In this case, the characteristic equation(4.4) becomes
D(& ) = P(€) + Q&) + R(§)e ™™

=&+ Ap? + A€ + Ag + Bo&? + Bi€ + By + (026 + C1€ + Cple ™ =0, (4.5)

putting £ = iw(w > 0) in Eq.(4.5), and separating the real and imaginary parts, we have

— (Ay + By)w? 4 (Ag + By) = (Caw? — Cp) cos(wrs) — Crwsin(wy),

— w3+ (A1 + By)w = (Cy — Cow?) sin(wry) — Cw cos(wry). (4.6)
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Squaring and adding the equation(4.6), we obtain
[7(142 + BQ)W2 + (Ao + Bo)]2 + [*WS + (Al + Bl)w]2 = (ng2 — 00)2 + (Clw)z. (47)
Simplifying Eq.(4.7) and substituting w? = ¥, the above equation can be written as

U(Y) = ¥° + aa¥® + a1 +ag = 0, (4.8)

N where
otes

ag = —(Ag + B2)? —2(A; + By) — C3, ay = (A1 + B1)? — 2(Ag + By)(Az + Bs) — 2C,Cy — CF, ag = —Cq.

(H1): a2 > 0,a0 > 0,a2a1 —ag > 0.
If (H1) holds, Eq.(4.8) has no positive roots, which implies all the roots of Eq.(4.5) have negative real parts.
Therefore, E* is asymptotically stable for all 75 > 0 when (H1) holds.

(H2): a2 <0,a1 <0,a9 <0oras>0,a1 <0,a0 <0oraz>0,a; >0,a9 <O0.
If (H2) holds, Eq.(4.8) has exactly one positive root wp, substituting wg in Eq.(4.6), we obtain

— (A2 + BQ)W02 + (AO + Bo) = (Cg(,d02 — Co) COS(LU()TQ) — Clu.)() Sin(WQTg),
— WQ3 =+ (Al + Bl)wo = (CO — CZWOQ) SiD(WQTg) — Chwyg COS(OJ()'TZ). (49)

For the critical value of 75, we can obtain

o 1 [Cl+ CQ(AQ—I— Bg)]bu04—|— [Cl (Al + Bl)_ Co(A2+ Bg)— CQ(A0+ BO)]w02+ Co(Ao + BQ) 2]7'('
Toj=-— arccos { 5 5 4+ =,
wo —(Co — CQUJOQ) — (ClUJO) wo

For the transversality condition, differentiating Eq.(4.5) with respect to 72, we get

3 £(Co&? + C1€ + Cp)e ¢

dra 362 + 2426 + A1 + (2Bo€ + By) + (2026 + Cy)e—¢72

Solving (%)’1, we obtain

(ﬁ)_l 38242458 + A1 4 (2Bof + B1) + (2056 + Cy)e ™
dry’ £(C28% + C1§ + Cole ¢ .

Then at 75 = 150 and & = 1wy, we can get

d€ 1 3(in)2 + (2A2 + BQ)(’iUJQ) + A1 + By
[RQ(T)Tzszo,iziwo] = Re[ . K P} R . ]

T2 (twp) (Ca(iwg)” + C1 (iwo) + Co)(cos(woTan) — @ sin(woTao))

90 (i
+Ref P
(iwo)(Ca(iwo)” + C1 (iwo) + Co)
Now
[Re(ﬁ) o] = Re[MR‘FMIi} e[QR+QIi _ MgpNp+ MiNr  QrPr+ QrP;

d,7_2 To=T20,{=1wo NR 4 le PR 4 P]Z NR2 + N12 PR2 =+ P12 ’
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where
Mg = —3wo? + A1 + B1, M; =2(As+ Ba)wo, Ng = (Cowp — Cawp?) sin(weTae) — Crwo? cos(woTao),
N1 = (Cowo — Cawp®) cos(woTo) + Crwo®sin(worzo), Qr =C1,  Qr = 2Cawy,
Pr = —Ciwy?, P; = Cowy — Cowp®.

Then

d¢ AD + BC

A C
=) e Tl = 4.11
[R‘e<d7_2 )7'2*720757’“-00] B + D BD ? ( )

here

A= MgNg+ M;N;, B=Ng?+ N2,

C=QrPr+ QP D:P32+P12.

From this, we can get

d _
SE{RE( )] = sl AD + BC.

If (H3): AD + BC # 0 holds, the transversal condition Sgn[Re(;—é)m:mmg:iwo]_l # 0. From the above
analysis, the following theorem can be drawn

Theorem 4.1. For 71 =0 and 15 > 0, we have the following results:
(i)If (H1) holds, then the equilibrium E* is asymptotically stable for all 7o > 0.

(ii)If (H3) holds, and (H2) holds, then the equilibrium E* is locally asymptotically stable for all 7o < T
together with unstable for o > 1o and undergoes Hopf bifurcation at 7o = Top.

Case (3): 71 > 0,72 =0.

In this case, the characteristic equation(4.4) becomes as follows
D(§,m) = P(§) + R(E) + Q&)™
= &3 4 Apf? + A1€ + Ag + (Bo? + (C22 + C1€ + C) + Bi€ + Byle S = 0. (4.12)
putting £ = iw(w > 0) in Eq.(4.12), and separating the real and imaginary parts, we have
— (A + Co)w? + (Ag + Cp) = (Bow? — By) cos(wry) — Bywsin(wr),
—w? 4 (A1 + C1)w = (By — Bow?)sin(wry) — Biw cos(wy ). (4.13)
Squaring and adding the equation(4.13), we obtain
[—(A2 + C)w? + (Ag + Cp)]? + [~w? + (A1 + C1)w]? = (Baw? — By)? + (Byw)?. (4.14)

Based on the calculation method for case (2), we can simplify (4.14) to the following

U( )= 34by 24b; +by=0, (4.15)

where

by = —(Ag + C)? — 2(A; + Cy) — B3, by = (A1 + C1)*—2(Ag + Co)(Ag + Cy) — 2ByBy — B}, by = —B2.
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(H4): by > 0,bg > 0,b3b1 — bg > 0.
If (H4) holds, Eq.(4.15) has no positive roots, which implies all the roots of Eq.(4.12) have negative real
parts. Therefore, E* is asymptotically stable for all 73 > 0 when (H4) holds.

