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The fuzzy theory has emerged as the most active area of research in many branches

of science and engineering. Among various developments of the theory of fuzzy

sets[35] a progressive development has been made to find the fuzzy analogues of the

classical set theory. In fact the fuzzy theory has become an area of active research

for the last 50 years. It has a wide range of applications in the field of science and en-

gineering, e.g. application of fuzzy topology in quantum particle physics that arises

in string and e(∞)-theory of El-Naschie[7-11], electronic engineering, chaos control,

computer programming, electrical engineering, nonlinear dynamical system, popu-

lation dynamics and biological engineering etc.

In [35], Zadeh introduced the theory of fuzzy sets. Atanassov[1-2] introduced and

studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Later
on the theory of intuitionistic fuzzy sets caught the interest of various mathemati-

cians round the globe and a huge literature in this direction has been produced in

forms of books and research papers published in famous journals round the globe.

By reviewing the literature, one can reach them easily, (e. g., see, [1-6], [12], [13],

[15],[26], [30] and [31] and the references there in.)

Sequences play an important role in various fields of Real Analysis, Complex Analy-

sis, Functional Analysis and Topology. These are very useful tools in demonstrating
abstract concepts through constructing examples and counter examples. The topic

”Sequence spaces” is very broad in its own sense as one can study from various point

of views. In [22] Kostyrko, Salat and Wilczynski introduced and studied the concept

of I-Convergence and later on there has been much progress and development in the

study in this direction. (e. g., see, [12], [14-19], [32] and [34] and the references

there in.)
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Abstract- In this article we introduce to certain class of intuitionistic fuzzy structures.
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In many branches of science and engineering we often come across with different

type of sequences and certainly there are situations of inexactness where the idea

of ordinary convergence does not work. So to deal with such situations we have to

introduce new measures and tools which are suitable to the said situation. Here we

give the preliminaries.

Now we quote the following definitions which will be needed in the sequel

A binary operation * : [0,1]× [0,1]→ [0,1] is said to be continuous

t-norm if it satisfies the following conditions;

(a) * is associative and commutative.

(b) * is continuous.

(c) a*1=a for all a∈[0,1]

(d) a*c≤b*d whenever a≤b and c≤d for each a,b,c,d∈[0,1].

For example, a ∗ b = a · b is a continuous t-norm.

A binary operation � : [0,1] × [0,1]→ [0,1] is said to be continuous

t-conorm if it satisfies the following conditions;

(a) � is associative and commutative.

(b) � is continuous.

(c) a�0=a for all a∈[0,1]

(d) a�c≤b�d whenever a≤b and c≤d for each a,b,c,d∈[0,1].

For example, a�b=min{a+ b, 1} is a continuous t-conorm.

Let * be a continuous t-norm and � be a continuous t-conorm and
X be a linear space over the field(R or C). If µ and ν are fuzzy sets on X×(0,∞)

satisfying the following conditions, the five- tuple (X,µ,ν,*,�) is said to be an intu-

itionistic fuzzy normed space(IFNS) and (µ,ν) is called an intuitionistic fuzzy norm.

For every x, y ∈ X and s, t>0,

(a)µ(x,t)+ν(x,t)≤ 1,

(b)µ(x,t)>0,

(c)µ(x,t)=1 iff x=0,

(d)µ(ax,t)=µ(x, t

|a|
) for each a 6=0,

(e)µ(x,t)*µ(y,s)≤µ(x+y,t+s)

(f)µ(x,·) : (0,∞)→[0,1] is continuous,

(g) lim
t→∞

µ(x, t) = 1 and lim
t→0

µ(x, t) = 0,

(h)ν(x,t)< 1,
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II. Preliminaries

Definition 2.1. 

Definition 2.2. 

Definition 2.3. 

Notes
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Notes

(i)ν(x,t)=0 iff x=0,

(j)ν(ax,t)=ν(x, t
|a|) for each a 6=0,

(k)ν(x,t)�ν(y,s)≥ν(x+y,t+s)

(l)ν(x,·) : (0,∞)→[0,1] is continuous,

(m) lim
t→∞

ν(x, t) = 1 and lim
t→0

ν(x, t) = 0,

(n)a*a=a, a�a=a for all a∈[0,1].

