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Abstract-

 

The highly toxic materials appearing in the food 
processing effluents are persistent on

 

the natural ecosystem. 
The resultant effect is magnifying throughout the food chain

 

and adversely affecting both public health and environmental 
health. So, effluent from food processing industries 
havereceived extensive research awareness. This review 
examines the adapted engineering bio-treatment methods for 
effluent

 

and their treatment mitigations. Effluents from various 
food processing industries are also discussed. Volatile organic 
compounds (VOC) are emitted

 

from this effluent and differ in 
chemical formation, amount, and possible threat. Natural 
methods used for their reduction have definite advantages

 

and 
disadvantages.

 

Risk reduction evaluations are the basic step 
for the treatment methods. Different physical, chemical,

 

and 
biological treatment technologies have been applied to 
remove microorganisms from effluent,each having inherent 
merits and limitations. The simultaneous novelty of bio-energy 
and bio-treatment of effluent made this work outstanding.

 

Keywords:

 

bio-treatment; effluent; food processing; 
industry; microorganism.

  

I.

 

Introduction

 

and and water bodies in almost the world are 
affected by eutrophication, contamination, and 
exhaustion. Urbanization encroachment in every 

nook and cranny of the world

 

has increased 
contamination due to human and industrial activities. 
These activities affect agricultural soils and waters by 
way of contamination. However, because the world has 
shown more interest in the present environmental issues 
and sustainable solutions, scientists and engineers face 
the task of using waste and weak small soil locations. 
These can realize when the soil locations and water 
bodies are balanced using bio-treatment methods

 

(1-4). 
Numerous adverse effects witnessed from these 
contaminations are from food processing industries. 

These affect aquatic life negatively. The dissolved 
substances volatilize into the atmosphere, contribute to 
acid rain, pose a significant health issue to humans, and 
cause rust to materials (5-6). Recently, efforts to treat 
contaminants from gaseous, solid, and wastewater 
become a major concern. The techniques commonly 
include engineering bio-treatment (7), chemical 
methods [8], and biological methods (9-10). Today, the 
engineering bio-treatment technique is the most widely 
used for contaminants removal due to its low cost 
compared to other methods (11-12).  

Engineering bio-treatment system (EBS), 
combined with chemical and biological treatment, has 
been observed as a successful method for 
contaminants removal. Liang et al. (13) used a bio-
electrochemical system (BES) to remove sulfate from 
wastewater. Other researchers have also combined 
several methods for contaminant removal (14-15). Some 
treatment techniques add another impurity to the treated 
medium (16), and the impact can harm humans and 
aquatic life. Therefore, efforts to ensure that 
adulterations are not observed after treatment guarantee 
the environment's total safety. Briefly, numerous 
prerequisites accessible for effluent treatments are 
summarised in (Fig. 1). PAHs seem to exist in several 
natural environments, so their influence on the 
ecosystem is growing due to their toxic impact on 
humans and aquatic life. Among the numerous PAHs, 
benzo(a)pyrene is the most dangerous contaminant 
observed in effluent chiefly from the petrochemical 
industries and unleashes carcinogenic substances (17). 
The notable pollutants in the effluent from food 
industries elucidate in (Table1). Numerous sources of 
contamination involved the unleashing of unrefined or 
processed liquid from cities and villages, discharge from 
processing or industrial plants, flow from farmland, and 
leachates from waste disposal locations. Insufficiency of 
water, population growth, energy, and the development 
of new material technologies have forced researchers to 
probe into viable effluent treatment and waste recycling 
(18-20). The fundamental alterable to be observed for 
the effluent disposal are the odour, colour, oil, grease, 
pH, nitrogen content, phosphorus content, biological 
and chemical oxygen demand (BOD & COD), and 
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suspended solids, dissolved solids, and metal ion 
absorption(21-22). 

 

 

Figure 1: Numerous Prerequisites Accessible for Effluent Treatments 

Table 1: Different Types of Environmental Pollutants 

Pollutant type Contaminants name Reference 
POPs Pesticides, DDT, PCBs, nitrogen oxides, and ozone [23][24] 

PAHs 
Naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, 

pyrene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, etc. 
[25][26] 

Antibiotics Trimethoprim, ciprofloxacin, sulfamethoxazole [27][28] 
Metal ions Arsenic, cadmium, chromium, mercury, lead. [29][30] 

Chlorinated 
disinfection by-

products 

Haloacetic acids, trihalomethanes, ketones, hydroxyl, carboxylic acids, 
nitrosamines, oxoacids, and aldehydes. 

[30][31] 

Perfluorinated 
compounds 

Perfluorooctane sulphonate, Perfluorooctanoic acid. [32][33] 

 
II. Current Status of Food Processing 

Effluents in our Environment 

The rising recalcitrant to microbial degradation 
from food processing effluents (FPEs) in our 
environment is a source of worry. The data gotten from 
the web of science papers′ reference register of 
‘Science Direct’ and ‘SCOPUS’ by defining the keywords 
‘effluents’ and ‘contaminants’ as a subject matter 
between the year 2004-2022 led to over 800 research 
articles on emerging pollutants. The large quantity of 
waste produced during food processing is rich in 
nutrients and this wastewater can also be recycled to 
produce value-added goods. These goods include 
ethanol, 1-butanol, methanol, propanol, and isobutanol 
which are gotten from food waste via the fermentation 
process (34). A greater volume of the waste is discarded 
into landfill after treatment to reduce toxicity (35). The 
transformation of food waste into organic fertilizer can 
mitigate its environment effect, enhance nutrient levels 
of the soil and decrease direct chemical fertilizer 
application. The microalgae extracted after food waste 
treatment can be useful in animal feed, biofuel 
feedstock, and fertilizers (36). Single-cell proteins like 
bacteria, fungi, algae, and yeast are bred and collected 

to realize the food provision for man and animals (37-
38). The gentle decrease in water quality in Nigeria is 
due to the disposal of food processing effluents into 
natural water bodies which are sometimes mixed with 
faecal material and micro-pollutants.  

III. Food Processing Effluents 

Liquid wastes from various food processing 
industries vary in concentration and quantity. The nature 
of effluent lies in the source and technology of any 
industry(39-40). It is a mixture of domestic and industrial 
materials coupled with synthetic items. Existing effluents 
contaminant includes; fats and oil, sugars, and amino 
acids (proteins). Amino acids and sugar constitute a 
crucial portion of organic matter in effluent from food 
processing industries(41-42). A remarkable quantity of 
some inorganic materials like potassium, calcium, 
magnesium, arsenic, sulfur, sodium, phosphorus, 
ammonium salt, and other heavy metals are mainly 
found in industrial effluents(43-44). Persistent organic 
pollutants (POP) from domestic and industrial impurities 
(mainly from the petroleum industry) are not left out(45-
47).  Polycyclic aromatic hydrocarbons (PAHs) from 
POP are from the combustion of non-renewable fuels 
like petroleum, coal, household heating, biomass 
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burning, emissions from operational industries, 
greenhouse gases, and landfills and wildfires. PAHs are 
organic contaminants mostly found in polymeric 
products and pollute the ecosystem(48-50).  

