

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: F
MATHEMATICS AND DECISION SCIENCES
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Intuitionistic Fuzzy Structures

By Khalid Ebadullah

Mai Nefhi College of Science

Abstract- In this article we introduce to certain class of intuitionistic fuzzy structures.

Keywords: *ideal, filter, i-convergence, intuitionistic fuzzy normed spaces.*

GJSFR-F Classification: AMS 2010: 40A05, 40A35, 40C05

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Ref

Intuitionistic Fuzzy Structures

Khalid Ebadullah

Abstract- In this article we introduce to certain class of intuitionistic fuzzy structures.

Keywords: *ideal, filter, i-convergence, intuitionistic fuzzy normed spaces.*

I. INTRODUCTION

The fuzzy theory has emerged as the most active area of research in many branches of science and engineering. Among various developments of the theory of fuzzy sets[35] a progressive development has been made to find the fuzzy analogues of the classical set theory. In fact the fuzzy theory has become an area of active research for the last 50 years. It has a wide range of applications in the field of science and engineering, e.g. application of fuzzy topology in quantum particle physics that arises in string and $e^{(\infty)}$ -theory of El-Naschie[7-11], electronic engineering, chaos control, computer programming, electrical engineering, nonlinear dynamical system, population dynamics and biological engineering etc.

In [35], Zadeh introduced the theory of fuzzy sets. Atanassov[1-2] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. Later on the theory of intuitionistic fuzzy sets caught the interest of various mathematicians round the globe and a huge literature in this direction has been produced in forms of books and research papers published in famous journals round the globe. By reviewing the literature, one can reach them easily, (e. g., see, [1-6], [12], [13], [15],[26], [30] and [31] and the references there in.)

Sequences play an important role in various fields of Real Analysis, Complex Analysis, Functional Analysis and Topology. These are very useful tools in demonstrating abstract concepts through constructing examples and counter examples. The topic "Sequence spaces" is very broad in its own sense as one can study from various point of views. In [22] Kostyrko, Salat and Wilczynski introduced and studied the concept of I-Convergence and later on there has been much progress and development in the study in this direction. (e. g., see, [12], [14-19], [32] and [34] and the references there in.)

In many branches of science and engineering we often come across with different type of sequences and certainly there are situations of inexactness where the idea of ordinary convergence does not work. So to deal with such situations we have to introduce new measures and tools which are suitable to the said situation. Here we give the preliminaries.

II. PRELIMINARIES

Now we quote the following definitions which will be needed in the sequel

Definition 2.1. A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be continuous t-norm if it satisfies the following conditions;

- (a) $*$ is associative and commutative.
- (b) $*$ is continuous.
- (c) $a * 1 = a$ for all $a \in [0,1]$
- (d) $a * c \leq b * d$ whenever $a \leq b$ and $c \leq d$ for each $a, b, c, d \in [0,1]$.

For example, $a * b = a \cdot b$ is a continuous t-norm.

Definition 2.2. A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be continuous t-conorm if it satisfies the following conditions;

- (a) \diamond is associative and commutative.
- (b) \diamond is continuous.
- (c) $a \diamond 0 = a$ for all $a \in [0,1]$
- (d) $a \diamond c \leq b \diamond d$ whenever $a \leq b$ and $c \leq d$ for each $a, b, c, d \in [0,1]$.

For example, $a \diamond b = \min\{a + b, 1\}$ is a continuous t-conorm.

Definition 2.3. Let $*$ be a continuous t-norm and \diamond be a continuous t-conorm and X be a linear space over the field(R or C). If μ and ν are fuzzy sets on $X \times (0, \infty)$ satisfying the following conditions, the five- tuple $(X, \mu, \nu, *, \diamond)$ is said to be an intuitionistic fuzzy normed space(IFNS) and (μ, ν) is called an intuitionistic fuzzy norm.

