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Abstract- The Target Exposure methodology [FTSE] derives a portfolio allocation of assets, each being exposed to
multiple factors. We show that, given a set of model parameters and active exposures of the assets to the factors,
there exists at most one allocation of the assets. The means to prove this result are (i) mathematical induction on the
number of factors, and (i) a statistical argument averaging the overall exposures of each asset to the considered
factors. The model has been set to a system of non-linear exponential functions, and the goal is to prove the
existence of at most one solution of this system, as well as its continuity. The theoretical result derived in this paper
provides additional insight into the well-adopted Target Exposure methodology and furthers the understanding of this
portfolio construction framework that, in many cases, is favored for its weighting transparency.
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[. INTRODUCTION

Since the middle of the twentieth century, the quantitative landscape for modelling the performance of fi-
nancial asset allocation has been pictured. Concretely, an investor would like to buy or sell some shares of a
portfolio constituted of equities, commodities, cryptos, or derivatives, and wishes to allocate efficiently and with
risk control.

Markowitz is considered to be the first to have introduced a quantitative theory for allocating assets in an opti-
mized manner, for a given targetted portfolio return [Markowitz]. For such portfolios, performance is measured
in terms of portfolio return, while a common metric for risk is its standard deviation. Different metrics are
used to measure performance of the portfolio [Sharpe, Riposo]. From this framework, many other quantitative
approaches have been developed (see for example [Grinold, Cartea, Brugiére]), all aiming at bringing profit to
a risky investor. Generally speaking, a paradigm consists in expressing the portfolio return /£ (vector of real
numbers) as follows:

R= ro + ,H(RM — '?‘0) + €, (1)

where 7y is the return of a risk-free asset (for instance a bond) considered in the portfolio economy, Ky is the
market return, f is the ezposure of the market to the investment portfolio, and € is all the information not
considered in the first and second terms of this equation. This equation can be proven through the Capital
Asset Pricing Model (CAPM) (one of the main building-block articles for the CAPM is [French|, and it was
introduced by J. Treynor, W.F. Sharpe, J. Lintner, and J. Mossin, independently). In particular, the quantity

Ry — 1o s the risk premium [Capinski].
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However, the Markowitz framework may not be the best one to explain the risk taken by the investor to elaborate
her portfolio, as risks are not spcifically identified. In order to address risk dependencies, factor models have
been introduced (for instance [Brugiére, Connor|). If the returns are R, a general factor model writes as:

[Capinski] Capinski, M.J. and Kopp, E. ‘Portfolio Theory and Risk Management .

Cambridge University Press. 2014.

5
N

R=A+BF+E. (2)
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where A is a constant vector, B is the matrix (number of assets x number of factors) of factor ezposures, F is
the vector (dimension is the number of factors) of factor characteristics, and £ is the vector gathering all the
information which is not in the first two terms of the above equation. Generally speaking, the factor exposures
represent the covariance of the returns with respect to the factor characteristics, and essentially represent how
strongly dependent are the returns on the underlying factors (see [Klepfish| for a conciliating estimation of risk
factor exposures).

The factor characteristics are of two types. (i) Endogeneous: they are statistically derived from the observed
returns [FrenchR]; and (ii) Ezogeneous: they are explanatory variables added to the model, for instance Growth,
Price-to-Earning, Price-to-Book, or other fundamental metrics. In the sequence of this paper, we shall focus on
the second type of factor characteristics. As an example of such characteristic portfolios, the Fama and French
Three Factor Model [Fama] still has some strong supporters today.

However, in the recent decades, most researchers have shown the existence of factor risk premium associated with
specific factors as Value, Momentum, Size, Low Volatility, and Quality, see e.g. [Fitzgibbons, Bender, Ghayur].
Many discussions are redefining some factors as actually reflecting one of these five core factors, see e.g.
[FrenchR2|. We will not enter the financial context of these five factors, the interested reader can focus on
[Zaher].

Earlier studies in the style factors have seen researchers use a long-short approach aiming to capture the pure
premium. Much inspired by Markowitz’s, optimised portfolios have then been widely used in constructing
factor portfolios. Optimization has the flexibility of introducing extra construction considerations simply as
constraints without compromising ex-ante objective, providing the problem remains feasible and solvable, e.g.
convex [Wilhelm]. Another construction method that has been introduced since the early days of portfolio
construction is Tilting. Assets under management mostly using Tilting reached $1.45 trillion in December 2021
[Morningstar]. The Target Exposure framework, first introduced to the passive investment community by FTSE
Russell indices, is an extension of traditional tilting and which has many practical use cases, e.g. [Wang]. The
motivation was to join the transparency and intuition of tilting with the ability to exert explicit control of the
portfolio ex-ante outcome that is comparable to optimisation. In short, and as shown in Section 2, the Target
Exposure methodology aims at solving a system of exponential functions, giving at final a portfolio allocation
(see Equation (6)). In this paper, we are not going to compare different, approaches, as this is out of scope, and
this will be interesting areas for further studies.

