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[. [NTRODUCTION

The authors studied in [13] (see aigain [12]) the following phase-field system, namely,

ou oo Oa
9o Do da ou
t
a(t,z) = a0, z) +/ T(r,z)dr, (1.3)
0

where, u is the order parameter, T is the relative temperature (defined as T' = T - Ty, where T
is the absolute temperature and T is the equilibrium melting temperature), « is the conductive
thermal displacement and f is the derivative of a double-well potential F' (a typical choice is
F(s) = (s> — 1)%, hence the usual cubic nonlinear term f(s) = s® — s). Furthermore, here
and below, we set all physical parameters equal to one. This system has been introduced to
model phase transition phenomena, such as melting-solidication phenomena, and has been much
studied from a mathematical point of view. We refer the reader to, e.g., [4-5, 8-11, 14, 16, 17,

21, 23).

[13] A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type III heat
conduction with two temperatures, Quart. Appl. Math., 2016, 74, 375-398.

Author o o p: Faculté des Sciences et Techniques, Université Marien Ngouabi. B.P. 69 Congo-Brazzaville.
e-mail: armeljudice @gmail.com
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This system is based on the (total Ginzburg-Landau) free energy,
1 2 Lo
Var, = (§|Vu| + F(u) —uT — §T )de, (1.4)
Q

where € is the domain occupied by the system (we assume here that it is a bounded and regular
domain of R, n = 2 or n = 3, with boundary I'), and the enthalpy

H=u+T-AT. (1.5)

As far as the evolution equation for the order parameter is concerned, one postulates the relax-
ation dynamics (with relaxation parameter set equal to one)

Ou  DV¥gy
ou Du ’

(1.6)

D
where Du denotes a variational derivative with respect to u. Then, we have the energy equation

u
88]: = —divq (1.7)
and owing to (1.7),
or orT , Ou
E—Aa+dlvq——a, (1.8)

where ¢ is the heat flux. Assuming finally the usual Fourier law for heat conduction,

qg=—-Va—-VT, (1.9)

we obtain (1.1) and (1.2).

Our aim in this paper is to study the model consisting of the conserved anisotropic to (1.1)—
(1.2), namely,

3
ou 0%u Ja oJe"
2 2
a \Fa \00 n,- O (1.11)

ot? ot? ot ot

Our aim in this paper is to study the model consisting of the anisotropic conservative equa-
tion (1.10) and the temperature equation (1.11). In particular, we obtain the existence and
uniqueness of solutions.

© 2023 Global Journals
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[I.  SETTING OF THE PROBLEM

Find the order parameter u :Q2 x R™ — R and the termal displacement « :  x RT™ — R such
that:

3
ou 0%u Oa Oa
AN G C Ay = —A (22 A% 2.1
A ;a 022 J(u) <8t 8t> 2.1)
0 0 Oa ou
A R T i T (22)

together with periodic boundary conditions

u and « are € — periodic, (2.3)
and the initial conditions
oo
Ult—0 = up, =0 = v, Eh:o =oy. (2.4)
We assume that
a; >0, ie{1,2,3}, (2.5)

and we introduce the elliptic operator A defined by

3
dv Ow
<Avaw>H*1(Q),ngT(Q) = Zai <<8xz’ 83:,)) ) (2.6)

=1

where H~'(Q) is the topological dual of Hp,,.(). Furthermore, ((.,.)) denotes the usual L*-
scalar product, with associated norm [|.||; more generally, we denote by ||.||x the norm on the