a) Effluent from the slaughterhouse 
Activities like roasting and washing from the 

slaughterhouse (abattoir) are good sources of 
contaminants. Disposal of this waste from the abattoir is 
a worrisome environmental challenge all over the globe. 
Using waste rubber in roasting slaughtered animals 
increased pollution in terrestrial, aquatic, and 
groundwater (51-52). The chemical properties of abattoir 
wastes are the same as that of municipal sewages, 
though the former is highly concentrated wastewater 
with soluble and suspended organic formations. Waste 
blood from the abattoir contains high chemical oxygen 
demand (COD) of about 375 000 mg/L, and it is one of 
the highly dissolved adulterants in abattoir wastewater 
(53-55). In Nigeria, there is no master plan for the 
disposal of effluents generated from abattoirs. The solid 
waste from the abattoir is collected and dumped in the 
landfills or open fields while the liquid waste finds its way 
into the water bodies or municipal sewerage system. 
These activities jeopardize human health coupled with 
terrestrial and aquatic life (56-57). Effluent from an 
abattoir can lead to an increase in biochemical oxygen 
demand (BOD), COD, pH, temperature, and turbidity, 
which may even lead to a lack of oxygen in the water 
bodies (58-59).  

b) Effluent from the Cassava Industry 
Cassava is known by its genus Manihot 

esculanta crantzcrantz and is mainly consumed in 
Africa, Asia, India, and South America (60-61). One of 
the processing methods include direct fermentation to 
get fufu (62-63), grating and fermentation to obtain garri 
flakes (64-65),grating and fermentation to obtain garri 
flakes (66-67), to obtain tapiocca (68). The liquid from 
cassava processing units contains a dangerous liquid 
called cyanide which is acidic in nature (69-70). 
Because of improper disposal of these effluents, the site 
is left to develop a foul odour while the effluents find 
their way to the water bodies and some percolates into 
the groundwater leading to another risk as elucidatedin 
(Fig. 2). The odour generated from the industry site 
cannot allow residents living near the factory to breath 
freely. The effluent from the cassava waste kills all the 
grasses along its parts due to the acidic content of the 
wastewater creating artificial soil erosion. Cassava 
effluent breeds various types of bacteria and fungi in the 
soil and affects public health when washed into the 
water(71-72). Some domestic animals and birds feed 
directly from this cassava effluent and when consumed 
leads to dangerous health problems. All these could 
pose an environmental problem shortly due to the lack 
of effluent treatment facilities.  

 

 

Figure 2: Effect of Cassava Effluent on the Environment 

c) Effluent from Fruit Juice Factory 
Fruit is one of the essential nutrients required by 

man for the maintenance of the body. It is consumed by 
everybody in one form or the other. Some eat it as raw 
fruit, while others prefer consuming it as juice after 
processing. Fruits are the major sources of vitamin 

C(73-74). A deficiency of vitamin C in our diet can cause 
scurvy in children and other health implications in 
adults(75). Effluent from fruit juice factoriesis a source of 
emerging contaminants that could pollute freshwater 
easily(76). It is also a breeding ground for mosquitoes, 
flies, and other dangerous insects. The odour from the 
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factory wastewater attracts flies and perched in our food 
can cause dysentery in humans. Those emerging 
contaminant from the environment seems to be 
extremely difficult in the interim while trying to remove 
them. Wastewater from the fruit processing industry is 
highly polluted and cannot be discharged into the 
environment or reused without adequate treatment. The 
presence of COD and BOD needs an integrated 
chemical and biological treatment method in a bid to 
obtain the desired efficiency. Policymakers should also 
help ensure that good legislation on proper disposal of 
this effluent to avoid endangering the environment.  

d) Effluent from Brewery Industries 
Beer is made of four components viz; water, 

malted grains, hops, and yeast. Other flavours as 
cherries and citrus fruits can be added to it. A good 
production of water intake during the production of beer 

will end up as effluent and can be discharged through 
the sewer system or discharged into the water 
bodies(22). Stages in the brewing process of beer 
production (Fig. 3) and summarized in equation 1. The 
main components of the effluent which contribute to 
total suspended solids (TSS) comprise spent grain, 
yeast, and hops (77). Effluent fluids from this factory 
bear an average COD of 5340.97 mg/L with pH values 
ranging from 4.0 to 6.7 (78). The disposal of these 
wastes creates numerous problems for the environment. 
Discharging the effluent into the water bodies without 
proper treatment can cause problems for man and 
aquatic animals. Hence, one of the methods of 
reduction includes the utilization ofanimal feed, biogas 
production, and treatment of the effluent before 
disposal.   

C6H12O6 → 2C2H5OH + 2CO2…………………………………………..…...(1) 

 

Figure 3: Brewing Process of Beer Production 

e) Effluent from Grain Mills Processing Industries 
This industry comprises grain processing in 

many product segments including cereal grain (corn, 
wheat, guinea corn, rice, etcetera), dried plantain and 
tubers chips, animal feed, breakfast cereal production, 
wheat starch and gluten production. There is no form of 
protection from this factory when humans are 
predisposed to health risks (Fig. 4). Soaked (moist) 
grains are also processed in this factory and have 
implications on the environment and public health. The 
milling factory for grains generates dust and fine 
particles that cause air pollution. The polluting process 
includes washing, spent lube oil from a garage which 
generates wastewater containing biological oxygen 
demand (BOD), chemical oxygen demand (COD), total 
suspended solids (TSS), and total dissolved solids 
(TDS)(79).Noise as pollution is also generated by this 

industry. Wastewater from grain is harmless and 
amenable to enzymatic and microbiological 
bioconversion(80). Most of the effluent is discharged 
into open water bodies and this can affect the water 
quality which in turn affects aquatic animals and 
humans when consumed(81). Discharge of polluted 
wastewater high in BOD into rivers and oceans can 
cause eutrophication and adversely impact 
biodiversity(82). The organic material in wastewater 
stimulates the growth of bacteria and fungi naturally 
present in water, which then consume dissolved 
oxygen(83). 
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Figure 4: Unprotective Site of Grain Processing Factory in Abakaliki, Nigeria 

f) Effluent from the Palm Oil Mill Industry 
Pollutant flowing with palm fruit effluent is the 

most noticeable in agro-industrial wastes (84). The palm 
oil mill effluent (POME) consists of a large number of 
suspended solids, organic carbon, oil, and grease. 
Chemical oxygen demand (COD) and Biological oxygen 
demand (BOD) values for POME are estimated to be as 
high as 100,000 mg/L, which risks the environment (85-
86). Al Azad et al. investigated the simultaneous 
incubation period of a purple non-sulfur bacterium in 
decreasing COD, total nitrogen, and total phosphorus in 
resolved POME (87). The physicochemical 
characteristics of raw and treated palm oil mill effluent 

(POME) as elucidating in (Table 2).The microalgae 
treatment of POME is essential but creates negative 
effects if not handled very well (88). Pre-treatment in 
POME is found effective as it converts lignin into sugar 
reducing supplement. Efficiencies for pollutant removal 
arefound in different parameters, for instance, 62.07% 
for total nitrogen (TN), 47.09% for COD, and 30.77% for 
total phosphorus (TP) (89).  Further research indicated 
that immobilized microalgae cells exhibited a wonderful 
biomass concentration of 1.27 g/L and a COD decrease 
of 71% (90) than other suspended free cells. Dissolved 
oxygen is relatively higher in effluent from oil processing 
factories when compared to other industries (91).  