(H5) by < 0,b1 <0,bg <0orby>0,b; <0,bg <0orby>0,by >0,bp <O.
If (H5) holds, Eq.(4.15) has exactly one positive root Wy, substituting Wy in Eq.(4.13), we obtain

— (AQ —+ CQ)CJOZ —+ (A() —+ C()) = (BQL&OZ — Bo) COS({ﬁoTl) — BchO Sin(onTl),
— LJO3 —+ (Al —+ Cl)(ﬁo = (B() — BQCJO2) Sin((ﬁoTl) — Blcﬁo COS(CJ()’H). (416)

For the critical value of 7y, we can obtain

1 B+ Bo(A 5o+ [B1(A — Og(A — Bo(A S0+ Bo(A 2
lezfal"CCOS{[ 1+ 2( 2+ CQ)]WQ +[ 1( 1 +Cl) 00(2 22+ Cz) 22( o+ Co)]tdo + 0( 0+Co)}+ {7‘(‘

Wo —(Bo — Bawp~)” — (B1Wo) wo
J=0,1,2---. (4.17)

For the transversality condition, differentiating Eq.(4.13) with respect to 71, we get

dg §(B2€? + Bi€ + Bo)e ™

dr 3E2+ 2426 + Ay + (2026 + C)) + (2B2f + By )e—émt

Solving (%)_1, we obtain

dag

3%+ 2A26 + Ay + (2026 + C4) + (2B2€ 4 By )e ™
dTl '

-1
&) = E(Bo€2 + Bi + Bple e

Then at 71 = 119 and & = Wy, we can get

3(2.(,50)2 + (2A2 + 02)(1050) + A1 + C;
(ido) (Ba(ido)> + By (i) + Bo)(cos(WboTi0) — i sin(wor1o))

a5
dT1

[Re( ]

)T1:T107f:i(ﬁo]71 = Re[

2By (ivo) + By

+ Re[— — — ]
(ZUJO)(BQ (ZUJO) + Bl (Zw()) + Bo)
Now
d¢ . Mg + Myi Qr+Qri,  MgNp+MN;  QrPr+QrP;
[Re(di)ﬁ:ﬂo,&:ivfo} ! = Re[ - . ] + Re[ _ /\] = —2 —~2 + —~2 —2 ?
o Ng + Nii Pr+ Pri Nr" + N Pr"+Pr
where

Mp = —3Go> + AL+ Cy, M; = 2(A2 + Cs)o, Ng = (Bowo — BaWio®) sin(WoTi0) — C1o” cos(woTio),

N, = (Bowo — Bawi®) cos(WoTi0) + Biwo® sin(WoTio), Qr =B, Q1 =2By,

Pp = —Bude®,  Pr = Bowo — Batdo®.
Then
dg 4 A, C. AD,+B.C,
[R (Tﬁ)71=710,§=i@] t= B + D = B.D s (418)
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here
A= MpNp+3GN;, B.=Ng +N;,
C.=QrPr+QiP;, D.=Pp +7i .
From this, we can get

dg

[Re(d—ﬁ

)7’1=7’103€='L‘ﬁ)]71 = Sgn[A*D* + B*O*]~

If (H6): A.D. + B.C. # 0 holds, the transversal condition [Re(%)ﬁ:ﬁmg:m]_l # 0. From the above
analysis, the following theorem can be drawn

Theorem 4.2. For 7 = 0 and 71 > 0, we have the following results:

(i)If (H4) holds, then the equilibrium E* is asymptotically stable for all 71 > 0.

(i)If (H6) and (H5) hold, then the equilibrium E* is locally asymptotically stable for all 71 < 119 together
with unstable for 1 > 119 and undergoes Hopf bifurcation at 7 = g.

Case (4): T is fixed in (0,710] and 75 > 0.

We consider the gestation delay 71 to be stable in the interval (0, 71¢], taking 7o as a control parameter.
Let £ = u + iw be the root of Eq.(4.4). Putting this value in Eq.(4.4), separating real and imaginary parts,
we obtain

u® — uw? + Ay(u® — w?) + Aju + Ag + (Bou? — Bow? + Biu + By)e "™ cos(wm)
+(2Byuw + Biw)e %7 sin(wry) + (Cou? — Cow? + Cru + Cple v (4.19)
cos(wtz) + (2Cuw + Ciw) sin(wts) = 0.
3uw — w? 4 24suw + Ajw — (Bou? — Byw? + Biu + By) sin(wy) + (2Bouw
+Byw)e "™ cos(wry) — (Cou? — Cow? + Chu + Cp) sin(wmy) + (2Couw (4.20)
+Chw)e "™ cos(wts) = 0.
Putting v = 0 in Eqgs.(4.19) and (4.20), we obtain
Agw?® — Ay = (—Byw? + By) cos(wy) + (Co — Caw?) cos(ws) + Biwsin(wr) + Crw sin(wTy). (4.21)
w? — Ayjw = —(By — Baw?)sin(wry) + Byw cos(wry) — (Cp — Cow?) sin(wy) + Cyw cos(wTy). (4.22)

Squaring and adding Egs.(4.21) and (4.22) to eliminate 72, we get

WO 4+ Gqw? + asw? + daw? + dg = 0, (4.23)
where
Gy = —(Bo® 4+ Cy% — A3?), a3 = —2(ByCy — B1Cy) sin(wr — wmy),
a2 = —((B1? = 2Bo By + C1% — 2CoCa) + 2(B1Cy — 249 A2 — A? — By)) cos(wri — wTa),
ao = —(Bo® + Co® — Ao”).
Noting that Eq.(4.23) is transcedental. Now, Eqgs.(4.21) and (4.22) can be written as

01 cos(wTa) + g sin(wTa) = d3 + 4 cos(wy) + 5 sin(wm ), (4.24)
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—09 cos(wT) + 01 sin(wTy) = d¢ — 85 cos(wTy) + 4 sin(wTy ), (4.25)

where
(51 = CQUJZ - Co, 62 = —Clw,
53 = AO — A2w2, 54 = B() — ngz,
(55 = Blw, (56 = w3 — Alw.