Banach space X and we set ||.||-1 = H(—A)_%.H, (—A)~! denoting the inverse minus Laplace
operator with periodic boundary conditions and acting on functions with null average, is a norm
in H=1(Q) = HL,.(Q) which is equivalent to the usual H~'-norm. We can note that

per
> ov Ow
1 2 N it
(v,w) € Hper(Q) > ;al <<8-77i7 8$Z)>
is bilinear, symmetric, continuous and coercive, so that
A:H, . (Q) =~ H Q)
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is indeed well defined. It then follows from elliptic regularity results for linear elliptic operators
of order 2 (see [1-2]) that A is a strictly positive, selfadjoint and unbounded linear operator
with compact inverse, with domain

where, for v € D(A),

3

We further note that D(A%) = H! () and, for v € D(A%),

per

ou e

3
((A20,A%0) = Y aif| 5

We finally note that (see, e.g., [18]) v — (|| Av||® + <v>2)% defines a norm on H2, () which
is equivalent to the usual H%norm on D(A) (resp., v ~ (HA%U”2 + <fu>2)% defines a norm on
H () which is equivalent to the usual H'-norm on D(A%)), where

1
) = Yo /Q dz,

being understood that, for v € H=1(Q),

1
<'U> = VT((Z)<U’ 1>H71(Q)3H;e'r(ﬂ)7

and we note that

v (o= (@))% + (v)?)3

n
is a norm on H () which is equivalent to the usual one. Here, 2 = H(O, L), Li>0,n=2
i=1

or n = 3. Furthermore, for a space W we shall dénote by W the space
W={veWw, (v)=0}

Remark 2.1. Actually, the conseved phase-field system usually is endowed with Neumann bound-
ary conditions. In our case, these conditions read

Oou  O0Au 0Au Oa

% = o (— 78]/ ) = 5 =0 on F, (27)

where v denotes the unit outer normal.
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Notes

Remark 2.2. Note that similar properties hold for the operator —A, with obvious changes.

Having this, we rewrite (2.1) as

8u—AAu—Af(u)z—A<

Oa Jda
i A ) .

o ot
Furthermore, we assume that the function f satisfies the following conditions:
feC*R), f(0)=0,
f'=—co, =0,
f(s)s=c1F(s)—ca, F(s)=—c3, ¢1>0, co,c320, seR,

where, we denote by F' the primitive of f vanishing at s = 0,

casP Tt — o5 < f'(s) o5 +er, a6 >0, 50720, p=1, seR

Remark 2.3. In particular, these assumptions are satisfied by function

2p+1
f(s) = Z a;s", azp+1 > 0, VseR
=1

(and, the usual cubic nonlinear term f(s) = s —s).

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Throughout the paper, the same letters ¢, ¢ and ¢’ denote (generally positive) constants
which may vary from line to line. Similaly, the same letter () denotes (positive) monotone
increasing (with respect to each argument) and continuous functions which may vary from line

to line.

[II. A PRIORI ESTIMATES

The estimates below are formal, but they can also be justified within a Galerkin scheme for the

approximated problem.

We first note that, integrating (formally) (2.8) over 2, we have

hence

(3.1)
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Furthermore, integrating (2.2) over €2, we obtain, in view of (2.7),

d*e) _d{u)

a2 dt

It thus follows from (2.4) and (3.2) that

so that

We now assume that

[(uo)| < My, [{a1)| < Mz, [{uo+ o1)| < My + Mo,

for fixed positive constants M7 et Ms. Thus,

oo

N < Mi, [(SEO)] < Mo, [(u+ SO <2+ M, >0,

ot

Furthemore, it follows from (3.5) that

[{a®))] < [(ao)] + [{ea)[t, &> 0.

We rewrite, in view of (3.4), (2.8) as

(8% At fl) — () = S~ AT

© 2023 Global Journals

(3.2)

(3.3)

(3.6)

Notes



and, in view of (3.3) an (3.9) that

10u oa oo

(~8)7 58+ Aut f(a) = (W) = 57 = AT+ (an).

