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[.  INTRODUCTION AND BACKGROUND

The famous Szasz-Mirakjan perator is a positive linear operator on C[O,oo)
(continuous function on [0,0)), defined as follows

S, (f;x)= e’”xi (nx)k f (Kj X €[0, ).

= k! n
It is easy to obtain by calculation

S,Lx)=1; S,tx)=x ; Sn(tz;x):x2+% (1)

sn((t_x)Z;x)=§ (2)

There are a lot of in-depth researches on its approximation, and the research
results are very rich.'?"

The literature[l7] introduce The Szasz-Mirakjan-Durrmeyer operator by
Durrmeyer transformation of Szasz-Mirakjan operator

o0

S,(f:x)=2n[ " f(t)S,, (t)dtS,, () xe[0,0)

0
k=0

Of which

k
S, (x)= (%) e™, k=01,...,
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It is easily obtained by (1) and (2)

S (x)=1: 8 (tx)=x+2 ax, 2

S, (Lx)=1; Sn(t,x)_x+n ;S (Pix)=x"+ - (3)
(ot 2

Sallt=xpx)=—5 S ((E=0%x) =2 (4)

Notes

Obviously this is a positive linear operator on L[0,) (integrable function on
[0,:0)), and there has been a lot of research on it™*.

Operator localization is one of the methods to transform operators. In order to be
n convenient and feasible, the localization of some operators is necessary. The idea of

operator localization originates from the truncation of infinite sum. In 1980, literature
[27] firstly introduced Szasz-Mirakjan localization operator as follows

Year 2023

Version |

V

S ( nxz w [—j x [0, )

k=0

In this paper, the same method is used to introduce the localized Szasz-Mirakjan-
Durrmeyer operator as follows

XXIII Issue

(f;x :ZN:njo L(0)dtS,, (x) xe[0,00),

Of which

Frontier Research ( F) Volume

Here we mainly study the approximation problem of localized Szasz-Mirakjan-
Durrmeyer operator. The following part is used to discuss the convergence and

approximation of §n N ( f) operator, resulting in theorems 1 and 2. The last part is used
to study the approximation velocity of §n N ( f ) operator, and theorem 3 is obtained.

[I. THE CONVERGENCE OF LOCALIZED SZASZ-MIRAKJAN-DURRMEYER OPERATOR

Let’s start with the following lemma.

Global Journal of Science

Lemma 1* Let x>0 and ye(-w+x), Then

e

[miﬂ( II AX~/3x +1
%0 IR

Where A is a constant. If x=0,y>0, changei tooo,then the conclusion is valid.

Jx
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Using this lemma, we come to the following conclusion
Theorem I Let f e C[O,oo) and N = N(n,x), make

1) (N —nx)/nuniformly bounded on [x,,x,] , where 0<x, <X, <o
N —nx

2) !I_TO ZC(X) preserving uniform convergence in [Xl,xz], Then, it is established

n
that there is

Notes C(x) 1,
I|mS (f;x): I/g_X)J'&e_zu du (5)
n—o /e

uniformly in [x,x,].

Proof: Let

Forn >0, define the optical sliding mode

o(fin)= F ()= (y)

max
X,y€[0,%+G].|[x—y|<n

According to the property of the optical sliding mode, if 2 >0, then

o(f;in)<(1+1)o(f.7) (6)

If xe[x,x,], then

§ N(f;x)zinﬂw(f(t)—f(x))%e“‘dtSn’k(x)+ZN:f(x)Sn]k(x)

k=0
=l +1,

According to (6) and (4)

L)< D27 (1) £ (0[S, (0415, (x)

k=0
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-

jinjo (l+\/_|t x|)  ()dts, (%)

#

IA
S

5~

(z S, ( +§n [ VRlt- X, ()dts, (x)j

k=0
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i k!

TV O P . (s)
Jn ]

Jor * (Y ++n[s,|

From (7) and (8), it can be concluded that (5) converges uniformly in[x,, X, |
In a similar way to Theorem 1, we get the following conclusion.

Theorem 2: Let f eC[0,00) and N = N(n,x), make
1) (N —=nx)/n is uniformly bounded on [x,,X,], where, 0<x, <X, <o

2) lim N=nx_ C(X),|C(X)| > p >0 maintain consistent convergence within [x,,x, ], then
c(¥) 1,2

n—o0 \/ﬁ

lim §n’N(f;X)=%I g2 du is uniformly true on [x,,x,]. When x =0, think of

n—e 2 7
C(x)
Vx
Corollary 1: Let f eC[0,0) and N = N(n,x), make
1) (N—=nx)/n is uniformly bounded on [x,,X, ], where, 0<x, <x, <o

as .