We are focusing on the roots (or solutions) of a non-linear system of equations, the detailed form of which will
be discussed in Section 2. In essence, the system of interest writes as:

check rather if there exists common root(s) for all the Fy, f € {1,2,..., #}. Many methods have already been
developped to solve such non-linear systems, by means of Taylor’s polynomial [Burden], quadrature formula
[Darvishi, Babajee|, or homotopy perturbation method [Golbabai]. A gradient decent method could also be
applied to solve such system [Hao]. Using more contemporary approaches, Machine Learning regression technics
are applied to estimate solutions of parametrized non-linear system [Freno|, or quantum methods allow enhancing
the diversity of the solutions, and avoid local minima [Rizk-Allah], in the spirit of simulated annealing. In the
more specific context of our study, the functions Fy, f € {1,2,..., F'}, are sum of product of exponentials, see

Equation (6). When there is only one factor (i.e. only one unknown variable), we obtain ‘generalized Dirichlet
polynomials’ (although they are not polynomials), which write as:

where the F¢'s, f € {1,2,..., I}, are sums of product of exponential functions, see Equations (6). We want to

N

Fla) = Za,— ebie,
i1

where the a’s and ¥’s are real numbers. In [Jameson], the number of roots of such polynomials are found by
the means of the Descartes’ rule of signs. By re-ordering this sum such that b; > -+ > by (supposing they are
all distinct), the number of roots is linked to the number of sign changes in the thus obtained ordered family
{a1,...,ax}. Our situation is more complicated, since each term is a product of exponentials, each exponent
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being one unknown. In addition, we will see that we do not need Descartes’ rule of signs in our case. To some
extend, our problem is a generalization of the one enhanced by the ‘generalized Dirichlet polynomials’. While
we are not focusing on estimating the solution(s), we are interested in proving that there is at most one solution.

The rest of this paper is depicted as follows. Section 2 sets the Target Exposure Problem, as the general system
of exponential functions. Section 3 solves the Target Exposure Problem when considering only one factor.
Finally, Section 4 solves by mathematical induction on the number of factors, the general problem under the
statistical approximation of the mean, assuming that there are factors for which linear combinations of Z-scores
do not depend on the considered assets. Section 5 discusses this hypothesis and illustrates the main result, and
finally, Section 6 shows a numerical illustration of the main finding of this paper, while Section 7 concludes the

paper.

[[. THE TARGET EXPOSURE METHODOLOGY

We consider a set of N € N* assets of an index which we aim at deriving the weights from the Target Exposure
methodology, with F € N* factors. We univoquely assign each asset (resp. factor) to an integer ¢ € {1,..., N}
(resp. f € {1,...,F}) without any particular order.

The Target Exposure methodology consists in deriving the weight for asset ¢ € {1,..., N} as follows:

»

Wi(a) = L, (3)

:
S m T

k=1 I

where M; is the benchmark weight for asset #, typically weight by free float adjusted market capitalisation (but
it can more generally be a benchmark of any type, and have no particular assumptions except they are > 0);
sij = S(Z;5), where S is an increasing positive function (e.g. exponential) applied to the Z-score Z;; € R,
being the rescaled exposure of asset ¢ exposed to factor f; ey is the strength for factor f, which is an unknown
real number; and « is the vector of all the strengths, thus of dimension #.

Wi(a) is the weight for instrument #, and is a function of the tilt strength vector a € RF. In practice, the
non-linear system mentioned above arises when investors have a set of expected factor exposures as portfolio
objective, and try to find a set of strengths that leads to portfolio weights vielding the desired portfolio factor

exposures.

More specifically, the active exposure Ay € R to factor f is defined as the portfolio exposure in exccess of the
benchmark exposures and is given by:

A=Y Zis (Wile) = M), Vf € (L., F}, @

Equation (4) is an equation whose unknown is o, vector of /" elements, and there are I such equations. We
thus have F unknown variables for F equations.

We set the target index exposure as:
N N
Ap=Ap+ Y MiZiy = Wi(a)Ziy.
i=1 i=1

In practice, investors express their factor exposure expectations via active exposures. Hence Ay € R and
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consequently Ay € R are fixed as parameters of the model. Replacing (3) into this equation leads to:

F
N M; H Siff
=
Ap= Z Zif & F :

TS Ml
k=1 f=1

Hence, by multiplying by the denominator of the right-hand-side:

N F
Z (Af — Z,'J') M.@ HSE}’; =0.
i=1 h=1

We now set:

aig= (Ar=Zis) M;

b;‘f = hlSjlf

The previous equation becomes:
N F
S apeShton 0 fe {1, F), (6)
i=1

Note that b; f = Z;  if and only if S is the exponential function.

We end up with /£ equations, each being a weighted sum of exponential functions. Thus, this is a system of #
equations with # unknowns, which we call a Target Ezposure Problem. Each equation is a sum of N terms, and
to each of these terms we have the variable ay, involved, for all € {1,..., F}. In addition, it is assumed that all

the a’s and b’s are non-zero numbers and all distinct. We also assume that the matrices (a; ¢)i1<i<n,1<f<r and
(b j)1<i<n,1<f<r have their rows and columns linearly independent (otherwise we remove the redundant rows
and columns). It is worth pointing out that we systematically assume that these families are connected through
Equations (5) in the rest of this paper.

From now on, it is useful to write, for all f € {1,..., F}, the following function:

N
Frla) =Y ayy S tusen,
=1

so that the goal is to find the number of solution(s) for Equation (6), given by:
.Ff((l) =0, Vf S {1,“., F}

We note that the functions F are all continuous, and C'>-differentiable on R

[II.  UNIQUE AND CONTINUOUS SOLUTION WITH ONE FACTOR

We consider the function given by:

N
Fla) = Za,— i,
=1
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where the family of numbers (a;)icqi, .y and (B;)icqs
Equations (5) (with f = 1 omitted).

The following theorem can be proven by using the Descartes’ rule of signs applied to ‘generalized Dirichlet
polynomials’. We however prove it without using the rule.