Furthermore, we deduce from (2.2) and (3.2) that

Notes

o*a o*a oa _ ou
T T T A

We first multiply (3.9) by g:; and obtain, noting that <ZQZ> =0,

itz [ Fua+ |5 = (5055

0 da
We then multiply (2.2) by 86; AE to obtain

s (19t sl |5 - G ) 05+ s

(5 -25%))
(note indeed that H%—? ‘ = H H 2HV ’ + HA H

Summing finally (3.12) and (3.13), we find a differential equality

Ea 1 B S R

where

1 Oa
— Abul? + Q/QF(u)dx + IVl + aa)? + |22

)

O ||2
ol

|

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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satisfies, owing to (2.12),

1 Ja
e (bl + [l + 130l + [ 52 ) +¢ < B

S e e e N N ) PR )

(here and below, when not specified, the sign of the constants (¢’ and ¢’ here) can be arbitrary).

Multiplying (3.9) by w and have, integrating over 2 and by parts,

2dt\|u||21+HAzuH +((f (), ) = <(8a°t‘ —A%j,u)>+((f(u),<u>))—<(g? —Agj,<u>>>,
It follows from (2.11) that
((f(u),u)) > 02/S2F(u)dx+ c,

from (2.12) and (3.7) that

(), ) < ety [ Iflds < 2 [ Puyde+ e
and from (3.7) that

’ <<38(z’ <u>>> ‘ S My M- (3.16)

Therefore, owing again to (3.7) and remembering that v (||A%U”2 + (0)2)% is a norm in

H}.,(€2) which is equivalent to the usual H'-norm,

d, _
T+ clully o+ 2 [ Faao) <& (15174 185817) + s, >0, (317

Summing (3.14) and §1(3.17), where §; > 0 is small enough, we have a differential inequality
of the form

dE2 8@ 2

Q)) + < Apan, >0, (3.18)

© 2023 Global Journals



where
Ey = Ey + 61|ul*,

satisfies
Notes (HA?UH2 + HUIIi’Zﬁz + | Aa* + HA?;ZW) +¢ < By
< (LA + it 180l + G ) 4, a0 a9
We multiply (2.8) by u to obtain, owing to (2.9) and (2.10),

CZHUHQ—FHVAéuHQSc(HuHHler(Q)—i-H o + HA%’(;Hz) (3.20)

Summing (3.18) and d2(3.20), where d2 > 0 is small enough, we obtain a differential inequality

of the form
dE
dt?’+c<||u|\H2 +2/ F(u)da + H H H ng ) <hnom ¢>0,  (321)
where
Ej3 = B> + 0a||ul|
satisfies

2p+2
e Nullfp o) + llull Bz g) + 1Aal® + A
pe

< <HUII§I;H(Q> + llull o) + 1Aal® + HA H ) +d", e, d" >0. (3.22)

Now, multiplying (3.10) by ?;;, we have

1d 9 oa Ja Ou
22 (I bul +2/ w)dz) +H H <<&—Aat,8t)>. (3.23)
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We then multiply (3.11) by ZCZ Aa—a

ot
g (19 = a1 [ GF- a )+ [+ G
)
(ote e that |75~ aZ2[" = 77|+ 2 55+ gD

Summing finally (3.21), (3.23) and (3.24), we obtaine a differential inequality of the form

dE, )
czﬁc(”“”Hzexm”/ d“” I H

otz

per

(3.25)
where
oo oo (|2
Bi= Byt [Abul? +2 [ Fde +[Val? + |aalf + |55 - A%
Q ot ot
satisfies
2p+2
e (Nl o+ I35ty + Nl + [T s 4 A5 4+
<c"(uuu%q; )+ 2 g + 8ol + [ A2 1 o + a2 H) " el >0,
(3.26)

We finally assume that p = 1 when n = 3 and multiply (2.8) by Au to find

HAzuH2+HVAuH? +((f ()Vu,VAu))z((Vaa vale wm))

2 dt ot ot’

We assume that n = 3 and p = 1 (the case n = 2 can be treated in a similar way) and have,
owing to (2.12) and Hoélder’s inequality,

© 2023 Global Journals

> RS ]\41 Ma> C>07
per

Notes



Notes

|((f'(u)Vu, VAu))| < C/Q(IUI2 + D[Vul|V Auldz

+ DIVull oo [[VAu]| < IV Aul.

