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The partial differential equations of fractional order (FPDEs) have been widely employed in recent years
to explain a wide range of physical effects and complicated nonlinear phenomena. This is because they
accurately describe nonlinear phenomena in the fields of fluid mechanics, viscoelasticity, electrical chem-
istry, quantum biology, physics, and engineering mechanics [1]-[6] as well as other scientific domains. As
a result, the research of PDEs has received a lot of interest as many physical events may be explained
using the idea of fractional derivatives and integrals [7]-[9]. Add to that, when the exact solutions to the
majority of FPDEs are difficult to find, analytical and numerical methods [10]-[29] which are proposed
and developed by many authors must be used.

Lie symmetry analysis is extremely important in many fields of science, particularly in integrable sys-
tems with an infinite number of symmetries. Thus, Lie symmetry analysis is regarded as one of the most
effective methods for obtaining analytical solutions to nonlinear partial differential equations (NLPDEs).
Also, many FPDEs have been studied using this analysis [30]-[36]. Add to that, this analysis is used to
build conservation laws, which are crucial in the study of nonlinear physical phenomena. Conservation
laws are mathematical formulations state that the total amount of a certain physical quantity remains
constant as a physical system evolves. Furthermore, conservation laws are used in the development of
numerical methods to establish the existence and uniqueness of a solution. There are many studies that
discuss conservation laws for time FPDEs, which are mentioned in the references [37]-[43].

Abstract- In this article, we explore the time-fractional modified Zakharov-Kuznetsov-Burgers (MZKB) 
equation of (3+1) dimensions. The Lie symmetry analysis is used to identify the symmetries and vector 
fields for the equation understudy with the assistance of the Riemann-Liouville derivatives. These symmetries
are then employed to build a transformation that reduces the above equation into a nonlinear ordinary
differential equation of fractional order with the aiding of ErdLélyi-Kober fractional operator. Further, two sets 
of new analytical solutions are constructed by the fractional sub-equation method and the extended
Kudryashov method. Subsequently, we graphically represent these results in the 2D and 3D plots with
physical interpretation for the behavior of the obtained solutions. The conservation laws that associate with 
the symmetries of the equation are also constructed by considering the new conservation theorem and the 
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In this article, we focus on the following time-fractional MZKB equation of the form:

∂α
t q + κ1

√
q qx + κ2qxxx + κ3(qxyy + qxzz) + κ4qxx = 0, (1)

where ∂α
t is the fractional derivative of order α (with 0 < α < 1), κi(i = 0, 1, ..., 4) are respectively the

dispersion, non linearity, mixed derivative, and dissipation. The q(x, y, z, t) is the potential function of
space x, y, z and time t. If α = 1, Eq. (1) is reduced to the classical MZKB equation [44, 45], which
describes the nonlinear plasma dust ion acoustic waves DIAWs in a magnetized dusty plasma and it is
derived using the standard reductive perturbation technique in small amplitude.

The article is organized as follows: The introduction is presented in Section 1. In Section 2, some
definitions and description of Lie symmetry analysis for fractional partial differential equations (FPDEs)
are briefly presented. Lie symmetry analysis and similarity reduction of the Eq. (1) are obtained In
Section 3. We construct two sets of analytical solutions for Eq. (1) by using fractional sub-equation
method and extended Kudryashov method in Section 4 and 5 respectively. In Section 6, the conservation
laws of the Eq. (1) are obtained. Finally, the discussions and conclusions of this article are presented in
Section 7.

Here in this section, we focus on some of the concepts that revolve around the subject of our article
Let α > 0. The operator Iα defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, (2)

is called the Riema nn-Liouville (R-L) fractional integral operator of order α, and Γ(.) denotes the gamma
function.

Let α > 0. The operator Dα
t is defined by

Dα
t f(t) =


1

Γ(n−α)
dn

dtn

∫ t

0
(t− s)n−α−1f(s) ds if n− 1 < α < n, n ∈ N,

dnf(t)
dtn

if α = n, n ∈ N,

(3)

is called the R-L fractional partial derivative [7, 8].

Let’s consider the symmetry analysis for a FPDE of the form

Dα
t q(x, y, z, t) = G(x, y, z, t, q, qx, qt, qy, qz, qxx, qxy, ...), 0 < α < 1. (4)

Now, let Eq. (4) is invariant under the following one-parameter Lie group of point transformation acting
on both the dependent and independent variables, given as

x̄ = x+ εξ(x, y, z, t) +O(ε2),

ȳ = y + εζ(x, y, z, t) +O(ε2),

z̄ = z + εν(x, y, z, t) +O(ε2),

t̄ = t+ ετ(x, y, z, t) +O(ε2),

q̄ = q + εη(x, y, z, t) +O(ε2),

Dα
t̄ q̄ = Dα

t q + εη0
α(x, y, z, t) +O(ε2),

∂q̄

∂x̄
=

∂q

∂x
+ εηx(x, y, z, t) +O(ε2),

∂2q̄

∂x̄2
=

∂2q

∂x2
+ εηxx(x, y, z, t) +O(ε2),

(5)
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where ε ≪ 1 is the Lie group parameter and ξ, ζ, ν, τ, η are the infinitesimals of the transformations for
dependent and independent variables respectively. The explicit expressions of ηx, ηxx, ηxxx, ηxyy, ηxzz

are given by

ηx = Dx(η)− qxDx(ξ)− qyDx(ζ)− qzDx(ν)− qtDx(τ),

ηxx = Dx(η
x)− qxxDx(ξ)− qxyDx(ζ)− qxzDx(ν)− qxtDx(τ),

ηxxx = Dx(η
xx)− qxxxDx(ξ)− qxxyDx(ζ)− qxxzDx(ν)− qxxtDx(τ),

ηxyy = Dx(η
yy)− qxxyDx(ξ)− qxyyDx(ζ)− qxyzDx(ν)− qxytDx(τ),

ηxzz = Dx(η
zz)− qxxzDx(ξ)− qxyzDx(ζ)− qxzzDx(ν)− qxztDx(τ),

(6)

where Dx, Dy, Dz, and Dt are the total derivatives with respect to x, y, z, and t respectively that are
defined for x1 = x, x2 = y, x3 = z as

Dxj =
∂

∂xj
+ qj

∂

∂q
+ qjk

∂

∂qk
+ ..., j, k = 1, 2, 3, ...

where qj = ∂q
∂xj , qjk = ∂2q

∂xj ∂xk and so on.