Table 2: Physicochemical Characteristics of Raw and Treated Palm Oil Mill Effluent (POME) [87] 

Parameter Raw POME Resolved POME Reduction 
pH 3.68 3.78 - 

Chemical oxygen demand (mg/L) 39,900 21,540 46.2 
Total solid (mg/L) 50,782 ± 1215 12,885 ± 40.86 74.6 

Total volatile solid (mg/L) 43,099 ± 988 9510 ± 46.78 77.9 
Total suspended solids (mg/L) 12,318 ± 265 1624 ± 146 86.8 

Oil and grease (mg/L) 4132 ± 70.68 151 ± 26.03 96.3 
Total nitrogen (mg/L) 804 ± 53.49 239 ± 100.75 70.3 

Total phosphorus (mg/L) 120 ± 5.07 77 ± 3.96 35.8 

 Adapted Bio-Treatment Methods 

Water is a prime component in food processing, 
the beginning and midway cleaning of roots, an effective 
shipment of raw materials, and the lead actor for 
disinfecting plant machinery and work areas. Due to this 
substantial water usage, food production's main 
concern is that water and wastewater are controlled in 
the highest inexpensive method and reused in any way 
feasible to lower costs and remain environmentally 
acquiescent. The functional design for any food industry 
usage should match your plant requirements for the 

best efficacy. A pre-treatment form is often the most 
straightforward and inexpensive solution if the main 
concern is to lower adjusted parts to an acceptable 
discharge degree. Significant removal of suspended 
solids, oil, grease, and BOD is possible by executing a 
system based on the dissolved Air Flotation operation.   

a) Electric Discharge Plasma Methods 
In foodstuff industries, many volatile organic 

compounds (VOC) are emitted, which differ in chemical 
formation, amount, and possible threat. Traditional 
methods used for their reduction have definite merits 
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and demerits. The major stumbling block comprised 
pollutants carried into another stage, generating risk-
taking waste and leading to a high cost of treatment. 
Different types of plasma methods exist for nanowires 
synthesis (92). Plasma fabricated with an electrical 
discharge in gases is functional in agriculture and 
biomedical applications(93). The best-developed VOC 
plasma treatment is the fusion of pulsed corona 
discharge with catalytic and photocatalytic 
treatment(94). As described by the authors, the 
dielectric barrier is a reactor to generate non-thermal 
plasma for wastewater treatment(95). A streak camera 
furnished with a spectrograph has evaluated the optical 
emission of plasma acquired using machine learning 
algorithms which roughly calculated the plasma electron 
structure(96). A high-voltage pulse developed during 
hydrogen removal from water permits the distillation of 
wastewater and minimizes its chemical and biological 
occupation(97). Another research viewed high-voltage 
electrical discharge plasma reagents as encouraging 
effluent remediation and reduction of organic/ 
polyphenol compounds(98). The trimming of polyphenol 
compounds of 60.32% is at 60 Hz with air FeCl3x6H2O. 
Also, the best COD removal of 50.98% and 49.02% is 
attained with the inclusion of FeCl3x6H2O at 120 Hz. In 
closure, the most remarkable trimming in colour intensity 
was at 120 Hz with the addition of FeCl3x6H2O coupled 
with nitrogen and air. Mathematical modelling of high-
voltage electrical discharge plasma automation has 
recently been used for pollutant removal(99-101)and 
seems the most inexpensive and efficient method in 
effluent treatment. Several other studies on the 
application of dielectric barrier discharge plasma in 
uncoupling minerals in wastewater are also making 
waves(102-103).   

b) Disinfection & Ozonation 
The blend of chemical disinfectants in food 

processing apparatus is significant for checking a food-
borne disease epidemic. As good as drinking water 
disinfection, food mills will need to evaluate disinfectant 
vulnerabilities to stabilize disease discharge upon 

display to likely toxic disinfection by-products. The 
growing non-thermal treatment automation novelty has 
replaced thermal technologies in food industries to 
manufacture healthy, nutritious, safe, and prolonged 
shelf-life foods (104). The clarification of several farm-to-
fork disease reduction master plans at separate steps in 
food quality assurance was extensively evaluated (105). 
The activities that led to the spread of disease infection 
summarizes in (Fig. 5). Alchemical disinfection has 
grown in today’s research, leading to a growth in 
scientific publications (106). Cold plasma revealed its 
efficacy in disinfecting methods for the inactivation of 
bacteria, viruses, diseases, and other hazardous 
microorganisms (107). The reduction of biofilm 
formation requires exceptional strategies by biochemical 
agents in the food industry while enhancing food quality 
and safety (108-109). Dripping ozone has displayed 
effectiveness in foodstuff disinfection, pesticide 
degradation, and seed germination (110). Water reuse 
in food processing firms helps to reduce the impact 
created by water scarcity in some localities (111). The 
fluid ozone treatment is efficient in dropping a microbial 
size, keeping standard variables, and growing shelf life 
in fresh-cut slices of onion (112). The disinfecting 
capacity of liquid ozone was comparable to 100 ppm 
chlorine. These show that ozone is a safe disinfecting 
agent in food processing firms. The effectiveness of 
ozone treatment capacity on usual microorganisms 
proved that ozone concentration is adequate, and the 
time exhibition needed to surrender total microbial 
removal is 20 ppm and 4 minutes, independently (113). 
However, the opposition to the tested organisms with 
ozone gas is in the order of effectiveness. This result is 
necessary for applying ozone concentration and 
exposure duration in a large-garment firm for rapid 
disinfection. The cost of ozone generation integrated 
with a short-lived period of ozone could lead to wasteful 
working for the utilization of ozone solo in extensive 
effluent treatment use (114). Overcoming this barrier 
means that more research in this area is required to 
ensure the large-scale application of ozonation.  

 
Figure 5: Route to Disease Infection 
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c) Membrane Bioreactor 
Membrane bioreactor (MBR) is a novel and 

efficient automation that is fast expanding and 
increasingly applied in municipal and industrial effluent 
treatment all over the globe. It is also a wastewater 
treatment process where a perm-selective membrane, 
for example, microfiltration or ultrafiltration, is combined 
with biological operation, particularly a suspended 
advance bioreactor. Most food industries' wastewater 
contains a lot of oil and grease that require adequate 
cleaning using various techniques to enhance reuse. By 
so doing, many scientists have developed an intense 
use of membrane automation in the tenable recycling of 
phytochemicals from the agri-food zone (115). For 
instance, synthetic purification of membranes in food 
production sewerage chemically improved backwash 

carried out in an experiment with 6 Lm-2 of 2000 ppm 
(116). NaClO attained an effectiveness of 56.8% inlet 
unblocking and 60.7% all-inclusive resistance in the 
absence of these concentrations undergoing any 
negative outcome on the biomass project. Highly 
effective removal of fundamental material from high-
power food processing effluent showed that 90% of the 
total COD was removed at an organic loading rate 
(OLR) of 5.0 g COD/L day (117). A tiny expansion in 
trans-membrane pressure was noticed, with the growth 
of volatile fatty acids inside the test span. Virgin 
membrane took 57 days before fouling and another 75 
days to get to dynamic membrane number of years 
following four cycles with an expanded OLR ranging 
from 3.5 to 7.5 g COD/L day (Fig 6). 

