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[. INTRODUCTION

and and water bodies in almost the world are
Laffected by eutrophication, contamination, and

exhaustion. Urbanization encroachment in every
nook and cranny of the world has increased
contamination due to human and industrial activities.
These activities affect agricultural soils and waters by
way of contamination. However, because the world has
shown more interest in the present environmental issues
and sustainable solutions, scientists and engineers face
the task of using waste and weak small soil locations.
These can realize when the soil locations and water
bodies are balanced using bio-treatment methods (1-4).
Numerous adverse effects witnessed from these
contaminations are from food processing industries.
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These affect aquatic life negatively. The dissolved
substances volatilize into the atmosphere, contribute to
acid rain, pose a significant health issue to humans, and
cause rust to materials (5-6). Recently, efforts to treat
contaminants from gaseous, solid, and wastewater
become a major concern. The techniques commonly
include engineering bio-treatment (7), chemical
methods [8], and biological methods (9-10). Today, the
engineering bio-treatment technique is the most widely
used for contaminants removal due to its low cost
compared to other methods (11-12).

Engineering bio-treatment  system  (EBS),
combined with chemical and biological treatment, has
been observed as a successful method for
contaminants removal. Liang et al. (13) used a bio-
electrochemical system (BES) to remove sulfate from
wastewater. Other researchers have also combined
several methods for contaminant removal (14-15). Some
treatment techniques add another impurity to the treated
medium (16), and the impact can harm humans and
aquatic life. Therefore, efforts to ensure that
adulterations are not observed after treatment guarantee
the environment's total safety. Briefly, numerous
prerequisites accessible for effluent treatments are
summarised in (Fig. 1). PAHs seem to exist in several
natural environments, so their influence on the
ecosystem is growing due to their toxic impact on
humans and aquatic life. Among the numerous PAHS,
benzo(a)pyrene is the most dangerous contaminant
observed in effluent chiefly from the petrochemical
industries and unleashes carcinogenic substances (17).
The notable pollutants in the effluent from food
industries elucidate in (Table1). Numerous sources of
contamination involved the unleashing of unrefined or
processed liquid from cities and villages, discharge from
processing or industrial plants, flow from farmland, and
leachates from waste disposal locations. Insufficiency of
water, population growth, energy, and the development
of new material technologies have forced researchers to
probe into viable effluent treatment and waste recycling
(18-20). The fundamental alterable to be observed for
the effluent disposal are the odour, colour, oil, grease,
pH, nitrogen content, phosphorus content, biological
and chemical oxygen demand (BOD & COD), and

© 2023 Global Journals

Global Journal of Science Frontier Research (H) Volume XXIII Issue II Version I E Year 2023



Global Journal of Science Frontier Research (H) Volume XXIII Issue II Version I E Year

suspended solids, dissolved solids, and metal ion
absorption(21-22).

Figure 1: Numerous Prerequisites Accessible for Effluent Treatments

Table 1. Different Types of Environmental Pollutants

Pollutant type Contaminants name Reference
POPs Pesticides, DDT, PCBs, nitrogen oxides, and ozone [23][24]
PAHS Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, [25][26]

pyrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, etc.
Antibiotics Trimethoprim, ciprofloxacin, sulfamethoxazole [27][28]
Metal ions Arsenic, cadmium, chromium, mercury, lead. [29][30]
Chlorinated . . . : )
o . Haloacetic acids, trihalomethanes, ketones, hydroxyl, carboxylic acids,
disinfection by- : . . [30][31]
nitrosamines, oxoacids, and aldehydes.
products

Perfluorinated Perfluorooctane sulphonate, Perfluorooctanoic acid. [32][33]

compounds

[I. CURRENT STATUS OF FOOD PROCESSING
EFFLUENTS IN OUR ENVIRONMENT

The rising recalcitrant to microbial degradation
from food processing effluents (FPEs) in our
environment is a source of worry. The data gotten from
the web of science papers’ reference register of
‘Science Direct’ and ‘SCOPUS’ by defining the keywords
‘effluents’” and ‘contaminants’ as a subject matter
between the year 2004-2022 led to over 800 research
articles on emerging pollutants. The large quantity of
waste produced during food processing is rich in
nutrients and this wastewater can also be recycled to
produce value-added goods. These goods include
ethanol, 1-butanol, methanol, propanol, and isobutanol
which are gotten from food waste via the fermentation
process (34). A greater volume of the waste is discarded
into landfill after treatment to reduce toxicity (35). The
transformation of food waste into organic fertilizer can
mitigate its environment effect, enhance nutrient levels
of the soil and decrease direct chemical fertilizer
application. The microalgae extracted after food waste
treatment can be wuseful in animal feed, biofuel
feedstock, and fertilizers (36). Single-cell proteins like
bacteria, fungi, algae, and yeast are bred and collected
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to realize the food provision for man and animals (37-
38). The gentle decrease in water quality in Nigeria is
due to the disposal of food processing effluents into
natural water bodies which are sometimes mixed with
faecal material and micro-pollutants.

[1I. FOOD PROCESSING EFFLUENTS

Liquid wastes from various food processing
industries vary in concentration and quantity. The nature
of effluent lies in the source and technology of any
industry(39-40). It is a mixture of domestic and industrial
materials coupled with synthetic items. Existing effluents
contaminant includes; fats and oil, sugars, and amino
acids (proteins). Amino acids and sugar constitute a
crucial portion of organic matter in effluent from food
processing industries(41-42). A remarkable quantity of
some inorganic materials like potassium, calcium,
magnesium, arsenic, sulfur, sodium, phosphorus,
ammonium salt, and other heavy metals are mainly
found in industrial effluents(43-44). Persistent organic
pollutants (POP) from domestic and industrial impurities
(mainly from the petroleum industry) are not left out(45-
47). Polycyclic aromatic hydrocarbons (PAHs) from
POP are from the combustion of non-renewable fuels
like petroleum, coal, household heating, biomass



burning, emissions from operational industries,
greenhouse gases, and landfills and wildfires. PAHs are
organic contaminants mostly found in polymeric
products and pollute the ecosystem(48-50).

a) Effluent from the slaughterhouse

Activities like roasting and washing from the
slaughterhouse (abattoir) are good sources of
contaminants. Disposal of this waste from the abattoir is
a worrisome environmental challenge all over the globe.
Using waste rubber in roasting slaughtered animals
increased  pollution in  terrestrial, aquatic, and
groundwater (51-52). The chemical properties of abattoir
wastes are the same as that of municipal sewages,
though the former is highly concentrated wastewater
with soluble and suspended organic formations. Waste
blood from the abattoir contains high chemical oxygen
demand (COD) of about 375 000 mg/L, and it is one of
the highly dissolved adulterants in abattoir wastewater
(53-55). In Nigeria, there is no master plan for the
disposal of effluents generated from abattoirs. The solid
waste from the abattoir is collected and dumped in the
landfills or open fields while the liquid waste finds its way
into the water bodies or municipal sewerage system.
These activities jeopardize human health coupled with
terrestrial and aquatic life (56-57). Effluent from an
abattoir can lead to an increase in biochemical oxygen
demand (BOD), COD, pH, temperature, and turbidity,
which may even lead to a lack of oxygen in the water
bodies (568-59).

