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Abstract-

 

In the present problem, we study plane wave propagation and establish

 

fundamental solution in the theory of 
nonlocal homogenous

 

isotropic thermoelastic media with diffusion. We observe that there

 

exists a set of three coupled 
waves namely longitudinal wave(P), thermal

 

wave(T) and mass diffusion wave(MD) and one uncoupled transverse

 

wave(SV) with different phase velocities. The effects of nonlocal

 

parameter and diffusion on phase velocity, attenuation 
coefficient,

 

penetration depth and specific loss have been studied numerically and

 

presented graphically with respect to 
angular frequency. It is observed

 

that characteristics of all the waves are influenced by the diffusion and

 

nonlocal 
parameter. Fundamental solution of differential equations of

 

motion in case of steady oscillations has been investigated 
and basic

 

properties have also been discussed. Particular case of interest is also

 

deduced from the present work and 
compared with the established result.

 

The analysis of fundamental solution is very useful to investigate

 

various problems 
of nonlocal thermoelastic solid with diffusion. The

 

graphical analysis of current study is also very beneficial in order to

 

investigate the different fields of geophysics, aerospace and electronics

 

like seismology, manufacturing of aircrafts, 
volcanology, telecommunication

 

etc.

 

Keywords:

 

nonlocal, diffusion, fundamental solution, steady oscillations.

 

I.

 

Introduction

 

   

   

   

          

       

   

     

  

       

1

Y
ea

r
20

23

31

© 2023   Global Journals

       

               

                          

                   

  

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
 e

rs
io
n 

I 
 

V
III

  
 

(
F
)

Author α Ѡ: Department of mathematics, Hindu College, Sonepat, Haryana, India. e-mails: adahiya.krishan@gmail.com,
drajks2024@gmail.com
Author σ: Department of mathematics, Hindu College, Sonepat, Haryana, India, Department of Mathematics, Hindu Girls College, 
Sonepat, Haryana, India. e-mail: bgupta.deepa2010pk@gmail.com
Author ρ ¥: Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana, India.
e-mails: sangeetastat@gmail.com, eankushantil93@gmail.com

It is well known that linear theory of elasticity describes the effective prop-
erties of various materials like steel, wood and concrete etc. But this theory
is unable to explore the nano mechanical applications like nano structure
vibrations, nano device stability etc. The theory of nonlocal elasticity is of
great importance in determinig the properties of nano structure and wave
propagation. The nonlocal theory of elasticity takes account of remote ac-
tion between atoms because in nonlocal elasticity, stresses at a point not only
depend on strain at that point but also on all points of the body. Eringen[1-
3]elaborated the concept of nonlocality to elasicity and proposed the theory of
nonlocal elasticity. Eringen and Edelen[4] obtained constitutive equations for
the nonlinear theory. Gurtin[5] gave linear thermoelastic model to investigate
the stresses produced to temperature field and distribution of temperature
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due to action of internal forces. Nowacki[6-7] constructed asymptotic solu-
tion of boundary value problems of three dimensional micropolar theory of
elasticity with free field of rotations and displacements. Green and Naghdi[8-
9] introduced a new thermodynamical theory which uses a general entropy
balance and discussed thermoelastic behaviour without energy dissipation.
Kupradze et.al.[10] discussed three dimensional problem of the mathemati-
cal theory of elasticity and thermoelasticity. Kumar and Kumar[11] studied
plane wave propagation in nonlocal micropolar thermoelastic material with
voids. Kaur and Singh[12] studied propagation of plane wave in a nonlocal
magneto-thermoelastic semiconductor solid with rotation and identified four
types of reflected coupled longitudinal waves.