 

Figure 6: Volatile Fatty Acid Accumulation in the Acidogenic Reactor (AR) and Methanogenic Reactor (MR) at 
Different Olrs During the Treatment Operation [117] 

Inexpensive material support and biogas energy 
creation made the dynamic anaerobic membrane 
bioreactor possible operation for force effluent. Meat 
processing effluent has intensely undergone 
examination using an anaerobic membrane reactor 
(118). The technique realized a COD withdrawal of 88 - 
95% for 0.4 - 3.2 kgCOD/m3 per day. The outcome of 
methane gas was moderately low at 0.13 - 0.18 LCH4 g

-1 
COD removal, showing the existence of non-
biodegradable organics in the effluent. At low OLR, 
membrane variability is firm but declinesto 3.2 
kgCOD/m3 per day. At the highest OLR, the minimum 
gathering of dissolved methane and saturation index 
discerns. The organic matter removal and methane 
manufacturing from food waste-reuse with household 
wasteshowed a tremendous COD and TOC removal 
attains during the treatment at a very high organic 
loading rate of 2.95 kg COD/m3 d (119). Food waste-
recycling incorporation correlates with a mean methane 
manufacturing of 0.21 ± 0.1 L CH4/g of COD removal. 
Incorporating polyvinyl alcohol-gel donated emphatically 

by cutting off the cake from the exterior membrane led 
to a reduction in the fouling index value of deep-rooted 
working. A significant elucidation of organic carbon 
detection identification and particular grouping of 
dissolved organic matter (DOM) during the treatment 
revealed that ceramic membranes are strong for DOMs 
removal. While variant parts in the DOMs donated to the 
membrane are dirty, oligomers would assume to be the 
crucial dirt. The tenable flux at variant high solid clusters 
showed that the best filtration-to-relaxation ratios were 
3:1, 3:1, 3:1, and 3:6.  

This agrees with the considerable tenable flux 
increment at mixed liquor total solid (MLTS) clusters of 
10, 15, 20, and 25 g/L, respectively (120). The ultimate 
MLTS cluster proposes to be about 20 g/L to keep a 
high tenable flux through the anaerobic digestion of 
food waste. The achieved regression equation linking 
the excessive tenable alteration and MLTS cluster 
applied to forecast the tenable variability at future MLTS 
cluster, acting as a reference for full-size AnMBR 
blueprint and functioning. A combination of a micro-
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aerobic reactor and membrane bioreactor improved the 
degradation of extracellular polymeric substances (121). 
The use of livestock waste for the production of methane 
and treatment of the same wastewater showed that 
methane yield was recorded as highest at a hydraulic 
retention time of 15 days because of the higher 
microbial operation (122). Some other researchers have 
investigated the use of membrane bioreactors in food 
processing industries (123-125). This method can also 
be applied in pharmaceutical effluent treatment (126) to 
reduce the growing pathogens in hospitals.   

d) Electrochemical Treatment Method 
The electrochemical method for treating food-

industry effluent generally lowers the concentration of 
organic pollutants. Effluent from food and beverage 
factories has a greater drawback on the economy and 
environment. Tackling this problem means that the 
impact created should be solved with immediately 
available technologies. Boron-doped diamond is the 
best-utilized anode material because of its high 
performance in discharging hydroxyl radicals and this 
pushes for higher pollutant removal in the chloride 
presence (127). The electrochemical process is gaining 
more popularity because of its effective pollutant 
removal within a lesser period compared to normal 
biological treatment (128). Though ultra-stable 
electrolyte is needed to degrade and avert the build-up 
of undesired outgrowth (129). This method is also used 
in the water recycling operation of dissolved air flotation 
from the food industry (130). Wastewater from maize 
processing industries can be harvested for cleaner 
production of electricity (131-132).A study by (133)used 
integrated technology for sugar factory effluent 
treatment. The outcome indicated that the single use of 
ultrasonication and electrocoagulation processes of 
treatment did not show a promising result in terms of 
COD removal. Meanwhile, the combination of the dual 
processes shows better efficiency. This process is 

purely inexpensive compared to other technologies. A 
good example of integrating more than one treatment 
technology is reported (134-135). 

e) Bio-Removal of Dyes 
The agro-based bio-treatment process could be 

utilized for the direct removal of dyes and can also act 
as a co-substrate to invigorate the decolorization of 
dyes by fungi and bacteria (136). The utilization of 
biologically activated banana peel waste has 
demonstrated a great adsorbent for the removal of 
methylene blue dye at a low cost in a green environment 
(137). Another bio-removal of methylene blue was 
successful using yeast with a removal percentage of 
over 70% at standard conditionsunderthe highest 
temperature of 35 ºC (138). The application of the 
Langmuir equation helps to homogenize adsorption on 
the tops of absorbate and absorbent charge to possess 
the same proportion of sorption stimulus energy. Under 
high temperatures, betaine laccase displayed higher 
decolorization of some recalcitrant organic dyes in 
wastewater and aqueous solution (139). Other studies 
have been performed relating to the biosorption of 
various dyes using leaf-based biosorbents and very 
reliable findings are reported in the literature, elucidated 
in Table 3. For example, Alhajali et al. (140)have 
examined the removal of phosphate and nitrate ions 
from an aqueous solution using pistacia leave powder 
as a biosorbent. The authors reported high removal 
potential at a powder dose of 2 g/L and temperature of 
25 ºC. Characterization using SEM, FTIR, and EDX 
confirmed the efficacy of this natural method. Non-
selective utilization of dyes adulterates water bodies and 
this poses a dangerous threat to public health. The 
good carbon content of eucalyptus leaves shows its 
best removal efficiency of adsorbent (methylene blue 
dye from water) at a higher pH range (141). While the 
adsorption adopts pseudo-second-order kinetics, the 
method is inexpensive, available, and eco-friendly.  
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Table 3: Studies Relating to the Adsorption of Dyes from Aqueous Medium using Leaf-Derived Biosorbents

Source
Adsorbent 

ppties
Dye

The optimal 
condition of the 
experiment(IDC, 
dose, pH, Temp, 

rpm, CT.

Removal 
efficiency/ad

sorption 
capacity

Desorption 
efficiency

Isotherm 
model

Kinetic 
model

Ref.

Lemongrass 
leaf

NaOH
Methylene 
blue/crystal 

violet

200 mg/L, 0.005-0.05, 2-
9, 25-50 ºC, 60 rpm

76.92 & 35.84 
mg g-1

64.35±0.88% for 
CV and 

92.90±1.70% for 
MB.

Langmuir
Pseudo-
second-

order
[142]

Cucumis 
sativus peel

Sodium 
chloride

Crystal 
violet

5.0 g/L, 160 – 900 ºC, 1 
h

149.25 mg g-1 17.14% Langmuir
Pseudo-
second-

order
[143]

Nigella sativa 
L. herb

Sodium 
hydroxide

Synthetic 
dye

1000 mg/L, 30 mg/L, 8, 
360 min

136.2 mg g-1 - Langmuir PSO [144]

Seed of 
Artocarpus 

heterophyllu
s & 

NaOH & 
hydrochloric 

acid
Lead

2 µg/mL, 60 mg, 5.8, 
300 rpm, 70 min.

96% for SBAh & 
93% for 

SBSc/4.93 for 
SBAh & 3.95 

- Temkin
Inter-

particle 
diffusion

[145]
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Bio-Recalcitrant Pollutant Removal

 The destructive recalcitrant of organic pollutants 
from industrial effluent is a major public health challenge 
to the world. A lot of these contaminants are available in 
every space of our environment (153). Green-grey 
technologies amount to a promising pathway for 
instigating first-hand wastewater treatment and recycling 
in our cities (154). Fe(III) coagulant-treated colloidal gas 
aphrons (CGA) are adjudged the most efficient in the 
removal of bio-recalcitrant colour and

 

dissolved organic 
carbon (DOC) in cassava distillery wastewater (155). 
Photocatalytic reactors have helped in the degradation 
of bio-recalcitrant organics from pharmaceuticals, 
pesticides, surfactants, and dyes which may escape 
with treated water (156). Though this method can only 
be effective