Without losing generality, the Eq.(4.23) has finite positive roots wy,ws, - - - , Wy, for every fixed @, there exists

a sequence {73;]7 = 0,1,2...}, where

G) itan_l[(él(h + 5254) Sin((z)ﬂ'l) — ((51(55 — (52(54) COS((Z)Z‘Tl) + 6106 + 0203 km

T2 T (ZJZ (5155 — 5254) SiIl((ZJZ‘Tl) + (5255 + 5154) COS(L:LL'Tl) + 5153 - 5254 (.:Jiz

(4.26)

j:Oa1527"'

let 75 = min{Tg(f)H =0,1,2,..k,5 =0,1,2...}, when 75 = To,0 = W;|r,=7,,% = 1,2, 3, ..., the characteristic e-

quation (4.4) has purely imaginary roots +iw. Then, we will verify the transversality condition, differentiating
the characteristic equation (4.4) with respect to 72, we can obtain

d¢ _ 3(i0)? + 245 (i) + A
[Re(—=)r,=7, e=iz] " = Re[-— — ( )W 2() — ]
dry (1) (Ca(iw)” + Cy(iw) + Cp)(cos(WTa) — isin(wTz))
90 (i3
Rl 22 £ .
(tw)(Ce(iw)” + C1(iw) + Co)
Now
d§ —1 Mg + Myi Qr+Qri, MrNr+ MiNr  QrPp+QrPr
Re(—)r=7¢e=iz] = Re]l/——]+R - = )
Ry o=l = Rely R I R P = vy P + P
where
Mg = 3% + Ay, Mj;p=2A0, Ngr= (Cga - 01@2 - CQCTJS) sin@@)
Ny = (Co(:; — 02&3) COS(L~U77'2) + 0152 Sil’l(@fg), Qr=C1, Qr=20C%0,
Pr = —01(’:)27 Py 200@—02@3.
Then
dg 4, FEF G FEH+FG
e VU o S A E 4.27
[Re(d72)7'277—27€77fw] F + H FH bl ( )
here

E = MgrNg + M;N;, F = Ng>+ N/°,

G =QrPr+Q;P;, H=Pg’>+ P>
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From this we can get

d
sgnlRel ) s emia) ! = seulEH + G,

If (H7): EH 4+ FG # 0 holds, the transversal condition sgn[Re(f—é)w:;zf:ig]*l # 0. From the above
analysis, we have the following theorem.

Theorem 4.3.  For system(2.2), assume (H7) holds with 1 is fized in (0,710] and 72 > 0, then the equilib-
rium E* is locally asymptotically stable for 7o € (0,72) whereas system (2.2) undergoes Hopf bifurcation at
Ty = ;2.

Case(5): 72 is fixed in (0,79] and 71 > 0, so take 71 as a control parameter; the analysis is the same as
case(4), so we omit it.

V. OpTIMAL TAX POLICY

From previous studies, overfishing may lead to the extinction of populations. However, in the society, the
adequate protection of the ecosystem is a common problem we need to face. In the face of the increasingly
severe harmful effects of overfishing on ecosystems, people began to find the most suitable methods for fishery
control in various areas of sustainable development policies, for example, seasonal fishing, property leasing,
taxation, licensing fees, etc. Taxes are generally considered to be better than other regulatory approaches,
so that we will view the optimal tax policy for the double phytoplankton - single zooplankton system based
on model (2.3). Here, we take E as a time-dependent dynamic variable controlled by equations. Therefore,
there is the following equation.

aQ _

B)=<Q(t), 0<e<1, “f=

I(t) =7Q(t), Q(0) = Qo. (5.1)

Where Q(t) is the amount of capital invested in fisheries at time ¢, I(¢) is the total investment rate(in physical
form) at time ¢ and ~ is the constant depreciation rate of capital. Suppose that the effort E at any time is
proportional to the instantaneous amount of investment capital. For example, if Q(t) represents the number
of standard fishing vessels that can be used, it is reasonable to assume that Q(¢) and E should be proportional.
When ¢ = 1, it can be considered that the maximum fishing capacity(F)is equal to the number of available
vessels at time ¢ (Q(t)). When ¢ = 0, it means that even though there may be fishing boats, the fishing is not
expanded; it also reflects the over-exploitation of fisheries. At this time the fish population has been seriously
depleted, so fishing vessels can no longer be used. These are simulated capital levels may be adjusted, thus
prove the reasonableness of the equation (5.2). Regulators control the development of fisheries by imposing
a tax (v > 0) on the unit biomass of terrestrial fish. When (v < 0) can be understood as any subsidy to
fishermen. Net income of fishermen(’Net income’ for short) is E[(u; — v)@1 N + (u2 — v)g2 N — C|, where u;,
t = 1,2 is the constant price of unit biomass of nontoxic phytoplankton and zooplankton, respectively. C is
the fixed cost per unit of harvesting effort.

We assume the gross profit margin on capital investment is proportional to this 'Net income.” So, we
have

I=Ep[(uy —v)@1 N + (ug —v)2Z — C], 0<p < 1. (5.2)

For ¢ = 1, Eq.(5.2) shows that the highest investment rate at any time is equal to the net income of the
fishermen at that time. ¢ = 0 can only be used when the net income of fishermen is negative; that is, current
capital assets cannot be divested. If the fishery is operating at a loss and allows capital to be withdrawn, the
only owner of the fishery will benefit by allowing the capital assets to be continuously withdrawn, because
negative investment means withdrawal of investment, so it is the case of I < 0, > 0. By combining Eqgs.(5.1)
and (5.2), we can get

%J = E{ep[(u1 —v)@1N + (uz — v)q2Z — C] — ~}. (5.3)
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Fishermen and regulators are two different parts of society. Therefore, the income they receive is society’s
income accumulated through fisheries. The net economic income to society is

ME = E[(u1 —v)@1 N + (ug —v)q2Z — Cl + E[v(q1N) + v(g2N)],

this is equal to the net economic income of fishermen plus the economic income of regulators. Therefore
without considering the time delay, Eq.(2.3) can be rewritten as

dN N + alT wlNZ

= = N(1- - —qEN

g ~ n ) o aN BN

dT T—|— OéQN ngZ

= —roN(1 = _

a2 ko p+ T+ AN’ »
dZ  cquiNZ cowsTZ (5.4)
- = — —dZ — :EZ,

dt p1+N po+ T+ BN

dE

e E{ep[(u1 —v)q1N + (ug —v)q2Z — C] — v}

Next, we will use the principle of Pontryagin’s maximum to get the path of the best tax policy. If the
fish population stays along this path, then regulators can ensure that their goals are achieved. The goal
of regulatory agencies is to maximize the total net income of society as a result of harvesting activities.
Specifically, the goal is to maximize revenue over a continuous time stream (.J).

