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Absiract- In this article, we explore the time-fractional modified Zakharov-Kuznetsov-Burgers (MZKB)
equation of (34+1) dimensions. The Lie symmetry analysis is used to identify the symmetries and vector
fields for the equation understudy with the assistance of the Riemann-Liouville derivatives. These symmetries
are then employed to build a transformation that reduces the above equation into a nonlinear ordinary
differential equation of fractional order with the aiding of ErdLélyi-Kober fractional operator. Further, two sets
of new analytical solutions are constructed by the fractional sub-equation method and the extended
Kudryashov method. Subsequently, we graphically represent these results in the 20 and 3D plots with
physical interpretation for the behavior of the obtained solutions. The conservation laws that associate with
the symmetries of the equation are also constructed by considering the new conservation theorem and the
formal Lagrangian L. As a final result, we anticipate that this study will assist in the discovery of alternative
evolutionary processes for the considered equation.

Keywords: lie symmetry analysis, conservation laws, time fractional modified schamel-zakharov
kuznetsov burgers equation, riemann-liouville derivatives; fractional sub-equation method;
extended kudryashov method.

[. [NTRODUCTION

The partial differential equations of fractional order (FPDEs) have been widely employed in recent years
to explain a wide range of physical effects and complicated nonlinear phenomena. This is because they
accurately describe nonlinear phenomena in the fields of fluid mechanics, viscoelasticity, electrical chem-
istry, quantum biology, physics, and engineering mechanics [1]-[6] as well as other scientific domains. As
a result, the research of PDEs has received a lot of interest as many physical events may be explained
using the idea of fractional derivatives and integrals [7]-[9]. Add to that, when the exact solutions to the
majority of FPDEs are difficult to find, analytical and numerical methods [10]-[29] which are proposed
and developed by many authors must be used.

Lie symmetry analysis is extremely important in many fields of science, particularly in integrable sys-
tems with an infinite number of symmetries. Thus, Lie symmetry analysis is regarded as one of the most
effective methods for obtaining analytical solutions to nonlinear partial differential equations (NLPDEs).
Also, many FPDEs have been studied using this analysis [30]-[36]. Add to that, this analysis is used to
build conservation laws, which are crucial in the study of nonlinear physical phenomena. Conservation
laws are mathematical formulations state that the total amount of a certain physical quantity remains
constant as a physical system evolves. Furthermore, conservation laws are used in the development of
numerical methods to establish the existence and uniqueness of a solution. There are many studies that
discuss conservation laws for time FPDEs, which are mentioned in the references [37]-[43].
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In this article, we focus on the following time-fractional MZKB equation of the form:

8?(1 + K/l\/a qx + R2Qzxx + K/S(qzyy + QJ;zz) + R4Qea = 07 (1)

where 0 is the fractional derivative of order o (with 0 < @ < 1), k(¢ = 0,1, ...,4) are respectively the
dispersion, non linearity, mixed derivative, and dissipation. The ¢(z,v, z,t) is the potential function of
space z, y, z and time ¢t. If « = 1, Eq. (1) is reduced to the classical MZKB equation [44, 45], which
describes the nonlinear plasma dust ion acoustic waves DIAWs in a magnetized dusty plasma and it is
derived using the standard reductive perturbation technique in small amplitude.

The article is organized as follows: The introduction is presented in Section 1. In Section 2, some
definitions and description of Lie symmetry analysis for fractional partial differential equations (FPDESs)
are briefly presented. Lie symmetry analysis and similarity reduction of the Eq. (1) are obtained In
Section 3. We construct two sets of analytical solutions for Eq. (1) by using fractional sub-equation
method and extended Kudryashov method in Section 4 and 5 respectively. In Section 6, the conservation
laws of the Eq. (1) are obtained. Finally, the discussions and conclusions of this article are presented in
Section 7.

[1. PRELIMINARIES

Here in this section, we focus on some of the concepts that revolve around the subject of our article
Definition 1: Let o > 0. The operator I defined by

4 (t) = %a) / (t— )" f(s)ds, (2)

is called the Riema nn-Liouville (R-L) fractional integral operator of order ¢, and I'(.) denotes the gamma
function.
Definition 2: Let o > 0. The operator Dyf is defined by

ﬁ%fg(t—s)"_a_lf(s)ds ifn—1<a<n, n€ N,

Dif(t) = (3)

dd,{7(Lt) ifa=n, ne N,

is called the R-L fractional partial derivative [7, 8].

a) Description of Lie symmetry analysis
Let’s consider the symmetry analysis for a FPDE of the form

Dy q(z,y, z,t) = G(z, 9, 2,1, ¢, Gz, Qb5 Ay, Gz oz, Gays - ) 0<a<l 4)

Now, let Eq. (4) is invariant under the following one-parameter Lie group of point transformation acting
on both the dependent and independent variables, given as

T =x+ef(,y,z,t) + O,
7=y +eC(z,y,2,t) + O(7),

=z +ev(z,y, 2, t) + O(?),

]

t=t+er(z,y, 2,t)+ O0(?),
q=q+en(z,y,zt)+ 0,
DG = D{q+ena(z,y,2,t) + O(?),

0q _ 9q

_ Y4 T 2
% - or + En (xayaz7t) + O(E )7 (5)
82@ 82(1 T 2
@7 axg +€77 ($7y72’:t)+0(5 )7
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83@ 83(] TTT 2
95 028 +en™(z,y,2,t) + O(e7),
&g g
0z0 . 9z0y?