(i) lim = oo preserving uniform convergence in [x,,X,], then limS, (f;x)=f(x)

nN—o0 / n n—w

is uniformly true on [Xl, Xz]-

Corollary 2: Let f eC[0,00) and x,e(0,:0), If (N—nx,)/n is bounded, and when
n— oo, (N=nx,)/n does not converge to o, Then limS,  (f;%,)= f(x,) must result in
f(x,)=0

Corollary 3: Let X, € [O,oo), If (N —NX, )/ n is bounded, then

limS, , (f;%)="f(x%)

is true for any f e C[O,oo),
If and only if
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I\Iotes

N —nx,

m N

=o0 1S true.

[II.  APPROXIMATION SPEED OF SZASZ-MIRAKJA- DURRMEYER DEFORMATION

LOCALIZATION OPERATOR

A similar result is obtained for the localization Szasz-Mirakjan-Durrmeyer

operator S~n’N(f,X) as follows.

Theorem 3: Let f € C for fixed X >0, there is 6 >0,

Make f conform to

<C(x,6),

‘f(t)— F(x)

t—Xx

in which |t—X <&, and t>0. and N =N(n,x),

liminf "X

n—> 1/nxlnini

>1

is true, then

sup/n

nx1

S~n‘N(f;x)—f(x)|<oo

If f'(x) exists, and N =N(n,x), (13) is true, then

Iim\/ﬁ(S}N(f;x)— f (x))=0.

n—w

Proof: (11) first. We note that

(100

(1D

(12)

(13)
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From (9) and (4) we have

© 2023 Global Journa

c(x,s an t—x)’S,  (t)dtsS, ()j%

_C(x,8) [2nx+2
<=r ‘/ ~

Lal= D10~ £ (S, (4

k=0
N N
< ool U8, ()dtS  ()+ > Jol T (0SS, (0)
= |1I2 + |1"2

n>a, HfeC,, Alf5

k!

k
2 [Cer e ()" dt}sn,k(x)

_A in{(k+2)(k +1n* _2x(k+tpn*  xn* }Sn,k(X)

(n _a)k+3 (n _a)k+2 (n _a)k+l

(14)

(15)

(16)

Notes



AR et 2o, s g

N R e O

_a(Zn—a)X2 3k n 1 2:|Sn'k(X)

(h-af = (-af (-a)

Notes

SO

According to (1)

© 2023 Global Journals

Global ]oul‘na] of Science Frontier Research ( F) Volume XXIII Issue V Version I ﬂ Year 2023



Global Journal of Science Frontier Research ( F) Volume XXIII Issue V Version I E Year 2023

N
3=

k=0

[

o)
_a(2n-a)n e:—nZZN:(ka n-a) -

(n - 05)3 k=0

n Y al2n-a)(k) (nx)* -
) )

n-a) (-af (n) K

n k!

onx 2
Soz(2n—oc3)nen_a|:( nx j LX }
(n-a) n—a n—o

SO

According to (4)

According to (21) and (22),

© 2023 Global Journals

N :|f(x)|§;n QTN

< | f (X)& njt_x‘zg t ;;()2 Snk (t)dtsn,k (x)

k=0

| £(x) 2nx + 2
5% n?

<

. Ae” (2nx +2)
52n2

(18)

(19)

(20)

(2D

(22)

Notes



Notes

1
||12|:Ox,a(5j (23)

Then, from (15) and (23),

1
1,|=0,,| —= (24)
=0 &)

According to literature [28§]

1< | f(x)| |f(x)|\/3x+
\/_,/nln (m)g

(25)

Combine (24) with (25) to get, existence n, such that when n>n,, there is

S (f,x)— f(x)( <C'(x,5,a)

s

In which C*(X,é' ,a)is a constant that depends only on X, & and a, So (11) is true.
Next, we prove (12). Only certificate

1
||11|:Ox (ﬁj (26)

In fact, if there is f (X) ,» then for anye >0, thereis 6 >0, and exist

LOERICIERNEY (EFY R t-x<d, (27)
from (27)
e Z J“t AL ((t)ts, (x
ro3nf, =S, 05, (0
—H,+H, (28)
from (4)
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from (4)
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(29

Notes



Notes

k=N k=N+1

And then we know from (25)

K, :ox[i} (30)

According to (4)

Jn N 31D

(26) is established by combining (29) with (31).
Then, from (23), (25) and (26), when n is sufficiently large, there is

Son(fx)- f(x)( < C”(x,&,a)%

in which C**(X,5,05) is a constant that depends only on X, & and a, so (12) is true. so
the theorem is proved.
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