b) Effluent from the Cassava Industry

Cassava is known by its genus Manihot
esculanta crantzcrantz and is mainly consumed in
Africa, Asia, India, and South America (60-61). One of
the processing methods include direct fermentation to
get fufu (62-63), grating and fermentation to obtain garri
flakes (64-65),grating and fermentation to obtain garri
flakes (66-67), to obtain tapiocca (68). The liquid from
cassava processing units contains a dangerous liquid
called cyanide which is acidic in nature (69-70).
Because of improper disposal of these effluents, the site
is left to develop a foul odour while the effluents find
their way to the water bodies and some percolates into
the groundwater leading to another risk as elucidatedin
(Fig. 2). The odour generated from the industry site
cannot allow residents living near the factory to breath
freely. The effluent from the cassava waste kills all the
grasses along its parts due to the acidic content of the
wastewater creating artificial soil erosion. Cassava
effluent breeds various types of bacteria and fungi in the
soil and affects public health when washed into the
water(71-72). Some domestic animals and birds feed
directly from this cassava effluent and when consumed
leads to dangerous health problems. All these could
pose an environmental problem shortly due to the lack
of effluent treatment facilities.

Figure 2: Effect of Cassava Effluent on the Environment

c) Effluent from Fruit Juice Factory

Fruit is one of the essential nutrients required by
man for the maintenance of the body. It is consumed by
everybody in one form or the other. Some eat it as raw
fruit, while others prefer consuming it as juice after
processing. Fruits are the major sources of vitamin

C(73-74). A deficiency of vitamin C in our diet can cause
scurvy in children and other health implications in
adults(75). Effluent from fruit juice factoriesis a source of
emerging contaminants that could pollute freshwater
easily(76). It is also a breeding ground for mosquitoes,
flies, and other dangerous insects. The odour from the
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factory wastewater attracts flies and perched in our food
can cause dysentery in humans. Those emerging
contaminant from the environment seems 1o be
extremely difficult in the interim while trying to remove
them. Wastewater from the fruit processing industry is
highly polluted and cannot be discharged into the
environment or reused without adequate treatment. The
presence of COD and BOD needs an integrated
chemical and biological treatment method in a bid to
obtain the desired efficiency. Policymakers should also
help ensure that good legislation on proper disposal of
this effluent to avoid endangering the environment.

d) Effluent from Brewery Industries
Beer is made of four components viz; water,

will end up as effluent and can be discharged through
the sewer system or discharged into the water
bodies(22). Stages in the brewing process of beer
production (Fig. 3) and summarized in equation 1. The
main components of the effluent which contribute to
total suspended solids (TSS) comprise spent grain,
yeast, and hops (77). Effluent fluids from this factory
bear an average COD of 5340.97 mg/L with pH values
ranging from 4.0 to 6.7 (78). The disposal of these
wastes creates numerous problems for the environment.
Discharging the effluent into the water bodies without
proper treatment can cause problems for man and
aquatic animals. Hence, one of the methods of
reduction includes the utilization ofanimal feed, biogas

. production, and treatment of the effluent before
malted grains, hops, and yeast. Other flavours as disposal
cherries and citrus fruits can be added to it. A good P '
production of water intake during the production of beer
CGH1206 — 202H5OH + 2C02 ........................................................ (1)

Figure 3: Brewing Process of Beer Production

e) Effluent from Grain Mills Processing Industries

This industry comprises grain processing in
many product segments including cereal grain (corn,
wheat, guinea corn, rice, etcetera), dried plantain and
tubers chips, animal feed, breakfast cereal production,
wheat starch and gluten production. There is no form of
protection from this factory when humans are
predisposed to health risks (Fig. 4). Soaked (moist)
grains are also processed in this factory and have
implications on the environment and public health. The
milling factory for grains generates dust and fine
particles that cause air pollution. The polluting process
includes washing, spent lube oil from a garage which
generates wastewater containing biological oxygen
demand (BOD), chemical oxygen demand (COD), total
suspended solids (TSS), and total dissolved solids
(TDS)(79).Noise as pollution is also generated by this
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industry. Wastewater from grain is harmless and
amenable to enzymatic and  microbiological
bioconversion(80). Most of the effluent is discharged
into open water bodies and this can affect the water
quality which in turn affects aquatic animals and
humans when consumed(81). Discharge of polluted
wastewater high in BOD into rivers and oceans can
cause  eutrophication  and adversely  impact
biodiversity(82). The organic material in wastewater
stimulates the growth of bacteria and fungi naturally
present in water, which then consume dissolved
oxygen(83).



Figure 4. Unprotective Site of Grain Processing Factory in Abakaliki, Nigeria

) Effluent from the Palm Oil Mill Industry

Pollutant flowing with palm fruit effluent is the
most noticeable in agro-industrial wastes (84). The palm
oil mill effluent (POME) consists of a large number of
suspended solids, organic carbon, oil, and grease.
Chemical oxygen demand (COD) and Biological oxygen
demand (BOD) values for POME are estimated to be as
high as 100,000 mg/L, which risks the environment (85-
86). Al Azad et al. investigated the simultaneous
incubation period of a purple non-sulfur bacterium in
decreasing COD, total nitrogen, and total phosphorus in
resolved POME (87). The physicochemical
characteristics of raw and treated palm oil mill effluent

(POME) as elucidating in (Table 2).The microalgae
treatment of POME is essential but creates negative
effects if not handled very well (88). Pre-treatment in
POME is found effective as it converts lignin into sugar
reducing supplement. Efficiencies for pollutant removal
arefound in different parameters, for instance, 62.07%
for total nitrogen (TN), 47.09% for COD, and 30.77% for
total phosphorus (TP) (89). Further research indicated
that immobilized microalgae cells exhibited a wonderful
biomass concentration of 1.27 g/L and a COD decrease
of 71% (90) than other suspended free cells. Dissolved
oxygen is relatively higher in effluent from oil processing
factories when compared to other industries (91).