+en™(z,y,2,t) + O(e?),

9%q d%q

—_— = rzz 2
9762 = o2 T (@21 +0(),

where £ < 1 is the Lie group parameter and &, ¢, v, 7, n are the infinitesimals of the transformations for

dependent and independent variables respectively. The explicit expressions of n*, n**, n*** n*¥¥ n***
are given by

1" = Da(n) = ¢2D2(§) = qyD(¢) — ¢=Da(v) — 1D (7),

n"* = Da(n") = gaaDz(§) = Gay Dz (C) = qu=Da (V) = qur Da(7), (6)

7" = Da(n™) — GeaaDa(§) — qoayDz() — qoozDa(V) — qzat Da(7),
N = De(") = quay Dz (§) = quyy Dz () = quy= Dz (V) — quyt Da(7),

Nt = Dx(nzz) = QuazDa(€) — qusz(C) — GuzzDa(v) — qmtD“<T)’

where D, Dy, D., and D; are the total derivatives with respect to x, y, 2, and ¢ respectively that are

defined for z! =z, 22 =y, 2° =z as

0 0 0
Dx' = . P, ey '7 = 1’27 5 een
I = 3 +q]aq+%k(9qk+ Jik 3

h S — 9q L= 9% .4
where ¢; = 575, ¢jx = 57757 and so on.

The corresponding Lie algebra of symmetries consists of a set of vector fields of the form

0 0 17} 0 19}
V—§% +<,.87y+7/£+7'5+7’]%~

The invariance condition of Eq. (4) under the infinitesimal transformations is given as
Pri™ V(A) |[azo=0, n=1,2,3,..

where

A= Diq(z,y,2,t) — G(2,Y, 2,t, @, Qu, Gt Qy, Gz s Quas Quys - )-
Also, the invariance condition gives
T(x7y7zvt7u) |t:0: 0. (7)

The ath extended infinitesimal related to RL fractional time derivative with Eq. (7) can be represented
as follows

na = Di(n) + € D (gz) — Di (€ g=) + ¢ D (ay) — D7 (C @) + v Df (=) ®)

— D{(v g:) + D§(De(7)q) — D" (7 q) + 7 D (),
where Dy is the total fractional derivative operator and by using the generalized Leibnitz rule

ot (f90) = D () e swpra, () = S,
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By applying the Leibnitz rule, Eq. (8) becomes

=2 - aDeGL = Y () o - Y (4) DroDi T,
n=1 n=1

72( ) VD" Zi(nJrl)Dnﬂ(ﬁ)D?"q. 9)

Now by using the chain rule for the compound function which is defined as follows

S ZZ( ) [ ho) [ ] < L,

k=0 r=0

By applying this rule and the generalized Leibnitz rule with f(¢) = 1, we have

o o° fox loa a"
Dy (n):W;?Jr"qu*q 8th +Z(n) athD @)+,

n=1

where

ST (3) () () e o e

n=2m=2

Therefore, Eq. (9) yields
o _ & _ @ 8 _ _ «Q n+1 a—n
e = Z + (M aDt(T))ata qata +M+Z{<n) e <n+1>D (1) | D¢ " (a)
(10)
+Z @0 -y (2) prpe e - Y () DRI
n=1 n=1

Definition 3: The function q = 0(z,y, z,t ) is an invariant solution of Eq. (4) associated with the vector
field W, such that

1. ¢=0(x,y,2,t) is an invariant surface of Eq. (4), this means
Vo=0<« (€%+C%+V%+T%+n%)9=o,
2. ¢ =0(z,y, 2 t) satisfies Eq. (4).
[TI.  Lie SYMMETRY ANALYSIS AND SIMILARITY REDUCTION OF EqQ. (1)

In this section, we implemented Lie group method for Eq. (1) and then, used these symmetries to reduce
Eq. (1) to be a FODE as shown in the next two subsections

a) Lie symmetry analysis for Eq. (1)

Let us consider Eq. (1) is an invariant under Eq. (5), we get
8?(? + Kzl\/& qz + K2Qzza + K/S((jzyy + lj:vzz) + K4Qza = O, (11)

such that ¢ = ¢q(z,y, z,t) satisfies Eq. (1), then using the point transformations Eq. (5) in Eq. (11), we
get the invariant equation
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€T H TTrx xT rzz Trxr
Mo+ K1va 1"+ =1 go + k2™ + w3 (7YY + 077) + Rkan®” = 0, (12)

2/q

By substituting Eq. (6) and Eq. (10) into Eq. (12), grouping the coefficients of all derivatives and various
powers of u and equating them to zero we get an algebraic system of equations. Solving this system, we
obtain a set of infinitesimal symmetries as below:
Case 1: When k; #0, 1=1, 2, 3, k4 =0
3 1 1 1
T= %cﬁ—i—cz, &= iclx+03, (= §cly—|—04, v= 5012—1—65, n = —2cq, (13)

where ¢;, i = 1,2,3,4,5 are arbitrary constants. Thus, the infinitesimal generator of Eq. (1) can be
expressed as follows

V= ictJrc £+ lcx+cf ng 1c +c ﬁJr 1chrc g72c 9
“\ 227" ) ot 27 ) oz gty T Oy 2" °) oz lqaq'

which can be spanned by the five vector fields listed below.