Proposition 1. The function F has ezactly one root on R. In addition, the function F has exactly one root on
Ry if and only if the following condition is satisfied:

N
> ZM;
i=1

A >4 = .
> M
i=1

The inequality condition states that the target index exposure should be higher than the market capitalisation
weighted average of the Z-scores, so that the strength surely is positive.

Proof
Without loss of generality, we reorder the terms and set:

by > > by

Bearing in mind the constraints given by Equations (5), we then have:

Mke{l,... N=1} V@7 e{l,... .k} x{k+1,...,N} a<0anda >0. (7)

We introduce the number b such that b > b > b1, and

N

]:'(ct) =e b Fla) = Za’_ olti—bla
i=1

The functions F and F have the same roots. In addition, the function F is of class C (even C"°), and therefore
its derivative is given by:

N
Fla) =) a;(b;—b) e 0.
i=1

Now, bearing Equation (7) in mind, we note that a;(b; —b) < 0, for all i € {1,..., N}. Indeed, if i < k, then
a; < 0 and b; — b > by — by > 0; and if i > k, then a; > 0 and b; — b < b; — by < 0. Thus, we have F'(a) < 0
for any a € R, hence the function F is strictly decreasing on R. In addition, we note that:

Fla) Wm et B

We additionally have:

Fla) ~ ay elbn=te

o 2 Ele ol

Henceforth, we conclude that F has a unique root on R.
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Finally, we have:

N N N N
FO)=F0) = Y a= (A=ZyMi=A Y M= Z:M,
=1 i=1 i=1 i=1
N

> M,

N
i=1
(ZM) A= ——— |- IQOtes
i=1 Z M?

i=1

This concludes the proof.

Proposition 2. The root of F is a continuous function of the a:’s and b;’s.

Proof
In light of the proof of Proposition 1, we assume that F is strictly decreasing (otherwise focus on F instead of F).

If the root & is on Ry, then we have:

N N N
]:(Ct) =0& Zﬂ'f ebiﬁ =0 a etlﬁ = — (Z @; etiﬁ) = ‘(Il‘ et“‘:' < (Z a-j) etmi,
i=2

i=1 =2

N N
hence, since Z |a;| < Z |a;|, we have:

i=2 i=1

1 Zﬁf |ai|
a < In =l .
b=y ( 3

[f the root & is on R, then, we have:

N-1 N1
]:(Ct) = 0 == apy eI;NEl = — (Z L elii&) = ‘a;\," eE;NC_t g (Z ai) el;N 15’
i=1

i=1

hence:

N N
a(by —by_1) = (=) (byo1 —by) <In (M) & —a< ! In (Zz:l a.,) .

leea | = by_1 — by |an|

In any case, we have:

N N
|&] < max L In il L In 2 | =
= by — by |1 | "by o1 — by |z .

Let (@ n)neny and (B n)nen be two sequences of numbers converging to a; and b;, respectively, and for each
i€ {l,...,N}, then set:

1 SN e 1 SN e
K,, = max In =l e | In =l L s
(bl,n —ban ( |ai | ) b1 — b ( leenv el '
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which converges to K.

We set:

.'\r
a) = § T ebion
=1

and we call &, the root of the function J,,, function of class C'*°.

The sequence (K, )qen is converging to K, so that it is bounded, so there exists Ky such that:
VneN |an| < Kyax

The sequence of functions (FS)nen converges to F®) (k" derivative), for any k € N. Since F, and F are
functions of class €', we can use the Hadamard lemma: there exist functions G,, and G (they have no real root
and are both of class C'*°) such that:

Faula) = (a—ay)Gala)
Fla) = (a—a)G(a)

©
B
I

/ (G + e — ay)) dE
Gla) = /]—" tla—a))dt

Clearly, we have:

!
|y (cx) <§ \ambm ,

so that 7] is dominated by an integrable function on the compact [— K nax, K Max]. Therefore, from the Domi-
nated Convergence Theorem, we deduce that the sequence of functions (G,,),.en converges to G.

We set ¢ > 0 and we want to prove that there exists 1y € N such that for any n > ng, the root a, of F, is
contained in |& — €. a + €[, which will prove continuity.

By a reductio ad absurdum, we assume that for any ny, there exists n > np such that &, ¢]& —e.a + ¢[. This
means that we can extract of sub-sequence (Fy () )nen (¢ is an increasing function) such that:

‘(1 - (1“;(,,)‘ > E.

The sequence (&d(,,)),,eN takes its values on the compact set [— Kyjax, Kmax), and we can take another sub-sequence
(Gigeip(n) Jnen (¢ is an increasing function) such that the sequence (Gig.y(n))nen converges to 8 € [—Kypax, Kniax]
(Bolzano-Weierstrass property). In particular, we have:

ot — Cgegmy| > €

© 2023 Global Journals
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and

Bl > e.

6 —
This proves that a # 8.

We consider the sequence (F.y(m))nen given by Fueym (@) = (@ = Gpey(n)) Goey o (). This sequence converges
to F(a) = (e — B) G(a). But then a = #, which is absurd. This concludes the proof. C

[V. UNIQUE AND CONTINUOUS SOLUTION WITH MULTIPLE FACTORS

This section is the core of the paper. We come back to the most general case, given by Equation (6), with # > 1.
We first introduce one definition and two lemmas.

