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I.

 

Introduction

 

and  Background

 
The famous Szasz-Mirakjan perator is

 

a positive linear operator on [ )0,C ∞

 

(continuous function on [ )0,∞ ), defined as follows
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 It is easy to obtain by calculation
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There are a lot of in-depth researches on its approximation, and the research 
results are very rich.[1-21]

 

The literature[17] introduce The Szasz-Mirakjan-Durrmeyer operator by 
Durrmeyer transformation of Szasz-Mirakjan operator
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It is easily obtained by (1) and (2)  
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n n
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Obviously this is a positive linear operator on [ )0,L ∞
 

(integrable function on

[ )0,∞ ), and there has been a lot of research on it[21-26].  

Operator localization is one of the methods to transform operators. In order to be 
convenient and feasible, the localization of some operators is necessary. The idea of 
operator localization originates from the truncation of infinite sum.

 
In 1980, literature 

[27] firstly introduced Szasz-Mirakjan localization operator as follows
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In this paper, the same method is used to introduce the localized Szasz-Mirakjan-
Durrmeyer operator as follows  
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Here we mainly study the approximation problem of localized Szasz-Mirakjan-
Durrmeyer operator.

 
The following part is used to discuss the convergence and 

approximation of ( ),n NS f operator, resulting in theorems 1 and 2.  The last part is used 

to study the approximation velocity of ( ),n NS f operator, and theorem 3 is obtained.
 

II.
 

The  Convergence
 

0f  Localized  Szasz-Mirakjan-Durrmeyer  Operator
 

Let's start with the following lemma.  

Lemma 1
[28]  Let 0>x  and ( )+∞∞−∈ ,y ，Then  
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Where A is a constant. If 0, 0x y= > , change
x

y  
to∞ ,then the conclusion is valid.
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Using this lemma, we come to the following conclusion  

Theorem 1: Let [ )∞∈ ,0Cf
 
and ( )xnNN ,= , make
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For 0>η , define the optical sliding mode
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According to the property of the optical sliding mode, if
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From (7) and (8), it can be concluded that (5) converges uniformly in [ ]21 , xx  

In a similar way to Theorem 1, we get the following conclusion.  

Theorem 2: Let [ )∞∈ ,0Cf  and ( )xnNN ,= , make  

1)  ( ) nnxN −  is uniformly bounded on [ ]21 , xx , where,  ∞<<≤ 210 xx  
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n
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( ) ( ) ( ) 21
2

,lim ;
2

C x
u

x
n Nn

f x
S f x e du

π
−

−∞→∞
= ∫  is uniformly true on  [ ]21 , xx .  When 0=x , think of 

( )
x
xC

 as ∞ .  

Corollary 1: Let [ )∞∈ ,0Cf  and ( )xnNN ,= , make  

1)  ( ) nnxN −  is uniformly bounded on [ ]21 , xx , where,  ∞<<≤ 210 xx  
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Corollary 3: Let  [ )∞∈ ,00x ,  If ( ) nnxN 0−  is bounded,  then  
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is true for any [ )∞∈ ,0Cf ,  

If and only if  
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0lim  is true. 

III.  Approximation  Speed  of  Szász-Mirakja-Durrmeyer  Deformation 

Localization  Operator  

A similar result is obtained for the localization Szász-Mirakjan-Durrmeyer 

operator ( )xfS Nn ,~
,  as follows.  
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By the same token, we can obtain from (1)
 

                       ( ) 





=

−
= −

n
Oe

n
xnJ x

n
nx 13

,4

3

3 α
α

α

α
                              (19) 

                      ( ) 





=

−
= −

n
Oe

n
nJ x

n
nx 1

,34 α
α

α

α
             

 
                  (20) 

Combined with (17)-(20), we can get  

                             





=

n
OI x

1
,

'
12 α                                        （21）  

According  to (4)  

( ) ( ) ( )∑ ∫
=

≥−
=

N

k
xt knkn xdtStSnxfI

0
,,

''
12 δ  

( ) ( ) ( ) ( )∑ ∫
=

≥−

−
≤

N

k
xt knkn xdtStSxtnxf

0
,,2

2

δ δ  

( )
22

22
n

nxxf +
≤

δ  

         
                  

( )
22

22
n
nxAe x

δ

α +
≤                                        （22）

 

According to (21) and (22),  
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                             





=

n
OI x

1
,12 α                                      （23） 

Then, from (15) and (23),
 

                         








=

n
OI x

1
,1 α                                             （24）

 

According to literature [28]
 

                      

( ) ( )( )2 3

( ) ( ) 3 1
2 ln ln

f x f x x
I O

n n nx nπ

 
+ ≤ ⋅+  

 
 

                
 
（25）

 

Combine (24) with (25) to get，existence 0n
 

such that when 0nn > , there is

 

( ) ( ) ( )
n

xCxfxfS Nn
1,,,~ *

, αδ≤−

 

In which ( )αδ ,,* xC is a constant that depends only on x，δ

 

and α ，So (11) is true.

 

Next, we prove (12). Only certificate

 

                         
11

1
xI o

n
 =  
 

                       

 

                    （26）

 

In fact, if there is ( )xf ' ，then for any 0>ε ，there is 0>δ ，and exist

 

                 ( ) ( ) ( )( ) xtxtxfxftf −<−−− ε' ， δ<− xt ，                （27）

 

from (27)

 

( ) ( ) ( ) ( )∑ ∫
=

<−
−≤

N

k
xt knkn xdtStSxtnxfI

0
,,

'
11 δ

 

( ) ( )∑ ∫
=

<−
−+

N

k
xt knkn xdtStSxtn

0
,,δ

ε

 

               21 HH +≡                              

 

    （28）

 

from（4）
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∞

+=

∞
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+≤
1

,
'

1
,

'2
Nk

kn
Nk

kn xSxfxxS
n
kxf  

( ) ( ) ( ) ( )∑∑
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+=

∞

=

+≤
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,
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,
'2

Nk
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Nk
kn xSxfxxSxfx  

And then we know from (25) 

                             







=

n
oK x

1
2                                       （30） 

According to (4) 

     ( ) ( )∑ ∫
=

<−
−=

N

k
xt knkn xdtStSxtnH

0
,,2 δ

ε
 

      ( ) ( ) ( )
2

1

0
,,

2 







−≤ ∑ ∫

∞

=
<−

k
xt knkn xdtStSxtn

δ
ε

 

                                  n
nx

n
22 +

≤
ε

                           （31）
 

(26) is established by combining (29) with (31). 
Then, from (23), (25) and (26), when n  is sufficiently large, there is 

( ) ( ) ( )
n

xCxfxfS Nn
εαδ ,,,~ **

, ≤−  

in which ( )αδ ,,** xC  is a constant that depends only on x , δ  and α , so (12) is true. so 

the theorem is proved. 
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