(Hu||L6 (HUH%{I%M(Q) + Dlullaz, @

Therefore,
dy 419 2
D abul? + 1V Al < elllully, ) + Dl @ +¢ ([Vou |+ [va%2]") . s2n)

[V. WELL-POSEDNESS

We have the following result.

Theorem 4.1. We assume that (2.9)-(2.12) hold. Then, for every (ug,a0,01) € (HpL,.(€2) N
L?P+2(Q)) x ngT(Q) X H}%er( ), (2.1)—(2.4) possesses at least one solution (u, c, %—?) such that

u € L®(0,T; H,,, () N L*¥*2(Q)) N L*(0,T; H,,.()),
ou
o € L*(0,T; H™ (),

a,@ e L®(0,T; H2,,.(Q))

per

and

OJa Oda

0o 2
50 ot € L*>(0,T; H

per () N L2(0, T Hy, ()
vT > 0.

Furthermore, if p =1 when n = 3, then

we L2(0,T; H2,,.(Q)).

per

Proof. The proof is based on (3.8), (3.25), (3.27) and, e.g., a standard Galerkin scheme. O

We have, concerning the uniqueness, the following.

Theorem 4.2. We assume that the assumptions of Theorem 4.1 hold and that p =1 whenn =3
and p € [1,2] when n = 2. Then, the solution obtained in Theorem 4.1 is unique.
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da?

(1)
Proof. Let (u(l),a(l),agt ) and <u(2),a(2),

(1 @)

initial data (ug ', aq , o ol )) and (u (2) ozé ), a§2)), respectively, such that

W < My, [0l < My, @l + oY) < My + My,

for fixed positive constants M7 and Ms. We set

da daM) da?
2 = @ @) =) (2) (2)
(u @ 8t> (u Y ot > (u Y ot

i=1,2,

and
(’LL(), Qo, 011) = (Uél)a a(()l)v agl)) - (’LL((]Q), Oé(()2), Oég2)).
We have
(—8) 12+ Aut f) = F®) - (F@D) — f®)) = 22— aZ2 4 (ay),
ot ot ot

Foate) Foate) Oa ou

T2 AL A A= 22

a2 a2 ot~ oY T o

u and « are ) — periodic,
«
ulg=0 = up, ali—o = o, E!t:a =oq.

We multiply (4.2) by % (note that <@

9 > = 0) and obtain

oo
2y 2 [
st + 1502 = (5

We first assume that n = 3 and p = 1. We have

’ ((f(u(l)) —

© 2023 Global Journals

) =1 (e

~ Hu®) -

(f(u) —

F(u®?)),

5 8)- (- 10m )

ou
ot

; ) be two solutions to (2.1)—(2.3) with



<IV @) — Fp| 2]

o[ 0+ s - u s S

1

Notes

< [t s - i aswa| 34

u/l F(u® + s(u® — M) (Vu® + sV(u® — o dsH H H
0

Furthermore, owing to Agmon’s inequality,

H/ f(u 2) — M) dsVuH <c/(|u DIf 4 @ 4 1) | Vul2dz
<el(luM 7o) + 1P| oo 0y + DIVl

<C(HU(1)H%{;ET(Q) + HU(Q)H%{;W(Q) +1)

X (||U(1)||?qgw(9) + ||U(2)||%rger(9) + 1)Vl

and, owing to Holder’s inequality,

2
/ I (u uM))(Vall) + sV (u? - u(l)))dsH
< C/ ([ + [0 P + 1) (| ValD P+ [Val ) o *da
Q

< C(Hu(l)HJZLI;ET(Q) + Hu(z)“?q;w(m + 1)(|’U(1)H?{ger(n) + ||u(2)||%{12,8T(Q))Hu||%{;”(ﬂ)'