For every $x, y \in X$ and $s, t > 0$,

- (a) $\mu(x, t) + \nu(x, t) \leq 1$,
- (b) $\mu(x, t) > 0$,
- (c) $\mu(x, t) = 1$ iff $x = 0$,
- (d) $\mu(ax, t) = \mu(x, \frac{t}{|a|})$ for each $a \neq 0$,
- (e) $\mu(x, t) * \mu(y, s) \leq \mu(x+y, t+s)$
- (f) $\mu(x, \cdot) : (0, \infty) \rightarrow [0, 1]$ is continuous,
- (g) $\lim_{t \rightarrow \infty} \mu(x, t) = 1$ and $\lim_{t \rightarrow 0} \mu(x, t) = 0$,
- (h) $\nu(x, t) < 1$,

Notes

(i) $\nu(x, t) = 0$ iff $x = 0$,
 (j) $\nu(ax, t) = \nu(x, \frac{t}{|a|})$ for each $a \neq 0$,
 (k) $\nu(x, t) \diamond \nu(y, s) \geq \nu(x+y, t+s)$
 (l) $\nu(x, \cdot) : (0, \infty) \rightarrow [0, 1]$ is continuous,
 (m) $\lim_{t \rightarrow \infty} \nu(x, t) = 1$ and $\lim_{t \rightarrow 0} \nu(x, t) = 0$,
 (n) $a^*a = a$, $a \diamond a = a$ for all $a \in [0, 1]$.

Notes

Definition 2.4. Let $(X, \mu, \nu, *, \diamond)$ be IFNS and (x_n) be a sequence in X . Sequence (x_n) is said to be convergent to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) if for every $\epsilon > 0$ and $t > 0$, there exists a positive integer n_0 such that $\mu(x_n - L, t) > 1 - \epsilon$ and $\nu(x_n - L, t) < \epsilon$ whenever $n > n_0$. In this case we write (μ, ν) - $\lim x_n = L$ as $n \rightarrow \infty$.

Definition 2.5. If X be a non- empty set, then a family of set $I \subset P(X)(P(X)$ denoting the power set of X) is called an ideal in X if and only if

(a) $\phi \in I$;
 (b) For each $A, B \in I$, we have $A \cup B \in I$;
 (c) For each $A \in I$ and $B \subset A$ we have $B \in I$.

Definition 2.6. If X be a non- empty set. A non- empty family of sets $F \subset P(X)(P(X)$ denoting the power set of X) is called a filter on X if and only if

(a) $\phi \notin F$;
 (b) For each $A, B \in F$, we have $A \cap B \in F$;
 (c) For each $A \in F$ and $A \subset B$ we have $B \in F$.

Definition 2.7. Let $I \subset P(N)$ be a non trivial ideal and $(X, \mu, \nu, *, \diamond)$ be an IFNS. A sequence $x = (x_n)$ of elements in X is said to be I - convergent to $L \in X$ with respect to the intuitionistic fuzzy norm (μ, ν) if for every $\epsilon > 0$ and $t > 0$, The set

$$\{n \in N : \mu(x_n - L, t) \geq 1 - \epsilon \text{ or } \nu(x_n - L, t) \leq \epsilon\} \in I$$

In this case L is called the I -limit of the sequence (x_n) with respect to the intuitionistic fuzzy norm (μ, ν) and we write $I_{(\mu, \nu)}$ - $\lim x_n = L$.

Definition 2.8. A convergence field of I -convergence is a set

$$F(I) = \{x = (x_n) \in \ell_\infty : \text{there exists } I - \lim x \in R\}.$$

The convergence field $F(I)$ is a closed linear subspace of ℓ_∞ with respect to the supremum norm, $F(I) = \ell_\infty \cap c^I$.

As an insight, while working in the direction of fuzzy theory and Ideal Convergence the author has the following observations

Let N , R and C be the sets of all natural, real and complex numbers respectively. We write

$$\omega = \{x = (x_k) : x_k \in R \text{ or } C\},$$

the space of all real or complex sequences.

Listed below are few complementary structures which are intuitionistic fuzzy in nature.

$c_0 = \{x \in \omega : \lim_k |x_k| = 0\}$, the space of null sequences.

$c = \{x \in \omega : \lim_k x_k = l, \text{ for some } l \in C\}$, the space of convergent sequences.

$\ell_\infty = \{x \in \omega : \sup_k |x_k| < \infty\}$, the space of bounded sequences.