Table 2: Physicochemical Characteristics of Raw and Treated Palm Oil Mill Effluent (POME) [87]

Parameter Raw POME Resolved POME Reduction
pH 3.68 3.78 -
Chemical oxygen demand (mg/L) 39,900 21,540 46.2
Total solid (mg/L) 50,782 + 1215 12,885 + 40.86 74.6
Total volatile solid (mg/L) 43,099 + 988 9510 + 46.78 77.9
Total suspended solids (mg/L) 12,318 = 265 1624 = 146 86.8
Qil and grease (mg/L) 4132 = 70.68 151 + 26.03 96.3
Total nitrogen (mg/L) 804 = 53.49 239 = 100.75 70.3
Total phosphorus (mg/L) 120 = 5.07 77 + 3.96 35.8

[V. ADAPTED B1O-TREATMENT METHODS

Water is a prime component in food processing,
the beginning and midway cleaning of roots, an effective
shipment of raw materials, and the lead actor for
disinfecting plant machinery and work areas. Due to this
substantial water usage, food production's main
concern is that water and wastewater are controlled in
the highest inexpensive method and reused in any way
feasible to lower costs and remain environmentally
acquiescent. The functional design for any food industry
usage should match your plant requirements for the

best efficacy. A pre-treatment form is often the most
straightforward and inexpensive solution if the main
concern is to lower adjusted parts to an acceptable
discharge degree. Significant removal of suspended
solids, oil, grease, and BOD is possible by executing a
system based on the dissolved Air Flotation operation.

a) Electric Discharge Plasma Methods

In foodstuff industries, many volatile organic
compounds (VOC) are emitted, which differ in chemical
formation, amount, and possible threat. Traditional
methods used for their reduction have definite merits
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and demerits. The major stumbling block comprised
pollutants carried into another stage, generating risk-
taking waste and leading to a high cost of treatment.
Different types of plasma methods exist for nanowires
synthesis (92). Plasma fabricated with an electrical
discharge in gases is functional in agriculture and
biomedical applications(93). The best-developed VOC
plasma treatment is the fusion of pulsed corona
discharge  with catalytic ~ and photocatalytic
treatment(94). As described by the authors, the
dielectric barrier is a reactor to generate non-thermal
plasma for wastewater treatment(95). A streak camera
furnished with a spectrograph has evaluated the optical
emission of plasma acquired using machine learning
algorithms which roughly calculated the plasma electron
structure(96). A high-voltage pulse developed during
hydrogen removal from water permits the distillation of
wastewater and minimizes its chemical and biological
occupation(97). Another research viewed high-voltage
electrical discharge plasma reagents as encouraging
effluent remediation and reduction of organic/
polyphenol compounds(98). The trimming of polyphenol
compounds of 60.32% is at 60 Hz with air FeCl,x6H,0.
Also, the best COD removal of 50.98% and 49.02% is
attained with the inclusion of FeClx6H,0 at 120 Hz. In
closure, the most remarkable trimming in colour intensity
was at 120 Hz with the addition of FeClx6H,O coupled
with nitrogen and air. Mathematical modelling of high-
voltage electrical discharge plasma automation has
recently been used for pollutant removal(99-101)and
seems the most inexpensive and efficient method in
effluent treatment. Several other studies on the
application of dielectric barrier discharge plasma in
uncoupling minerals in wastewater are also making
waves(102-103).

b) Disinfection & Ozonation

The blend of chemical disinfectants in food
processing apparatus is significant for checking a food-
borne disease epidemic. As good as drinking water
disinfection, food mills will need to evaluate disinfectant
vulnerabilities to stabilize disease discharge upon

display to likely toxic disinfection by-products. The
growing non-thermal treatment automation novelty has
replaced thermal technologies in food industries to
manufacture healthy, nutritious, safe, and prolonged
shelf-life foods (104). The clarification of several farm-to-
fork disease reduction master plans at separate steps in
food quality assurance was extensively evaluated (105).
The activities that led to the spread of disease infection
summarizes in (Fig. 5). Alchemical disinfection has
grown in today’'s research, leading to a growth in
scientific publications (106). Cold plasma revealed its
efficacy in disinfecting methods for the inactivation of
bacteria, viruses, diseases, and other hazardous
microorganisms  (107). The reduction of biofim
formation requires exceptional strategies by biochemical
agents in the food industry while enhancing food quality
and safety (108-109). Dripping ozone has displayed
effectiveness in  foodstuff disinfection, pesticide
degradation, and seed germination (110). Water reuse
in food processing firms helps to reduce the impact
created by water scarcity in some localities (111). The
fluid ozone treatment is efficient in dropping a microbial
size, keeping standard variables, and growing shelf life
in fresh-cut slices of onion (112). The disinfecting
capacity of liquid ozone was comparable to 100 ppm
chlorine. These show that ozone is a safe disinfecting
agent in food processing firms. The effectiveness of
ozone treatment capacity on usual microorganisms
proved that ozone concentration is adequate, and the
time exhibition needed to surrender total microbial
removal is 20 ppm and 4 minutes, independently (113).
However, the opposition to the tested organisms with
ozone gas is in the order of effectiveness. This result is
necessary for applying ozone concentration and
exposure duration in a large-garment firm for rapid
disinfection. The cost of ozone generation integrated
with a short-lived period of ozone could lead to wasteful
working for the utilization of ozone solo in extensive
effluent treatment use (114). Overcoming this barrier
means that more research in this area is required to
ensure the large-scale application of ozonation.

Figure 5: Route to Disease Infection
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c) Membrane Bioreactor

Membrane bioreactor (MBR) is a novel and
efficient automation that is fast expanding and
increasingly applied in municipal and industrial effluent
treatment all over the globe. It is also a wastewater
treatment process where a perm-selective membrane,
for example, microfiltration or ultrafiltration, is combined
with biological operation, particularly a suspended
advance bioreactor. Most food industries' wastewater
contains a lot of oil and grease that require adequate
cleaning using various techniques to enhance reuse. By
so doing, many scientists have developed an intense
use of membrane automation in the tenable recycling of
phytochemicals from the agri-food zone (115). For
instance, synthetic purification of membranes in food
production sewerage chemically improved backwash

carried out in an experiment with 6 Lm? of 2000 ppm
(116). NaClO attained an effectiveness of 56.8% inlet
unblocking and 60.7% all-inclusive resistance in the
absence of these concentrations undergoing any
negative outcome on the biomass project. Highly
effective removal of fundamental material from high-
power food processing effluent showed that 90% of the
total COD was removed at an organic loading rate
(OLR) of 5.0 g COD/L day (117). A tiny expansion in
trans-membrane pressure was noticed, with the growth
of volatile fatty acids inside the test span. Virgin
membrane took 57 days before fouling and another 75
days to get to dynamic membrane number of years
following four cycles with an expanded OLR ranging
from 3.5 to 7.5 g COD/L day (Fig 6).

Figure 6: Volatile Fatty Acid Accumulation in the Acidogenic Reactor (AR) and Methanogenic Reactor (MR) at
Different Olrs During the Treatment Operation [117]

Inexpensive material support and biogas energy
creation made the dynamic anaerobic membrane
bioreactor possible operation for force effluent. Meat
processing  effluent has intensely  undergone
examination using an anaerobic membrane reactor
(118). The technique realized a COD withdrawal of 88 -
95% for 0.4 - 3.2 kgCOD/m® per day. The outcome of
methane gas was moderately low at 0.13 - 0.18 LCH, g
COD removal, showing the existence of non-
biodegradable organics in the effluent. At low OLR,
membrane variability is firm but declinesto 3.2
kgCOD/m® per day. At the highest OLR, the minimum
gathering of dissolved methane and saturation index
discerns. The organic matter removal and methane
manufacturing from food waste-reuse with household
wasteshowed a tremendous COD and TOC removal
attains during the treatment at a very high organic
loading rate of 2.95 kg COD/m® d (119). Food waste-
recycling incorporation correlates with a mean methane
manufacturing of 0.21 = 0.1 L CH,/g of COD removal.
Incorporating polyvinyl alcohol-gel donated emphatically

by cutting off the cake from the exterior membrane led
to a reduction in the fouling index value of deep-rooted
working. A significant elucidation of organic carbon
detection identification and particular grouping of
dissolved organic matter (DOM) during the treatment
revealed that ceramic membranes are strong for DOMs
removal. While variant parts in the DOMs donated to the
membrane are dirty, oligomers would assume to be the
crucial dirt. The tenable flux at variant high solid clusters
showed that the best filtration-to-relaxation ratios were
3:1,3:1, 3:1, and 3:6.