0 19} 0 0
Vi= 4, o= Va=_——, Vi=_,
ot ox oy 0z (14)
_39 =z06 yd 28 , 0
>T 2a0t  20r 20y 20z q@q.
Case 2: When k; 20, i =1, 2, 3, 4
T = Ce, f:C’?, C:CS7 UV = Cg, 77:07
hence, there are four vector fields as below
17} 0 0 0
“= e TS o 5= 5y "= 5z (15)

b) The similarity reduction for Fq. (1)

In this part of the article, we used the symmetries defined by Eq. (14) and Eq. (15) to construct the
similarity reduction for Eq. (1) as presented in the next cases

. _ 2 _'o _ _ 2 _ 30 | ad 9, z0 LR
Case 1: FOI'Vlfg, V27%7 ‘/37@, ‘/;175, V57%a+§%+%@+55_2q87q with
k4 = 0, we have a set of characteristic equations that arranged in the following subcases

Case 1.1: V1 = % we have a characteristic equation of the form

doe _dy _dz_dt_dg

0 0 0 1 0

by integrating this equation and appoint the solutions g as function of the dependent variables z, y, z,
that is

Q(x7 Y, 2, t) = ¢1($7 Y, Z)7

this implies % =0 and Eq. (1) becomes

d¢1($,y, Z) d3¢1(1‘7y7 Z) d3¢1(zvy7z) d3¢1($7y7 Z)
—0. 16
w0,y 2) PRI 4 SR gy (SIS SO ) =0 (16)

Case 1.2: For Vo = a% we have a characteristic equation of the form

by solving this equation we have q(z,y, z,t) = ®2(y, z,t) which makes all the derivatives of u(z,y, z,t)
with respect to x equal to zero and
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g
ot

=0, this equation has the following solution

qg=d2(t) = e where By is a constant

dv _dy _dz _di _dg N
0 1 0 0 0 otes

thus ¢(z,y, z,t) = ®3(w, 2, t) and all the derivatives of q(z,y, z,t) with respect to y equal to zero, therefore

0%®3(x, 2, 1) d®s3(z, z,t)) d*®3(x, 2, t) d*®3(x, 2,t)
LY 4 kD ¢ _
ot T 3(2,2,1) dx + e dx3 + ks drdzdz 0

Case 1.4: For Vy = % the characteristic equation is of the form

thus q(z,y, z,t) = P4(z,y,t) and all the derivatives of ¢(z, y, 2, t) with respect to z equal to zero, therefore

“P o 30 3o
0 4($7y7t) +Hl\/md 4($7y7t)) -‘r/izd 4(1‘,y,t)+ d 4(1),:[/,15) _

ote dx dx? 3 dedydy

|o

Case 1.5: For Vs = 3L 2 4 +

Nk

z s} z 0 Is} fats :
5 oy T 58— 2‘157-,7 the characteristic equation becomes

Q

T

dv _dy _dz _ dt _ dg
x/2  y/2  z/2  3t/2a  —2q°

Where solving this equation we can get the next similarity variables and similarity solution for Eq. (1) as
below

a o _4,
Mm=at 3, y=yt 3, y=zt3, qg=t 3¢(y1,72,73) (17)

By using the above transformation, Eq. (1) can be turned into a nonlinear FODE with a set of indepen-
dent variable 4's. Consequently, one can conclude the next theorem.

Theorem 1: The transformation Eq. (17) reduces the time-fractional generalized Z-K Eq. (1) to the

following equation

_Ta o

(74

with the E-K fractional differential operator (Pg ’D‘(zﬁ) (71, v2,v3) which is defined as

(=

¢) ('71: V2, 73) + K1 \/$ Gy + K2Byyyyyy T K3 (¢71W272 + ¢'Yl"/3'73) =0, (18)

)
3
o

Qe
Qlw

n—1
- | 0 1 9 1 13} rtan—a
(Pﬁl,ﬁz,ﬁ3¢) (Y1:72,73) = ]130 (T +7 - Evl@iw - E%Tw - E%T%) (Kﬂl,ﬂz,ﬂs ) (71,72, 73),

1 N.
where n—{|a|+ ’ n¢ N, (19)
a, n € N,
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1 1 1
+an— o [T (O = 1) e TV (1,071, 12072, 43072 ) dO,  a >0,
(K5 5."5.50) (v1,72,73) = (20)
é(711,72,73)s a=0,

is the E-K fractional integral operator.

The proof of theorem 1: Depending on the definition of the R-L fractional derivatives provided with
n—1<a<l n=123, .., then we have

o a" 1 t n—a—-1 =la _a _a _a
- 7 _ 3 3 3 3 .
0= 5 |:1“(n ~a) /1 (t—9) 973 “dng 3,729 T, 739 ) dg} (21)
Let A = 3, one can get dg = —ﬁ7 thus Eq. (21) can be written as
a Y A—1 nfaflAf(”rL«l»lfga) A% A% A% dA
O'q= 5o {F(n m_y /1 ( ) (AT, 2 AS, A dA ], (22)

following the definition of E-K fractional differential operator, then Eq. (22) becomes

an

0= pp

n—4a 1-% n—a
[t Ky 2T 9) (71,%,73)] ; (23)
it is time to deal with the right-hand side of Eq. (23). Where

0 «a a o
tap(%,w,w) = 3PN T 37200 T 3 V0-

From that, we have

a'ﬂ

o [tm%a (K5 577%) (1,72, 73)]

8”71

6 n—so —Q,n—a
= 51 {5 (t (K ¢)(71,vz,73))}

@

1—%,n—a

O _aa 4 «@ « o
= 1 {t et (n T3 gMPn T V200 ngm) (K &) (11,72,78) | »

according to the above result provided with the same steps for (n — 1) times, we get

o" n—%a 1-S n—a
9n [t SU(K, ° ¢’)(71,727’73)]
an—l n—32a— 4 [e% o a 1-2 nea
= g1 {t ot <n - ga - g’Yl@w - g’h@vz - g’YS@va) (K% 3 (;5) (717’72773)}
4 n—1 4 o o o )
=t {(n - ga +j- g’ylpn - g’ﬁ@w - g’YSK"ys) (Kg 3 ¢)(’Yl7’}/27’73):| s