Diffusion is the spontaneous movement of anything generally from a region
of higher concentration to that of lower concentration and thermal diffusion
makes use of heat transfer. The thermoelastic diffusiion in elastic solids is
due to coupling of mass diffusion field of temperature and that of strain in ad-
dition to mass and heat exchange with environment. Auoadi[13-16] derived
equation of motion and constitutive equations for a generalized thermoelastic
diffusion with one relaxation time and obtained variation principle for the
governing equations. He proved uniqueness theorem for these equations by
using Laplace transform. Free vibration of a thermoelastic diffusive cylinder
was investigated by Sharma et al.[17]. Hörmander[18-19] contained analysed
the partial differential operators which are very useful in order to find fun-
damental solution in the thermoelastic diffusion solid. To examine boundary
value problem of thermoelasticity, it is mandatory to evaluate the funda-
mental solution of the system of partial differential equation and to discuss
their basic properties. Fudamental solution in the classical theory of coupled
thermoelasticity was firstly studied by Hetnarski[20-21]. Svanadze[22-25] ob-
tained fundamental solution of equations of steady oscillations in different
types of thermoelastic solids. Scarpetta[26], Ciarletta et al.[27], Svanadze
et al.[28] found fundamental solution in the theory of micropolar elasticity.
Fundamental solution in the theory of thermoelastic diffusion is established
by Kumar and Kansal[29-30]. Many problems related to plane wave prop-
agation and fundamental solution have been studied by some of other re-
searchers like Sharma and Kumar[31], Kumar[32], Kumar et.al.[33], Kumar
and Devi[34], Biswas[35], Kumar and Batra[36], Biswas[37-38], Kumar et
al.[39], Poonam et al.[40], Kumar and Batra[41]. However, from the best of
author’s knowledge, no study has been done for investigating the combin-
ing effect of nonlocal and diffusion on fundamental solution of homogenous
isotropic thermoelastic solid. In current problem, we have discussed plane
wave propagation and established the fundamental solution of differential
equations in case of steady oscillations in terms of elementary functions for
nonlocal homogenous isotropic thermoelastic solid with diffusion. Some basic
properties and special case are also discussed.
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Plane Wave Propagation and Fundamental Solution for Nonlocal Homogenous Isotropic Thermoelastic 
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In three dimensional Euclidean space E3, let X = (x, y, z) be a point, t
represents the time variable and Dx ≡ ( ∂

∂x
, ∂
∂y
, ∂
∂z
). Following Eringen [1-3],

the constitutive relations for nonlocal generalised thermoelastic solid with

diffusion are given by

(1− ε2∇2)σij = σ′
ij = 2µeij + [λ ekk − β1T − β2C] δij (1)

eij =
1

2
(ui,j + uj,i) (2)

Using constitutive relations, equation of motion for nonlocal homogenous
isotropic thermoelastic solid with diffusion is

µui,jj + (λ+ µ)uj,ij − β1T,i − β2C,i = ρ(1− ε2∇2)üi (3)

Equations of heat conduction and mass diffusion for nonlocal homogenous
isotropic thermoelastic solid with diffusion are given by

ρCE(Ṫ + τ0T̈ ) + β1T0(ėkk + τ0ëkk) + a∗T0(Ċ + τ0C̈) = KT,ii (4)

D∗β2 ekk,ii +D∗a∗T,ii + (1− ε2∇2)(Ċ + τC̈) = D∗b∗C,ii (5)

where u = (u1, u2, u3) is the displacement vector; σij are the stress com-
ponents and eij are components of strain tensor; ekk is dilatation; σ′

ij corre-
sponds to the local thermoelastic solid with diffusion; T is the temperature
change measured from the absolute temperature T0; CE denotes specific heat
at constant strain; K is the thermal conductivity; τ0 is the relaxation time
parameter and τ is the relaxation time of diffusion; C is the concentration;
D∗ is the thermoelastic diffusion constant; a∗ and b∗ respectively measures
the thermo-diffusion effects and diffusive effects; ρ is mass density; β1, β2

are material coefficients with β1 = (3λ + 2µ)αt, β2 = (3λ + 2µ)αc; λ and
µ are Lame’s constants; αt the coefficient of linear thermal expansion and
αc is the coefficient of linear diffusion expansion; ∇2 denotes the Laplacian
operator; ε = e0a is the nonlocal parameter; e0 corresponds to the material
constant; a denotes the characteristic length; δij is kronecker delta. In the
above equations, superposed dot represents the derivative with respect to
time and ’,’ in the subscript denotes the partial derivatives with respect to
x, y, z for i, j = 1, 2, 3 respectively.