This agrees with the considerable tenable flux
increment at mixed liquor total solid (MLTS) clusters of
10, 15, 20, and 25 g/L, respectively (120). The ultimate
MLTS cluster proposes to be about 20 g/L to keep a
high tenable flux through the anaerobic digestion of
food waste. The achieved regression equation linking
the excessive tenable alteration and MLTS cluster
applied to forecast the tenable variability at future MLTS
cluster, acting as a reference for full-size AnMBR
blueprint and functioning. A combination of a micro-
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aerobic reactor and membrane bioreactor improved the
degradation of extracellular polymeric substances (121).
The use of livestock waste for the production of methane
and treatment of the same wastewater showed that
methane yield was recorded as highest at a hydraulic
retention time of 15 days because of the higher
microbial operation (122). Some other researchers have
investigated the use of membrane bioreactors in food
processing industries (123-125). This method can also
be applied in pharmaceutical effluent treatment (126) to
reduce the growing pathogens in hospitals.

d) Electrochemical Treatment Method

The electrochemical method for treating food-
industry effluent generally lowers the concentration of
organic pollutants. Effluent from food and beverage
factories has a greater drawback on the economy and
environment. Tackling this problem means that the
impact created should be solved with immediately
available technologies. Boron-doped diamond is the
best-utilized anode material because of its high
performance in discharging hydroxyl radicals and this
pushes for higher pollutant removal in the chloride
presence (127). The electrochemical process is gaining
more popularity because of its effective pollutant
removal within a lesser period compared to normal
biological treatment (128). Though ultra-stable
electrolyte is needed to degrade and avert the build-up
of undesired outgrowth (129). This method is also used
in the water recycling operation of dissolved air flotation
from the food industry (130). Wastewater from maize
processing industries can be harvested for cleaner
production of electricity (131-132).A study by (133)used
integrated technology for sugar factory effluent
treatment. The outcome indicated that the single use of
ultrasonication and electrocoagulation processes of
treatment did not show a promising result in terms of
COD removal. Meanwhile, the combination of the dual
processes shows better efficiency. This process is

purely inexpensive compared to other technologies. A
good example of integrating more than one treatment
technology is reported (134-135).

e) Bio-Removal of Dyes

The agro-based bio-treatment process could be
utilized for the direct removal of dyes and can also act
as a co-substrate to invigorate the decolorization of
dyes by fungi and bacteria (136). The utilization of
biologically activated banana peel waste has
demonstrated a great adsorbent for the removal of
methylene blue dye at a low cost in a green environment
(137). Another bio-removal of methylene blue was
successful using yeast with a removal percentage of
over 70% at standard conditionsunderthe highest
temperature of 35 °C (138). The application of the
Langmuir equation helps to homogenize adsorption on
the tops of absorbate and absorbent charge to possess
the same proportion of sorption stimulus energy. Under
high temperatures, betaine laccase displayed higher
decolorization of some recalcitrant organic dyes in
wastewater and aqueous solution (139). Other studies
have been performed relating to the biosorption of
various dyes using leaf-based biosorbents and very
reliable findings are reported in the literature, elucidated
in Table 3. For example, Alhajali et al. (140)have
examined the removal of phosphate and nitrate ions
from an aqueous solution using pistacia leave powder
as a biosorbent. The authors reported high removal
potential at a powder dose of 2 g/L and temperature of
25 °C. Characterization using SEM, FTIR, and EDX
confirmed the efficacy of this natural method. Non-
selective utilization of dyes adulterates water bodies and
this poses a dangerous threat to public health. The
good carbon content of eucalyptus leaves shows its
best removal efficiency of adsorbent (methylene blue
dye from water) at a higher pH range (141). While the
adsorption adopts pseudo-second-order kinetics, the
method is inexpensive, available, and eco-friendly.

Table 3: Studies Relating to the Adsorption of Dyes from Aqueous Medium using Leaf-Derived Biosorbents

The optimal
condition of the Removal
Adsorbent : efficiency/ad Desorption Isotherm | Kinetic
Source - Dye experiment(IDC, - . Ref.
ppties sorption efficiency model model
dose, pH, Temp, capacity
rpm, CT.
Methylene 64.35:0.88% for Pseudo-
Lemongrass NaOH blue/cyr stal 200 mg/L, 0.005-0.05, 2- 76.92 & 35.84 CV and Lanamuir second- [142]
leaf 4 9, 25-50 °C, 60 rpm mg g’ 92.90+1.70% for 9
violet order
MB.
Cucumis Sodium Crystal 5.0 g/L, 160 - 900 °C, 1 Pseudo-
. : Y Lok ' 149.25 mg g’ 17.14% Langmuir second- [143]
sativus peel chloride violet h order
Nigella sativa Sodium Synthetic 1000 mg/L, 30 mg/L, 8, 4
L. herb hydroxide dye 360 min 1362mg g Langmuir PSO [144]
Seed of 96% for SBAh &
NaOH & Inter-
Artocarpus . 2 ug/mL, 60 mg, 5.8, 93% for . :
heterophyllu hydr;;glonc Lead 300 rpm, 70 min. SBS0/4.93 for Temkin 5;{]‘(;:51 [145]
s & SBAh & 3.95
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Syzygium mg/g for SBSc
cumini
Sugarcane Methylene 98.32%/9.41 mg Sips's Pseudo- [146]
100 mg/L, 45°C, 24 h ' o three- second-
bagasse blue g
parame ter order
Rice husk Pseudo-
: 1000 gm, 0.6-6.0 g/100
cow dung & Methylene mL2.0— 11.0.500 °C. 3 99.0% for all the Langmuir first & [147]
sludge blue h sources second-
biochar ' order
. . 50mL, 0.5g,2.4-38, o Exponentia
Fique plant HCI & NaOH Textile dye 45°C. 24 h 66.29% | decay [148]
Bilberry - 53.34% pH, 12.00% 4 . General
leaves Cationic dye Temp, 22.11% CT, 200.4mgg Sips order [149]
. Remazol Langmuir
Lemon grass Activated briliant 25— 5000mg/L, 2-12,30 125 & 3{&2.9 mg & Koble PEO [150]
carbon -60°C,0-24h, g -
violet 5R Corrigan
Pseudo-
Waste wood 10-100 mg dm?®, 4 -9, o 4 o
biomass Congo red 5360 min, 71.8%/3.3 mg g 18.6% Langmuir second- [151]
order
Peels of
Trapa Citicacid | Cationic | 250mL 100G, 30 | 128 &189 mg | Pseudo-
natans & o I Langmuir | second- | [152]
i treated dyes C, 150 rpm, 6 -10h g
citrullus order
lanatus