0

<
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this implies

a" n—4aq —-gn—a _4, —Tx
3? |:t : (Kli 3 ¢) (71’72773)] =t 3 (P; QSQ ¢> (71772773)7 (24)
thus
(e —44 1_770‘)0‘
dGg=13 P; 35 ¢ (V15 72,73)- (25)
At last, Eq. (1) can be reduced into the below equation and the proof is completed | qot es
177,—‘1,04
(P;gd’g ¢> (’717 Y2, 73) + "fl\/g D1+ K2@yym + K3 (¢71’Y2’Y2 + (15717373) =0. (26)

Therefore, the proof is completed.
Case 2: For Vi = %, Vo = 6%, Vs = a%» Vi= % with k4 # 0, we have the following sub-cases

Case 2.1: Vg = % we have a characteristic equation of the form

de _dy dz _dt _ dq

by integrating this equation and appoint the solutions g as function of the dependent variables z, y, z,
that is

q(z,y,2,t) = Vi(z,y,2),

this implies % =0 and Eq. (1) becomes

3 3 3 2
K1 \Pl(x,y,z)d\yl(x’y’z) +//{/2d \Ill(a:,y,z) + K (d \I’l(a:,y,z) d \I/l(x7y7z)) +K]4d lpl(m7yvz) —

dzx dx3 dxdydy drdzdz

Case 2.2: For V; = % we have a characteristic equation of the form

dv _dy _dz _di _ dq

10 0 0 0’

by solving this equation we have ¢(z,y, z,t) = ¥a(y, z,t) which makes all the derivatives of ¢(z,vy, z,t)
with respect to z equal to zero and

o0 . . . .
8Tg =0, this equation has the following solution
Co a—1 .

qg=Ty(t) = t where Cj is a constant

Case 2.3: For V3 = % the characteristic equation is of the form

de _dy dz _dt _dg

0 1 0 0 0’

thus ¢(z,y, z,t) = V3(z, 2,t) and all the derivatives of g(z, y, z,t) with respect to y equal to zero, therefore

0*Vs(x, 2,t) dVs(z, z,t)) dPVUs(z, 2, t) d*VUs3(x, 2, t) d>Us3(x,y, 2)
—0 0 VU t _
ot« Tt 3(%,2,1) dz th2 dx3 T3 drdzdz +ha dx? 0

Case 2.4: For V4 = % the characteristic equation is of the form

© 2023 Global Journals
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thus ¢(z,y, z,t) = Va(x,y,t) and all the derivatives of ¢(z, y, z,t) with respect to z equal to zero, therefore

0%y (z, z,t) dVy4(z, 2, 1)) d*Uy(z, 2, ) dPUy(z, 2,t) d*Vy(z,y,2)
—_— Va4 t =0.
ote T a(z,2,1) dx T2 da3 s dxdydy + dx? 0

[V.  FracTIONAL SUB-EQUATION METHOD FOR FPDES

In this section, we introduced a summary explanation of the fractional sub-equation method [15, 16] as
shown in the following steps

Step 1: Let q(z,y,2,t) = q(§), € =z +y+ z — A t is the traveling wave transformation which can be
used to reduce the below equation

F(q,4x, 9y, 42, oz, DY 4, D3 @, Qoza, Qoyys Gozzs - )s 0<a<l
to be a non-linear FODE of the form

H(g, q',q",AO‘D?q, D¢q, q",..), 0<a<l. (28)

Step 2: Assume that, the above equation has a solution of the form
n
a(€) = > _Ae(©) (29)
=0

where A;(i = 0,1,...,n) are constants to be detected and the positive integer n can be obtained by
balancing the nonlinear terms and the highest order derivatives in Eq. (28). Also, the function ¢(§)
satisfy the following fractional Riccati equation

Dgp(€) =5+ °(€) (30)

where ¢(§) has a set of solutions as shown below

—V =6 tanha (V=0 &, ), 6 <0,
—V/—0 cotha(v/—6 & ), 6 <0,

30(6) = \/S ta’na(\/g g»a)v o > Oa
- 6 COtO‘(\/S §,CM), 6 > 0,
- Fg(ij_?)), v is a constant, 0 =0,

where all the previous trigonometric and hyperbolic functions are expressed by the following Mittag-Leffler
function

v ¢
Ea(é) = ;m, and

E@(iga) - Ea(—ifa) _ Ea(ié-a) + Ea(_iga)

sina(€) = . L cosa(®) - ,
sinhq(§) = Ea(€%) —2Ea(—§°‘)7 cosha(€) = Ea (%) +2Ea(_£a), where it is known that:
_ sina(§) _cosa(€) _ sinha(§) _ cosha(§)
tana(§) = w05 (6) © cota(§) = 781_71&(5) ,  tanhq (&) = cosha(6) ©’ cotha(€) = Sinh(6) ©

Step 3: Now, substituting Eq. (29) along with (30) into (28) and equate all the coefficients of all powers
of (¢(€))" by zero. Then, we get a system of algebraic equations. Solving this system via the Mathematica
program to determine the value of A;(i =0, 1, ...,n). Consequently, we use these values with the solutions
of Eq. (30) to construct the analytical solutions for Eq. (28) which is considered the main aim for this

section.
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a) Fractional sub-equation method for Fq. (1)
In this section, we apply the fractional sub-equation method for Eq. (1) therefore, we rewrite this equation

by using q(z,y, z,t) = v3(z,y, 2,t) as follows:

% + K10°0z + (K2 + 2K3) (300Vxx + VVxxx) + K4 (V3 + VUxx) = 0. (31)

Let us introduce an important transformation
v(z,y,z,t) =v(), E=xz+y+z-— A, (32)
thus, Eq. (31) has the following form
X vDgv — k1v2v — (k2 + 2k3) (31/11” + vvm) — K4 (vv" + 11/2) =0. (33)

According to the previous analysis of the considered method. We have the following solution for the
reduced Eq. (33)

v(€) = Ao + A1p(€) + A2p°(€), (34)

substituting Eq. (34) along with (30) into (33) and equate all the coefficients (p(€))* by zero to get a
system of algebraic equations. Solving this system with the aid of the Mathematica program we have

3\% 3N 32« 80Kk20 — \* 9N
s Apg=— A=+ =— =2 2 - _
Case 1: Ao Sry’ 1 413 2 8k16’ 3 1606 m 40V/6°
then, Eq. (1) has the below solutions
[e% a o 2
q11(€) = 3A% + itanh (\/j(;f) + &tanhi (\/755) , where § <0,
8&1 8,‘61
[e3 @ @ 2
q12(€) = 327 + &coth (\/—7(%) + &cothi (\/ —65) , where § <0,
8K1 8K1
30 | 3iA 2
q3(&) = <Tl tana (\f{) — —tana (\[5)) , where § > 0, (35)
[e3 « 2
qa(é) = 3A 31)‘ cota (\/35) — &coti (\/35) , where § > 0,
8I€1 8K1

el6) = (())(()>> s=0

8K1 &> 4+ wo 8k1 \ &€* + wo
3X¢ 3\ K2 IS
Case 20 Ag= "2 A =+ L A =0, k=12 =4
°7 4 PRV ’ T2 TG

thus, we have a set of analytical solutions for Eq. (1) which is presented as follows

3™ 3\e 2
q21(§) (Tlil + Ht ’I’Lh (\/ —6£)> s where § < O7
3)\(1 2
q22(8) = (frac3)\a4;s1 + —cothg (\/ 755)) where § <0,
4:‘61
3N 3N 2
=\ 7 36
q23(&) (41-@1 + In, tanea (\/gf)) , where § >0, (36)
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4:‘i1 4:‘@1

q%(&):(i’))\a;M(P(l—ka)))i §=0

@ e 2
q24(€) = (& F 3iA cotq (\6&)) , where § > 0,

4Ky K1 £ + wo
where vg is a constant and { =x +y+ 2 — A L.

R The following figures show the 3D and 2D plots for the solution Eq. (31):
ef

(a) a=0.6 (b) a=0.7 (¢) a=0.9

Figure 1: The 3D double-layer solution (31). (a) The solution at a = 0.6 with the parameters
A=04, § =—-0.5, kK1 = 0.6, k2 = 0.3 (b) The solution at « = 0.7 with the same parameters. (c¢) The
solution at o = 0.9 with the same parameters.

(a) (b)
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Figure 2: The effect of o on the analytical solution (36) (a) The 3D plot at a fixed time ¢ = 0.6 and
0.65 < a < 0.9 with the parameters A = 0.4, § = —0.5, k1 = 0.6, k2 = 0.3. (b) The 2D plot at
a = 0.8, 0.85, 0.9 and the same values of the others parameters.

V. THE METHODOLOGY OF THE EXTENDED KUDRYASHOV METHOD

We briefly display the main steps of the extended Kudryashov method [46, 47]to construct analytical
solutions for Eq. (1) as below.

Step 1:  Consider a non-linear FODE Eq.(28) with the same traveling wave transformation as section 4
and assume that the solution of Eq.(28) can be expressed as follows:

9(€) =Y Biy', (37)
1=0

new Kudryashov approach. Rev. Mex. Fis. 2022; 68(1):1-11.

where a;, i=0,1,2,...,n are constants to be determined, and ¢ = (&) satisfies the following equation:

46. Ege S M. Solitary wave solutions for some fractional evolution equations via

F€) = pl6) —0l6).  since o6 = (38)

Step 2: Determining the value of the positive integer M by balancing the highest order derivatives with
the nonlinear terms which appear in Eq.(28) by using the relation M = 2753:?17) since, (¢ (€, ¢))" and

i
d'(&, )¢ (€) are the balanced terms.
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Step 3:  Substituting Eq.(37) into Eq.(28) and using Eq.(38), collecting all terms with the same or-
der of ¢(&) together to zero yields a set of algebraic equations. Solving the equations system and using
Eq.(38) to construct a variety of analytical solutions for Eq.(28).

a) FExtended Kudryashov method for Eq. (1)

In this section, we apply the extended Kudryashov method method for Eq. (33) which is considered a
reduced form of Eq. (1) and according to the previous analysis of the considered method. We have the
following solution

v(€) = Bo + B1p(€) + Bay®(€), (39)

substituting Eq. (39) along with (38) into (33) and equate all the coefficients ((n))* by zero to get a
system of algebraic equations. Solving this system with the aid of the Mathematica program we have