Definition 1 (Mean approximation). Let F € N*\ {1}. Suppose f € {1,...,F}, and (c1,...,€f 1,Cf+1,-..,CF)
a point on a compact set of R¥='. We say that the family of numbers (b; f)scqi
approximation if:

p
IMeR Viefl,....N} 3g€R > bpor=M+e.

h=1
Wt

Note that M does not depend on #, which is the main advantage of this notion, as we are going to see, but
obviously depends on the vector (¢, ... ,Cf_1,Cf41,...,Cx). However, the second term ¢; is supposed to be
small, that is ¢; = o(1) (usual Landau’s little-o notation). In practice, this means that the b;z’s have the same
magnitude order, for any instrument, perhaps except for some factor f. We refer the reader to Section 5 for a
deeper discussion on this approximation.

Lemma 1. We consider the function F given by:

N

Fla) = Zai ehioter,
=1

where the a;’s and b;'s are the numbers as defined in Section 2, and € = o(1). Then the function F has at most
one root on any compact set of R, which is the same as the function

N
a— E a; e,
=1

Proof

We follow the same steps as the ones for Proposition 1. At some point, we have

N
.7:-(&) — e b Fla) = Zaf ol Bt
i=1

Hence, we have:

N N
]}/(&) _ Zaf (b, _ b) ol B e Z a; (b’ _ b) elti—B)a (1 + E-;) .
=1 i=1
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This means that inside the sum, the second term a; (b; — b) et ¢, is negligeable in comparison with a; (h; —
b) et Be 5o that we still have F/(a) < 0 for any a on a compact set of R. We conclude. C

The fact that we restrict on a compact set of R, i.e. on an interval of the form [c,d] (¢ < d) is essential: we have

N N
Z a; = 0 if and only if 0 is the root of F and any compact set of R containing 0 can be chosen. If Z a; # 0,
i=1 i=1

then assume without any loss of generality that the root is positive. Suppose ¢ = 0. The exponent (I — b)a is
in [(b; — b)e, (b; — b)d] if b; > boor in [(b; — )d, (b; — b)c] if b; < b; thus, since these two last segments do not
contain 0, ¢ can indeed be sufficiently small in comparison with |b; — bja. If now ¢ < 0, then there exists ¢ > 0
such that the root is contained in the compact [/, d], and we come back to the previous case: ¢; can finally be
chosen as small as we want.

Lemma 2. Let F > 1. Any compact set K of RF is included into a Cartesian product of closed intervals.

Any compact set of RF is not necessarily a Cartesian product of compact sets (think of a disk), which is why
Lemma 2 is going to be useful.

Proof
We endow R¥ with the usual Euclidean metric, and with its canonical basis, so that any element = € R¥ can be
written as @ = (z1,...,25). The compact set K can be parametrized with specific coordinates. In particular,

we can write

K=Ky x - x Ky,

where K; is a part of R. Since K is compact, it is bounded, and K; is bounded as well, for all ¢ € {1,..., F}.

Therefore, K; admits a minimum (resp. maximum) number ¢; € R (resp. d; € R) in the sense that ¢; < x;
(vesp. d; > x;), for any x; € K;. Therefore, we have K; C [e;,di], which is compact on R. Hence K C
[c1,d1] X« x [¢F,dF], concluding the proof. C

Remark 1. The previous lemma implies that any compact set K of RY wverifies

Kclx(

where T is a compact set of R and C is a compact set of R¥ 1,
Equipped with the Mean approximation and the lemmas, the main result of the paper is the following.

Theorem 1 (Solution Uniqueness and Continuity). Under the f-Mean approzimation (see Definition 1) for
some fe€{l,..., I}, I € N*, the system given by Equations (6) with constraints given by Equations (5) has at
most one root on any compact set of RF. In addition, the root, when it exists, is a continuous function of the
a’s and b’s.

Proof
We can prove the result by induction on F.

Initiation

This case has been treated when F# = 1. This is Proposition 1 and Proposition 2. In addition, the Mean
approximation is trivially verified: the sum is zero, and M = ¢ =0 for any i € {1,..., N}.

Heredity
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We assume the result to be true for any system of /" — 1 > 1 equations and unknowns.

One the one hand, let f € {1,..., F} be the factor corresponding to the Mean approximation, and we focus on

the f* function F;. We note that

: Sl Bigen )
]-'f(al,“.,af,“.,ap):z ape #f ghires,

=1

Without loss of generality, we reorder the terms so that

b > > by,

which implies that

Mke{l,...,N-1} VI, j)e{l,....k}x{k+1,...,N} ay<0anda;s;=>0. 9)
First, we fix the variables (a1,...,ar_1,Qf41,...,04) € RF' say
(Ctla“' L e S PR 1(}1') = (Cla- s s CF1,Cf 415 - .\Ci')s

and apply Proposition 1. Thus, there exists exactly one solution af(cy,...,¢r_1,¢r41,...,¢F) € R such that

ff(fla-uacf laaf(cla“‘ yCf1:Cf 41y - !CF)ach+11“‘ .\CF) = 0;