The corresponding Lie algebra of symmetries consists of a set of vector fields of the form

V = ξ
∂

∂x
+ ζ

∂

∂y
+ ν

∂

∂z
+ τ

∂

∂t
+ η

∂

∂u
.

The invariance condition of Eq. (4) under the infinitesimal transformations is given as

Pr(n) V (∆) |∆=0= 0, n = 1, 2, 3, ...

where

∆ := Dα
t q(x, y, z, t)−G(x, y, z, t, q, qx, qt, qy, qz, qxx, qxy, ...).

∂3q̄

∂x̄3
=

∂3q

∂x3
+ εηxxx(x, y, z, t) +O(ε2),

∂3q̄

∂x̄∂ȳ2
=

∂3q

∂x∂y2
+ εηxyy(x, y, z, t) +O(ε2),

∂3q̄

∂x̄∂z̄2
=

∂3q

∂x∂z2
+ εηxzz(x, y, z, t) +O(ε2),

Also, the invariance condition gives

τ(x, y, z, t, u) |t=0= 0. (7)

The αth extended infinitesimal related to RL fractional time derivative with Eq. (7) can be represented
as follows

η0
α = Dα

t (η) + ξ Dα
t (qx)−Dα

t (ξ qx) + ζ Dα
t (qy)−Dα

t (ζ qy) + ν Dα
t (qz)

−Dα
t (ν qz) +Dα

t (Dt(τ)q)−Dα+1
t (τ q) + τ Dα+1

t (q),

(8)

where Dα
t is the total fractional derivative operator and by using the generalized Leibnitz rule

Dα
t

(
f(t)g(t)

)
=

∞∑
n=0

(
α
n

)
Dα−n

t f(t)Dn
t g(t),

(
α
n

)
= (−1)n−1αΓ(n−α)

Γ(1−α)Γ(n+1)
.
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Now by using the chain rule for the compound function which is defined as follows

dnϕ(h(t))

dtn
=

n∑
k=0

k∑
r=0

(
k
r

)
1

k!

[
− h(t)

]r dn

dtn
[
− h(t)k−r]× dkϕ(h)

dhk
.

By applying this rule and the generalized Leibnitz rule with f(t) = 1, we have

Dα
t (η) =

∂αη

∂tα
+ ηq

∂αq

∂tα
− q

∂αηq
∂tα

+

∞∑
n=1

(
α
n

)
∂nηq
∂tn

Dα−n
t (q) + µ,

where

µ =

∞∑
n=2

n∑
m=2

∼m
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1

k!
× tn−α

Γ(n+ 1− α)

[
− q
]r ∂m

∂tm
[
qk−r] ∂n−m+kη

∂tn−m∂qk
.

Therefore, Eq. (9) yields

η0
α =

∂αη

∂tα
+ (ηq − αDα

t (τ))
∂αq

∂tα
− q

∂αηq
∂tα

+ µ+

∞∑
n=1

[(
α
n

)
∂αηq
∂tα

−
(

α
n+ 1

)
Dn+1

t (τ)

]
Dα−n

t (q)

+

∞∑
n=1

(
α
)
Dn

t (ξ)D
α−n
t qx −

∞∑
n=1

(
α
n

)
Dn

t (ζ)D
α−n
t qy −

∞∑
n=1

(
α
n

)
Dn

t (ν)D
α−n
t qz.

(10)

The function q = θ(x, y, z, t ) is an invariant solution of Eq. (4) associated with the vector
field W , such that

1. q = θ(x, y, z, t) is an invariant surface of Eq. (4), this means

V θ = 0 ⇔
(
ξ ∂
∂x

+ ζ ∂
∂y

+ ν ∂
∂z

+ τ ∂
∂t

+ η ∂
∂u

)
θ = 0,

2. q = θ(x, y, z, t) satisfies Eq. (4).

By applying the Leibnitz rule, Eq. (8) becomes

η0
α = Dα

t (η)− αDα
t (τ)

∂αq

∂tα
−

∞∑
n=1

(
α
n

)
Dn

t (ξ)D
α−n
t qx −

∞∑
n=1

(
α
n

)
Dn

t (ζ)D
α−n
t qy

−
∞∑

n=1

(
α
n

)
Dn

t (ν)D
α−n
t qz −

∞∑
n=1

(
α

n+ 1

)
Dn+1

t (ξ)Dα−n
t q. (9)

In this section, we implemented Lie group method for Eq. (1) and then, used these symmetries to reduce
Eq. (1) to be a FODE as shown in the next two subsections

Let us consider Eq. (1) is an invariant under Eq. (5), we get

∂α
t q̄ + κ1

√
q̄ q̄x + κ2q̄xxx + κ3(q̄xyy + q̄xzz) + κ4q̄xx = 0, (11)

such that q = q(x, y, z, t) satisfies Eq. (1), then using the point transformations Eq. (5) in Eq. (11), we
get the invariant equation
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III. Lie Symmetry Analysis and Similarity Reduction of Eq. (1)

Definition 3: 

a) Lie symmetry analysis for Eq. (1)

Notes



  
 

 
  

 
 

  
  

 
 

    

  
  

 
   

η0
α + κ1

√
q ηx +

κ1

2
√
q
η qx + κ2η

xxx + κ3(η
xyy + ηxzz) + κ4η

xx = 0, (12)

By substituting Eq. (6) and Eq. (10) into Eq. (12), grouping the coefficients of all derivatives and various
powers of u and equating them to zero we get an algebraic system of equations. Solving this system, we
obtain a set of infinitesimal symmetries as below:

When κi ̸= 0, i = 1, 2, 3, κ4 = 0

τ =
3

2α
c1t+ c2, ξ =

1

2
c1x+ c3, ζ =

1

2
c1y + c4, ν =

1

2
c1z + c5, η = −2c1q, (13)

where ci, i = 1, 2, 3, 4, 5 are arbitrary constants. Thus, the infinitesimal generator of Eq. (1) can be
expressed as follows

V =

(
3

2α
c1t+ c2

)
∂

∂t
+

(
1

2
c1x+ c3

)
∂

∂x
+

(
1

2
c1y + c4

)
∂

∂y
+

(
1

2
c1z + c5

)
∂

∂z
− 2c1q

∂

∂q
.

which can be spanned by the five vector fields listed below.

V1 =
∂

∂t
, V2 =

∂

∂x
, V3 =

∂

∂y
, V4 =

∂

∂z
,

V5 =
3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z
− 2q

∂

∂q
.