“+oo
J = / Et)e  [uiqiN + ugqe Z — Cdt, (5.5)
0

where 0 is the discounting factor. Therefore, our goal is to determine an optimal tax v = v(t) that maximizes
compliance with Eq.(5.4) and constrains v, < v(t) < vmax on the control variable v(t). When vy, < 0, it
will have the effect of accelerating the rate of fishery expansion. The Hamiltonian of the problem is obtained
by

_ N + OélT w1Z
H = (uih N + usqaZ — C)Ee % + A\ Nry(1 — - —qE
( 1491 242 ) 1 [1( ey ) p1+N q1 ]
FhalraT(1 — Tty — St Big] 4 dg[4eil? — pastdy — dZ — EZ) (56)

+AE{ep[(u1 —v)@1 N + (uz —v)q2Z — C] — 7},

where A1, A2, A3 and A4 are the adjoint variables. For v € [Umin, Umax|, the Hamiltonian must be maximized.
Assuming that the control constraint is not bound, that is, the optimal solution does not appear as v = vy
Or ¥ = Upmax. We can get by singular control [9]

OH
By = -—MEeco(1N +¢Z)=0= X\, =0. (5-7)

Now, the adjoint equations are

d\ oH _ 2r{N + T Z TZ T
=== —[U1Q1E€ 6t+)\1(7"1 - nol . o 2 o FE)+ )\2[ waf 2 o ]
¢ 0N k1 (p1 +N) (p2 + T + BN) k2

Z TZ
4 /\3( C1wip1 cowz B 2)’

(m+N)>  (p2+T+pBN)
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dAo oH rioag N 2T 4+ as N UJQZ(pQ + BN) CQ’U}QZ(])Q + ﬁN)
S = = = () + dalra(1 - T - 3] = Al 7);
¢ 1 2 (pa +T + BN) (pa +T + BN)
d)\g OH _ 5t U.)lN U)QT clwlN CQ’U)QT
Y3 _ I ugeEe% — A (20 - —d— gE),
o 57 [u2q2Ee 1(p1+N) 2(p2+T+ﬁN) 3(p1—|—N s+ T+ BN L))
d\ oH _
cTt4 =3 —[(ur1N + u2q2Z — C)e™ % — M\ia N — A3q2Z). (5.8)

Now start with Eqgs.(5.8) and (5.7), using the equilibrium equation we have

d\1 r N wiNZ wo BT Z _rgagT cquiprZ N cows BT Z

= =—uyq Be” "=\ [ + —A2 —A3 . ;
dt S (p1+ N)? (p2+T+BN)* ke | [(p1+N)2 (p2+T+BN)2]
dAQ 7"1051N ’LUQTZ CQU}QZ(pQ —‘rﬁN)
TZ*Al[ L ]*AQ[ 2}*>‘3[ 2]’

t 1 (p2 + T + BN) (p2 + T + BN)
d)\g _5t wlN ng
—_— = E A A(—————). 5.9
7 uzqave™ ™" + 1(p1—|—N)+ 2(p2—|—T—|—ﬂN) (5.9)

Using the second and third equations of Equation (5.9) from the fourth equation of Equation (5.8), we can
obtain ¥ = Mye % + M)A + M3\o, where

dt
(C—ur1 N)6 + u2qaZ(q2 E — ) w1 NZ woqTZ
M, = s My=—F—""—F+, Mz=-— :
aN (p1+ N)arN (p2+T+ BN)a N
The solution of this linear equation is
_ M16_5t M3 Ao
A = Nge M2t _ 727 . 5.10
1 0€ My + 0 M, ( )
Using the same method as above, we can get
Hlefét
A3 = Tge2t — 5.11
3 0€ Hy+0' ( )
where
Hy = [(C —u2¢2Z)0 — qiN(u10 + My)  MiMagi N Hy = MaMsgi N
q2Z (M +0)qaZ” q2MaZ
Identically
d\
= Rie - Rodo, (5.12)
where
R, — M1 + H1 CQwQZ(pQ + ﬂN)) o %(T‘galN . ’U)QTZ
! Ms+6d6 Hy+0 (p2-|-T+ﬂN)2 ’ My kq (pQ—I—T—‘rﬁN)?.
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So we can get \q

_ Rot _ Rie”%
Mye=dt  My(Woefizt — Bae ™)

)\ — N Mzt _ _ R2+5
L= e My +0 M,

The shadow price A;e~% is bounded as t — oo, Ny = 0 and Wy = 0, then we can obtain

Mle_(st Mg( Rat Rle_ét

A = — _ % fue
! My+6 M, Ro+ 6

). (5.13)

Now use Egs.(5.11), (5.12) and (5.13) in the first of Eq.(5.9), we have

(C — ulqlN*)5 =+ U2q2Z*(q2E* — 6)}6_& n IUQQQN*Z* Mle_ét Ms (eRQt . Rle_ét

[ (p1+N*)q1N*[M2+5_E

)]

qlN* R2 + )

T*7* —dt _ —dt —8t * * ryk
et U prs ] +ma Ere™ + [ — a2 (e = e ll-"0 + oiinse) - (519)
_ (Rle"”)[ wo BT*Z* - rzagT*] + (Hle’gt)[02w2Z*(P2+5N*)]

T VNV Ra+d /l(po+Tr+BN*)? ko Hz+0 /L (po+T*+BN*)?

Because of the computational complexity, our optimal equilibrium solution can be expressed as

[(crwy — 0)N* — dp1](p2 + BN¥)

= [(cawz — 0)p1 + (cowa — crwy — 6)N*]’
Z* = (B (e — N* — aq T). (5.15)
N* available from the following equation
ro(ky — T — aaN*)(pa + T* + BN™) — wok2Z* = 0. (5.16)
E* available from the following equation
w1 Z* ciwN* cowoT™ d

T1 (1 N* + OélT*
Q1 k1

) — - . (5.17)

a1+ N9 @+ N*)  qa(ps +T* + BN*) g

From the complex calculation results, it can be seen that T* and Z* are functions of v. Therefore, we can
express this function as follows

(C — ulqlN*)(5 =+ U2q2Z*(q2E* — 6)}6_& n wQQQN*Z* Mle_‘” %< Rat Rle_ét

[ )]

- e
@ IN* (p1 + N ) N* "My +6 My Ry + 6
T*Z* Rye 0t * — Mye~ % M: Rye %t N* N*Z*
+[(p2+¥3(fBN*)q1N*H Hirs ) tuaEe 4 Y v;(eRﬁ By 2w o) )| et ey (7;::11+N*)2} (5.18)
Rye BT 2" TT) _ (Hye 2" (p2+BNT)y _
= Ratd )[(p;fT*WN*)? - 2% J=( Ho$o )[C?;ZT*TBN*P J=f(v).