(10)
V(C‘l, sy CF 1, Cf 1y - _,C;-) e RF 1,
On the other hand, we consider the /" — 1 equations, by omitting the f* one:
N F
]:fr(alw ey Q1 Qe Qe pp gy .\a.f'-) = Zai}reZl:lki’lala e {1- * % sng f - 1': f + 1?‘ ey F}
i=1
We have
N Zle ki pon
Fr(o, ..oy Q1,0 Qppt,y. .., Qp) = Z (aip ef‘ivf“'f) e [#f
i=1
Thus, we indeed fix ay = ¢ € R, and, for any h € {1,...,f—=1,f+1,...,F}, let ’H;Z be the function given by:
Hi(ala BRSSP T AN P .\(}F) = ]:fr(alw cegf 1, Cp Qefy]y .. .\(}F)-
The induction hypothesis allows to assert that the system formed by the F — 1 equalities
Hl(a1,...,ar,a50,...,0p) =0, Yhe{l,...,f—=1,f+1,... F}
admits at most one solution
. def ¢ . . . _
a'(cp) = (ai(ey),...,ap 1(eg),ap(cr),. .. ,ax(cr)) € Cley) R (11)

where C(cy) is a compact set of R~ depending on ¢; (the matrices of the a’s and b’s have their rows and
columns linearly independent). Here, we note that the ay’s are functions of ¢y, hence the above system can be

© 2023 Global Journals

Notes



Notes

seen as a parametrized system of equations.

Thus, we have
T (QI(CJ'):'-'!a}—l(cf)acf:a}Jrl(Cf):'--ra;(cf)) =0, VCfER. (12)

In light of Equation (10), the task is now to prove the eventual existence of ay € R (i.e. one particular fixed
value cy) such that

Frlog) € Fr (oi(ay),- . 07 1(e), 05,054 (0g), . .. .ak(ay) = 0. (13)

to insert into Equation (10), and then we must prove the existence of an ey such that
ar (aj(ag),....a; (o), ap(ag), ..., ap(ay)) = ay,

so that we will have the same function arguments as the ones in Equation (13), concluding the uniqueness of
the root. Thus, in the rest of this proof, we will focus on the function F7.

We have
_ N Sl b ()
.Ff(&f) = Z (a;‘f e #r elirar, (14)
=1
By induction, the function o, is continuous on R, forall h € {1,...,f =1, f+1,..., F}. Thus, the function a*

(see Equation (11)) is continuous on R, and (a*) *(C(ay)) is a compact set of R, for any ar € R. Therefore, oy
can always be defined on a compact set of R without loss of generality.

Let oy € T" where I" is an arbitrary compact set of R, and let C be an arbitrary compact set of RF-Y.If

'N(a*)~1(C) = 0, then there is no ay € I'such that af € (a*)'(C) & a'(ay) € C, and there is no common root
of the functions F3’s and F; on the compact set I' x C of R¥. Thus, we now assume that I'N (a")~(C) £,

The function oy, is continuous on I”, and so as

S B (a)
a— ape #f

for any i € {1,...,N}.

Then this last function is bounded on [ and reaches its bounds (using Weierstrass’ Extreme Value Theorem,
since I is compact), that is

L U iy biioi (af) sy i} (ay) iy biiof (@)
Jag,a; € ' ajpe 7S <ajpe 1#1 <ajpe '#f , Yayel

Therefore, by multiplying by %%/ > 0 and summing over ¢, we have

N SLy ko) N Shybaeieh) ;
Y |aige #F 1 < Frlap) <Y |aipe eIt Yay e T

i=1 i=1
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We now use the Mean approximation, see Definition 1:

IMeR Vie{l,...,N} g €R Z%}b”a; (@¥) = M +e.
l

dJmeR Vie{l,...,.N} I;eR ZEF;} bipof (a{;) = m+n

Regarding the upper bound, we have

N ZJ B l“'l “IfJ) N
E : Ci:‘.fe ,r?gf ebl’fﬂ:f — E :(a;"f eM’+c1] e 1fn.f M' § :ﬂ' fe 1fr1.f+q

i=1 i=1

and regarding the lower bound, we have as well

N Z}; bio () N
E @ 5 e (= elisar = gm E a g I

i=1 i=1

hence

N

Za fC i, f O f i < ‘Ff &f M' Za fr1f+q (15)

i=1

Therefore, according to Lemma 1, the lower and upper bounds have at most one unique identical root a;y on
I, hence, the function F; has the same unique root, if it exists. Then there is at most one ay € I' such that
as € (@) }(C) & a*(ay) € C, and there exists at most one common root of the functions F,’s and Fj on the
compact set T x C of RF,

As a synthesis, there exists at most a root a¢ of F¢ on the compact set I'" of R such that, for all h € {1,..., f —
1, f+1,...,F}, we have

If it exists, the point (aj(ay),...,aj_(af),apap,(ayf),...,ap(as)) is the root of this system on the compact
set I' x C of RF.

If we now consider any compact set K of R¥, Lemma 2 allows to write that X C T x C, where I' is a compact
set of R and C is a compact set of R¥~!. The previous study allows to assess that there exists at most one root
of the system on I' x C, therefore, there exists at most one root on the compact K.

Finally, in light of Inequations (15) and bearing Proposition 2 in mind, the root is a continuous function of the
a’s and b’s.

Conclusion
We have proven that, using the Mean approximation, the system given by Equations (6) admits at most one
solution on any compact set of R*, for any ¥ € N*, and this solution is a continuous function of the a’s and b’s.
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V. DISCUSSION

In this section, we discuss the approximation explicited in Definition 1. We would like to elaborate on the
practical meaning of this assumption for particular values of F. Then we heurestically illustrate the need for
the compactness in the context of researching the solution of the Target Exposure Problem. We end this section
by an attempt of the generalization of the proof, without the need of the Mean approximation.

Mean approximation when /' =
As there is just one factor f = # = 1, the sum is empty in Definition 1, and is equal to 0. Thus M = ¢; = 0.
The Mean approximation is trivial.