3)\(1 K2 )\a
ase By 0, B 0, B 2.‘4}1’ K3 5 Ra 1
then, Eq. (1) has the below solutions
INZY o 2
qu(§) = —=—e “sech™(§),
16k2
I e, (40)
q12(8) = e “esch™ ().
16k2
3\ 3\ K2 A%
- By="",  Bi=0, By=-"", == =z,
Case 2 Bo=5 ' *T 2. T T

thus, we have the next solutions for Eq. (1) which is presented as follows

4o 2
g1 (§) = ?g\? <1 - %e_%sech(g)> ,
4o 2
q22(§) = ?2? <1 - %e_zgcsch(f)) . (41)

where { =x+y+2— At

The 3D and 2D plots for the solution Eq. (41) are plotted in the following Figures:

(a) «=10.6

Figure 3: 'The 3D double-layer solution (41). (a) The solution at o = 0.6 with the parameters
A=0.7, k1 =0.5, k2 = 0.3 (b) The solution at a = 0.7 with the same parameters. (c) The solution at
a = 0.9 with the same parameters.
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(a) (b)

it

- aul)T
— o=038
- a=09

Figure 4: The effect of @ on the analytical solution (41) (a) The 3D plot at a fixed time ¢ = 0.3 and
0.65 < a < 0.9 with the parameters A = 0.7, k1 = 0.5, k2 = 0.3. (b) The 2D plot at & = 0.7, 0.8, 0.9
and the same values of the others parameters.

VI. CONSERVATION LAaws FOR EQ. (1)

In this section, the conservation laws of the time fractional MZKB equation (1) were derived, based on
the formal lagrangian and Lie point symmetries as described in the following explanation:
Consider a vector C' = (C*,C*,CY,C*) admits the following conservation equation

[Di(C") + Do (C") 4 Dy(C¥) 4+ D-(C*)]gq.1) = 0, (42)

where C* = C'(x,y, 2, t,u, ...), C* = C*(z,y, 2, t,u,...), C¥ = C¥(x,y, 2, t,u,...), and C* = C*(x,y, 2, t, u, ...)
are called the conserved vectors for Eq. (1). According to the new conservation theorem for Ibragimov
[37], the formal Lagrangian for Eq. (1) can be given by

L= W((CIZ, Y,z t) [ataq + Hl\/a Qz + K2Qzzz + HS(l]a:yy + szz) + K4qxx] =0, (43)

here w((z,y, 2,t) is a new dependent variable. Depending on the definition of the Lagrangian, we get an
action integral as follows

t
/ / / / L(III,y, z,t, q7w7D?Jhmq;cm,quy,qmz,qm)dx dy dz dt.
0 Q1 JQy JQ3

The Euler-Lagrange operator is defined as

0 3 0
- D:l: x D(E z
(Sq q an‘q 8(]95 a%ca: 8qu Y 6Qxyy anzz

where (Df)* denotes to the adjoint operator of Df*, and the adjoint equation to the nonlinear by means
of the Euler-Lagrange equation is given by

5L
S0 = 0.
Adjoint operator (Df*)* for R-L is defined by

(D) = (1" 1z~ *(D}) =/ DF,

where 177 is the right-sided operator of fractional integration of order n — « that is defined by

I f(t,x) =
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Considering the case of one dependent variable u(z,y, z,t) with four independent variables z, y, z, t, we

get
_ 0 x 2
X+ Di(r)I + Do) + Dy (O] + D= ()] = W— + Di(C) + Do(C) + Dy (CY) + D=(C7),
where X is defined by
o 8 0 0 0 0 0 0 0 0
X = v v v z Y T TTT TYy rzz
+€ +< + 0z + 8 +n& aD?U +7] auz +77 auzz +77 auzzz auzyy auzzz ’

and the Lie characteristic function W for case 1 and 2 in the subsection 3.1 is defined as

W =n—1us — Eug — Quy — vu,

where W can be expanded to

Wi = (98157 WQ__§7 W3__8£7 Wy = g’
x y z (44)
3t 9 x 0 y 0 z 0 0
=22 29 Y9 29 92,
Ws 200t 20x 20y 20z qaq
For the R-L time-fractional derivative, the density component C* of conservation law is defined as:
1 oL oL
Ct:TL—i—Z—lk D R w, D = — (—1 ”J<Wm,D”7), 45
(1" oD W) D e = (<) P (45)
where the operator J(.) defined by
T, X, Y, ST Yy 2
o) = o [ [ L) g, g,
(n—a) —7)

and the other (flux) components are defined as

C L4, [% o () oo %)

g g g

Z]k

dgm og™m

]

+Dj(Wm) |: oL — Dy, oL ) + ...

oL
+DjDk(Wm) o > + ...,

ijk

where ¢' =¢, €2 =¢, € =vandm=1,2,..,5.

Now by using Eq. (44) with the help of Eqgs. (45) and (46), we obtain the components of conserva-
tion laws for the time-fractional MZKB equation as the follows

Case 1: When k4 = 0 we have the following subcases according to the vector fields Eq. (14)
Case 1.1: W1 = —q, where ¥ =1, ' =0,€6Y =0, £ =0 and n = 0 we get

t a—1 oL n oL _ e [
Ci =w oD (qz)angq T\ =9 DV peg ) = wD¢ (qz) — ¢z D (w),

T @ R K
Cy =w [Dt q+ K199 + ?S(qyzy + Qyye + Qzaz + qzzz)] — e [mwm + ?S(Wyy + wzz)]

K3
+ K2QraWa + ?(q:cywy + szwz)y
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K K
CY = _?3%["%11 + wya] + ?(%xwy + quywz) — ?w(qxw + qyza),