If v* exists, let v = v* be the solution of f(v). Using the value of v*, we can get the optimal solution
(N(v*), T(v*), Z(v*), E(v*)). Here, we establish the existence of an optimal equilibrium solution satisfying
the necessary condition of the maximum principle. As Clark [23] pointed out, it is complicated to find the
optimal path composed of explosive control and unbalanced singular control. Because the current model is
much more complex than Clark’s model, we only consider an optimal equilibrium solution. If we can begin to
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get F*. = (N(v*), T(v*), Z(v*), E(v*)) at any initial state in [0, S] to reach its maximum benefit in a limited

time Sp. The period [0, S] may be a planning cycle, or it may be the shortest cycle closest to F*., so we take S

to be the shortest time to reach F*.. Let (No, Ty, Zo, Eo) € R /{0}, (N (v*),T(v*), Z(v*), E(v*)) € R /{0}

be the optimal equilibrium. Now, we seek min Sy(v) subject to the solution to Eq.(5.5).

N(O) = No, T(O) = To, Z(O) = Zo, E(O) = E‘()7 N(S()) = ]\/v(’l)*)7 T(So) = T(’U*), Z(So) = Z(’U*),
E(So) = E(v*), (N,T,Z,E)€ RY/{0}, te]0,S] (5.19)

Using the maximum principle, we will get the adjoint variables A1, A2, A3 and A4 as

, OH , O0H , oOH , oOH
_ g _ gt — _ 7 - 5.20
A1 6Na AQ aTa )‘3 aZv )\4 aE ( )
The adjoint variables A1, A2, A3 and )4 satisfies the another condition
M{N(),T(t), Z(t), E(t), \1(¢), Aa(t), A3(t), A ()} =0, ¢ € [0, S0], (5.21)

where

Umin;Umax

MA{N(),T(t), Z(t), E(t), \1(t), Aa(t), A3(¢), Aa(2), t}:{ sup }H(N(t)7 T(t), Z(t), E(t), M(t), Aat), As(t), Aa(t), v).

Eq.(5.19) specifies a set of initial conditions for A1, A2, A3 and A4, and Eq.(5.20) uses these initial conditions
to determine the unique solution of A1, A2, A3 and A4. Therefore, it is easy to obtain the optimal tax policy
as follows:

Umax, for all t€[0,5)] if 2Z >0,
o(t) = Umin, Jfor all t€10,50] if %—ZI < 0. (5.22)

The optimal path in [0, S] is the solution of Eq.(5.5) in its elementary state. We will now combine these two
stages to obtain the optimal tax policy and optimal path in an infinite range:

’U(t) = ’U(t), te [O,So], ’U(t) = 1}*, t> So, F(t) = f(t), te [O,SQ], F(t) =F, = (Nb,Tb,Zb,Eb), t> So.

From the above analysis, we can easily observe the following points:

(i) From Eqs.(5.7) and (5.11)-(5.13), we note that \;e™%, (i = 1,2,3,4), where ); is an adjoint variable,
which remains unchanged in an optimal balance time interval, therefore, they satisfy the transversal condition,
that is, they remain bounded to t — oo.

(ii) Considering the coexistence equilibrium point F, = (N, Ty, Zp, Ep), The fourth equation of Eq.(5.8)
can be written as

(M@ Ny + Moo Zy) = (u1q1 Ny + u2q2Zp, — C)e ™"

This means that the total harvest cost per unit of user’s effort is equal to the discount value of the future
price under the steady state effort level.

(iii) From Egs.(5.11) and (5.13), we can obtain

Mie= % My Rye % Hye ot

u1q1 Ny + u2q2Zy — C = —[(m - E(Rz n 5))‘11N + (m

)@2Z] — 0, asd — 0.
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Flig. 2: The optimal solution of (5.5) forv = 0.867.

This shows that the unlimited discount rate leads to the complete dissipation of the net economic income
to the society, (u1q1 Ny + u2g2Z, — C')E = 0. We also observe that for a zero discount rate, the present value
of the continuous time flow reaches its maximum.

Due to the complexity of its calculation and to explain our optimal tax policy more intuitively, we continue
to study it through numerical simulation. If r; = 6,70 = 5,1 = 0.2, a5 = 0.2,k; = 100,ky = 190, w; =
0.3, we = 0.3,p1 =50,ps =50,d =0.2,¢c;1 = 0.45,¢c5 =0.45,86 =0.3,g1 =0.2,¢0 = 0.2, = 0.2,0 = 0.5,7 =
0.2,C = 2,u; = 0.1,us = 0.2, and the discounting factor § = 0.045 in appropriate units, based on the
selection of the above parameter values, we can get the optimal tax is v = 0.867. In Fig.2, we get the optimal
solution. Therefore, we have used the principle of Pontryagin’s maximum to obtain the optimal path of
the optimal tax policy, which not only ensures the maximum goal of the regulatory authority, but also the
stability of the ecosystem.

VI. NUMERICAL SIMULATIONS

In this section, we will use Matlab to numerically simulate the impact of various parameters on species
and the stability of steady state. Therefore, the initial conditions and parameter settings in Table 2 are used
for the numerical analysis of the system (2.3). First, we give the time series diagram of N, T and Z with
short period and long period, then the impact of different 8, ¢ F and g2 F on the survival of species were
investigated. Lastly, we study the changes in equilibrium stability with varying delays of time.

Table 2: All the biological descriptions of the parameters are given below:
Parameter Environmental Interpretation Value
(N9, T Z9) Initial concentrations (500,200,1000)

r1 Intrinsic growth rate of NTP 0.56

ro Intrinsic growth rate of TPP 0.49

Qg Competitive effect of TPP on NTP 0.1

Qo Competitive effect of NTP on TPP 0.1

k1 Carrying capacity of NTP 5600

ko Carrying capacity of TPP 4900

w1 NTP consumption rate 0.5

Wa TPP consumption rate 0.5

P1 Half saturation constants for NTP 30

D2 Half saturation constants for TPP 30

c1 the conversion rate of N to Z 0.45

Co the conversion rate of T' to Z 0.45

B Intensity of avoidance -

d Zooplankton mortality rate 0.05
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a) Time series analysis

In Fig.3, we plot the time series of 5 = 0, 8 = 10, 8 = 1000 in the first ten days, where the other parameter
values and initial conditions are the same as in Table 2. When ¢; = ¢o = 0 and 3 = 0, we can observe that
NTP and TPP tend to perish at a fast linear speed. It is obvious that when 3 increases to 10, the concentrate
of TPP will first increase to a certain concentration, then decrease and finally tend to extinction, while at
this time, NTP still maintains a rapid decline rate until it is extinct(fig.3(a)(b)). On the contrary, when
B =0, we take g1 = 0.4, g2 = 1.2, and q1 = 2, g2 = 2.5, respectively. We can observe that with the increase
of ¢; and g2, NTP and zooplankton tend to become extinct at a faster rate of decline, while TPP increases
more rapidly(fig.3(c)(d)). Based on the values of ¢; and g of (fig.3(c)(d)), we increase § to 10. Through
comparison, we can find that the curves of NTP and zooplankton have almost no change, but the increasing
speed of TPP is still accelerated(fig.3(e)(f)). To further explore the influence of S, we fixed ¢; and g2 as 2
and 2.5, respectively. And increased the value of 5 from 10 to 1000. At this time, We can observe that the
concentration of NTP, TPP and zooplankton has almost no change(fig.3(g)(h)). Finally, when § exists and is
fixed at 10, we increase the concentrations of g; and g2 to 6 and 8, respectively. At this time, we can observe
that NTP and zooplankton accelerate the decline rate, while TPP has no obvious change(fig.3(i)(j)).