Mean approximation when / =2
We have two factors [ and 7 # f. Thus Definition 1 gives

IMeR Vie{l,....N} bpon=M+e, h#]

When ¢;, = 0, this is reduced to the single factor form. We note that b;j, is commonly a style factor Z-score. In
practice, they are generally observed as a close to normal distribution in a large universe. Z-scores have mean
0, standard deviation 1. Additionally, it is common practice to construct the Z-scores with values constrained
in [—3,3]. Provided that ¢, # 0, when ¢, is reasonably small, typically 0 < ¢, < 1, we can set M = 0 and ¢; is
a random value in the range [—3cy, 3cy].

The case ¢, < 1 is a typical observation in broad multi-factor passive investment solutions, limited by the
requirement of diversification, liquidity and capacity. While a five-factor system, namely Value, Quality, Size.
Momentum and Low Volatility, is a common investment consideration, as the number of factors grows, the Mean
approximation approaches a statistical approximation (see Figure 2).

Mean Approximation when F 31

We assume here that the ’s are all random variables which are independent and identically distributed. This
means that the instruments all have the same dependency to the overall pool of considered factors. We can
think of the Mean approximation as the law of large numbers. In fact, adding one more term, which is related
to factor f, wouldn’t change the argument made here. Thus, we have

F
1

im — S bicn = E(biscn).

1m F < b:,fr Ch (b.',h- ffr)

=00

Here, we see that M is playing the role of E(b; ;¢ ), while ¢; clearly is evolving as 1/\/1‘_ In essence, the sum
converges in law to a normal random variable. According to the Lindeberg-Lévy Central Limit Theorem (CLT),
we have:

¥
1 ; Val‘(b,‘_},ﬂ;)
F Z bjlh Cpy in?;w N (J;Lf: —1’_ .

h=1

In this sense, the Mean approximation used here is a statistical approximation, overall approximating the ex-
posures by their average over all individual assets, and the accuracy is dependent on the variability in the
distribution, i.e. the dispersion around the average value, or the deviation of the exposures to an overall average
over the pool of instruments. To some extent, the Mean approximation in the case of large number of factors

and the law of large numbers are the two faces of the same coin.

Although a statistical approximation of the style of CLT makes sense when the sample is large enough, so that
the observable can be approximated by its average, the Mean approximation given by Definition 1 is a useful
tool to turn the general case F' > 1 into the already well-established one F = 1, but is perhaps not necessary to
prove uniqueness of solution. Thus, proving uniqueness of the solution of Equations (6) without any statistical
approximation remains an open question.
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We now would like to illustrate the meaning of compactness in the proof of Theorem 1. Compactness is behaving
as a ‘measure instrument’ looking for the solution (as a microscope chasing a particular bacteria). The solution
might not exist on a particular compact area of R* | but ‘moving’ the set of observations (as focusing the micro-
scope length on somewhere else in the sample) in another area of R might lead to the discovery of the solution.
Increasing the size of the considered compact set (as changing length focus of a microscope) increases the chance
of finding the solution. In addition, as finite union of (not necessarily intersecting) compacts is compact, finding
the solution with distinct compact sets increases the chance of finding the solution.

We end this discussion section by an attempt for a generalisation of the proof without using the Mean approxi-
mation. We come back to the proof of Theorem 1, before the stage of applying the Mean approximation.

Let o € I, and we set

.
&i(a) = bixaj(a).
hzr

We conceptualise the constraint linear approximation of the functions &;’s, as follows: we claim that

Vie {l,....,N} 3IN.m) €R* VacTl' &)=+ ma+ ela), (16)
where by s+ iy > -+ > by 5 + uw, |6:(a)] < 6;, and 6; > 0 is the precision.

Indeed, fixing i € {1,..., N}, the function & is continuous on the compact set I”. From the Weierstrass
Approximation Theorem, for any ¢; > 0, we deduce that there exists a polynomial F; € R[X] such that

Va el |&(a) — Pia)| < 6,

We choose the minimal &; such that P; is a polynomial of order 1 and we impose the consecutive inequalities
by g+ 1 > -« > by s+ pn. Equation (16) together with the constraints follow, and the claim is proven.

From this claim, we write

)\r AN‘
]:f(&) _ Zahf el:iyfaJr&(c‘c) _ Z a:',fe)ﬁ e(fii,erLCi)C' eci(a).
=1 i=1

Since we have

bl‘f +py > > b,i\,"f + N,

then Equation (9) still applies by replacing a; ; with a; se* and b; ; with b; s+ p; (the variable k doesn’t change).
We set

N
F(a) = Z a; s ch(@;) e elurtre
i=1

and

k N
Fi(a)=— Z a; ¢ sh(t;) i et 4 Z a; g sh(6;) e elBis e -
i=1 i=k+1

© 2023 Global Journals

Notes



Notes

where ch and sh are the hyperbolic consine and hyperbolic sine, respectively. The function ]-'}) verifies Proposi-
tion 1, from which we deduce that .7-'}’ has at most one root ey on the compact set .

Furthermore, we have —6; < €;(a) < 6, that is e=®% < ¢%(®) < ¢ hence

i< k = ijlfeEi < ﬂ',-lfe‘i(“‘) < @; f€ b (ﬂ:;‘f < 0)

i>k = age ¥ <a;pei® <aypeb (agp>0)
By multiplying by e* e(ts#:)> = 0, summing over #, we deduce that
Vael’ |Fia)—F(a)| < Fyla). (17)
Inequation (17) means that we can approximate Fy by ]-'}) with precision Fy. If ¢; is sufficiently small, we have

Fi(a) = Fp(a) +o(f),

so that Fy indeed has at most one root on I". However, ¢; has no practical reasons to be small. We thus
could extend the degree of the polynomial F; but we couldn’t prove that the function ]-'fr’ thus obtained has at
most one root. From this approach, it seems that the only possibility is to have a polynomial F; of degree 1.
In addition, the fact that #; is small has no particular connection with the Mean approximation. The end of
Section 6 (Figures 2 and 3) shows some illustration with FTSE All-World Index data.