(14)

When κi ̸= 0, i = 1, 2, 3, 4

τ = c6, ξ = c7, ζ = c8, ν = c9, η = 0,

hence, there are four vector fields as below

V6 =
∂

∂t
, V7 =

∂

∂x
, V8 =

∂

∂y
, V9 =

∂

∂z
. (15)

In this part of the article, we used the symmetries defined by Eq. (14) and Eq. (15) to construct the
similarity reduction for Eq. (1) as presented in the next cases
Case 1: For V1 = ∂

∂t
, V2 = ∂

∂x
, V3 = ∂

∂y
, V4 = ∂

∂z
, V5 = 3t

2α
∂
∂t

+ x
2

∂
∂x

+ y
2

∂
∂y

+ z
2

∂
∂z

− 2q ∂
∂q

with
κ4 = 0, we have a set of characteristic equations that arranged in the following subcases

Case 1.1: V1 = ∂
∂t

we have a characteristic equation of the form

dx

0
=

dy

0
=

dz

0
=

dt

1
=

dq

0
.

by integrating this equation and appoint the solutions q as function of the dependent variables x, y, z,
that is

q(x, y, z, t) = ϕ1(x, y, z),

this implies ∂αq
∂tα

= 0 and Eq. (1) becomes

κ1

√
ϕ1(x, y, z)

dϕ1(x, y, z)

dx
+ κ2

d3ϕ1(x, y, z)

dx3
+ κ3

(
d3ϕ1(x, y, z)

dxdydy
+

d3ϕ1(x, y, z)

dxdzdz

)
= 0. (16)

Case 1.2: For V2 = ∂
∂x

we have a characteristic equation of the form

dx

1
=

dy

0
=

dz

0
=

dt

0
=

dq

0
,

by solving this equation we have q(x, y, z, t) = Φ2(y, z, t) which makes all the derivatives of u(x, y, z, t)
with respect to x equal to zero and
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Case 1: 

Case 2: 

b) The similarity reduction for Eq. (1)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Case 1.3: For V3 = ∂
∂y

the characteristic equation is of the form

dx

0
=

dy

1
=

dz

0
=

dt

0
=

dq

0
,

thus q(x, y, z, t) = Φ3(x, z, t) and all the derivatives of q(x, y, z, t) with respect to y equal to zero, therefore

∂αΦ3(x, z, t)

∂tα
+ κ1

√
Φ3(x, z, t)

dΦ3(x, z, t))

dx
+ κ2

d3Φ3(x, z, t)

dx3
+ κ3

d3Φ3(x, z, t)

dxdzdz
= 0

Case 1.4: For V4 = ∂
∂z

the characteristic equation is of the form

dx

0
=

dy

0
=

dz

1
=

dt

0
=

dq

0
,

thus q(x, y, z, t) = Φ4(x, y, t) and all the derivatives of q(x, y, z, t) with respect to z equal to zero, therefore

∂αΦ4(x, y, t)

∂tα
+ κ1

√
Φ4(x, y, t)

dΦ4(x, y, t))

dx
+ κ2

d3Φ4(x, y, t)

dx3
+ κ3

d3Φ4(x, y, t)

dxdydy
= 0

Case 1.5: For V5 = 3t
2α

∂
∂t

+ x
2

∂
∂x

+ y
2

∂
∂y

+ z
2

∂
∂z

− 2q ∂
∂q

, the characteristic equation becomes

dx

x/2
=

dy

y/2
=

dz

z/2
=

dt

3t/2α
=

dq

−2q
.

Where solving this equation we can get the next similarity variables and similarity solution for Eq. (1) as
below

γ1 = xt−
α
3 , γ2 = yt−

α
3 , γ3 = zt−

α
3 , q = t−

4
3
αϕ(γ1, γ2, γ3). (17)

By using the above transformation, Eq. (1) can be turned into a nonlinear FODE with a set of indepen-
dent variable γ′s. Consequently, one can conclude the next theorem.

The transformation Eq. (17) reduces the time-fractional generalized Z-K Eq. (1) to the
following equation

(
P

1− 7α
3

,α
3
α
, 3
α
, 3
α

ϕ

)
(γ1, γ2, γ3) + κ1

√
ϕ ϕγ1 + κ2ϕγ1γ1γ1 + κ3

(
ϕγ1γ2γ2 + ϕγ1γ3γ3

)
= 0, (18)

∂αq

∂tα
= 0, this equation has the following solution

q = Φ2(t) =
Bo

Γ(α)
tα−1, where B0 is a constant

with the E-K fractional differential operator

(
P τ,α
β ϕ

)
(γ1, γ2, γ3) which is defined as

(
P τ,α
β1,β2,β3

ϕ

)
(γ1, γ2, γ3) =

n−1∏
j=0

(
τ + j − 1

β1
γ1

∂

∂γ2
− 1

β2
γ2

∂

∂γ2
− 1

β3
γ3

∂

∂γ3

)(
Kτ+α,n−α

β1,β2,β3
ϕ
)
(γ1, γ2, γ3),

where n =

{
| α | +1, n ̸∈ N,

α, n ∈ N,
(19)
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Theorem 1: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Depending on the definition of the R-L fractional derivatives provided with
n− 1 < α < 1, n = 1, 2, 3, ... , then we have

∂α
t q =

∂n

∂tn

[
1

Γ(n− α)

∫ t

1

(t− g)n−α−1g
−1
3

αϕ(γ1g
−α

3 , γ2g
−α

3 , γ3g
−α

3 ) dg

]
. (21)

Let Λ = t
g
, one can get dg = − t

Λ2 , thus Eq. (21) can be written as

∂α
t q =

∂n

∂tn

[
tn− 4

3
α

Γ(n− α)

∫ ∞

1

(Λ− 1)n−α−1Λ−(n+1− 4
3
α)ϕ(γ1Λ

α
3 , γ2Λ

α
3 , γ3Λ

α
3 ) dΛ

]
, (22)

following the definition of E-K fractional differential operator, then Eq. (22) becomes

∂α
t q =

∂n

∂tn

[
tn− 4

3
α(K1−α

3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]
, (23)

it is time to deal with the right-hand side of Eq. (23). Where

t
∂

∂t
℘(γ1, γ2, γ3) = −α

3
γ1℘γ1 − α

3
γ2℘γ2 − α

3
γ3℘γ3 .