For two-dimensional problem, we will suppose that all quantities related to
the medium are functions of cartesian coordinates x, z (i.e. ∂

∂y
≡ 0) and time

t and are independent of y. Displacement vector is considered as

u = (u1, 0, u3) (6)
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II. Basic Equations

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We define the following dimensionless quantities

x′ =
ω1 x

c1
, z′ =

ω1 z

c1
, u′

1 =
ρω1c1
β1T0

u1, u
′
3 =

ρω1c1
β1T0

u3,

t′ = ω1t, T
′ =

T

T0

, C ′ =
β2

β1T0

C, τ ′0 = ω1τ0, τ
′ = ω1τ (7)

where ω1 =
ρCEc21

K
, c1 =

√
λ+2µ

ρ

Now using equation (7) in equations (3), (4), (5) and suppressing the primes,
we obtain

α1∇2u+ α2 grad div u− grad T − gradC = (1− ε21∇2) ü (8)

τ 0t (Ṫ + α3 div u̇+ α4 Ċ) = ∇2T (9)

α5∇2 div u+ α6∇2T − α7∇2C + (1− ε21∇2) τ 0c Ċ = 0 (10)

where

α1 =
λ+ µ

λ+ 2µ
, α2 =

µ

λ+ 2µ
, α3 =

β2
1T0

ρKω1

, α4 =
a∗β1T0c

2
1

Kω1β2

, α5 =
D∗β2

2ω1

ρc41
,

α6 =
D∗a∗ω1β2

β1c21
, α7 =

D∗b∗ω1

c21
ε21 =

ε2ω2
1

c21
, τ 0t = 1+ τ0 ω1

∂

∂t
, τ 0c = 1+ τ ω1

∂

∂t

The displacement vector u is related to the potential functions ϕ1(x, z, t) and
ϕ2(x, z, t) as

u1 =
∂ϕ1

∂x
+

∂ϕ2

∂z
, u3 =

∂ϕ1

∂z
− ∂ϕ2

∂x
(11)

Using equation (11) in equations (8)-(10), we obtain

(α1 + α2)∇2ϕ1 − T − C = (1− ε21∇2)ϕ̈1 (12)

α1∇2ϕ2 = (1− ε21∇2)ϕ̈2 (13)

(
∂

∂t
+ τ0 ω1

∂2

∂t2
) (T + α4C + α3∇2ϕ1) = ∇2T (14)

α5∇4ϕ1 + α6∇2T − α7∇2C + (1− ε21∇2) (
∂

∂t
+ τ ω1

∂2

∂t2
)C = 0 (15)

Equations (12), (14) and (15) show that ϕ1, T and C are coupled and ϕ2

remains decoupled.
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

We consider a plane wave propagating in a nonlocal homogenous isotropic
thermoelastic media with diffusion and assume the solution of the form

(ϕ1, ϕ2, T, C) = (ϕ̄1, ϕ̄2, T̄ , C̄) exp{ik(n.r− ct)} (16)

where ω = kc is the frequency, c is the wave velocity, k is the wave number,
ϕ̄1, ϕ̄2, T̄ , C̄ are undetermined amplitudes that depend on the time and co-
ordinates r = (x, 0, z), n is the unit vector.

Using equation (16) in equations (12)-(15), we obtain

(B1k
2 + ω2)ϕ̄1 = T̄ + C̄ (17)

(B2k
2 − ω2)ϕ̄2 = 0 (18)

(k2 −B3)T̄ − α4B3C̄ + α3B3k
2ϕ̄1 = 0 (19)

α5k
4ϕ̄1 − α6k

2T̄ + (B4k
2 −B5)C̄ = 0 (20)

where

B1 = ε21ω
2 − 1, B2 = α1 − ε21ω

2, B3 = iω + τ0 ω1 ω
2

B4 = α7 − ε21(iω)− ε21τ ω1 ω
2, B5 = iω + τ ω1 ω

2

Solving equations (17), (19) and (20) for ϕ̄1, T̄ , C̄ we obtain a cubic equation
in k2 as

F1k
6 +G1k

4 +H1k
2 + J1 = 0 (21)

where

F1 = B4B1 + α5, J1 = B3B5ω
2

G1 = α3α6B3+B4ω
2−B1B3B4+α3B3B4−B5B1+α4α5B3−α4α6B1B3−α5B3

H1 = −B4B3ω
2 −B5ω

2 +B5B3B1 − α3B3B5 − α4α6B3ω
2

Solving equation (21), we obtain six values of k in which three values k1, k2, k3
correspond to positive z-direction and the other three values of k correspond
to negative z-direction. Corresponding to k1, k2 and k3 there exist three
coupled waves, namely, longitudinal wave(P), thermal wave(T) and mass
diffusion wave(MD).