K3

K3
3 (QIzwz + qzzwz) - ?W(qzzz + qzzz)7

Case 1.2: Wo = —q; where £ =0, ' =1, €Y =0, £€* =0 and n = 0 we obtain

oL oL
Ch = wlLw oDy (- —J | —q, D!
2 = wLw oD ( qt)atho‘q ( qt t@ng‘g)
a K @ o
=w |:Dt q-+ K/l\/aqx + ?(nyy + Qyyax + Qzzz + QZzz)] - WDt (Qt) - tht (W)7
B K3 K3
C’2 = —q |:K31w q — K4Wg + KoWgez + ?(wyy + wzz)] - Q9ct[_"€2wac] + ?(Qytwy + Qthz)

K3
— R2W(qzxt — ?(’J(nyt + QZzt)7

K K
Cy = *iqt[‘%y + wya] + ?3

K3
3 (quewy + qyrws) — gw(qzyt + qyat),

K3

CQZ = _@qt[wzz + Wzm] + 3

K3
3 (qzth + q.zth) - EW(szt + q.zzt)

Case 1.3: W3 = —q, where £&* =0, ¢' =0, &Y =1, £ =0 and = 0 we have

oL OL
t — Da—l _ _Ye J _ Dni - _ Da _ Da
Cs=w oDy ( Qy)a oDi'q Qy, Lt 9 oDiq wD{ (qy) — qy D¢ (w),
T K3 K3
Cs = —qy [Klw\/a — K4Wge + KoWze + ?(wyy + WZZ)} — Qay[—Kows] + ?(qyywy + qyaw:)

K3
— RoW(qzzy — ?W(nyy + Gzzy),

K3 K3
3 — o Oy Wy + Wyz]

C’;j':w[D?q—i-a\/@qz—k 3

(qyzy + Qyyz t+ Qzzz + q,zzz)]

K3 K3
+ E(quwy + qyywa) — gw(quy + qyay),

2 K. R, K.
C.?, = —§Qy [wa:z + wza:] + ?(QIywz + Qyzwa:) - ?Sw(qa:zy + qzzy)7

Case 1.4: Wy = —q. where £ =0, ' =0, Y =0, £ =1 and n = 0 we obtain

oL oL
t=w oD Y —q))——n— — J | —q., D} ——— | = —wD%(q.) — q. D
Ci=w oD; (Q)angq J | =g, 9 oDig wDy (gz) — gDy (w),

K K.
Ci=—q [mw\/ﬁ — R4Wg + KoWzz + f(wyy + wzz)] = Qay[—rows] + ?(qyywy + Qy=w=)

K3
— ReW(qzzy — ?W(nyy + Gzzy),

K3 R3
Ci = = ay[wey + wya] + 3

R3
3 (Qrywy + Qyywa) — ?W(qzyy + Qyay)s

K3

CZ:w[D?q+a\/§qz+ 3

(Qy:cy + Qyyz + Qzzz + q.zzz)]

- %qy [wzz + wzz] +

K3

K3
3 (quyws + Qyowz) — gw(quy + Qaay)-
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Case 1.5: W5 = —2q — S—;% — %% — %8% — %% then
_ oL n  OL
Cs =w oDy 1( q2)aODaq _']<_qz,Dt aoDaq>
t t
3t o R3
= %w |:Dt q+l€1\/§qm+?(qyzy+qyyz+qzzz+qzzz)i|
o 3t 0 x0 yo  z0 3t 0 x0 yo  z0 o
—wD; | 2 —_——t —— 4+ T — 4+ - 2 ——+t—-——4+Z—4+ =D
W (q+2a8t+28:c+28y+28z)+(q+2a8t+28x+28y+28z) ¢ ), |\|
otes
T z e K3
05 = Ew |:Dt q + lﬂ\/an + ?(Qyzy + Qyyax + qzxz + qzzz):|

(g 2,20 WO 20 [Hw + 5 gy w )]
T 900t T 20x T 20y T 20z ) Ve T g Wy T Wz

Ox 200t 2 0x 200t 20x 20y

L¥9 28
20y 20z) )’
K3

Cg = %W[D?q + a\/aqz + g(Qyzy + Qyyax + Qzzz + qzzz)] -

trgs L (g 30 20 yO 20N ksl O, 30 xd yo z0
2Wz q 2y 2 yay q 20z
pwd (gqe 32,20
*0z a4 2000t 2 0x

@ 2 +ﬁ2+£2+y2+ig [w +w ]
3 \“ 20y 28, )Wy T Wue

200t 20z
9N 0.9 (gq 380 29 y0 20
9z oy \“1 T 208t T 20x T 28y ' 202

_rs, 0 (5 30 0 yO  z0
3 Oxy 17500t " 20z 20y 20z)°

yh (0 (g, 380 20 y9
3\ o \“" T 25 T 28 20y

NGRS

K3

C: = EUJ[D?Q + a\/qq= + 3

: /43(2q+3t8 zd yod

=2 300,20 90 200N twl
3 29z ) e T

(qyay + Qyya + Goaz + szx)}_ 200t " 20z " 20y

yhef, 0 (g 380 0 y9 208N, 9 (f, 80 29 yd z90
3 Y oz 17 54 ot 20x 20y 20z "0z 17 54 ot 20x 20y 20z
3, 0 (o, B30 w0 yO 20
3%z \"1 " 200t T 202 20y 20z)°
Case 2: When k4 # 0 we have the following subcases according to the vector fields Eq. (14)

Case 2.1: W1 = —q, where £€* =1, £' =0,V =0, £* =0 and n = 0 we get

_ oL oL
Cl=w oD (=g —J(—Z,D”7>:—wD°‘ 2) — gz DY (w),
1 ol (q)aon‘q q. taon‘q ¢ (gz) — ¢z Dy (w)
x « K3 K3
Ci =w |:DtQ+”€1\/ZIQx+ ?(Qywy + Qyya + Qzaz +q,zzx)] —qx[—mwx-kmwm-k ?(wyy +sz]