From that, we have

∂n

∂tn

[
tn− 4

3
α(K1−α

3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]

=
∂n−1

∂tn−1

[
∂

∂t

(
tn− 4

3
α(K1−α

3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

)]

=
∂n−1

∂tn−1

[
tn− 4

3
α−1

(
n− 4

3
α− α

3
γ1℘γ1 − α

3
γ2℘γ2 − α

3
γ3℘γ3

)(
K

1−α
3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]
,

according to the above result provided with the same steps for (n− 1) times, we get

∂n

∂tn

[
tn− 4

3
α(K1−α

3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]

=
∂n−1

∂tn−1

[
tn− 4

3
α−1

(
n− 4

3
α− α

3
γ1℘γ1 − α

3
γ2℘γ2 − α

3
γ3℘γ3

)(
K

1−α
3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]

...,

= t−
4
3
α

n−1∏
j=0

[(
n− 4

3
α+ j − α

3
γ1℘γ1 − α

3
γ2℘γ2 − α

3
γ3℘γ3

)(
K

1−α
3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]
,

(
Kτ+α,n−α

β1,β2,β3
ϕ
)
(γ1, γ2, γ3) =


1

Γ(α)

∫∞
1

(Θ− 1)α−1Θ−(τ+α)ϕ(γ1Θ
1
β1 , γ2Θ

1
β2 , γ3Θ

1
β3 ) dΘ, α > 0,

ϕ(γ1, γ2, γ3), α = 0,

(20)

is the E-K fractional integral operator.
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The  proof  of  theorem  1: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

this implies

∂n

∂tn

[
tn− 4

3
α(K1−α

3
,n−α

3
α

ϕ
)
(γ1, γ2, γ3)

]
= t−

4
3
α

(
P

1− 7α
3

,α
3
α
, 3
α
, 3
α

ϕ

)
(γ1, γ2, γ3), (24)

thus

∂α
t q = t−

4
3
α

(
P

1− 7α
3

,α
3
α
, 3
α
, 3
α

ϕ

)
(γ1, γ2, γ3). (25)

At last, Eq. (1) can be reduced into the below equation and the proof is completed

(
P

1− 7α
3

,α
3
α
, 3
α
, 3
α

ϕ

)
(γ1, γ2, γ3) + κ1

√
ϕ ϕγ1 + κ2ϕγ1γ1γ1 + κ3

(
ϕγ1γ2γ2 + ϕγ1γ3γ3

)
= 0. (26)

Therefore, the proof is completed.

For V1 =
∂
∂t

, V2 = ∂
∂x

, V3 = ∂
∂y
, V4 =

∂
∂z

with κ4 ̸= 0, we have the following sub-cases

Case 2.1: V6 = ∂
∂t

we have a characteristic equation of the form

dx

0
=

dy

0
=

dz

0
=

dt

1
=

dq

0
.

by integrating this equation and appoint the solutions q as function of the dependent variables x, y, z,
that is

q(x, y, z, t) = Ψ1(x, y, z),

this implies ∂αq
∂tα

= 0 and Eq. (1) becomes

κ1

√
Ψ1(x, y, z)

dΨ1(x, y, z)

dx
+ κ2

d3Ψ1(x, y, z)

dx3
+ κ3

(
d3Ψ1(x, y, z)

dxdydy
+

d3Ψ1(x, y, z)

dxdzdz

)
+ κ4

d2Ψ1(x, y, z)

dx2
= 0.

(27)

Case 2.2: For V7 = ∂
∂x

we have a characteristic equation of the form

dx

1
=

dy

0
=

dz

0
=

dt

0
=

dq

0
,

by solving this equation we have q(x, y, z, t) = Ψ2(y, z, t) which makes all the derivatives of q(x, y, z, t)
with respect to x equal to zero and

∂αq

∂tα
= 0, this equation has the following solution

q = Ψ2(t) =
Co

Γ(α)
tα−1, where C0 is a constant

Case 2.3: For V3 = ∂
∂y

the characteristic equation is of the form

dx

0
=

dy

1
=

dz

0
=

dt

0
=

dq

0
,

thus q(x, y, z, t) = Ψ3(x, z, t) and all the derivatives of q(x, y, z, t) with respect to y equal to zero, therefore

∂αΨ3(x, z, t)

∂tα
+κ1

√
Ψ3(x, z, t)

dΨ3(x, z, t))

dx
+κ2

d3Ψ3(x, z, t)

dx3
+κ3

d3Ψ3(x, z, t)

dxdzdz
+κ4

d2Ψ3(x, y, z)

dx2
= 0

Case 2.4: For V4 = ∂
∂z

the characteristic equation is of the form

dx

0
=

dy

0
=

dz

1
=

dt

0
=

du

0
,
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Case 2:  

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section, we introduced a summary explanation of the fractional sub-equation method [15, 16] as
shown in the following steps

Let q(x, y, z, t) = q(ξ), ξ = x + y + z − λ t is the traveling wave transformation which can be
used to reduce the below equation

F (q, qx, qy, qz, qxx, D
α
t q,D

α
x q, qxxx, qxyy, qxzz, ...), 0 < α < 1.

to be a non-linear FODE of the form

H(q, q′, q′′, λαDα
ξ q,D

α
ξ q, q

′′′, ...), 0 < α < 1. (28)

Assume that, the above equation has a solution of the form

q(ξ) =

n∑
i=0

Ai(φ(ξ))
i

(29)

where Ai(i = 0, 1, ..., n) are constants to be detected and the positive integer n can be obtained by
balancing the nonlinear terms and the highest order derivatives in Eq. (28). Also, the function φ(ξ)
satisfy the following fractional Riccati equation

Dα
ξ φ(ξ) = δ + φ2(ξ) (30)

where φ(ξ) has a set of solutions as shown below

φ(ξ) =



−
√
−δ tanhα(

√
−δ ξ, α), δ < 0,

−
√
−δ cothα(

√
−δ ξ, α), δ < 0,√

δ tanα(
√
δ ξ, α), δ > 0,

−
√
δ cotα(

√
δ ξ, α), δ > 0,

−Γ(1+α)
ξα+υ

, υ is a constant, δ = 0,

where all the previous trigonometric and hyperbolic functions are expressed by the following Mittag-Leffler
function

Eα(ξ) =

∞∑
j=0

ξj

Γ(1 + jα)
, and

sinα(ξ) =
Eα(iξ

α)− Eα(−iξα)

2i
, cosα(ξ) =

Eα(iξ
α) + Eα(−iξα)

2i
,

sinhα(ξ) =
Eα(ξ

α)− Eα(−ξα)

2
, coshα(ξ) =

Eα(ξ
α) + Eα(−ξα)

2
, where it is known that:

tanα(ξ) =
sinα(ξ)

cosα(ξ)
, cotα(ξ) =

cosα(ξ)

sinα(ξ)
, tanhα(ξ) =

sinhα(ξ)

coshα(ξ)
, cothα(ξ) =

coshα(ξ)

sinhα(ξ)
.