Recently Kostyrko, Šalát and Wilczyński[22], Šalát Tripathy and Ziman[32] introduced and studied the following sequence spaces

$c_0^I = \{(x_k) \in \omega : \{k \in N : |x_k| \geq \epsilon\} \in I\},$

$c^I = \{(x_k) \in \omega : \{k \in N : |x_k - L| \geq \epsilon\} \in I, \text{ for some } L \in C\},$

$\ell_\infty^I = \{(x_k) \in \omega : \{k \in N : |x_k| \geq M\} \in I, \text{ for each fixed } M > 0\}.$

Ruckle [27-29] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}$$

Khan and Ebadullah[16] introduced the following sequence spaces

$c_0^I(f) = \{(x_k) \in \omega : I - \lim f(|x_k|) = 0\};$

$c^I(f) = \{(x_k) \in \omega : I - \lim f(|x_k|) = L \text{ for some } L \in C\};$

$\ell_\infty^I(f) = \{(x_k) \in \omega : \sup_k f(|x_k|) < \infty\}.$

Lindenstrauss and Tzafriri[23] used the idea of Orlicz functions to construct the sequence space

$$\ell_M = \{x \in \omega : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0\}$$

Tripathy and Hazarika[34] introduced the following sequence spaces

$c_0^I(M) = \{x = (x_k) \in \omega : I - \lim M\left(\frac{|x_k|}{\rho}\right) = 0 \text{ for some } \rho > 0\};$

$c^I(M) = \{x = (x_k) \in \omega : I - \lim M\left(\frac{|x_k - L|}{\rho}\right) = 0 \text{ for some } L \in C \text{ and } \rho > 0\};$

$\ell_\infty^I(M) = \{x = (x_k) \in \omega : \sup_k M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0\};$

Ref

32. T.Šalát, B.C.Tripathy, M.Ziman, On some properties of I-convergence.
Tatra Mt. Math. Publ.,(28) (2004), 279-286.

Kolk[20-21] gave an extension of $X(f)$ by considering a sequence of modulii $F = (f_k)$ and defined the sequence space

$$X(F) = \{x = (x_k) : (f_k(|x_k|)) \in X\}.$$

Khan, Suantai and Ebadullah[17] introduced the following sequence spaces

$$c_0^I(F) = \{(x_k) \in \omega : I - \lim f_k(|x_k|) = 0\};$$

$$c^I(F) = \{(x_k) \in \omega : I - \lim f_k(|x_k|) = L \text{ for some } L \in C\};$$

$$\ell_\infty^I(F) = \{(x_k) \in \omega : \sup_k f_k(|x_k|) < \infty\}.$$

The σ -convergent sequences

$$V_\sigma = \{x = (x_k) : \sum_{m=1}^{\infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x\},$$

where $m \geq 0, k > 0$

Khan and Ebadullah[19] introduced the following sequence spaces

$$V_{0\sigma}^I(m, \epsilon) = \{(x_k) \in \ell_\infty : (\forall m)(\exists \epsilon > 0)\{k \in N : |t_{m,k}(x)| \geq \epsilon\} \in I\}$$

$$V_\sigma^I(m, \epsilon) = \{(x_k) \in \ell_\infty : (\forall m)(\exists \epsilon > 0)\{k \in N : |t_{m,k}(x) - L| \geq \epsilon\} \in I, \text{ for some } L \in C\}$$

Mursaleen [24-25] defined the sequence space BV_σ , the space of all sequences of σ -bounded variation

$$BV_\sigma = \{x \in \ell_\infty : \sum_m |\phi_{m,k}(x)| < \infty, \text{ uniformly in } k\}.$$

Khan, Ebadullah and Suantai [18] introduced the following sequence space

$$BV_\sigma^I = \{(x_k) \in \ell_\infty : \{k \in N : |\phi_{m,k}(x) - L| \geq \epsilon\} \in I, \text{ for some } L \in C\}$$

Sengönül[33] introduced the Zweier sequence spaces \mathcal{Z}_0 and \mathcal{Z} as follows

$$\mathcal{Z}_0 = \{x = (x_k) \in \omega : Z^p x \in c_0\}.$$

$$\mathcal{Z} = \{x = (x_k) \in \omega : Z^p x \in c\}$$

Khan, Ebadullah and Yasmeen [14] introduced the following classes of sequence spaces

$$\mathcal{Z}_0^I = \{x = (x_k) \in \omega : I - \lim Z^p x = 0\};$$

$$\mathcal{Z}^I = \{x = (x_k) \in \omega : I - \lim Z^p x = L \text{ for some } L \in C\};$$

$$\mathcal{Z}_\infty^I = \{x = (x_k) \in \omega : \sup_k |Z^p x| < \infty\}.$$

III. MAIN RESULTS

The approach is to construct and study new intuitionistic fuzzy I-convergent sequence spaces