Note: ppties: properties; IDC: initial dye concentration, Temp. Temperature, rom: revolution per speed; CT: contact time

) Bio-Recalcitrant Pollutant Removal

The destructive recalcitrant of organic pollutants
from industrial effluent is a major public health challenge
to the world. A lot of these contaminants are available in
every space of our environment (153). Green-grey
technologies amount to a promising pathway for
instigating first-hand wastewater treatment and recycling
in our cities (154). Fe(lll) coagulant-treated colloidal gas
aphrons (CGA) are adjudged the most efficient in the
removal of bio-recalcitrant colour and dissolved organic
carbon (DOC) in cassava distillery wastewater (155).
Photocatalytic reactors have helped in the degradation
of bio-recalcitrant organics from pharmaceuticals,
pesticides, surfactants, and dyes which may escape
with treated water (156). Though this method can only
be effective in the laboratory setup, effortsto industrialize
it are being employed. Combined efforts of hybrid
microbial electrochemical systems and photocatalysis
exhibitedsubstantial prospects for the degradation of
bio-recalcitrant  pollutants and improved system
production (157). The study to integrate the microbial
electrochemical systemwith electro-Fenton oxidation
leads to an efficient process to deal with recalcitrant
compounds (158). Nitrogen pollution is a major threat to
aquatic life. Reduction of this nitrate pollutant could be
made possible via a novel system of informally coupled
photocatalysis and biodegradation (159). This novelty
showed a removal efficiency of 40.3% after a few hours.

g) Photofermentation Using Purple Non-Sulfur Bacteria
Photofermentation is observed virtually in every
solid waste and wastewater of numerous food and
beverage processing industries. Solid waste and
wastewater from food industries are converted to bio-

hydrogen via photofermentation using purple non-sulfur
bacteria as biocatalysts(160). Two enzymes of
nitrogenase and hydrogenase are utilized in the creation
of bio-hydrogen (161). The utilization of purple non-
sulfur bacteria (PNSB) for single-cell protein is of great
help in mainstream protein sources for the production of
feed for aquaculture and poultry (162-37). The two-
phase bio-refinery operation to waste substrates
building ethanol-rich effluents is examined (163). The
process allowed microbial consortia held in the winery
wastewater to advance through a fermentative ethanol
corridor. It is difficult to produce bio-hydrogen due to the
metabolic route changes involved but the identification
of lignocellulosic feedstock using microbes-dependent
to crash the operational cost and reduce waste
produced has made it feasible (164). This process is

efficient enough to cater to succeeding energy
demands. The use of nanomaterial and
bioelectrochemical technology is confirmed to be

appropriate for fermentative hydrogen production (165).
A by-product called furfural is detrimental to the
photofermentation production of hydrogen when
lignocellulose biomass is undergoing hydrolysis. A
better result of hydrogen production is obtained when
furfural is in total absence from the production chain
(166). A top hydrogen vyield of 2.59 + 0.13 mol-H,/mol-
glucose while a top production rate of 100.64 = 3.12
mmol-H2/(h.mol-glucose) are gotten in the absence of
furfural but a noticeable barrier is recorded in the
presence of furfural (Fig. 7). The application of
thermosiphon photobioreactor in the production of bio-
hydrogen is examined using rhodopseudomonas
palustris (167). The result of the response surface
methodology models indicated topmost specific
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hydrogen production rates of 0.17 mol m — 3h — 1 and
0.21 mmol Gedw — 1h — 1 at R. palustris concentrations
of 1.21 and 0.4 g/L. The computed hydrogen yield falls

within the range of 45 to 77% and the glycerol
consumption is 8 to 19%, respectively.

Figure 7. Hydrogen Production from Glucose in the Presence of Furfural (A) Accumulative Hydrogen Yield (B)
Hydrogen Production Rate [166]

h) Integrated Treatment Strategies of Effluent in Food
Processing Industries

Explosive chemicals get into the environment
during manufacturing, firing, loading, assembling, and
packaging operations. Contaminated effluent from those
operations if released untreated, becomes a threat to
the standard of most important environmental
constituents of the lithosphere, hydrosphere, and
biosphere. Treatment of these hazardous materials from
the wastewater before release to the environment is
important. A single method may not wholly achieve
much but integrated treatment where two or more
techniques are employed may go a long way in
obtaining adequate results (168). Wastewater from the
food processing industry is a good source of energy
and a primary source for getting valuable items. The

characteristic of food waste effluents is summarized in
(Table 4). Reuse and recovery in food processing
firmsare aimed at enhancing food productivity while
reducing operational costs and avoiding environmental
calamity through an integrated approach (169). Tannery
effluents contain some chromium materials and their
wastewater can be reusable through an integrated
process of treatment. The treatment removal efficiency
of this chromium-contaminated effluent ranges from 82
to 99.9% which is now safe for irrigation (170). A study
by (171) required at least a minimal quantity of
microalgae to keep operational stability and expand
methane production. A Continuous stirred reactor is the
most efficient type of reactor used for the conversion of
wastewater to biogas though with challenges (172).

Table 4: Removal Efficiency from Food Processing Effluents

Food firm Total nitrogen | Total phosphorus
wastewater BOD COD 1SS pH (TN) (TP) Ref.
Cassava - 88.7+1.2% - 9.0 72.4+3.2% 74.1+10.8% [173]
Slaughterhouse - 97.1% - - 90.8% 90.1% [174]
Fruit juice 99.7% 99% 98.4% - - - [175]
Brewery 93% 77% 90% - 87% 89% [176]
Palm oil - 90.20% - 43 94.44% 94.24% [177]

i) E-Beam Radiation of Effluent in Food Processing
Industries

The application of e-beam and gamma
irradiation to treat food industrial effluents is gaining
momentum in recent times. The current challenge of a
global health crisis in association with fresh and
groundwater pollution demands for safe disposal of
effluents. Effluent is made up of heterogeneous
suspended particles, dissolved organic, inorganic
solids, salt, and some phenolic compound that are
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recalcitrant to microbial degradation (178). Electron
beam treatment of any type of food effluent is noticed to
be very efficient in reducing the biological oxygen
demand and chemical oxygen demand (79).
Remediation of wastewater from the food processing
industry using e-beam irradiation is a key to viable smart
and green cities across the world (179). For example, a
13 kGy dose of e-beam is used for the reduction of
human adenovirus type-5 aggressive titres by almost
100% (180). This shows how effective e-beam



technology is while deploying it for wastewater
disinfection. Also, a 35 kGy dose of e-beam irradiation is
efficient for the reduction of toxic materials from
slaughterhouse effluent (181). Meanwhile, possible
organic carbon content after irradiation removal could
further be investigated. The use of e-beam irradiation for
the post-harvest treatment of cherry tomatoes is
investigated (182). The result showed that a 3.6 kGy
dose of e-beam irradiation is effective in reducing
bacterial population, free filamentous fungi, and
foodborne injected pathogens. A high-powered e-beam
accelerator is designed to treat not less than 12 million
gallons per day of wastewater using 13.5 ¢/ton/kGy
during irradiation processing (183). This method can
also be extended to pharmaceutical wastewater
treatment in real-time (184). For instance, the integration
of Gamma rays and E-beam irradiation showcased an
assessment of efficiency as aggressive indicators for
better healthcare effluent quality control. The irradiation
of healthcare effluentwith Gamma and E-beam ionizing
irradiation indicated that E-beam technology is more
efficient but spores of Clostridium perfringens exhibited
the most resistance among studied microorganisms
(185). The authors submitted that lower doses of E-
beam irradiation are needed for the inactivation of
bacteria and bacteriophages than those needed for
Gamma rays inactivation. However, a dose of 7 kGy is
enough for the total inactivation of bacteria and viruses
during inactivation patterns.