Now, substituting Eq. (29) along with (30) into (28) and equate all the coefficients of all powers
of (φ(ξ))i by zero. Then, we get a system of algebraic equations. Solving this system via the Mathematica
program to determine the value of Ai(i = 0, 1, ..., n). Consequently, we use these values with the solutions
of Eq. (30) to construct the analytical solutions for Eq. (28) which is considered the main aim for this
section.

thus q(x, y, z, t) = Ψ4(x, y, t) and all the derivatives of q(x, y, z, t) with respect to z equal to zero, therefore

∂αΨ4(x, z, t)

∂tα
+κ1

√
Ψ4(x, z, t)

dΨ4(x, z, t))

dx
+κ2

d3Ψ4(x, z, t)

dx3
+κ3

d3Ψ4(x, z, t)

dxdydy
+κ4

d2Ψ4(x, y, z)

dx2
= 0.

On Lie Symmetry Analysis and Analytical Solutions of the Time-Fractional Modified ZKB Equation in 
Mathematical Physics

       

1

Y
ea

r
20

23

17

© 2023   Global Journals

       

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
 e

rs
io
n 

I 
 

V
III

  
 

(
F
)

IV. Fractional Sub-Equation Method for FPDES

Step 1: 

Step 2: 

Step 3: 

16
.Z

h
an

g 
S
 H

, 
Z
h
an

g 
Q

. 
F
ra

ct
io

n
al

 s
u
b
-e

q
u
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n
 m

et
h
od

 a
n
d
 i

ts
 a

p
p
li
ca

ti
on

s 
to

 n
on

li
n
ea

r 
fr

ac
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on

al
P

D
E

s.
 P

h
ys

. 
L
et

t.
 A

. 
2 0

11
;
37

5:
 1

06
9-

10
73

.

Ref



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this section, we apply the fractional sub-equation method for Eq. (1) therefore, we rewrite this equation
by using q(x, y, z, t) = v2(x, y, z, t) as follows:

v
∂αv

∂tα
+ κ1v

2vx + (κ2 + 2κ3) (3vxvxx + vvxxx) + κ4

(
v2x + vvxx

)
= 0. (31)

Let us introduce an important transformation

v(x, y, z, t) = v(ξ), ξ = x+ y + z − λt, (32)

thus, Eq. (31) has the following form

λαvDα
ξ v − κ1v

2v′ − (κ2 + 2κ3)
(
3v′v′′ + vv′′′

)
− κ4

(
vv′′ + v′

2
)
= 0. (33)

According to the previous analysis of the considered method. We have the following solution for the
reduced Eq. (33)

v(ξ) = A0 +A1φ(ξ) +A2φ
2(ξ), (34)

substituting Eq. (34) along with (30) into (33) and equate all the coefficients (φ(ξ))i by zero to get a
system of algebraic equations. Solving this system with the aid of the Mathematica program we have

A0 =
3λα

8κ1
, A1 = ± 3iλα

4κ1

√
δ
, A2 = − 3λα

8κ1δ
, κ3 = −80κ2δ − λα

160δ
, κ4 = − 9iλα

40
√
δ
,

then, Eq. (1) has the below solutions

q11(ξ) =

(
3λα

8κ1
± 3λα

4κ1
tanhα

(√
−δξ

)
+

3λα

8κ1
tanh2

α

(√
−δξ

))2

, where δ < 0,

q12(ξ) =

(
3λα

8κ1
± 3λα

4κ1
cothα

(√
−δξ

)
+

3λα

8κ1
coth2

α

(√
−δξ

))2

, where δ < 0,

q13(ξ) =

(
3λα

8κ1
± 3iλα

4κ1
tanα

(√
δξ
)
− 3λα

8κ1
tan2

α

(√
δξ
))2

, where δ > 0,

q14(ξ) =

(
3λα

8κ1
∓ 3iλα

4κ1
cotα

(√
δξ
)
− 3λα

8κ1
cot2α

(√
δξ
))2

, where δ > 0,

q15(ξ) =
3λα

8κ1
∓ 3κ4

κ1

(
Γ(1 + α)

ξα + ω0

)
− 3λα

8κ1

(
Γ(1 + α)

ξα + ω0

)2
)2

, δ = 0

(35)

A0 =
3λα

4κ1
, A1 = ± 3iλα

4κ1

√
δ
, A2 = 0, κ3 = −κ2

2
, κ4 = ± iλα

4
√
δ
,

thus, we have a set of analytical solutions for Eq. (1) which is presented as follows

q21(ξ) =

(
3λα

4κ1
± 3λα

4κ1
tanhα

(√
−δξ

))2

, where δ < 0,

q22(ξ) =

(
frac3λα4κ1 ±

3λα

4κ1
cothα

(√
−δξ

))2

, where δ < 0,

q23(ξ) =

(
3λα

4κ1
± 3iλα

4κ1
tanα

(√
δξ
))2

, where δ > 0, (36)
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a) Fractional sub-equation method for Eq. (1)

Case 1: 

Case 2: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where υ0 is a constant and ξ = x+ y + z − λ t.

The following figures show the 3D and 2D plots for the solution Eq. (31):

(a) α = 0.6 (b) α = 0.7 (c) α = 0.9

The 3D double-layer solution (31). (a) The solution at α = 0.6 with the parameters
λ = 0.4, δ = −0.5, κ1 = 0.6, κ2 = 0.3 (b) The solution at α = 0.7 with the same parameters. (c) The

solution at α = 0.9 with the same parameters.

(a) (b)

The effect of α on the analytical solution (36) (a) The 3D plot at a fixed time t = 0.6 and

0.65 ≤ α ≤ 0.9 with the parameters λ = 0.4, δ = −0.5, κ1 = 0.6, κ2 = 0.3. (b) The 2D plot at
α = 0.8, 0.85, 0.9 and the same values of the others parameters.

We briefly display the main steps of the extended Kudryashov method [46, 47]to construct analytical
solutions for Eq. (1) as below.