Let (X, µ,ν,*, �) be IFNS and (xn ) be a sequence in X. Sequence

(xn) is said to be convergent to L∈ X with respect to the intuitionistic fuzzy norm

(µ,ν) if for every ε > 0 and t > 0, there exists a positive integer n0 such that µ(xn-

L,t)> 1−ε and ν(xn-L,t)< ε whenever n > n0. In this case we write (µ,ν)- limxn=L

as n→∞.

If X be a non- empty set, then a family of set I ⊂ P (X )(P (X)

denoting the power set of X) is called an ideal in X if and only if

(a) φ ∈ I;

(b) For each A,B ∈ I, we have A ∪B ∈ I;

(c) For each A ∈ I and B ⊂ A we have B ∈ I.

If X be a non- empty set. A non- empty family of sets

F ⊂ P (X)(P (X) denoting the power set of X) is called a filter on X if and only if

(a) φ /∈ F ;

(b) For each A,B ∈ F , we have A ∩B ∈ F ;

(c) For each A ∈ F and A ⊂ B we have B ∈ F.

Let I ⊂ P (N) be a non trivial ideal and (X,µ,ν,*,�) be an IFNS. A

sequence x = (xn) of elements in X is said to be I- convergent to L∈ X with respect

to the intuitionistic fuzzy norm (µ,ν) if for every ε > 0 and t > 0, The set

{n ∈ N : µ(xn − L, t) ≥ 1− ε or ν(xn − L, t) ≤ ε} ∈ I

In this case L is called the I-limit of the sequence (xn) with respect to the intuition-

istic fuzzy norm (µ,ν) and we write I(µ,ν) - limxn=L.

A convergence field of I-convergence is a set

F (I) = {x = (xn) ∈ `∞ : there exists I − limx ∈ R}.

The convergence field F (I) is a closed linear subspace of `∞ with respect to the

supremum norm, F (I) = `∞ ∩ cI .

Definition 2.4. 

Definition 2.5. 

Deffinition 2.6. 

Definition 2.7. 

Definition 2.8. 



 
 

 
 

 
 
 
 
 
 
 
 
 
 

As an insight, while working in the direction of fuzzy theory and Ideal Convergence

the author has the following observations

Let N, R and C be the sets of all natural, real and complex numbers respectively.

We write

ω = {x = (xk) : xk ∈ R or C},

the space of all real or complex sequences.

Listed below are few complementary structures which are intuitionistic fuzzy in na-

ture.

c0 = {x ∈ ω : lim
k
|xk| = 0}, the space of null sequences.

c = {x ∈ ω : lim
k
xk = l, for some l ∈ C}, the space of convergent sequences.

`∞ = {x ∈ ω : sup
k
|xk| <∞}, the space of bounded sequences.

Recently Kostyrko, Šalát and Wilczyński[22], Šalát Tripathy and Ziman[32] intro-

duced and studied the following sequence spaces

cI0 = {(xk) ∈ ω : {k ∈ N : |xk| ≥ ε} ∈ I},

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for some L∈ C },

`I∞ = {(xk) ∈ ω : {k ∈ N : |xk| ≥M} ∈ I, for each fixed M>0}.

Ruckle [27-29] used the idea of a modulus function f to construct the sequence space

X(f) = {x = (xk) :
∞∑
k=1

f(|xk|) <∞}

Khan and Ebadullah[16] introduced the following sequence spaces

cI0(f) = {(xk) ∈ ω : I − lim f(|xk|) = 0};

cI(f) = {(xk) ∈ ω : I − lim f(|xk|) = L for some L∈ C };

`I∞(f) = {(xk) ∈ ω : sup
k
f(|xk|) <∞}.

Lindenstrauss and Tzafriri[23] used the idea of Orlicz functions to construct the
sequence space

`M = {x ∈ ω :
∞∑
k=1

M( |xk|
ρ

) <∞, for some ρ > 0}

Tripathy and Hazarika[34] introduced the following sequence spaces

cI0(M) = {x = (xk) ∈ ω : I − limM( |xk|
ρ

) = 0 for some ρ > 0};

cI(M) = {x = (xk) ∈ ω : I − limM( |xk−L|
ρ

) = 0 for some L∈ C and ρ > 0};

`I∞(M) = {x = (xk) ∈ ω : sup
k
M( |xk|

ρ
) <∞ for some ρ > 0};
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Kolk[20-21] gave an extension of X(f) by considering a sequence of modulii F = (fk)

and defined the sequence space

X(F ) = {x = (xk) : (fk(|xk|)) ∈ X}.