j)  Electro-Bio Process of Effluent in Food Processing
Industries

This is another method of effluent treatment
found useful in food processing industries. It involves
the integration of electrochemical and biological
processes in treatment management. Excellent
integration of working variables could give a categorical
realization of pollutant removal gotten from the
experimental models of apiece procedure. The

reduction of COD up to 80% from bleach effluent
appears to be inexpensive by using electrocoagulation
and biological treatment (186). A hybrid of electrokinetic
is effectively used to remove heavy metals, organic and
inorganic  from the agricultural soil  (187-188).
Meanwhile, the  electro-bio-simulation  treatment
improved the fertility of agricultural soil while reducing
the electrical conductivity drastically lower than 2.0 dS/m
(188). Another efficient use of bio-electricity is the
developing route for CO, consumption and reserved
hydrogen fuelwhich involves the combination of
microbial blend with renewable electricity (189-190).
Microalgae exhibited a suitable pathway for the
production of biohydrogen which aid in carbon neutrality
and bioenergy viability (191-192). In another work by
(193), a ternary mixture of electrochemical techniquesis
used as a procedure for the treatment of canola oil
refinery effluents. The efficiency of the processes is
encouraging. However, regression modelling evaluation
demonstrated that a binary mixture of electrocoagulation
and electrooxidation exhibited superiority compared with
electrochemical peroxidation in terms of soluble
chemical oxygen demand (sCOD) and dissolved
organic carbon (DOC) removal in canola oil refinery
effluents. This shows that the efficiency removal of
sCOD and DOC has been obtained at 98.6% and
95.28% under EC and EO methods. It should be noted
that the degradation of sCOD lowered from 6403 mg/L
to 72.40 mg/L concentrations within 13.66 mA/cm?of
current density after treatment (Fig. 8). A complex
pollutant generated from textile industry effluents could
be treated using binary electrocoagulation and organic
coagulation mixture technology (194-195). The result
showed that the application of an artificial neural
network in the treatment of hybrid textile effluent is
effective. However, the line dye concentration
quantification in the reactor achievement flow may be a
setback to the system.

Figure 8: a) sCOD and b) DOC Removal from Canola Qil Refinery Wastewater using EC and EO Method [193]
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k) Use of Bacillus Organismsin Effluent Treatment
Machines used for food processing harbour
contaminated microorganisms on the machine surfaces
before and after cleaning processes.The removal of
such microorganisms from equipment surfaces is more
tedious on stainless steel due to its rough surface nature
(196). This tediousness occurs due to the
exopolysaccharide's protective sheath against harsh
conditions (197). Bacillus cereus variants exhibited
efficient  bioremediation  possibilities  during the
degradation of fats, oils, greases, and odours reduction
(198). But various probiotics strain of bacillus s
beneficial to human health. Valuable substrates from
agricultural effluentare used as a high efficient cellulase
production (199). The authors concluded that bacterial
strain is effective to degrade the coconut mesocarp
which carries a high quantity of lignin and
hemicelluloses without preliminary treatment. These
features make it significant as an effective degrader for
numerous other agricultural effluents. Similarly, normal
antimicrobial lipopeptides discharged from bacillus spp
acted as a food bio-preservative (200). This technique
enhances the shelf life of numerous perishable foods
like vegetables, fruits, drinks, and aquatic goods. This
type of research is also conducted on a commercial
scale in comparison with a laboratory setup (201). For
example, commercial crop probiotic is examined using
bacillus subtillis CW-S in closed vessel fermentation
(202). The authors summarized that molasses and urea
medium dished out an acceptable cell density of 7.19 x
108CFU/mL in comparison to the control of 1.51 x 107
CFU/mL with expensive media of 1.84 x 10" - 1.37 X
10° CFU/mL. Metabolites produced from bacillus spp
improve crop yieldby providing the plant with several
micronutrients, volatile compounds, and antimicrobial
earmarking pathogens (203). Other species of the
bacillus display opposition to pathogens by generating
growth hormones such as cytokinins, gibberellin, and
spermidines leading to root and shoot growth. The
presence of bacillus in the soil shows great protection
against harsh environmental stimuli like droughts, heavy
metals, and salinity in the plants. It can decontaminate
metal-contaminated soil and enhance the carbon
segregation procedure when used in a controlled
concentration (204). It can act efficiently as a denitrifying
agent in an agricultural environment and ensure soil
health balance by green remediating automation. A
strain of bacillus velezensis CE 100 is used to inhibit
plant phytopathogenic fungi and its gain improves
strawberry production (205). Also, the production of
indole-3-acetic acid from the above bacillus enhances
crop nutrient uptake while promoting cell division and
distinctness. This particular strain is helpful in the
organic matter removal and impedes the development
of harmful bacteria from slaughterhouse effluent (206).
The benefit of this method is that it acts as an
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antioxidant and angiotensin-converting enzyme that
performs barrier occupation (207).

) Eichhorniacrassipes (Water Hyacinth) and Panicum
Maximum Treatment Method

Effluents from various food processing factories
consist of high levels of chemical oxygen demand,
suspended solids, biochemical oxygen demand, nitrate,
and phosphate. Their value in the wastewater
composition is above the standard recommended by
World Health Organization (WHO). These effluents if
discharged into fresh water without treatment can lead
to public health catastrophes. By so doing, the removal
of these parameters by Eichhorniacrassipes and
Panicum maximum displayed high performance (41).
The authors concluded that both Eichhorniacrassipes
and Panicum maximum decrease pollutant loads of
effluent undergoing fermentation. Another study by (208)
investigated the best conditions for organic matter
removal using Eichhornia crassipes. A factorial design
denoted by X1, X2, and X3 is used to ascertain the
impact of residence time, plant density, and COD
concentration while process efficiency is evaluated with
Y1 for COD, Y2 for NH** and Y3 for PO,*, respectively.
In summary, the optimal removal rate for COD is 81%,
NH**is 95% and PO,*is 99.35%. Phytoremediation drive
in vetiver grass is utilized to decontaminate polluted
water and industrial effluent due to its physiological and
morphological attributes (209). Some other plants which
performa similar function as Eichhornia crassipes
include Seaweed (210) and macrophytes (211).