 

in the laboratory setup, effortsto industrialize 
it are being employed. Combined efforts of hybrid 
microbial electrochemical systems and photocatalysis 
exhibitedsubstantial prospects for the degradation of 
bio-recalcitrant pollutants and improved system 
production (157). The study to integrate the microbial 
electrochemical systemwith electro-Fenton oxidation 
leads to an efficient process to deal with recalcitrant 
compounds (158). Nitrogen pollution is a major threat to 
aquatic life. Reduction of this nitrate pollutant could be 
made possible via a novel system of informally coupled 
photocatalysis and biodegradation (159). This novelty 
showed a removal efficiency of 40.3% after a few hours. 

 g)
 

Photofermentation Using Purple Non-Sulfur Bacteria
 Photofermentation is observed virtually in every 

solid waste and wastewater of numerous food and 
beverage processing industries. Solid waste and 
wastewater from food industries are converted to bio-

hydrogen via photofermentation using

 

purple non-sulfur 
bacteria as biocatalysts(160). Two enzymes of 
nitrogenase and hydrogenase are utilized in the creation 
of bio-hydrogen (161). The utilization of purple non-
sulfur bacteria (PNSB) for single-cell protein is of great 
help in mainstream protein sources for the production of 
feed for aquaculture and poultry (162-37). The two-
phase bio-refinery operation to waste substrates 
building ethanol-rich effluents is examined (163). The 
process allowed microbial consortia held in the winery 
wastewater to advance through a fermentative ethanol 
corridor. It is difficult to produce bio-hydrogen due to the 
metabolic route changes

 

involved but the identification 
of lignocellulosic feedstock using microbes-dependent 
to crash the operational cost and reduce waste 
produced has made it feasible (164). This process is 
efficient enough to cater to succeeding energy 
demands.

 

The use of nanomaterial and 
bioelectrochemical technology is confirmed to be 
appropriate for fermentative hydrogen production (165). 
A by-product called furfural is detrimental to the 
photofermentation production of hydrogen when 
lignocellulose biomass is undergoing hydrolysis. A 
better result of hydrogen production is obtained when 
furfural is in total absence from the production chain 
(166). A top hydrogen yield of 2.59 ± 0.13 mol-H2/mol-
glucose while a top production rate of 100.64 ± 3.12 
mmol-H2/(h.mol-glucose) are gotten in the absence of 
furfural but a noticeable barrier is recorded in the 
presence of furfural (Fig. 7). The application of 
thermosiphon photobioreactor in the production of bio-
hydrogen is examined using rhodopseudomonas 
palustris (167). The result of the response surface 
methodology models indicated topmost specific 
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Syzygium 
cumini

mg/g for SBSc

Sugarcane 
bagasse

-
Methylene 

blue
100 mg/L, 45 ºC, 24 h

98.32%/9.41 mg 
g-1 -

Sips′s 
three-

parame ter

Pseudo-
second-

order

[146]

Rice husk, 
cow dung & 

sludge 
biochar

-
Methylene 

blue

1000 gm, 0.6-6.0 g/100 
mL,2.0 – 11.0, 500 ºC, 3 

h,

99.0% for all the 
sources

- Langmuir

Pseudo-
first & 

second-
order

[147]

Fique plant HCl & NaOH Textile dye
50 mL, 0.5 g, 2.4 – 3.8, 

45 ºC, 24 h
66.29% -

Exponentia
l decay

- [148]

Bilberry 
leaves

- Cationic dye
53.34% pH, 12.00% 
Temp, 22.11% CT,

200.4 mg g-1 - Sips
General 

order
[149]

Lemon grass
Activated 
carbon

Remazol 
brilliant 

violet 5R

25 – 500 mg/L, 2-12, 30 
– 60 ºC, 0 – 24 h,

125 & 342.9 mg 
g-1 -

Langmuir 
& Koble 
Corrigan

PFO [150]

Waste wood 
biomass

- Congo red
10 -100 mg dm-3, 4 – 9, 

5 – 360 min,
71.8%/3.3 mg g-1 18.6% Langmuir

Pseudo-
second-

order
[151]

Peels of 
Trapa 

natans & 
citrullus 
lanatus

Citric acid 
treated

Cationic 
dyes

250 mL, 100 g, 30 
ºC, 150 rpm, 6 – 10 h

128 & 189 mg 
g-1 - Langmuir

Pseudo-
second-

order
[152]

Note: ppties: properties; IDC: initial dye concentration; Temp: Temperature; rpm: revolution per speed; CT: contact time
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hydrogen production rates of 0.17 mol m – 3h – 1 and 
0.21 mmol Gcdw – 1h – 1 at R. palustris concentrations 
of 1.21 and 0.4 g/L. The computed hydrogen yield falls 

within the range of 45 to 77% and the glycerol 
consumption is 8 to 19%, respectively.  

 

Figure 7: Hydrogen Production from Glucose in the Presence of Furfural (A) Accumulative Hydrogen Yield (B) 
Hydrogen Production Rate [166] 

h) Integrated Treatment Strategies of Effluent in Food 
Processing Industries 

Explosive chemicals get into the environment 
during manufacturing, firing, loading, assembling, and 
packaging operations. Contaminated effluent from those 
operations if released untreated, becomes a threat to 
the standard of most important environmental 
constituents of the lithosphere, hydrosphere, and 
biosphere. Treatment of these hazardous materials from 
the wastewater before release to the environment is 
important. A single method may not wholly achieve 
much but integrated treatment where two or more 
techniques are employed may go a long way in 
obtaining adequate results (168). Wastewater from the 
food processing industry is a good source of energy 
and a primary source for getting valuable items. The 

characteristic of food waste effluents is summarized in 
(Table 4). Reuse and recovery in food processing 
firmsare aimed at enhancing food productivity while 
reducing operational costs and avoiding environmental 
calamity through an integrated approach (169). Tannery 
effluents contain some chromium materials and their 
wastewater can be reusable through an integrated 
process of treatment. The treatment removal efficiency 
of this chromium-contaminated effluent ranges from 82 
to 99.9% which is now safe for irrigation (170).  A study 
by (171) required at least a minimal quantity of 
microalgae to keep operational stability and expand 
methane production. A Continuous stirred reactor is the 
most efficient type of reactor used for the conversion of 
wastewater to biogas though with challenges (172).  

Table 4: Removal Efficiency from Food Processing Effluents 

Food firm 
wastewater 

BOD 
 

COD 
 

TSS 
 pH 

Total nitrogen 
(TN) 

Total phosphorus 
(TP) Ref. 

Cassava - 88.7±1.2% - 9.0 72.4±3.2% 74.1±10.8% [173] 
Slaughterhouse - 97.1% - - 90.8% 90.1% [174] 