However, the order-3 polynomial approximation is excellent (see end of Section 6). Equation (16) should thus
become

i

vie{l,...,N} 3 (A,—,;.-,—,,u@),;i?)) ER' VYacl' &a)= N+ o+ ;.-52>a2 + p'£3)&3 + &),
and all the previous mathematics should be re-performed through the function

.'\r

3 24403

f‘(&) _ § :CE; eE-m:+c1ct +dior :
=1

with the ¢;’s and d;'s appropriately defined. See Figures 3 and 4 for a comprehensive numerical illustration with
FTSE All-World Index data.

VI. NUMERICAL ILLUSTRATIONS

In this section, we provide two numerical illustrations for the uniqueness of the solution of system of Equations
(6). Finding numerically the roots for such system is a complex task in itself, since in order to numerically find
the solution, an objective function (here the set of the Fy’s functions) is required, hence the numerical problem
must diverge from the mathematical problem. In practice, the objective function is minimised iteratively, and
at each iteration, the system comes more and more to a minimum. Reaching this minimum needs, at iteration 1,
a starting point, named initial enhancement. We can illustrate the main result of this paper by an appropriate
choice of values for the initial enhancement, corresponding to a trial and error approach, so that we can judge
of the stability of the discovered minimum point.
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That said, we need to fix the values for the «’s, &'s and the A¢’s. In our experiment, we choose the following
values N =10, F = 3, § = exp (so that the b’s are the Z-scores), and:

/ 0.2849081  0.9052735  0.6710882 \
—1.2086324  1.3848464  0.7704434
0.5253426  0.1693195  0.4171714
1.1848723  —0.1850475 0.5078646

i rcsenreren = (b peren 1 pep = 2.8027457  1.2794519  0.6511082 |
LfJISisN, 1= f<k iLfJISiSN. 1S f<k 1.1879513  1.8178505  0.2750094 |’

2.1976343  0.7550815  1.7427517

1.4541885  1.0356254  0.5881843

0.5923255  1.2455047  0.9488955

1.4507721  1.9529544  —0.4500539

N N N
1 1 1
(Af)li-fi-"‘_ = (E -il Z,-.l, (1 + 1/100) E -il Z,-.z, (1 + 2/100) E -il Z,-.g) )

(@i ph<ienazper = (Api<p<r — (Bip)i<ien1<p<r-

For the Z-scores, we took realisations of a Gaussian random variable of mean 1 and standard deviation 0.9. The
Newton-Raphson iterative method has been used to reach for a minimum, and the objective function O has
been set to be

3
O(&lf&zf 03) = Z |]:f(&1102103)|-
f=1

More specifically, we have generated 1000 initial enhancements, each given by the realisation of a Gaussian
random vector of mean 1 and standard deviation 0.5. We have also done the exercise with another series of
1000 simulations, but with mean 10 and standard deviation 5, and another 1000 with mean 100 and standard
deviation 50. The roots found are systematically the same for all the 3000 simulations:

(a1, o, ag) = (—0.002802974, 0.04459991, 0.06373927).

At this point, the value of the F¢’s are of order 10—15, which is of the precision of the machine. Finally, the
estimation precision is of the order 10—15, also reaching the machine precision. The number of iterations varies,
depending on the initial enhancement, but never reaches 1000.

Within this set of parameters, we start to meet numerical issues if the initial enhancement have too negative
values. For instance, if the initial value are (—1, —1, —1), the roots found are

(a1, as, as) = (—10.17499, —11.11835, —12.90939),

but the magnitude order for the values of the functions Fy’s at this point are of order 10=° (same for the es-
timated precision), which shows this point is a local minimum for the objective function, but clearly not the

global one.

This shows the limitation of the numerical method, and further numerical studies would perhaps be needed to
further illustrate the main result of this paper.
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Figure 1: Plot of the objective function |Fj(ay, ag)| + |Fa(a,ag)| versus a; and ap around the unique root
(—0.0002063940, 0.02590912).

We conclude this part with an additional graphical illustration. We choose #" =2 and N = 10, and the Z-scores
are the first two columns of the above Z-scores matrix. The found that the root is given by

(a1, az) = (—0.0002063940, 0.02590912),

with values for the F;’s of order 107 (same for the estimated precision). Figure 2 plots the 3D-surface of the
objective function |Fj(ay, as)| + |Fa(aq, ag)| versus a; and ag. As shown, when we leave the neighbourhood of
the root, the objective function significantly increases from 0. We also note that some convexity appears in the
negative values of a; and ay (see the bottom of the surface in the top right figure), showing that another local
minimum, which is not the global one, could be reached using the Newton-Raphson method once the initial
enhancement is sufficiently close to it; but it is unlikely to be found in this area.