m) Antibiotic Resistance Treatment of Food Processing
Effluents

The issue of antibiotic resistance is fast growing
into a global health calamity. The overuse or misuse of
this antibiotic is a major factor in the exposure of
bacterial resistance to antimicrobial organisms. This
problem is not eradicable but can be managed through
the treatment of infections. Improving the use of
antibiotics in food processing factories should be a
prime concern to avoid the spread and disclosure of
resistance across the food chain (212). Most of these
treatment methods can cause selective elimination and
alter the proportion of phenotypes or genotypesunder
bacterial growth in the effluent. The ineffective
elimination of antibiotic-resistant bacteria (ARB) and
antibiotic-resistant genes (ARGs) from wastewater
treatment plants and effluent lead to the active rollout of
resistance genes to native microorganisms (213). The
ecology of enterococci and associated bacteria in
treated and untreated wastewater is examined on the
widespread presence of antibiotic  resistance
phenotypes within the bacteria group (214). The result
showed that the principal species of enterococcus are
found in untreated wastewater while the associated
quantities of enterococcus faecalis continue to exist in



treated and untreated wastewater. Furthermore, the
antibiotic-resistant strains of enterococci are not
removed through wastewater treatment. The use of
reclaimed wastewater to irrigate farms with edible crops
constitutes a big risk linked to the composition of
antibiotic bacteria, antibiotic-resistant bacteria, and
antibiotic-resistant genes (215).

A study of different effluent samples from two
seafood processing industries are investigated between
2021 and 2022 (216). The result showed that from the
samples, different bacterial species are identified with
different bacterial loads. Because of a high level of
recurrence of this antimicrobial resistant, urgent
measures should be adopted across other industrial
sectors to inhibit the increase and spread of this
antimicrobial resistance. The use of nanopatrticles also
played a vital role in this regard (217). A novel use of
mild heat and sonication is profitably developed to
sanitize bacteria in fresh foods (218). The result showed
that the integrated methods improved deactivation,
leading to 5.58-log depletion in E. coli at 4 min.
Furthermore, an increment in treatment time from 4 to 8
min ensued in absolute antibiotic resistance genes
degeneration and constrained the horizontal gene
transfer of ARGs. This study summarized that the
synergistic impact of mild heat and sonication is
opposed to ARB and ARGs. An attempt to obtain high
efficient anaerobic digestion of swine wastewater
through CH, production and ARG attenuation is carried
out (219). The authors summarized that the dewatered
swine  manure-derived  biochar-300  (DSMB-300)
displayed the best performance. Besides, DSMB
adapted from DSM and DSMB-assisted anaerobic
digestion displayed a high possibility of resistance gene
attenuation.The effluent discharged from fish processing
plant help to spread antibiotic-resistant bacteria into our
natural environments (220). Proper management
practices and legislation can protect the environment
and regulate seafood processing plants' hygiene.

n) Anaerobic/Aerobic Treatment in Food Processing
Industries

Anaerobic wastewater treatment started full-
scale operation in 1958 and its efficiency is highly
encouraging (221). Inexpensive approaches are
designed for food processing wastewater management.
A study by (222) examined the impact of the anaerobic-
aerobic treatment system of a potato processing
factory. The result showed that the integrated anaerobic-
aerobic system removal efficiency for TSS is 93%, for
BOD is 90% and for COD is 80%, respectively. The
average effluent concentrations of TSS, BOD, and COD
increased in volume, and the wastewater treatment plant
pleased National Environmental Quality Standard
(NEQS) for TSS (200 mg/L), NEQS for BOD (80 mg/L)
and NEQS for COD (150 mg/L). Assessment and

maximization of textile wastewater using a hybrid
anaerobic-aerobic system are carried out in two phases
(223). The result shows that a single treatment of
anaerobic exhibited low performance in the removal of
COD, Total Nitrogen (TN), and dyes. Meanwhile, an
integrated system of anaerobic-aerobic offers a better
removal efficiency of 99.5% for COD, 99.3% for TN, and
78.4% for dyes. Combined anaerobic-aerobic
sequencing batch reactor treated high-strength effluent
(wastewater from poultry slaughterhouse) and displayed
percentage removal of total COD (TCOD) at 97% = 2%,
soluble COD (SCOD) at 95% =+ 3%, NH3-N at 98% =+
1.3%, fat, oil and grease (FOG) at 90% = 11% and total
suspended solids (TSS) at 96% = 3% (224). Value-
added products are increasingly gotten from dairy,
slaughterhouses, and brewery influents as vital
resources. Then, extensive anaerobic treatment
automation of this can yield average methane of 487
Nm®/day (225-226). Another study by (227) integrated
an anaerobic-aerobic fixed bed reactor for the treatment
of waste water, and the removal efficiency of organic
matter content got to 83 + 5%, and Nitrogen got to 73
+ 3% without the incorporation of electron donor.

The performance of aerobic and anaerobic
membrane bioreactors is used as an alternative for
water, energy, and fertilizer retrieval (228). The result
showed that for organic matter treatment, anaerobic
membrane displayed a better removal efficiency of 97%
while aerobic membrane treatment showed better
nitrogen removal efficiency of 80%. Recovery of 527
m3/h of permeate could be used in the cane-washing
process or as feedstock for fertilizer procurement.
Soybean molasses is a viscous liquid with high volumes
of soluble carbohydrates, lipids, and proteins.
Anaerobic-aerobic baffled reactor is used in organic
matter degradation from soybean molasses for possible
biogas generation (229). From the result, COD,y
removal is efficient with average values between 88 and
98% while final effluent concentration is between 34 and
764 mgQO,/L. This shows that an anaerobic-aerobic
baffled reactor possesses a great possibility for the
biological degradation of soybean molasses. It further
shows that the method produces an estimated
180000m®/year with a concentration of methane high at
86%. An integrated anaerobic-anoxic-aerobic rector
technique is utilized for nitrogen removal from poultry
slaughterhouse effluent (230). The outcome indicated
that the best-performed reactor is witnessed in step I
with a recirculation rate of 2 and hydraulic retention time
of 11 hr. On this particular performance, the NH," and
TN removal efficiencies are 84% and 65%, respectively.
Without much opposition, the 65% removal efficiency of
TN is pronounced adequate because the conceptual
denitrification efficiency anticipated for this situation is a
recirculation rate of 2 67%, which occurred under no
external carbon source. Slaughterhouse effluent
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treatment undergoes a two-stage procedure with
integrated anaerobic digestion and electrocoagulation
to determine its efficiency (231). Both anaerobic digester
and electrocoagulation serve as primary and secondary
treatments, respectively. The result of the study showed
that the integration of anaerobic digestion and
electrocoagulation simultaneously enhances untreated
slaughterhouse wastewater treatment. This indicated
that the combined process exhibited removal
efficiencies greater than 79% for COD, 95% for nitrate,
and 90% for turbidity, respectively. A similar study is
carried out by (232) but this time, an anaerobic filter and
constructed wetland is used for the same poultry
slaughterhouse effluent. The result showed that this
system has efficient removal of organic matter of BOD;
at 88.9%, COD at 92.9%, TSS at 93.4%, and FOG at
87.3%, respectively.