Fruit juice 99.7% 99% 98.4% - - - [175] 
Brewery 93% 77% 90% - 87% 89% [176] 
Palm oil - 90.20% - 4.3 94.44% 94.24% [177] 

 
i) E-Beam Radiation of Effluent in Food Processing 

Industries 
The application of e-beam and gamma 

irradiation to treat food industrial effluents is gaining 
momentum in recent times. The current challenge of a 
global health crisis in association with fresh and 
groundwater pollution demands for safe disposal of 
effluents. Effluent is made up of heterogeneous 
suspended particles, dissolved organic, inorganic 
solids, salt, and some phenolic compound that are 

recalcitrant to microbial degradation (178). Electron 
beam treatment of any type of food effluent is noticed to 
be very efficient in reducing the biological oxygen 
demand and chemical oxygen demand (79). 
Remediation of wastewater from the food processing 
industry using e-beam irradiation is a key to viable smart 
and green cities across the world (179). For example, a 
13 kGy dose of e-beam is used for the reduction of 
human adenovirus type-5 aggressive titres by almost 
100% (180). This shows how effective e-beam 
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technology is while deploying it for wastewater 
disinfection. Also, a 35 kGy dose of e-beam irradiation is 
efficient for the reduction of toxic materials from 
slaughterhouse effluent (181). Meanwhile, possible 
organic carbon content after irradiation removal could 
further be investigated. The use of e-beam irradiation for 
the post-harvest treatment of cherry tomatoes is 
investigated (182). The result showed that a 3.6 kGy 
dose of e-beam irradiation is effective in reducing 
bacterial population, free filamentous fungi, and 
foodborne injected pathogens. A high-powered e-beam 
accelerator is designed to treat not less than 12 million 
gallons per day of wastewater using 13.5 ¢/ton/kGy 
during irradiation processing (183). This method can 
also be extended to pharmaceutical wastewater 
treatment in real-time (184). For instance, the integration 
of Gamma rays and E-beam irradiation showcased an 
assessment of efficiency as aggressive indicators for 
better healthcare effluent quality control. The irradiation 
of healthcare effluentwith Gamma and E-beam ionizing 
irradiation indicated that E-beam technology is more 
efficient but spores of Clostridium perfringens exhibited 
the most resistance among studied microorganisms 
(185). The authors submitted that lower doses of E-
beam irradiation are needed for the inactivation of 
bacteria and bacteriophages than those needed for 
Gamma rays inactivation. However, a dose of 7 kGy is 
enough for the total inactivation of bacteria and viruses 
during inactivation patterns.   

j) Electro-Bio Process of Effluent in Food Processing 
Industries 

This is another method of effluent treatment 
found useful in food processing industries. It involves 
the integration of electrochemical and biological 
processes in treatment management. Excellent 
integration of working variables could give a categorical 
realization of pollutant removal gotten from the 
experimental models of apiece procedure. The 

reduction of COD up to 80% from bleach effluent 
appears to be inexpensive by using electrocoagulation 
and biological treatment (186). A hybrid of electrokinetic 
is effectively used to remove heavy metals, organic and 
inorganic from the agricultural soil (187-188). 
Meanwhile, the electro-bio-simulation treatment 
improved the fertility of agricultural soil while reducing 
the electrical conductivity drastically lower than 2.0 dS/m 
(188). Another efficient use of bio-electricity is the 
developing route for CO2 consumption and reserved 
hydrogen fuelwhich involves the combination of 
microbial blend with renewable electricity (189-190). 
Microalgae exhibited a suitable pathway for the 
production of biohydrogen which aid in carbon neutrality 
and bioenergy viability (191-192). In another work by 
(193), a ternary mixture of electrochemical techniquesis 
used as a procedure for the treatment of canola oil 
refinery effluents. The efficiency of the processes is 
encouraging. However, regression modelling evaluation 
demonstrated that a binary mixture of electrocoagulation 
and electrooxidation exhibited superiority compared with 
electrochemical peroxidation in terms of soluble 
chemical oxygen demand (sCOD) and dissolved 
organic carbon (DOC) removal in canola oil refinery 
effluents. This shows that the efficiency removal of 
sCOD and DOC has been obtained at 98.6% and 
95.28% under EC and EO methods. It should be noted 
that the degradation of sCOD lowered from 6403 mg/L 
to 72.40 mg/L concentrations within 13.66 mA/cm2of 
current density after treatment (Fig. 8). A complex 
pollutant generated from textile industry effluents could 
be treated using binary electrocoagulation and organic 
coagulation mixture technology (194-195). The result 
showed that the application of an artificial neural 
network in the treatment of hybrid textile effluent is 
effective. However, the line dye concentration 
quantification in the reactor achievement flow may be a 
setback to the system. 

 

Figure 8: a) sCOD and b) DOC Removal from Canola Oil Refinery Wastewater using EC and EO Method [193]
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k) Use of Bacillus Organismsin Effluent Treatment 
Machines used for food processing harbour 

contaminated microorganisms on the machine surfaces 
before and after cleaning processes.The removal of 
such microorganisms from equipment surfaces is more 
tedious on stainless steel due to its rough surface nature 
(196). This tediousness occurs due to the 
exopolysaccharide's protective sheath against harsh 
conditions (197). Bacillus cereus variants exhibited 
efficient bioremediation possibilities during the 
degradation of fats, oils, greases, and odours reduction 
(198). But various probiotics strain of bacillus is 
beneficial to human health. Valuable substrates from 
agricultural effluentare used as a high efficient cellulase 
production (199). The authors concluded that bacterial 
strain is effective to degrade the coconut mesocarp 
which carries a high quantity of lignin and 
hemicelluloses without preliminary treatment. These 
features make it significant as an effective degrader for 
numerous other agricultural effluents. Similarly, normal 
antimicrobial lipopeptides discharged from bacillus spp 
acted as a food bio-preservative (200). This technique 
enhances the shelf life of numerous perishable foods 
like vegetables, fruits, drinks, and aquatic goods. This 
type of research is also conducted on a commercial 
scale in comparison with a laboratory setup (201). For 
example, commercial crop probiotic is examined using 
bacillus subtillis CW-S in closed vessel fermentation 
(202). The authors summarized that molasses and urea 
medium dished out an acceptable cell density of 7.19 × 
108CFU/mL in comparison to the control of 1.51 × 107 
CFU/mL with expensive media of 1.84 × 107 – 1.37 × 
109 CFU/mL. Metabolites produced from bacillus spp 
improve crop yieldby providing the plant with several 
micronutrients, volatile compounds, and antimicrobial 
earmarking pathogens (203). Other species of the 
bacillus display opposition to pathogens by generating 
growth hormones such as cytokinins, gibberellin, and 
spermidines leading to root and shoot growth. The 
presence of bacillus in the soil shows great protection 
against harsh environmental stimuli like droughts, heavy 
metals, and salinity in the plants. It can decontaminate 
metal-contaminated soil and enhance the carbon 
segregation procedure when used in a controlled 
concentration (204). It can act efficiently as a denitrifying 
agent in an agricultural environment and ensure soil 
health balance by green remediating automation. A 
strain of bacillus velezensis CE 100 is used to inhibit 
plant phytopathogenic fungi and its gain improves 
strawberry production (205). Also, the production of 
indole-3-acetic acid from the above bacillus enhances 
crop nutrient uptake while promoting cell division and 
distinctness. This particular strain is helpful in the 
organic matter removal and impedes the development 
of harmful bacteria from slaughterhouse effluent (206). 
The benefit of this method is that it acts as an 

antioxidant and angiotensin-converting enzyme that 
performs barrier occupation (207).  

l) Eichhorniacrassipes (Water Hyacinth) and Panicum 
Maximum Treatment Method 

Effluents from various food processing factories 
consist of high levels of chemical oxygen demand, 
suspended solids, biochemical oxygen demand, nitrate, 
and phosphate. Their value in the wastewater 
composition is above the standard recommended by 
World Health Organization (WHO). These effluents if 
discharged into fresh water without treatment can lead 
to public health catastrophes. By so doing, the removal 
of these parameters by Eichhorniacrassipes and 
Panicum maximum displayed high performance (41). 
The authors concluded that both Eichhorniacrassipes 
and Panicum maximum decrease pollutant loads of 
effluent undergoing fermentation. Another study by (208) 
investigated the best conditions for organic matter 
removal using Eichhornia crassipes. A factorial design 
denoted by X1, X2, and X3 is used to ascertain the 
impact of residence time, plant density, and COD 
concentration while process efficiency is evaluated with 
Y1 for COD, Y2 for NH4+ and Y3 for PO4