$$\begin{aligned}
 c_{(\mu,\nu)}^I &= \{\{k \in N : \mu(x_k - L, t) \leq 1 - \epsilon \text{ or } \nu(x_k - L, t) \geq \epsilon\} \in I\}, \\
 c_{0(\mu,\nu)}^I &= \{\{k \in N : \mu(x_k, t) \leq 1 - \epsilon \text{ or } \nu(x_k, t) \geq \epsilon\} \in I\}, \\
 V_{\sigma(\mu,\nu)}^I &= \{\{k \in N : \mu(t_{m,k}(x) - L, t) \leq 1 - \epsilon \text{ or } \nu(t_{m,k}(x) - L, t) \geq \epsilon\} \in I\}, \\
 V_{0\sigma(\mu,\nu)}^I &= \{\{k \in N : \mu(t_{m,k}(x), t) \leq 1 - \epsilon \text{ or } \nu(t_{m,k}(x), t) \geq \epsilon\} \in I\}, \\
 BV_{\sigma(\mu,\nu)}^I &= \{\{k \in N : \mu(\phi_{m,k}(x) - L, t) \leq 1 - \epsilon \text{ or } \nu(\phi_{m,k}(x) - L, t) \geq \epsilon\} \in I\}, \\
 Z_{(\mu,\nu)}^I &= \{\{k \in N : \mu(x'_k - L, t) \leq 1 - \epsilon \text{ or } \nu(x'_k - L, t) \geq \epsilon\} \in I\}, \\
 Z_{0(\mu,\nu)}^I &= \{\{k \in N : \mu(x'_k, t) \leq 1 - \epsilon \text{ or } \nu(x'_k, t) \geq \epsilon\} \in I\}.
 \end{aligned}$$

using the (μ, ν) intuitionistic fuzzy norm.

IV. CONCLUSION

We can study the algebraic, topological and elementary properties of intuitionistic fuzzy I-convergent sequence spaces $c_{(\mu,\nu)}^I$, $c_{0(\mu,\nu)}^I$, $V_{\sigma(\mu,\nu)}^I$, $V_{0\sigma(\mu,\nu)}^I$, $BV_{\sigma(\mu,\nu)}^I$, $Z_{(\mu,\nu)}^I$, $Z_{0(\mu,\nu)}^I$.

Further, as a future research directions, the sequence spaces $c_{(\mu,\nu)}^I$, $c_{0(\mu,\nu)}^I$, $V_{\sigma(\mu,\nu)}^I$, $V_{0\sigma(\mu,\nu)}^I$, $BV_{\sigma(\mu,\nu)}^I$, $Z_{(\mu,\nu)}^I$, $Z_{0(\mu,\nu)}^I$. can be studied using the Lacunary, Modulus function, Orlicz function, Sequence of moduli, Musielak-Orlicz function and Fibonacci sequences.

The proposed new intuitionistic fuzzy I-convergent sequence spaces are quite pathological from algebraic and topological point of view and one can study it in the direction of double sequences also.

Conflict of Interests: The author declares that there is no conflict of interests.

Research Grant: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

REFERENCES RÉFÉRENCES REFERENCIAS

1. K. Atanassov. Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20 (1986), 87-96
2. K. Atanassov. Intuitionistic fuzzy sets, V. Sgurev (Ed.), VII ITKR's Session, Sofia, June 1983.
3. M. Amini., R. Sadat. *Topics in fuzzy metric space*. *J. Fuzzy. Math* (4) (2003), 765-768.
4. M. Amini., R. Sadat. Some properties of continuous t-norms and s-norms. *Int. J. Pure. Appl. Math.*(16) (2004), 157-164.