In Fig.4, we draw a long-term time series diagram of the system (2.3). We fixed that ¢; and ¢y are both
0. In fig.4(a)(b), we can observe the dynamic change of 8 from 0 to 10. First, we take 5 =0, in fig.4(a), we
will find the extinction of TPP, while NTP and zooplankton oscillate in the form of limit cycles. Next, we
increase  to 10, observe the fig.4(b), all species are in a coexistence state, and the system is stabilized to
a periodic orbit. These periods show large oscillations of all populations. Secondly, when we fix § = 0 and
increase ¢ = g2 = 0.1 to ¢ = g2 = 0.36, we can find that when ¢; and g» are within a certain range, NTP
and TPP will coexist, and zooplankton will tend to become extinct(fig.4(c)(d)). Finally, when we fix § = 10
and increase ¢; = g2 = 0.36 to q1 = g2 = 0.37, we will find that the coexistence of NTP and TPP disappears,
and then only TPP exists and tends to be stable, while NTP and zooplankton tend to be extinct(fig.4(e)(f)).

b) Double time delay analysis

Now, to explore the influence of pregnancy delay (71) and toxin onset delay(72) on the stability of equi-
librium point in different cases. First, we need to set a set of parameters as follows

=2 1a=3, a1 =03, as=0.1, ky = 2500, ks = 3000, w; = ws = 0.5, p1 = pa = 50,
c1=co =045 d=005 =05 ¢ =02 g =03, E=1. (6 1)

With initial values (N, Ty, Zo) = (400, 300, 500), we perform numerical simulations to verify the theoretical
results of the previous delayed system (2.2). For these parameters, we take (6.1) into the delayed system
(2.2), the complex dynamical behavior of the system has been observed with time delay.

Case i: when 71 = 0, 75 > 0, in this case, [Re(j%)mzmmgzwo]’l > 0, the transversality condition is

contented. So when 79 < 790(Fig.5(a)(b)), the positive equilibrium E* is locally asymptotically stable, the
positive equilibrium E* is unstable when 75 > 790(Fig.6(a)(b)), when 75 = g9, the system undergoes Hopf
bifurcation around the positive equilibrium E*. (Fig.5(a)(b)) shows the trajectories and phase portrait of
system (2.2) for 4 = 0, 7 = 1. It can be clearly seen that the system (2.2) will converge to the positive
equilibrium point E*. And (Fig.6(a)(b)) shows the trajectories and phase portrait of the system (2.2) for
71 = 0, 7 = 1.08. In this case, the delay system (2.2) has a periodic solution near the positive equilibrium
point (E*).

Case ii : when 71 > 0, 72 = 0, we change the values of k1 and ks in (6.1) to ky = 150, ko = 250, and the
others remain unchanged. [Re(j—i)ﬁ:ﬁmg:mo]’l > 0, the transversality condition is satisfied. (Fig.7(a)(b))
shows the trajectories and phase portrait of the system (2.2) for 7, = 0.7, 75 = 0. It can be seen that
although the final equilibrium point tends to be stable, there is no oscillation, indicating that there is no
periodic solution in this case.

Case iii : when 7y = 0.9 in stable interval (0, 719), and take 75 > 0 as the parameter, [Re(j—fz)m:;?,g:@]_l +
0, the transversality condition is satisfied. So when

T2 <7’:2
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(Fig.8(a)(b)), the positive equilibrium E* is locally asymptotically stable, the positive equilibrium E* is
unstable when 72 > T5(Fig.9(a)(b)), when 7, = 7o, the system undergoes Hopf bifurcation around the
positive equilibrium E*. (Fig.8(a)(b)) shows the trajectories and phase portrait of the system (2.2) for
71 = 0.9, 7 = 1.06. It can be clearly seen that the system (2.2) will converge to the positive equilibrium
point E*. And (Fig.9(a)(b)) shows the trajectories and phase portrait of the system (2.2) for 7, = 0.9,
79 = 1.09; we find the delayed system (2.2) has periodic solutions near the positive equilibrium point E* in
this case.

Therefore, through the above numerical simulation, we can evidently find the system is stable for small
values of the delay, but as the value of delay crosses its critical value, the system loses its stability and
undergoes Hopf-bifurcation. Thus the limit cycle exists for 71 > 1, 70 > 79 and 72 > T5.

VII. DiscussiON

(a) p=0.q,=q,=0 (b) 10,98
1200 v ' . ' 1200 v T '

[isena NTP
= =TPP
zooplankton

[+enese NTP
- =TPPF
——zooplankton

]

< 1000

”

e
=
=

800 -

2
=

600 -

Log of concentration(mg C/m
e
=

Log of concentration(mg C/m
da
=

-~
200 200 L
\
K
L 85 3 h
(1 o o o o o 8 B o 0 8 e 8 5
-200' : . -200
1] 2 4 6 ] 10 0 2 4 [ 8 10
Time(days) Time{days)
(c) ﬁ=ﬂ,{;1=ﬂ.4 and qz=l.2 (d) |‘i=0,ql=1 and q2=2.5
3000 T T v ¥ 7 3000 ; v ' ' .
rol I s NTP f’
P — - =TPP
/ ;
"‘E 2500 5 tE 2500 | = zooplankton !
— .-
o ’ O !
B0 ’ 28 /
£ 2000 - £ 2000 - 7
— 7 =3
£ y E 4
£ 5 k= ’
F 1500 F 1500 - F:
= ’ £
5 = &
(7} / &
] 7 g s
£ 1000 . £ 7
=] = F
—_— td —
] - = p -
2 st e g -
— b - -]
-
sarerfunninsacis
L]
0 2 4 [ 8 1 1] 2 4 G 8 1]
Time(days) Time(days)

© 2023 Global Journals

Global Journal of Science Frontier Research (F ) Volume XXIII Issue VIII Version I E Year 2023