3-, respectively. 
In summary, the optimal removal rate for COD is 81%, 
NH4+ is 95% and PO4

3- is 99.35%. Phytoremediation drive 
in vetiver grass is utilized to decontaminate polluted 
water and industrial effluent due to its physiological and 
morphological attributes (209). Some other plants which 
performa similar function as Eichhornia crassipes 
include Seaweed (210) and macrophytes (211).   

m) Antibiotic Resistance Treatment of Food Processing 
Effluents 

The issue of antibiotic resistance is fast growing 
into a global health calamity. The overuse or misuse of 
this antibiotic is a major factor in the exposure of 
bacterial resistance to antimicrobial organisms. This 
problem is not eradicable but can be managed through 
the treatment of infections. Improving the use of 
antibiotics in food processing factories should be a 
prime concern to avoid the spread and disclosure of 
resistance across the food chain (212). Most of these 
treatment methods can cause selective elimination and 
alter the proportion of phenotypes or genotypesunder 
bacterial growth in the effluent. The ineffective 
elimination of antibiotic-resistant bacteria (ARB) and 
antibiotic-resistant genes (ARGs) from wastewater 
treatment plants and effluent lead to the active rollout of 
resistance genes to native microorganisms (213). The 
ecology of enterococci and associated bacteria in 
treated and untreated wastewater is examined on the 
widespread presence of antibiotic resistance 
phenotypes within the bacteria group (214). The result 
showed that the principal species of enterococcus are 
found in untreated wastewater while the associated 
quantities of enterococcus faecalis continue to exist in 
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treated and untreated wastewater. Furthermore, the 
antibiotic-resistant strains of enterococci are not 
removed through wastewater treatment. The use of 
reclaimed wastewater to irrigate farms with edible crops 
constitutes a big risk linked to the composition of 
antibiotic bacteria, antibiotic-resistant bacteria, and 
antibiotic-resistant genes (215).  

A study of different effluent samples from two 
seafood processing industries are investigated between 
2021 and 2022 (216). The result showed that from the 
samples, different bacterial species are identified with 
different bacterial loads. Because of a high level of 
recurrence of this antimicrobial resistant, urgent 
measures should be adopted across other industrial 
sectors to inhibit the increase and spread of this 
antimicrobial resistance. The use of nanoparticles also 
played a vital role in this regard (217). A novel use of 
mild heat and sonication is profitably developed to 
sanitize bacteria in fresh foods (218).  The result showed 
that the integrated methods improved deactivation, 
leading to 5.58-log depletion in E. coli at 4 min. 
Furthermore, an increment in treatment time from 4 to 8 
min ensued in absolute antibiotic resistance genes 
degeneration and constrained the horizontal gene 
transfer of ARGs. This study summarized that the 
synergistic impact of mild heat and sonication is 
opposed to ARB and ARGs. An attempt to obtain high 
efficient anaerobic digestion of swine wastewater 
through CH4 production and ARG attenuation is carried 
out (219). The authors summarized that the dewatered 
swine manure-derived biochar-300 (DSMB-300) 
displayed the best performance. Besides, DSMB 
adapted from DSM and DSMB-assisted anaerobic 
digestion displayed a high possibility of resistance gene 
attenuation.The effluent discharged from fish processing 
plant help to spread antibiotic-resistant bacteria into our 
natural environments (220). Proper management 
practices and legislation can protect the environment 
and regulate seafood processing plants' hygiene.    

n) Anaerobic/Aerobic Treatment in Food Processing 
Industries 

Anaerobic wastewater treatment started full-
scale operation in 1958 and its efficiency is highly 
encouraging (221). Inexpensive approaches are 
designed for food processing wastewater management. 
A study by (222) examined the impact of the anaerobic-
aerobic treatment system of a potato processing 
factory. The result showed that the integrated anaerobic-
aerobic system removal efficiency for TSS is 93%, for 
BOD is 90% and for COD is 80%, respectively. The 
average effluent concentrations of TSS, BOD, and COD 
increased in volume, and the wastewater treatment plant 
pleased National Environmental Quality Standard 
(NEQS) for TSS (200 mg/L), NEQS for BOD (80 mg/L) 

and NEQS for COD (150 mg/L). Assessment and 

maximization of textile wastewater using a hybrid 
anaerobic-aerobic system are carried out in two phases 
(223). The result shows that a single treatment of 
anaerobic exhibited low performance in the removal of 
COD, Total Nitrogen (TN), and dyes. Meanwhile, an 
integrated system of anaerobic-aerobic offers a better 
removal efficiency of 99.5% for COD, 99.3% for TN, and 
78.4% for dyes. Combined anaerobic-aerobic 
sequencing batch reactor treated high-strength effluent 
(wastewater from poultry slaughterhouse) and displayed 
percentage removal of total COD (TCOD) at 97% ± 2%, 
soluble COD (SCOD) at 95% ± 3%, NH3-N at 98% ± 
1.3%, fat, oil and grease (FOG) at 90% ± 11% and total 
suspended solids (TSS) at 96% ± 3% (224). Value-
added products are increasingly gotten from dairy, 
slaughterhouses, and brewery influents as vital 
resources. Then, extensive anaerobic treatment 
automation of this can yield average methane of 487 
Nm3/day (225-226). Another study by (227) integrated 
an anaerobic-aerobic fixed bed reactor for the treatment 
of waste water, and the removal efficiency of organic 
matter content got to 83 ± 5%, and Nitrogen got to 73 
± 3% without the incorporation of electron donor.  

The performance of aerobic and anaerobic 
membrane bioreactors is used as an alternative for 
water, energy, and fertilizer retrieval (228). The result 
showed that for organic matter treatment, anaerobic 
membrane displayed a better removal efficiency of 97% 
while aerobic membrane treatment showed better 
nitrogen removal efficiency of 80%. Recovery of 527 
m3/h of permeate could be used in the cane-washing 
process or as feedstock for fertilizer procurement. 
Soybean molasses is a viscous liquid with high volumes 
of soluble carbohydrates, lipids, and proteins. 
Anaerobic-aerobic baffled reactor is used in organic 
matter degradation from soybean molasses for possible 
biogas generation (229). From the result, CODtotal 
removal is efficient with average values between 88 and 
98% while final effluent concentration is between 34 and 
764 mgO2/L. This shows that an anaerobic-aerobic 
baffled reactor possesses a great possibility for the 
biological degradation of soybean molasses. It further 
shows that the method produces an estimated 
180000m3/year with a concentration of methane high at 
86%. An integrated anaerobic-anoxic-aerobic rector 
technique is utilized for nitrogen removal from poultry 
slaughterhouse effluent (230). The outcome indicated 
that the best-performed reactor is witnessed in step III 
with a recirculation rate of 2 and hydraulic retention time 
of 11 hr. On this particular performance, the NH4

+ and 
TN removal efficiencies are 84% and 65%, respectively. 
Without much opposition, the 65% removal efficiency of 
TN is pronounced adequate because the conceptual 
denitrification efficiency anticipated for this situation is a 
recirculation rate of 2 67%, which occurred under no 
external carbon source. Slaughterhouse effluent 
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treatment undergoes a two-stage procedure with 
integrated anaerobic digestion and electrocoagulation 
to determine its efficiency (231). Both anaerobic digester 
and electrocoagulation serve as primary and secondary 
treatments, respectively. The result of the study showed 
that the integration of anaerobic digestion and 
electrocoagulation simultaneously enhances untreated 
slaughterhouse wastewater treatment. This indicated 
that the combined process exhibited removal 
efficiencies greater than 79% for COD, 95% for nitrate, 
and 90% for turbidity, respectively. A similar study is 
carried out by (232) but this time, an anaerobic filter and 
constructed wetland is used for the same poultry 
slaughterhouse effluent. The result showed that this 
system has efficient removal of organic matter of BOD5 
at 88.9%, COD at 92.9%, TSS at 93.4%, and FOG at 
87.3%, respectively.   