Notes

5. D. Coker. An introduction to intuitionistic fuzzy topological spaces. *Fuzzy Sets and Systems*, 88 (1997), 81-89
6. D. Coker and A. H. Es. On fuzzy compactness in intuitionistic fuzzy topological spaces. *J. Fuzzy Math.* 3 (4) (1995), 899-909
7. M.S. El Naschie. On the uncertainty of Cantorian geometry and two-slit experiment. *Chaos, Solitons and Fractals* (9) (1998), 517-529.
8. M.S. El Naschie. A review of $e^{(\infty)}$ -theory and the mass spectrum of high energy particle physics. *Chaos, Solitons and Fractals* (19) (2004), 209-236.
9. M.S. El Naschie. Holographic dimensional reduction: center manifold theorem and $e^{(\infty)}$. *Chaos, Solitons and Fractals* (29) (2006), 816-822.
10. M.S. El Naschie. Fuzzy Dodecahedron topology and $e^{(\infty)}$ space time as a model for quantum physics. *Chaos, Solitons and Fractals* (30) (2006), 1025-1033.
11. M.S. El Naschie. A review of applications and results of $e^{(\infty)}$ -theory. *Int J Nonlinear Sci Numer Simulat.* (8) (2007), 11-20.
12. M. Guloğlu, D. Coker. Convergence in I-fuzzy topological spaces. *Fuzzy Sets and Systems*, Volume 151, Issue 3, 1 May 2005
13. V. Karakaya, N. Simsek, M. Erturk and F. Gursoy. *On ideal convergence of sequence of functions in intuitionistic fuzzy normed spaces*. *Appl. Math. Inf. Sci.* 8. No. 5 (2014), 2307-2313.
14. V. A. Khan, K. Ebadullah and Yasmeen. *On Zweier I-convergent sequence spaces*. *Proyecciones Journal of Mathematics*. Vol.(3)(33) (2014), 259-276.
15. V. A. Khan., K. Ebadullah, Rababah. R. K. A. Intuitionistic fuzzy Zweier I-convergent sequence spaces ., *Func. Anal.-TMA* (1) (2015), 1-7.
16. V. A. Khan, and K. Ebadullah. *On some I-Convergent sequence spaces defined by a modulus function*. *Theory Appl. Math. Comput. Sci.* 1(2)(2012), 22-30.
17. V. A. Khan, S. Suantai, and K. Ebadullah. On Some I-Convergent Sequence Spaces Defined By a Sequence of Moduli, *Journal of Nonlinear Analysis and Optimization*, 3(2) (2012), 145-152.
18. V. A. Khan, K. Ebadullah and S. Suantai. On A New I-Convergent Sequence Space, *Analysis*. 32 (2012), 199-208.
19. V. A. Khan and K. Ebadullah. On some new I-Convergent Sequence Spaces, *Mathematica Aeterna*, Vol(3) no 2, (2013), 151-159.
20. E. Kolk. On strong boundedness and summability with respect to a sequence of modulii, *Acta Comment. Univ. Tartu.*, (96) (1993), 41-50.
21. E. Kolk. Inclusion theorems for some sequence spaces defined by a sequence of modulii, *Acta Comment. Univ. Tartu.* (97) (1994), 65-72.
22. P. Kostyrko, T. Šal'at., W. Wilczyński. I-convergence. *Real Analysis Exchange*, 26(2) (2000), 669-678.
23. J. Lindenstrauss and L. Tzafriri. On Orlicz sequence spaces. *Israel J. Math.*, (101) (1971) 379-390.
24. M. Mursaleen. Matrix transformation between some new sequence spaces, *Houston J. Math.*, (9) (1983), 505-509.
25. M. Mursaleen. On some new invariant matrix method of summability, *Quart. J. Math. Oxford*, 34(2) (1983), 77-86.
26. J. H. Park. Intuitionistic fuzzy metric space. *Chaos, Solitons and Fractals* (22) (2004), 1039-1046.

27. W.H.Ruckle. *On perfect Symmetric BK-spaces.*, Math. Ann.(175) (1968), 121-126.
28. W.H.Ruckle. *Symmetric coordinate spaces and symmetric bases*, Canad. J. Math. (19) (1967), 828-838.
29. W.H.Ruckle. FK-spaces in which the sequence of coordinate vectors is bounded, Canad.J.Math.25(5) (1973), 973-975.
30. R. Sadat, J.H. Park. On the Intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals (27) (2006), 331-344.
31. R. Sadat, S.M. Vaezpour. *Some results on fuzzy Banach spaces.* J.Appl Math Comput.(17) (2005), 475-484.
32. T.Šalát, B.C.Tripathy, M.Ziman, On some properties of I-convergence. *Tatra Mt. Math. Publ.*,(28) (2004), 279-286.
33. M. Şengönül. On The Zweier Sequence Space. *Demonstratio Mathematica* Vol.XL No.(1) (2007), 181-196.
34. B.C.Tripathy, B. Hazarika. Some I-Convergent sequence spaces defined by Orlicz function, *Acta Math. Appl. Sin.* 27(1) (2011), 149-154.
35. L.A. Zadeh. Fuzzy Sets. *Inform Control* (8) (1965), 338-353.

Notes