We now assume that n = 2 and we take the most complicated case p = 2. Then, owing to
Agmon’s inequality and a proper interpolation inequality,
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1 2
H/ £ 4 s(u® —u(l)))dsVuH gc/(‘u(l)‘S_i_|u(2)|8+1)|vu’2dx
0 Q
<e([luM |G () + 1@ [F oo 0y + DIV

<e(lu® 1Dz, @y + N1 1V, (o)

<C(HU(1)H§1;W(Q) + ||U(2)||%;W(Q) + 1)(||U(1)||?{g”

+ 0@l o + DIV

Furthermore, owing to Holder’s inequality,

2
/ ' (u (2) (1)))(VU(1) + SV(U(Q) - U(l)))dsH

c/ (uDP 4 @8 + 1)([VuD 2 4 [Vu® P ul2de
Q

+1)[[Vul?

()

< cfflu HH1 (@ T ||H1 o T 1)(||U(1)||§{g”(9) + ||U(2)||%1;er(n Nl -
Finally, we obtain, in both cases, an inequality of the form
(oo’ Oa Ou
Azyl]? 2= A=, —
alatar g <2 ((5-25.5))
ellu®ly o+ 1% )+ DUu® By @+ 1P g+ DIVUl®, g3 1 (47)

Multiplying then (4.3) by ?;Z A%(:, we find

it (1va 1+ |- a G ") <2 G 2o

Ja Jda Ou
=2 <(at —Aam)) |

© 2023 Global Journals

(4.8)

Notes



Notes

Summing finally (4.7) and (4.8), we have, an inequality of the form

dE5 1)112 2) 112
E < elluV oy + 16 gy + D6V o) + 6P 2 o+ DEs,  (49)

q = 1, where

= [|AZu|? + Vo + | Aa)? + H* - H

Then, We deduce from (4.9), (3.8), the estimates obtained in the previous subsection and Gron-
wall’s lemma the uniqueness, as well as the continuous dependence with respect to the initial
data. O

V. REGULARITY OF SOLUTIONS

We have the following result which gives the existence and uniqueness of more regular solutions.

Theorem 5.1. We assume that the assumptions of Theorem 4.1 hold and that (2.12) is replaced
by

[f(s)| <eF(s) +ce; Ve>0, seR. (5.1)

Then, if (ug, g, 1) € Hper(Q) X ngr(Q) X ngT(Q), the problem possesses a unique solution
such that

u € L>(0,T; H.,.())

and

Oa

L>(0,T; H?
ate (0,

per

(Q)), VI >0.

Proof. The proof of uniqueness is obtained by proceeding as in that of Theorem 4.2, noting
that, with the higher regularity considered here, no growth assumption on f is needed, owing
to the continuous embedding HZ,,(Q2) C L*°(Q).

per

We now turn to the proof of existence and, more precisely, of the further regularity of the
solutions.

0
We multiply (2.8) by 8—7:, we have

thHVA H H << Zf)) + <<V?Z’V?9t - VA‘Z‘;‘» (5.2)
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0 0
Multiplying then (2.2) by —A (a? — A£>, we obtain

N

é% <||Aa||2+||VAa||2+Hv‘?;:—VA‘Z‘ZW) HA ] +HVA

__ ((Va“ v _ VA“)) . (53) | Notes

ot’ ot ot

Summing finally (5.2) and (5.3), we find
1d

2 dt

[+ o feae - (a0 2)). o

It follows from (5.4) and the continuous embedding HZ,,(2) C C(f2) that

per

102 2 2 Oa Oav )12
(||VA2u|| + llaal? + [V Aa|? + |V 5 VA(%H>

= <HVA2uH +llaal? + [VAa|? + v 5 - vaZZ|

+H H +2HA ‘+2HVA H Q(|Aul?) (5.5)

We set

y = VAUl + |Aal? + [VA|? + va N H (5.6)

and we deduce from (5.5) that we have an inequality of the form
¥ <Qy) (5.7)

Let z be the solution to the ordinary differential equation

7 =Q(z), 2(0)=y(0). (5.8)