Consider a non-linear FODE Eq.(28) with the same traveling wave transformation as section 4
and assume that the solution of Eq.(28) can be expressed as follows:

q(ξ) =

M∑
i=0

Biφ
i, (37)

where ai, i = 0, 1, 2, ..., n are constants to be determined, and φ = φ(ξ) satisfies the following equation:

φ′(ξ) = φ(ξ)3 − φ(ξ), since φ(ξ) =
±1√
1± e2ξ

(38)

Determining the value of the positive integer M by balancing the highest order derivatives with
the nonlinear terms which appear in Eq.(28) by using the relation M = 2(s−rp)

r−l−1
since, (q(p)(ξ, φ))r and

ql(ξ, φ)q(s)(ξ) are the balanced terms.

q24(ξ) =

(
3λα

4κ1
∓ 3iλα

4κ1
cotα

(√
δξ
))2

, where δ > 0,

q25(ξ) =

(
3λα

4κ1
∓ 3κ4

κ1

(
Γ(1 + α)

ξα + ω0

))2

, δ = 0
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Figure 1:

Figure 2:

V. The Methodology of the Extended Kudryashov Method

Step 1: 

Step 2:

46
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Substituting Eq.(37) into Eq.(28) and using Eq.(38), collecting all terms with the same or-
der of φ(ξ) together to zero yields a set of algebraic equations. Solving the equations system and using
Eq.(38) to construct a variety of analytical solutions for Eq.(28).

In this section, we apply the extended Kudryashov method method for Eq. (33) which is considered a
reduced form of Eq. (1) and according to the previous analysis of the considered method. We have the
following solution

v(ξ) = B0 +B1φ(ξ) +B2φ
2(ξ), (39)

substituting Eq. (39) along with (38) into (33) and equate all the coefficients (φ(η))i by zero to get a
system of algebraic equations. Solving this system with the aid of the Mathematica program we have

B0 = 0, B1 = 0, B2 =
3λα

2κ1
, κ3 = −κ2

2
, κ4 = −λα

4
,

then, Eq. (1) has the below solutions

q11(ξ) =
9λ2α

16κ2
1

e−2ξsech2(ξ),

q12(ξ) =
9λ2α

16κ2
1

e−2ξcsch2(ξ).
(40)

B0 =
3λα

2κ1
, B1 = 0, B2 = −3λα

2κ1
, κ3 = −κ2

2
, κ4 =

λα

4
,

thus, we have the next solutions for Eq. (1) which is presented as follows

q21(ξ) =
9λ4α

16κ2
1

(
1− 1

2
e−2ξsech(ξ)

)2

,

q22(ξ) =
9λ4α

16κ2
1

(
1− 1

2
e−2ξcsch(ξ)

)2

. (41)

where ξ = x+ y + z − λ t.

The 3D and 2D plots for the solution Eq. (41) are plotted in the following Figures:

(a) α = 0.6 (b) α = 0.7 (c) α = 0.9

The 3D double-layer solution (41). (a) The solution at α = 0.6 with the parameters
λ = 0.7, κ1 = 0.5, κ2 = 0.3 (b) The solution at α = 0.7 with the same parameters. (c) The solution at

α = 0.9 with the same parameters.
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Step 3:

a) Extended Kudryashov method for Eq. (1)

Case 1: 

Case 2: 

Figure 3:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

(a) (b)

The effect of α on the analytical solution (41) (a) The 3D plot at a fixed time t = 0.3 and
0.65 ≤ α ≤ 0.9 with the parameters λ = 0.7, κ1 = 0.5, κ2 = 0.3. (b) The 2D plot at α = 0.7, 0.8, 0.9

and the same values of the others parameters.

In this section, the conservation laws of the time fractional MZKB equation (1) were derived, based on
the formal lagrangian and Lie point symmetries as described in the following explanation:
Consider a vector C = (Ct, Cx, Cy, Cz) admits the following conservation equation

[Dt(C
t) +Dx(C

x) +Dy(C
y) +Dz(C

z)]Eq.(1) = 0, (42)

where Ct = Ct(x, y, z, t, u, ...), Cx = Cx(x, y, z, t, u, ...), Cy = Cy(x, y, z, t, u, ...), and Cz = Cz(x, y, z, t, u, ...)
are called the conserved vectors for Eq. (1). According to the new conservation theorem for Ibragimov
[37], the formal Lagrangian for Eq. (1) can be given by

L = ω((x, y, z, t) [∂α
t q + κ1

√
q qx + κ2qxxx + κ3(qxyy + qxzz) + κ4qxx] = 0, (43)

here ω((x, y, z, t) is a new dependent variable. Depending on the definition of the Lagrangian, we get an
action integral as follows

∫ t

0

∫
Ω1

∫
Ω2

∫
Ω3

L (x, y, z, t, q, ω,Dα
t , qx, qxxx, qxyy, qxzz, qxx) dx dy dz dt.

The Euler-Lagrange operator is defined as

δ

δq
=

∂

∂q
+ (Dα

t )
∗ ∂

∂Dα
t q

−Dx
∂

∂qx
+D2

x
∂

∂qxx
−D3

x
∂

∂qxxx
−DxD

2
y

∂

∂qxyy
−DxD

2
z

∂

∂qxzz

where (Dα
t )

∗ denotes to the adjoint operator of Dα
t , and the adjoint equation to the nonlinear by means

of the Euler-Lagrange equation is given by

δL

δu
= 0.

Adjoint operator (Dα
t )

∗ for R-L is defined by

(Dα
t )

∗ = (−1)nIn−α
T (Dn

t ) ≡C
t Dα

T ,

where In−α
T is the right-sided operator of fractional integration of order n− α that is defined by

In−α
T f(t, x) =

1

Γ(n− α)

∫ T

t

(τ − t)n−α−1f(τ, x) dτ.
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Figure 4:

VI. Conservation Laws for Eq. (1)

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Considering the case of one dependent variable u(x, y, z, t) with four independent variables x, y, z, t, we
get

X̄ +Dt(τ)I +Dx(ξ)I +Dy(ζ)I +Dz(ν)I = W
δ

δu
+Dt(C

t) +Dx(C
x) +Dy(C

y) +Dz(C
z),

where X̄ is defined by

X̄ = τ
∂

∂t
+ξ

∂

∂x
+ζ

∂

∂y
+ν

∂

∂z
+η

∂

∂u
+η0

α
∂

∂Dα
t u

+ηx ∂

∂ux
+ηxx ∂

∂uxx
+ηxxx ∂

∂uxxx
+ηxyy ∂

∂uxyy
+ηxzz ∂

∂uxzz
,

and the Lie characteristic function W for case 1 and 2 in the subsection 3.1 is defined as

W = η − τut − ξux − ζuy − νuz,

where W can be expanded to

W1 = − ∂

∂t
, W2 = − ∂

∂x
, W3 = − ∂

∂y
, W4 = − ∂

∂z
,

W5 = − 3t

2α

∂

∂t
− x

2

∂

∂x
− y

2

∂

∂y
− z

2

∂

∂z
− 2q

∂

∂q
.