o) Microbial Electrolysis Cells Treatment of Food 
Processing Effluents 

Microbial electrolysis cells(MECs) are one of the 
most favorable contraptions amid bio-electrochemical 
systems for the production of biohydrogen. A large 
collection of wastewater and organic wastes can be 
used as substrates in microbial electrolysis cells as they 
allow for the production of valuable chemicals like 
hydrogen gas. MECs can obtain clean and viable 
hydrogen production from a large collection of 
renewable biomass to displace fossil fuel (233). Cross-

feeding is a possible design for treating industrial food 
processing wastewater samples (234). The study shows 
that reactor inoculated with domestic wastewater 
attained identical removal at a remarkably lesser time 
than MECs which is accustomed only to industrial 
wastewater, then possessing a lower wastewater 
treatment. Microbial electrolysis cell is used for the 
treatment of methanol-rich and food-processing 
industrial wastewaters under inexpensive cathode 
catalysts (235). The outcome indicated that 
molybdenum disulfide catalyst exhibited a better result 
than stainless cathode for the dual wastewater, while 
platinum catalyst usage displayed the best result during 
biogas production. This shows that molybdenum 
disulfide is in the best position to undergo cathode 
catalyst in MECs utilized for effluent treatment. Similar 
research showed that nickel-foam exhibited the best 
result (Table 5) for inexpensive electrodes during 
hydrogen production in the MEC system together with 
the treatment of food processing industrial effluents 
(236).  Microbial electrolysis cell is simultaneously used 
to treat sugar factory wastewater and produce bio-
hydrogen with electrodeposited cathodes (40). The 
result indicated that constructed cathodes exhibited 
better efficiency and Ni-co-p co-deposit displays the 
best cathode in both situations. This method 
generallytransforms organic waste into hydrogen gas 
and further degrades microorganisms(237-233).  

Table 5: Rundown of Results from Mecs at the Applied Voltage 1.0 V for the 3 Cathodes in the 2 Sugar Industrial 
Effluents [236] 

Substrate Cathode COD removal (%) CE (%) CHR (%) OHR (%) HPR (%) Ƞɛ (%) 
CSW SS mesh 40.59 45.11 13. 86 6.25 0.817 121.26 

 Ni plate 48.11 54.52 15.73 8.57 1.329 124.49 
 Ni foam 49.56 59.18 16.88 9.99 1.594 126.76 

RSW SS mesh 30.43 44.09 8.95 3.95 0.613 113.54 
 Ni plate 38.99 54.67 9.39 5.13 1.022 114.54 
 Ni foam 40.06 56.64 12.35 6.99 1.431 119.20 

Note: COD=chemical oxygen demand, CE=coulombic efficiency, CHR=cathode hydrogen recovery, OHR=overall hydrogen 
recovery, HPR=hydrogen production rate, and Ƞɛ = energy recovery 

As part of this study to contribute to the 2030 
United Nations sustainable development goals (SDGs), 
primarily to SDG 6 (ensure availability and sustainable 
management of water and sanitation for all) and SDG 7 
(ensure access to affordable, reliable, sustainable and 
modern energy for all), efficient management of 
wastewater and generation of green energy from this 
effluent can ensure the target of these two goals. 
Utilizing untreated wastewater to irrigate farms with 
edible crops constitutes a risk to the agricultural 
production system and humans. By so doing, SDG 2 
(end hunger, achieve food security, improve nutrition 
and promote sustainable agriculture) is under threat. 
Also, generating wealth (value-added byproducts) from 
the waste dump contributes immensely to SDG 2. In 

Nigeria, most of these SDGs are hard to achieve due to 
the government's attitude towards ameliorating the 
poverty level of its citizens. For instance, the government 
has not adopted any known engineering bio-treatment 
technologies to solve the problem of effluent disposal 
treatment from food processing industries. All effluents 
from food processing industries are channelled into 
fresh waters and sometimes into dumpsites, and the 
destruction is unprecedented in both environmental and 
groundwater pollution (SDG 7 not achievable in the near 
future). Utilizing untreated wastewater to irrigate farms 
with edible crops constitutes a risk to the agricultural 
production system and humans. By so doing, SDG 2 
(end hunger, achieve food security, improve nutrition 
and promote sustainable agriculture) is under threat. 
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Also, generating wealth (value-added byproducts) from 
the waste dump contributes immensely to SDG 2. In 
Nigeria, most of these SDGs are hard to achieve due to 
the government's attitude towards ameliorating the 
poverty level of its citizens. For instance, the government 
has not adopted any known engineering bio-treatment 
technologies to solve the problem of effluent disposal 
treatment from food processing industries. All effluents 
from food processing industries are channelled into 
fresh waters and sometimes into dumpsites, and the 
destruction is unprecedented in both environmental and 
groundwater pollution (SDG 7 not achievable in the near 
future). 

 Conclusions and Future Prospectives 

Effluents from food processing industries 
contain a high level of microorganisms and many of 
these organisms are recalcitrant pollutants. Agro-
industrial wastes are a major threat to the soil and water 
resources, though contribute to greenhouse gas 
generation. The use of engineering bio-treatment 
methods to remove these microorganisms from food 
processing effluent is receiving a major boost. Effluents 
from various food processing industries are a major 
contributor to these environmental threats. The 
performance of each treatment method concerningthe 
removal efficiency of the microorganism is discussed. 
No individual method is generally efficient for the 
removal of these microorganisms from agro-industrial 
effluents. Integrating different technological methods 
can help to achieve greater efficiency in terms of organic 
load removal. This may provide an opportunity to 
carryout inter-governmental, cross-border microor-
ganism eradication and monitoring while controlling 
anthropogenic pollution sources. Efficient and 
commercially workablescale-up microorganism 
treatment methods will produce huge benefits to public 
and environmental health, while economic benefits are 
not left out.  

In this review, we have outlined the importance 
of various technological treatments of food processing 
effluents for their organic pollutant removal and 
biodegradability. Various treatment methods of food 
effluents are noticed to be very efficient in reducing the 
biological oxygen demand, chemical oxygen demand, 
total nitrogen, total phosphorus, total suspended solids, 
etc. Some of these treatment technologies act as a 
preservative to our food and it is capable of sanitizing 
bacteria from fresh foods. The drawback to this 
treatment method is: (a) Most of the processes do not 
undergo large-scale commercialization. (b) Much cost 
and energy consumption during the treatment 
processes scare many stakeholders from effectively 
adopting the novelty(c) Recalcitrant from 
microorganisms also limits the effort of these 
technologies. Optimum treatment conditions should be 

adopted to limit the cost and energy consumption 
during the treatment processes. Urgent measures 
should be created across other industrial sectors to 
inhibit the increase and spread of this antimicrobial 
resistance. An aggressive awareness campaign should 
be carried out to discourage the direct dumping of agro-
industrial effluent into fresh waters and other ecosystem 
spaces. 

Viable waste management is a panacea for 
achieving multiple Sustainable Development Goals 
created by the United Nations for the year 2030. This 
means that waste management can decrease the 
degradation of surface water sources and donate to the 
objective of these goals through the efficient use of 
resources. However, many countries limit the reuse of 
wastewater due to the legal framework, public health, 
and safety of its citizens.  
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