It follows from the comparison principle that there exists To="Tp(||uo|| g2

per

@ lleollmz,, @ lleallms,, )
(say, belongin to (0, 1)) such that

y(t) < z(t), tel0,To), (5.9)

© 2023 Global Journals



from which it follows, owing also to (3.8) and (3.25), that
2 2 @2
lu®llz,, @) + o, @ + 15 Oll,, @

) laollms, @), leallms,, @), t € [0,To].

per

QMl,Mz(HuOHH?

per

Notes

We now differentiate (3.9) with respect to times and have, owing to (2.2),

0 Ou ou ou
IN Ay ) 2
(=8 g5t T Wy

oo Ou

—<f<>?f> AatAgr =5

We multiply (5.11) by t?;: and have

s (1% )+ 2 e (e, 20Y)
(v 5)) - (V5 v5)) - A5l + 35

(5.10)

(5.11)

which yields, owing to (2.10) and a proper interpolation inequality (see the proof of Theorem

4.2),

i (5) el Gl <t (e 05+ 15) 51

It follows from (3.25), (5.12) and Gronwall’s lemma that

157 OI21 < 5 Q@arars (uollaz, @), loollmg,, ) loallag,, @)t € (0, T

Next, we multiply (5.11) by E;: and obtain, proceeding similarly,

e e o R (L o e T e

We deduce from (3.25), (5.14) and Gronwall’s lemma that

)v||041||ngr(sz))H%(To)H ,

@) laollas,, ( B

15, SO < e Quay a (luoll iz,

per

c> 0.
(5.12)

(5.13)

(5.14)

t>T07
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hence, owing to (5.13),

) ool s, @) leallms, @), t = To.

per

I5; (D11 < e Qun s (ol iz,

We rewrite, for t > Tj fixed, (3.9) as an elliptic equation,

Au+ f(u) — (f(u)) = hy(t), u is Q — periodic,

where

u(t) =—(A)" o+ o A
ha(t) = =(=8)" 50 + 5 — A + (@)
satisfies, owing to (3.25) and (5.15),
Iha (1 < e Qanyam (uoll 2, @) 1ol g, s et laz, @), ¢ = To.

Multiplying (5.16) by @, we find, owing to (2.11) and (5.1),
| Abu(t ||2+C/F <n(ha®?£1), >0, t>T.

Multiplying then (5.16) by Au, we have, owing to (2.10),
1
[Au(®)|* < c(|AZu(t)[* + [Iha (D)), ¢ > To.
Combining (5.19) and (5.20), we finally obtain, owing to (3.25) and (5.18),

), llowoll s, @) lleallas, @), = To,

per

() sy < € Qurvany (ol

hence, owing to (5.10),

oy leallas, @), t=0.

per

lu(®l72,, @) < e Qunan(luollez,, ), laollag,,

P€7" per
We now come back to (5.3), from which it follows that

<HAaH2+HVAa||2+ HV——VA H ) < HV H

© 2023 Global Journals

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

—~

5.23)

Notes



Noting that it follows from (3.25), (5.14) and (5.15) that

t 2
2\ ar < e Quin (luollig, oy ool s el @) £>To,  (5:24)
we deduce from (3.14), (5.23) and (5.24) that
Notes 5 ,
«
J2a)? + 1980l + | (V5 - va%H) o
< e“Qu (ol a3, (- llaw 3, s e 3, o)
9 9 Oa 2
+Aa(@)|P + [VAam)P + | (V5 -vaZ) @) >,
hence, owing to (3.8), (3.25), (5.10) and (5.22),
Jda 2
2 2
(0, @ + 10Ol 00 + |37 O,
< e“Qu e (ol a0 ool s o g, ) £ 0, (5.25)
which finishes the proof of the theorem. O

Remark 5.1. We can note that, here, we are not able to study the asymptotic behavior of the
associated dynamical system. Indeed, the estimates derived in this section are not dissipative.
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