(44)

For the R-L time-fractional derivative, the density component Ct of conservation law is defined as:

Ct = τL+

n−1∑
k=0

(−1)k 0D
α−1−k
t (Wm)Dk

t
∂L

∂ 0Dα
t q

− (−1)nJ

(
Wm, Dn

t
∂L

∂ 0Dα
t q

)
, (45)

where the operator J(.) defined by

J(f, g) =
1

Γ(n− α)

∫ t

0

∫ T

t

f(τ, x, y, z)g(µ, x, y, z)

(µ− τ)α+1−n
dµ dτ,

and the other (flux) components are defined as

Ci = ξiL+Wm

[
∂L

∂qmi
−Dj

(
∂L

∂qmij

)
+DjDk

∂L

∂qmijk
− ...

)]
+Dj(Wm)

[
∂L

∂qmij
−Dk

∂L

∂qmijk

)
+ ...

]

+DjDk(Wm)
∂L

∂qmijk
− ...

)
+ ...,

(46)

where ξ1 = ξ, ξ2 = ζ, ξ3 = ν and m = 1, 2, ..., 5.

Now by using Eq. (44) with the help of Eqs. (45) and (46), we obtain the components of conserva-
tion laws for the time-fractional MZKB equation as the follows

When κ4 = 0 we have the following subcases according to the vector fields Eq. (14)

Case 1.1: W1 = −qx where ξx = 1, ξt = 0, ξy = 0, ξz = 0 and η = 0 we get

Ct
1 = ω 0D

α−1
t (−qx)

∂L

∂ 0Dα
t q

− J

(
−qx, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qx)− qxD
α
t (ω),

Cx
1 = ω

[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− qx

[
κ2ωxx +

κ3

3
(ωyy + ωzz)

]
+ κ2qxxωx +

κ3

3
(qxyωy + qxzωz),
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Case 1:
 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Case 1.2: W2 = −qt where ξx = 0, ξt = 1, ξy = 0, ξz = 0 and η = 0 we obtain

Ct
2 = ωLω 0D

α−1
t (−qt)

∂L

∂ 0Dα
t q

− J

(
−qt, D

n
t

∂L

∂ 0Dα
t q

)

= ω
[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− ωDα

t (qt)− qtD
α
t (ω),

Cx
2 = −qt

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz)

]
− qxt[−κ2ωx] +

κ3

3
(qytωy + qztωz)

− κ2ωqxxt −
κ3

3
ω(qyyt + qzzt),

Cy
2 = −κ3

3
qt[ωxy + ωyx] +

κ3

3
(qxtωy + qytωx)−

κ3

3
ω(qxyt + qyxt),

Cz
2 = −κ3

3
qt[ωxz + ωzx] +

κ3

3
(qxtωz + qztωx)−

κ3

3
ω(qxzt + qzxt)

Case 1.3: W3 = −qy where ξx = 0, ξt = 0, ξy = 1, ξz = 0 and η = 0 we have

Ct
3 = ω 0D

α−1
t (−qy)

∂L

∂ 0Dα
t q

− J

(
−qy, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qy)− qyD
α
t (ω),

Cx
3 = −qy

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz)

]
− qxy[−κ2ωx] +

κ3

3
(qyyωy + qyzωz)

− κ2ωqxxy − κ3

3
ω(qyyy + qzzy),

Cy
3 = ω

[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− κ3

3
qy[ωxy + ωyx]

+
κ3

3
(qxyωy + qyyωx)−

κ3

3
ω(qxyy + qyxy),

Cz
3 = −κ3

3
qy[ωxz + ωzx] +

κ3

3
(qxyωz + qyzωx)−

κ3

3
ω(qxzy + qzxy),

Case 1.4: W4 = −qz where ξx = 0, ξt = 0, ξy = 0, ξz = 1 and η = 0 we obtain

Ct
4 = ω 0D

α−1
t (−qz)

∂L

∂ 0Dα
t q

− J

(
−qz, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qz)− qzD
α
t (ω),

Cx
4 = −qz

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz)

]
− qxy[−κ2ωx] +

κ3

3
(qyyωy + qyzωz)

− κ2ωqxxy − κ3

3
ω(qyyy + qzzy),

Cy
4 = −κ3

3
qy[ωxy + ωyx] +

κ3

3
(qxyωy + qyyωx)−

κ3

3
ω(qxyy + qyxy),

Cy
1 = −κ3

3
qx[ωxy + ωyx] +

κ3

3
(qxxωy + qxyωx)−

κ3

3
ω(qxyx + qyxx),

Cz
1 = −κ3

3
qx[ωxz + ωzx] +

κ3

3
(qxxωz + qxzωx)−

κ3

3
ω(qxzx + qzxx),

Cz
4 = ω

[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]

− κ3

3
qy[ωxz + ωzx] +

κ3

3
(qxyωz + qyzωx)−

κ3

3
ω(qxzy + qzxy).
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Cx
5 =

x

2
ω
[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
−
(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)[
κ2ωxx +

κ3

3
(ωyy + ωzz)

]

+ κ2ωx
∂

∂x

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
+

κ3

3

(
ωy

∂

∂y

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)

+ ωz
∂

∂z

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

))
,

Cy
5 =

y

2
ω
[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− κ3

3

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
[ωxy + ωyx]

+
κ3

3

(
ωy

∂

∂x

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
+ ωx

∂

∂y

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

))

− κ3

3
ω

∂

∂xy

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
,

Cz
5 =

z

2
ω
[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− κ3

3

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
[ωxz + ωzx]

+
κ3

3

(
ωy

∂

∂x

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
+ ωx

∂

∂z

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

))

− κ3

3
ω

∂

∂xz

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
.