Global Journal of Science Frontier Research (F) Volume XXIII Issue VIII Version I E Year 2023

(e) p=1 ll,q1={l.4 and qz=l.1

3000

...... NTPF '

- =TPP f

L] 2500 - = pooplankion F 4
| ’
'
2000 - ’
/
'l
1500 | ¥
'

1000

Log of concentration(mg C/m™)

4 6
Time(days)

(2) p=10,q,=2 and q,=2.5
3000 | . : 2
’
/
. | ’
E 2500 i
o /
o 4
= 2000 -
= 7
e ’
- r
= |
£ 1s00r ’
5 ’
= F
g p
) 7
= 7’
[-1]] -
5 e
] 2 4 6 8 10
Time(days)
(i) B=10,q,=0.4 and q,=1.2
3000 ' ' ¥ + ' v
-
-—.E 2500 eooplankion |
=
o
b
£ 2000
=
=
=
= 1500
=
-] #
-} -
1000 -
g _#
N -
& e
S 500 b,
i
]
0 0.5 1 1.5 2 2.5 3 s 4
Time(days)

Fig. 3: The dynamic changes of the system ( 1 ) with different 8, ¢; and ¢z in the first 10 days, other
parameter values and initial conditions are the same as Table 2. (a)(b) : In the case of 4 = g2 =0, =0
and 8 = 10, the TPP concentration will fluctuate and the NTP concentration will barely change. (c)(d) : For
B = 0, the concentrations of g; and ¢ increase, and both NTP and TPP concentrations accelerate towards
extinction. (e)(f) : Based on (c¢)(d), for 8 = 10, TPP reached a higher flowering concentration, while NTP
still maintained a lower concentration. (g)(h) : Based on (f), for 5 = 1000, NTP and TPP concentrations
are almost unchanged. (i)(j): for § = 10, we increase the concentrations of ¢; and g2 to 6 and 8, respectively.
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NTP and zooplankton accelerate the decline rate, while TPP has no obvious change.
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Fig. 4: The long-term dynamics of the system (2.1), all other parameter values are the same as Table 2.
(a): When ¢; = g2 = 0, NTP and zooplankton with initial concentrations (500,200,1000) oscillate and TPP
populations become extinct. (b): For 8 = 10, all populations survive and the system stabilizes to a limit
cycle. (c)(d) : For 8 =0, 0 < q1=q2 < 0.36, NTP and TPP can coexist. (e)(f): when we fix 8 = 10 and
increase g1 = g2 = 0.36 to ¢1 = g2 = 0.37 , we will find that the coexistence of NTP and TPP disappears,
and then only TPP exists and tends to be stable, while NTP and zooplankton tend to be extinct.
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Fig. 7: The behavior of the system(2.2) for 71 = 0.7,72 = 0 with other parameters chosen in (6.1).

(a)

b: The behavior of the system(2.2) for 73 = 0,72 = 1 with other parameters chosen in (6.1).

700 - -
m— TR
600 m—TP
———zooplankton
500
400
300
200
100 1
0 l
100 " " " . . . : |
0 100 150 200 250 kil is0 400
Time(days)
Fig.
(@)
700 - -
m—TE
—TP
600 ——ooplankton | 7
00
2
= 400
-
2 ;
3
B 300 |
200
i
100
o ; |
0 50 100 150 200 250 00 is0 400
Time(days)

Flig. 6: The behavior of the system(2.2) for 7
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Fig. 8: The behavior of the system(2.2) for 71 = 0.9,/ = 1.06 with other parameters chosen in (6.1).
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Fig. 9: The behavior of the system(2.2) for 7 = 0.9,72 = 1.09 with other parameters chosen in (6.1).

The predator avoidance effect always attracts ecologists to investigate it. In the aquatic system, zooplank-
ton lives in the environment full of toxic and non-toxic bait (phytoplankton). To make toxic phytoplankton,
nontoxic phytoplankton and zooplankton coexist, the avoidance behavior of zooplankton against toxic phy-
toplankton is an important research topic. In this paper, we consider a biological model with two delays in
which zooplankton avoids poisonous phytoplankton in the presence of nontoxic phytoplankton. For this mod-
el of poisonous avoidance, due to the avoidance coefficient of zooplankton to toxic phytoplankton, the growth
density of zooplankton and toxic phytoplankton is nonlinear. When the poisonous avoidance coefficient is
high, the density of poisonous phytoplankton will increase in proportion, and finally tend to be stable. we
also consider the impact of human harvest on the coexistence of these three species, the form of avoidance
and human harvest have biological significance, which we also analyzed.

According to this article, we analyze the positive and boundedness of the system solution without time
delay at first. In the bounded area, the densities of nontoxic phytoplankton (NTP), toxic phytoplankton
(TPP) and zooplankton (zooplankton) are all non negative. Then we analyze the bistability of the equilibrium
points. From fig.1, we can see the bistability of each equilibrium point in different k; ranges. For the dynamic
behavior of double time-delay systems, we analyze the local stability and the existence of Hopf bifurcation.
Taking the pregnancy delay 7 and the toxin onset delay 1o as the bifurcation parameters, the critical value
of the time delay for the Hopf bifurcation of the system under different conditions is obtained. We find that
the system is stable when the time delay is less than this critical value(r?, 75, 75, and 73,, respectively), but
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when we increase the time delay to more than this critical value, the system will become unstable, and then
Hopf bifurcation occurs at the critical time. Considering the practical significance of the research, in section
5, we use the principle of Pontryagin’s maximum to study the optimal tax policy of the system without time
delay, we obtained the optimal path of the optimal tax policy. In addition, we use the parameters and initial
values given in Table 2 and (6.1) to simulate several cases of double-delay systems in Matlab to verify all
theoretical results.

REFERENCES REFERENCES REFERENCIAS

[1] A. Mitra, K.J. Flynn, Accounting for variation in prey selectivity by zooplankton, Ecol. Model. 199
(2006) 82-92.

[2] S.B. Linhart, J.D. Roberts, S.A. Shumake, R. Johnson, Avoidance of prey by captive coyotes punished
with electric shock, In: Proceedings of the Vertebrate Pest Conference, escholarship, pp. 7 (1976)
302-330.

[3] S. Ghorai, B. Chakraborty, N. Bairagi, Preferential selection of zooplankton and emergence of spa-
tiotemporal patterns in plankton population, Chaos. Soliton. Fract. 153 (2021) 111471.

[4] X.J. Liu, C.H. Tang, C.K. Wong, Microzooplankton grazing and selective feeding during bloom periods
in the Tolo Harbour area as revealed by HPLC pigment analysis, J. Sea Res. 90 (2014) 83-94.