Khan, Suantai and Ebadullah[17] introduced the following sequence spaces

cI0(F ) = {(xk) ∈ ω : I − lim fk(|xk|) = 0};

cI(F ) = {(xk) ∈ ω : I − lim fk(|xk|) = L for some L∈ C };

`I∞(F ) = {(xk) ∈ ω : sup
k
fk(|xk|) <∞}.

The σ-convergent sequences

Vσ = {x = (xk) :
∞∑
m=1

tm,k(x) = L uniformly in k, L = σ − limx},

where m ≥ 0, k > 0

Khan and Ebadullah[19] introduced the following sequence spaces

V I
0σ(m, ε) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)| ≥ ε} ∈ I}

V I
σ (m, ε) = {(xk) ∈ `∞ : (∀m)(∃ε > 0){k ∈ N : |tm,k(x)−L| ≥ ε} ∈ I, for some L∈ C }

Mursaleen [24-25] defined the sequence space BVσ, the space of all sequences of

σ-bounded variation

BVσ = {x ∈ `∞ :
∑
m

|φm,k(x)| <∞, uniformly in k}.

Khan, Ebadullah and Suantai [18] introduced the following sequence space

BV I
σ = {(xk) ∈ `∞ : {k ∈ N : |φm,k(x)− L| ≥ ε} ∈ I, for some L∈ C }

Şengönül[33] introduced the Zweier sequence spacesZ0 and Z as follows

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.

Z = {x = (xk) ∈ ω : Zpx ∈ c}

Khan, Ebadullah and Yasmeen [14] introduced the following classes of sequence
spaces

ZI0 = {x = (xk) ∈ ω : I − limZpx = 0};

ZI = {x = (xk) ∈ ω : I − limZpx = L for some L∈ C };

ZI∞ = {x = (xk) ∈ ω : sup
k
|Zpx| <∞}.
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The approach is to construct and study new intuitionistic fuzzy I-convergent seque-
nence spaces

cI(µ,ν) = {{k ∈ N : µ(xk − L, t) ≤ 1− ε or ν(xk − L, t) ≥ ε} ∈ I},

cI0(µ,ν) = {{k ∈ N : µ(xk, t) ≤ 1− ε or ν(xk, t) ≥ ε} ∈ I},

V I
σ(µ,ν) = {{k ∈ N : µ(tm,k(x)− L, t) ≤ 1− ε or ν(tm,k(x)− L, t) ≥ ε} ∈ I},

V I
0σ(µ,ν) = {{k ∈ N : µ(tm,k(x), t) ≤ 1− ε or ν(tm,k(x), t) ≥ ε} ∈ I},

BV I
σ(µ,ν) = {{k ∈ N : µ(φm,k(x)− L, t) ≤ 1− ε or ν(φm,k(x)− L, t) ≥ ε} ∈ I},

ZI(µ,ν) = {{k ∈ N : µ(x
/
k − L, t) ≤ 1− ε or ν(x

/
k − L, t) ≥ ε} ∈ I},

ZI0 (µ,ν) = {{k ∈ N : µ(x
/
k, t) ≤ 1− ε or ν(x

/
k, t) ≥ ε} ∈ I}.

using the (µ,ν) intuitionistic fuzzy norm.

We can study the algebraic, topological and elementary properties of intuitionis-

tic fuzzy I-convergent sequenence spaces cI(µ,ν), cI0(µ,ν), VI
σ(µ,ν), VI

0σ(µ,ν), BVI
σ(µ,ν),

ZI(µ,ν),Z
I
0(µ,ν).

Further, as a future research directions, the sequence spaces cI(µ,ν), cI0(µ,ν), VI
σ(µ,ν),

VI
0σ(µ,ν), BVI

σ(µ,ν), ZI(µ,ν),Z
I
0(µ,ν). can be studied using the Lacunary, Modulus func-

tion, Orlicz function, Sequence of moduli, Musielak-Orlicz function and Fibonacci
sequences.

The proposed new intuitionistic fuzzy I-convergent sequence spaces are quite patho-

logical from algebraic and topological point of view and one can study it in the

direction of double sequences also.
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