When κ4 ̸= 0 we have the following subcases according to the vector fields Eq. (14)

Case 1.5: W5 = −2q − 3t
2α

∂
∂t

− x
2

∂
∂x

− y
2

∂
∂y

− z
2

∂
∂z

then

Ct
5 = ω 0D

α−1
t (−qz)

∂L

∂ 0Dα
t q

− J

(
−qz, D

n
t

∂L

∂ 0Dα
t q

)

=
3t

2α
ω
[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]

− ωDα
t

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
+

(
2q +

3t

2α

∂

∂t
+

x

2

∂

∂x
+

y

2

∂

∂y
+

z

2

∂

∂z

)
Dα

t (ω),

Case 2.1: W1 = −qx where ξx = 1, ξt = 0, ξy = 0, ξz = 0 and η = 0 we get

Ct
1 = ω 0D

α−1
t (−qx)

∂L

∂ 0Dα
t q

− J

(
−qx, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qx)− qxD
α
t (ω),

Cx
1 = ω

[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx)

]
− qx

[
− κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz

]
+ κ2qxxωx +

κ3

3
(qxyωy + qxzωz),

Cy
1 = −κ3

3
qx[ωxy + ωyx] +

κ3

3
(qxxωy + qxyωx)−

κ3

3
ω(qxyx + qyxx),

Cz
1 = −κ3

3
qx[ωxz + ωzx] +

κ3

3
(qxxωz + qxzωx)−

κ3

3
ω(qxzx + qzxx),
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Case 2:  

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Case 2.2: W2 = −qt where ξx = 0, ξt = 1, ξy = 0, ξz = 0 and η = 0 we obtain

Ct
2 = ωLω 0D

α−1
t (−qt)

∂L

∂ 0Dα
t q

− J

(
−qt, D

n
t

∂L

∂ 0Dα
t q

)

= ω
[
Dα

t q + κ1
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx) + κ4qxx

]
− ωDα

t (qt)− qtD
α
t (ω),

Cx
2 = −qt

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz

]
− qxt[κ4ωx − κ2ωx] +

κ3

3
(qytωy + qztωz)

− κ2ωqxxt −
κ3

3
ω(qyyt + qzzt),

Cy
2 = −κ3

3
qt[ωxy + ωyx] +

κ3

3
(qxtωy + qytωx)−

κ3

3
ω(qxyt + qyxt),

Cz
2 = −κ3

3
qt[ωxz + ωzx] +

κ3

3
(qxtωz + qztωx)−

κ3

3
ω(qxzt + qzxt)

Case 2.3: W3 = −uy where ξx = 0, ξt = 0, ξy = 1, ξz = 0 and η = 0 we have

Ct
3 = ω 0D

α−1
t (−qy)

∂L

∂ 0Dα
t q

− J

(
−qy, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qy)− qyD
α
t (ω),

Cx
3 = −qy

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz

]
− qxy[κ4ωx − κ2ωx] +

κ3

3
(qyyωy + qyzωz)

− κ2ωqxxy − κ3

3
ω(qyyy + qzzy),

Cy
3 = ω

[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx) + κ4qxx

]
− κ3

3
qy[ωxy + ωyx]

+
κ3

3
(qxyωy + qyyωx)−

κ3

3
ω(qxyy + qyxy),

Cz
3 = −κ3

3
qy[ωxz + ωzx] +

κ3

3
(qxyωz + qyzωx)−

κ3

3
ω(qxzy + qzxy),

Case 2.4: W4 = −qz where ξx = 0, ξt = 0, ξy = 0, ξz = 0 and η = 0 we obtain

Ct
4 = ω 0D

α−1
t (−qz)

∂L

∂ 0Dα
t q

− J

(
−qz, D

n
t

∂L

∂ 0Dα
t q

)
= −ωDα

t (qz)− qzD
α
t (ω),

Cx
4 = −qz

[
κ1ω

√
q − κ4ωx + κ2ωxx +

κ3

3
(ωyy + ωzz

]
− qxy[κ4ωx − κ2ωx] +

κ3

3
(qyyωy + qyzωz)

− κ2ωqxxy − κ3

3
ω(qyyy + qzzy),

Cy
4 = ω

[
Dα

t q + a
√
qqx +

κ3

3
(qyxy + qyyx + qzxz + qzzx) + κ4qxx

]
− κ3

3
qy[ωxy + ωyx]

+
κ3

3
(qxyωy + qyyωx)−

κ3

3
ω(qxyy + qyxy),

Cz
4 = −κ3

3
qy[ωxz + ωzx] +

κ3

3
(qxyωz + qyzωx)−

κ3

3
ω(qxzy + qzxy).

We have verified that all the cases satisfy the equation of conservation laws Eq. (42).
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Remark:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

In this article, we considered the time-fractional modified Zakharov-Kuznetsov-Burgers (MZKB) equation
of (3+1) dimensions. With the help of the Riemann-Liouville derivatives, the Lie symmetry analysis was
successfully applied to study this equation. This analysis generated the symmetries and vector fields,
which aided us in constructing the similarity reductions of the considered equation. Consequently, we
constructed two sets of new analytical solutions via two powerful methods which are the fractional sub-
equation method and extended Kudryashov method. Furthermore, to gain a better understanding of the
dynamics of these solutions, we graphed the 3D and 2D plots of obtained solutions using appropriate
parameters. Figure 1 described the double-layer solution (31) at α = 0.6, 0.7, 0.9 with the parameters
λ = 0.4, δ = −0.5, κ1 = 0.6, κ2 = 0.3 at −5 ≤ x ≤ 5. Figure 2 showed the effect of α on the solution (31)
at a fixed time t = 0.6 with α = 0.8, 0.85, 0.9 and the parameters λ = 0.4, δ = −0.5, κ1 = 0.6, κ2 = 0.3
for −2.5 ≤ x ≤ 4. Figure 3 represented the double-layer solution (41) at α = 0.6, 0.7, 0.9 with the
parameters λ = 0.7, κ1 = 0.5, κ2 = 0.3 where this Figure was traced at −5 ≤ x ≤ 5. Figure 4 was
graphed by taking suitable parameters as λ = 0.7, κ1 = 0.5, κ2 = 0.3 and described the stable behavior
of the the solution (41) at α = 0.7, 0.8, 0.9 for 0 ≤ x ≤ 5 at a fixed time t and decreases as the fractional-
order α increases outside this interval. As a consequence, we presume that the obtained results will be
more useful in explaining the physical meaning of the time fractional MZKB equation. Furthermore,
we obtained four kinds of conservation laws with independent variables laying the groundwork of Lie
symmetries. Finally, because of accuracy, ease of application, and relevance of the used methods in this
paper, they could be generalized to many FPDEs.

The authors confirm that the data supporting the findings of this study are available within the article
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