K3
+ K2Qrawa + ?(wawy + qgczwz)7

K3

K3
CY = _?qz[wzy + wya| + 3

K3
(Quawy + quywa) — gw(qzyz + Qyaa)s

Ciz = _%qgc[wxz +Wzgc] +

K3

R
3 (qwmwz + szwcc) - ?w(q:czx + sz:c)7
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Case 2.2: Wa = —q; where £€° =0, £ =1, €Y =0, £ = 0 and 1 = 0 we obtain

_ oL oL
Cs = wLw oD (- 7—J(— ,D"7>
2 ol ( qt)aonq qt taoD?q

K3

5 Qo + Gyye + Qeos + Gee) + Ratos | —wDF (@) = @ DF (),

= [Da+mivaa +

x K3 K3
2 = —(qt|R1W\/q — R4aWg RoWzx - (Wyy Wzz | — ot |RaWxr — R2Wy - QytWy qztWz
Notes ¢ [ + + g e e = gl I+ 5 (queoy + ges)
K
— R2W(qzzt — iw(q;qyt + qzzt),

3

K K K
CY = — 2 qu[way + wya] + ?(qztwy + qyiwa) — ggw(qzyt + Qyat),

3
K K K
C(22 = _§3Qt [wacz + wzw] + ?(thwz + QZth) - gw(szt + Qth)

Case 2.3: W3 = —u, where £ =0, ' =0,¢Y =1, ¢ =0 and n = 0 we have

_ oL OL
Cl=w oD M (—qy) = — (f ,Dni):wao‘ — g, D¢ (W),
3 oy ( Qy)a oD¥q Qy, LVt 9 oDi'q t (‘Zy) Qy Lt ( )
B K3 K3
C3 = —qy [mw\/ﬁ — R4Wz + KoWaa + ?(U}yy + wzz] — Qay|KaWe — Kowg] + ?(qyywy + qyzwz)

K3
— KeW(qzzy — ?W(nyy + Gzzy),

K3

3

K3

3 Qy[Way + wya)

Cg =w [Dtaq + a\/&qz + (nyy + Qyyz + qzzz + QZzac) + 54%633] -

K3 K3
+ o (Quywy + Quywz) — & W(quyy + Qyay);

3 3
> K3 K3 K3
Os = =3 ay [Waz + wza] + g(qzywz + qyawz) — gw(qmy + qaay),

Case 2.4: Wi = —q, where £€* =0, £ =0, &Y =0, £ =0 and n = 0 we obtain

_ oL oL
Ch=w oD Y (—q. —J(—z,D” >:—wDa 2) — DY (w),
4 ol/y (Q)angq q t@gD?q t(Q) q t()
x K3 K3
Ci =—q: [mw\/é — K4Wz + KoWas + ?(wyy + wzz] — Qay|Kawe — Kows] + ?(nywy + qyzwz)

K3
— KeW(qzzy — ?W(nyy + Gzzy),

K3

3

o K
C) =w [Dt q+ avqqe + — (Qyay + Qyyo + Geaz + Qzza) + mqm] - ?qu [Wey + wyz]

K3 K3
+ ?(qzywy + Qyywz) — ?w(qzyy + Qyay)s
z K K K
Ci= —?qy Wz + Wae]| + ?(QZywz + Qywa) — gsw(qzzy + Qzay)-

Remark: We have verified that all the cases satisfy the equation of conservation laws Eq. (42).
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VII. CONCLUSION

In this article, we considered the time-fractional modified Zakharov-Kuznetsov-Burgers (MZKB) equation
of (34+1) dimensions. With the help of the Riemann-Liouville derivatives, the Lie symmetry analysis was
successfully applied to study this equation. This analysis generated the symmetries and vector fields,
which aided us in constructing the similarity reductions of the considered equation. Consequently, we
constructed two sets of new analytical solutions via two powerful methods which are the fractional sub-
equation method and extended Kudryashov method. Furthermore, to gain a better understanding of the
dynamics of these solutions, we graphed the 3D and 2D plots of obtained solutions using appropriate
parameters. Figure 1 described the double-layer solution (31) at a = 0.6, 0.7, 0.9 with the parameters
A=04, 6 =-0.5, k1 = 0.6, ko = 0.3 at =5 < x < 5. Figure 2 showed the effect of o on the solution (31)
at a fixed time ¢t = 0.6 with « = 0.8, 0.85, 0.9 and the parameters A = 0.4, § = —0.5, k1 = 0.6, k2 = 0.3
for —2.5 < z < 4. Figure 3 represented the double-layer solution (41) at o = 0.6, 0.7, 0.9 with the
parameters A = 0.7, k1 = 0.5, k2 = 0.3 where this Figure was traced at —5 < x < 5. Figure 4 was
graphed by taking suitable parameters as A = 0.7, k1 = 0.5, k2 = 0.3 and described the stable behavior
of the the solution (41) at a = 0.7, 0.8, 0.9 for 0 < 2 < 5 at a fixed time ¢ and decreases as the fractional-
order « increases outside this interval. As a consequence, we presume that the obtained results will be
more useful in explaining the physical meaning of the time fractional MZKB equation. Furthermore,
we obtained four kinds of conservation laws with independent variables laying the groundwork of Lie
symmetries. Finally, because of accuracy, ease of application, and relevance of the used methods in this
paper, they could be generalized to many FPDEs.
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