[5] Y.L. Zheng, X. Gong, HW. Gao, Selective grazing of zooplankton on phytoplankton defines rapid algal
succession and blooms in oceans, Ecol.l Modelling. 468 (2022) 109947.

[6] K.G. Porter, Selective grazing and differential digestion of algae by zooplankton, Nature. 244 (1973)
179-180.

[7] B.W. Frost, Effect of size and density of food particles on the feeding behaviour of the marine planktonic
copepod Calanuspacificus, Limnol. Oceanogr. 17 (1972) 1752-1765.

[8] Q.Y. Zhao, S.T. Liu, D.D. Tian, Dynamic behavior analysis of phytoplanktonzooplankton system with
cell size and time delay, Chaos. Solitons. Fractals. 113 (2018) 160-168.

[9] C.J. Zilverberg, J. Angerer, J. Williams, L.J. Metz, K. Harmoney, Sensitivity of diet choices and
environmental outcomes to a selective grazing algorithm, Ecol. Model. 390 (2018) 10-22.

[10] S. Uye, K. Takamatsu, Feeding interactions between planktonic copepods and red-tide flagellates from
Japanese coastal waters, Mar. Ecol. Prog. Ser. 59 (1990) 97-107.

[11] J. Sole, E. Garcia-Ladona, M. Estrada, The role of selective predation in harmful algal blooms, J. Mar.
Syst. 62 (2006) 46-54.

[12] K. Agnihotri, H. Kaur, Optimal control of harvesting effort in a phytoplanktonzooplankton model with
infected zooplankton under the influence of toxicity, Math. Comput. Simul. 19 (2021) 946-964.

[13] J. Chattopadhyay, Effect of toxic substances on a two-species competitive system, Ecol. Model. 84 (13)
(1996) 287-289.

[14] S. Chakraborty, S. Bhattacharya, U. Feudel, J. Chattopadhyay, The role of avoidance by zooplankton
for survival and dominance of toxic phytoplankton, Ecol. Complexity 11 (2012) 144-153.

[15] S. Khare, O.P. Misra, J. Dhar, Role of toxin producing phytoplankton on a plankton ecosystem,
Nonlinear Anal. 4 (3) (2010) 496-502.

[16] N. Turriff, J.A. Runge, A.D. Cembella, Toxin accumulation and feeding behaviour of the planktonic-
copepod Calanus jinmarchicus exposed to the red -tide dinoflagellate Alexandrium excavatum, Mar.
Biol. 123 (1995) 55-64.

[17] S.J. Jang, J. Baglama, J. Rick, Nutrient-phytoplankton-zooplankton models with a toxin, Math. Com-
put. Modelling. 43 (12) (2006) 105-118.

[18] B. Dubey, J. Hussain, A model for the allelopathic effect on two competing species, Ecol. Model. 129
(23) (2000) 195-207.

[19] G.P. Samanta, A stochastic two species competition model: Nonequilibrium fluctuation and stability,
Int. J. Stoch. Anal. 2011 (2011) 1-7.

[20] S. Roy, J. Chattopadhyay, Toxin-allelopathy among phytoplankton species prevents competitive exclu-
sion, J. Biol. Syst. 15 (01) (2007) 73-93.

[21] Y. Pei, Y. Lv, C. Li, Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton
system, Appl. Math. Model. 36 (4) (2012) 1752-1765.

© 2023 Global Journals

Notes



Notes

[22]

[32]

[33]
[34]

K. Chakraborty, S. Das, T. Kar, Optimal control of effort of a stage structured preypredator fishery
model with harvesting, Nonlinear Anal. RWA. 12 (6) (2011) 3452-3467.

C.W. Clark, Bioeconomic Modelling and Fisheries Management, New York (USA) Wiley. 1985.

P. Panja, S.K. Mondal, D.K. Jana, Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics
and harvesting, Chaos. Solitons. Fractals. 104 (2017) 389-399.

F.F. Zhang, J.M. Sun, W. Tian, Spatiotemporal pattern selection in a nontoxic-phytoplankton- toxic-
phytoplankton - zooplankton model with toxin avoidance effects, App. Math. Comput. 423 (2022)
127007.

D. Xiao, L. Jennings, Bifurcations of a ratio-dependent predatorprey system with constant rate har-
vesting, Siam. Appl. Math. 65 (2005) 737-753.

Y. Lv, Y. Pei, S. Gao, C. Li, Harvesting of a phytoplanktonzooplankton model, Nonlinear Anal: Real
World Appl. 11 (2010) 3608-3619.

A K. Sharma, A. Sharma, K. Agnihotri, Bifurcation behaviors analysis of a plankton model with
multiple delays, Int. J. Biomath. 9 (06) (2016) 1650086.

K. Agnihotri, H. Kaur, The dynamics of viral infection in toxin producing phytoplankton and zoo-
plankton system with time delay, Chaos Solitons. Fractals. 118 (2019) 122-133.

A. Mondal, A.K. Pal, G.P. Samanta, Rich dynamics of non-toxic phytoplankton, toxic phytoplankton
and zooplankton system with multiple gestation delays, Int. J. Dyn. Control. 8 (2020) 112-131.

P. Panday, S. Samanta, N. Pal, Delay induced multiple stability switch and chaos in a predatorprey
model with fear effect, Math. Comput. Simulation. 172 (2020) 134-158.

T. Kar, Conservation of a fishery through optimal taxation: a dynamic reaction model, Commun.
Nonlinear Sci. Numer. Simul. 10 (2005) 121-131.

S. Sarkar, Optimal fishery harvesting rules under uncertainty, Resour. Energy Econ. 31 (2009) 272-286.
J. Sotomayor, Generic bifurcations of dynamical systems, In Dynamical systems, Academic Press. 1973.

© 2023 Global Journals

Global Journal of Science Frontier Research (F) Volume XXIII Issue VIII Version I E Year 2023



	Balancing Coexistence: Ecological Dynamics and Optimal Tax Policies in a Dual Phytoplankton-Zooplankton SystemInfluenced by Toxin Avoidance and Harvesting
	Author
	Keywords
	I. Introduction
	II. Model Formulation
	III. Dynamical Behavior of Non-Delayed Model
	a) Positivity and boundedness of the solution
	b) Equilibrium points and their stability
	c) Bistability analysis of equilibrium point

	IV. Dynamical Behavior of the Delayed Model
	V. Optimal Tax Policy
	VI. Numerical Simulations
	a) Time series analysis
	b) Double time delay analysis

	VII. Discussion
	References Références Referencias