o) Microbial Electrolysis Cells Treatment of Food
Processing Effluents

Microbial electrolysis cells(MECs) are one of the
most favorable contraptions amid bio-electrochemical
systems for the production of biohydrogen. A large
collection of wastewater and organic wastes can be
used as substrates in microbial electrolysis cells as they
allow for the production of valuable chemicals like
hydrogen gas. MECs can obtain clean and viable
hydrogen production from a large collection of
renewable biomass to displace fossil fuel (233). Cross-

feeding is a possible design for treating industrial food
processing wastewater samples (234). The study shows
that reactor inoculated with domestic wastewater
attained identical removal at a remarkably lesser time
than MECs which is accustomed only to industrial
wastewater, then possessing a lower wastewater
treatment. Microbial electrolysis cell is used for the
treatment of methanol-rich and food-processing
industrial wastewaters under inexpensive cathode
catalysts (235). The outcome indicated that
molybdenum disulfide catalyst exhibited a better result
than stainless cathode for the dual wastewater, while
platinum catalyst usage displayed the best result during
biogas production. This shows that molybdenum
disulfide is in the best position to undergo cathode
catalyst in MECs utilized for effluent treatment. Similar
research showed that nickel-foam exhibited the best
result (Table 5) for inexpensive electrodes during
hydrogen production in the MEC system together with
the treatment of food processing industrial effluents
(236). Microbial electrolysis cell is simultaneously used
to treat sugar factory wastewater and produce bio-
hydrogen with electrodeposited cathodes (40). The
result indicated that constructed cathodes exhibited
better efficiency and Ni-co-p co-deposit displays the
best cathode in both situations. This method
generallytransforms organic waste into hydrogen gas
and further degrades microorganisms(237-233).

Table 5: Rundown of Results from Mecs at the Applied Voltage 1.0 V for the 3 Cathodes in the 2 Sugar Industrial
Effluents [236]

Substrate | Cathode | COD removal (%) | CE (%) CHR (%) OHR (%) HPR (%) 1), (%)
CSw SS mesh 40.59 4511 13. 86 6.25 0.817 121.26
Ni plate 48.11 54.52 15.73 8.57 1.329 124.49

Ni foam 49.56 59.18 16.88 9.99 1.594 126.76

RSW SS mesh 30.43 44.09 8.95 3.95 0.613 113.54

Ni plate 38.99 54.67 9.39 513 1.022 114.54

Ni foam 40.06 56.64 12.35 6.99 1.431 119.20

Note: COD=chemical oxygen demand, CE=coulombic efficiency, CHR=cathode hydrogen recovery, OHR=overall hydrogen
recovery, HPR=hydrogen production rate, and 1], = energy recovery

As part of this study to contribute to the 2030
United Nations sustainable development goals (SDGs),
primarily to SDG 6 (ensure availability and sustainable
management of water and sanitation for all) and SDG 7
(ensure access to affordable, reliable, sustainable and
modern energy for all), efficient management of
wastewater and generation of green energy from this
effluent can ensure the target of these two goals.
Utilizing untreated wastewater to irrigate farms with
edible crops constitutes a risk to the agricultural
production system and humans. By so doing, SDG 2
(end hunger, achieve food security, improve nutrition
and promote sustainable agriculture) is under threat.
Also, generating wealth (value-added byproducts) from
the waste dump contributes immensely to SDG 2. In
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Nigeria, most of these SDGs are hard to achieve due to
the government's attitude towards ameliorating the
poverty level of its citizens. For instance, the government
has not adopted any known engineering bio-treatment
technologies to solve the problem of effluent disposal
treatment from food processing industries. All effluents
from food processing industries are channelled into
fresh waters and sometimes into dumpsites, and the
destruction is unprecedented in both environmental and
groundwater pollution (SDG 7 not achievable in the near
future). Utilizing untreated wastewater to irrigate farms
with edible crops constitutes a risk to the agricultural
production system and humans. By so doing, SDG 2
(end hunger, achieve food security, improve nutrition
and promote sustainable agriculture) is under threat.



Also, generating wealth (value-added byproducts) from
the waste dump contributes immensely to SDG 2. In
Nigeria, most of these SDGs are hard to achieve due to
the government's attitude towards ameliorating the
poverty level of its citizens. For instance, the government
has not adopted any known engineering bio-treatment
technologies to solve the problem of effluent disposal
treatment from food processing industries. All effluents
from food processing industries are channelled into
fresh waters and sometimes into dumpsites, and the
destruction is unprecedented in both environmental and
groundwater pollution (SDG 7 not achievable in the near
future).

V. CONCLUSIONS AND FUTURE PROSPECTIVES

Effluents from food processing industries
contain a high level of microorganisms and many of
these organisms are recalcitrant pollutants. Agro-
industrial wastes are a major threat to the soil and water
resources, though contribute to greenhouse gas
generation. The use of engineering bio-treatment
methods to remove these microorganisms from food
processing effluent is receiving a major boost. Effluents
from various food processing industries are a major
contributor to these environmental threats. The
performance of each treatment method concerningthe
removal efficiency of the microorganism is discussed.
No individual method is generally efficient for the
removal of these microorganisms from agro-industrial
effluents. Integrating different technological methods
can help to achieve greater efficiency in terms of organic
load removal. This may provide an opportunity to
carryout inter-governmental, cross-border microor-
ganism eradication and monitoring while controlling
anthropogenic  pollution  sources. Efficient and
commercially workablescale-up microorganism
treatment methods will produce huge benefits to public
and environmental health, while economic benefits are
not left out.

In this review, we have outlined the importance
of various technological treatments of food processing
effluents for their organic pollutant removal and
biodegradability. Various treatment methods of food
effluents are noticed to be very efficient in reducing the
biological oxygen demand, chemical oxygen demand,
total nitrogen, total phosphorus, total suspended solids,
etc. Some of these treatment technologies act as a
preservative to our food and it is capable of sanitizing
bacteria from fresh foods. The drawback to this
treatment method is: (a) Most of the processes do not
undergo large-scale commercialization. (b) Much cost
and energy consumption during the treatment
processes scare many stakeholders from effectively
adopting the novelty(c) Recalcitrant from
microorganisms also limits the effort of these
technologies. Optimum treatment conditions should be

adopted to limit the cost and energy consumption
during the treatment processes. Urgent measures
should be created across other industrial sectors to
inhibit the increase and spread of this antimicrobial
resistance. An aggressive awareness campaign should
be carried out to discourage the direct dumping of agro-
industrial effluent into fresh waters and other ecosystem
spaces.

Viable waste management is a panacea for
achieving multiple Sustainable Development Goals
created by the United Nations for the year 2030. This
means that waste management can decrease the
degradation of surface water sources and donate to the
objective of these goals through the efficient use of
resources. However, many countries limit the reuse of
wastewater due to the legal framework, public health,
and safety of its citizens.
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