© 2023 Global Journals

Global Journal of Science Frontier Research (F) Volume XXIII Issue VI Version I E Year 2023



Global Journal of Science Frontier Research ( F) Volume XXIII Issue VI Version I E Year 2023

Removing Value Factor Removing Momentum Factor

8
o) g «
|~ [
] (=] @ =
=3 [=] b | o
o - o -
s £
L o L o

-1.0
Removing Size Factor Removing Low Volatility Factor
L=}
= N =
2 B =
£ = 2 5
o @ 3 -
2 e
w o L o
1
06 -04 -02 00 0.2 04 06
Removing Quality Factor Keeping all the Factors
(=]

5 & 5
: 3 g 8
o - o =
= =
L o - o

Figure 2: Histograms of the sum of Z-scores weighted by the root numbers (five factors), from the FTSE All-
World Index data (see Equation (18)). The numbers are comprised between -1 and 1, and centered around 0
with a standard deviation of approx. 0.5. The ‘symmetry’ suggests that the Mean approximation is a statistical
argument. The presence of extreme values also suggests that the Mean approximation is not a necessary condition
to have uniqueness, but sufficient only.

To illustrate the numerical example using practical data, we use FTSE All-World index as the opportunity set.
[t includes listed companies from both developed and emerging markets, which are classified as large and mid
size companies by market cap (for details, see [GEIS]). This index represents a portfolio with around N A 4100
equity instruments, and # = 5 factors, Value, Momentum, Size, Low Volatily, and Quality.

The proof of Theorem 1 is using the Mean approximation, see Definition 1. Testing this approximation is
important. We note that the strengths a priori are dependent variables. For the given set of parameters
imposed by the data, the strengths (a;)req1,...5) designate the unique solution of the system found at rebalance

aj. Bearing Equation (14) in mind, we see that

_ N Ef:l Zigof (opta) P
Filat+a)= Z uire #f efusaptaise

i=1

where @ is a perturbation of the solution strength a;. Thus, a proxy to have access to the variation of the

In fact, the proxy consists in identifying the perturbation of a for the Z-score with the variation of a}.
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Bearing this in mind, it is interesting to focus on the quantity H;, function of the perturbation a of the Z-score
Z; §'s and given by

F
He(a) =) Zinaj(a), (18)
hZf

where we excluded a given factor f in the sum, and where aj(a) is the strength found after the Z-scores are
perturbed by a. In Figure 2, we plotted the histogram of the sum y (one realization for one value of e, chosen
as realized Gaussian random variables of parameters (0, 1) (size of sample: 1000)), and we see that most of the
values are concentrated around 0, but there are more extreme ones (even if < 1). The root uniqueness may not
need the Mean approximation.

We now focus on Equation (16). First, Figure 3 shows the H;’s (see Equation (18)) with respect to a. For the
chosen instrument, the linear approximation is quite correct as witnessed by the R? values, see Figure 3.
However, Figure 4 shows the same plots for another instrument, and the linear approximation is not convincing.
We calculated the averaged K2 for all the factors and for all the instruments, at all the rebalance dates between
2015 and 2022 (8 samples). It is given by 0.748, with a standard deviation of 0.300.

As specified in Section 5, the order-3 polynomial is an excellent approximation for all the factors, instruments,
and considered years. We also calculated the averaged K2, which is 0.998, with a standard deviation of 0.015.

VII. CONCLUSION

In this paper, we have explained the Target Exposure methodology, abundantly used by the index industry
and passive investment community. The Target Exposure derives an allocation of considered assets, allowing
an investor to build portfolios that are exposed to various factor risks. It provides the investors a constrution
tool that gives transparency and intuition inherited from traditional tiling. Weighting transparency is a growing
consideration of the passive investment community, especially when it includes sustainable investment goals
such as ESG or carbon emission intensity. The discussion on the uniqueness of this allocation for a given set of
exposures targets furthers our understanding of the target exposure framework.
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Figure 3: Scatter plot of the sums as defined by the H ;s (see Equation (18)) vs a defined around 0, for a chosen
instrument for which the linear approximation (see Equation (16)) is good.

We have first reduced the Target Exposure model to a system of non-linear exponential functions. We have
fully established the uniqueness of the solution in case we’ve considered only one factor. Then, as the most
difficult part, we have proven the uniqueness of the solution for any number of factors, under a useful statistical
approximation, the Mean approximation.

Consisting in averaging the exposures of each asset to their factors overall, this approximation allowed completing
the mathematical induction approach on the number of factors: we were able to show that there exists at most
one allocation for a given considered universe of parameters, reduced to given compact sets of multi-dimensioned
real vector space. The fact that the result is true for any compact set is not restrictive at all: if the compact set
is too small, the unique solution will unlikely be contained in it. Thus, it is suggested to move the compact set in
the universe of parameters, or increase its size, until finding the solution. We see that compact sets here are the
mathematical justification for plaving with the set of parameters, in the research of the unique possible allocation.

Tilting is one of the most common for use modern portfolio construction methodologies. Target Exposure aims
to extend the tilting capability to incorporate explicit ex-ante outcomes while keeping the transparent weighting
formulation. The extension to Target Exposures introduces a system of non-linear equations. The discussion
of the root of this system of equations, particularly its uniqueness, has presented us with an interesting and
challenging task. This paper has laid the groundwork for potential deeper dive into this system. While multiple
solutions of such a system would further lead to possible discussions on different portfolios yielding identical
investment objectives, our study so far has shown that such a scenario is not likely. The research proposed
in this paper shows that the system underpinned by the Target Exposure problem has at most one real and
continuous solution.
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Figure 4: Same as Figure 3 but for another instrument, for which the linear approximation (see Equation (16))
is not a good approximation. However, for all the instruments, the order-3 polynomial approximation is a very
good approximation.
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