The expressions for the phase velocity, attenuation coefficients, penetration
depth and specific loss of above waves are evaluated as

Plane Wave Propagation and Fundamental Solution for Nonlocal Homogenous Isotropic Thermoelastic 
Media with Diffusion
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III. Plane Wave

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

The phase velocities v1, v2 and v3 of P-wave, T-wave,
and MD-wave, respectively, are given by

vj =
ω

|Re(kj)|
j = 1, 2, 3 (22)

The attenuation coefficients Q1, Q2 and Q3 of
P-wave, T-wave and MD-wave, respectively, can be written as

Qj = Im(kj) j = 1, 2, 3 (23)

The penetration depth D1, D2 and D3 of P-wave,
T-wave and MD-wave, respectively, is defined as

Dj =
1

|Im(kj)|
j = 1, 2, 3 (24)

The Specific Loss L1, L2 and L3 of P-wave, T-wave and
MD-wave, respectively, are given by

Lj = 4π|Re(kj)

Im(kj)
| j = 1, 2, 3 (25)

Solving equation(18), we obtain two values of k in which one value k4 cor-
responds to positive z-direction representing transverse wave(SV) and other
value of k corresponds to negative z-direction. The phase velocity of trans-
verse wave is given by v4 =

√
B2

Assume that displacement vector, temperature change and concentration are
functions as

(u(x, z, t), T (x, z, t), C(x, z, t)) = Re[(u∗(x, z, t), T ∗(x, z, t), C∗(x, z, t))e−iωt]
(26)

Using equation (26) in equations (8),(9),(10), we obtain following system of
equations of steady oscillations

[(α1 − ω2ε21)∇2 + ω2]u∗ + α2 grad div u
∗ − grad T ∗ − gradC∗ = 0 (27)

−τ 01t [α3 div u
∗ + α4C

∗] + (∇2 − τ 01t )T ∗ = 0 (28)

α5∇2 div u∗ + α6∇2T ∗ + [τ 01c − (α7 + ε21 τ
01
c )∇2]C∗ = 0 (29)
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Phase Velocity:

Attenuation Coefficients:

Penetration Depth:

Specific Loss:

IV. Steady Oscillations

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where

τ 01t = −iω(1− iωτ0), τ 01c = −iω(1− iωτ)

We define matrix differential operator

B(Dx) =
[
Bmn(Dx)

]
4×4

(30)

where

Bm1(Dx) = [(α1 − ω2ε21)∇2 + ω2]δm1 + α2
∂2

∂x ∂x∗

Bm2(Dx) = [(α1 − ω2ε21)∇2 + ω2]δm2 + α2
∂2

∂z ∂x∗

Bm3(Dx) = Bm4(Dx) = − ∂

∂x∗ , B3n(Dx) = −τ 01t α3
∂

∂x∗

B4n(Dx) = α5∇2 ∂

∂x∗ , B33(Dx) = ∇2 − τ 01t , B34(Dx) = τ 01t α4,

B43(Dx) = α2∇2, B44(Dx) = −α1∇2 + (1− ε21∇2)τ 01c ; m,n = 1, 2

For m = n = 1, x∗ = x and for m = n = 2, x∗ = z; δmn is kronecker’s
delta.

The system of equations (27)-(29) can be written as

B(Dx)V(X) = 0 (31)

where V = (u∗
1, u

∗
3, T

∗, C∗) ia a four component vector function.
Assume that

−(α1 + α2 − ω2 ε21)(α1 − ω2ε21) (α1 + ε21τ
01
c ) ̸= 0 (32)

If condition (32) is satisfied thenB is an elliptic differential operator (Hörmander
[18]).

The  fundamental solution of system of equations (27)-(29) is
the matrix A(X) =

[
Aij(X)

]
4×4

satisfying the condition

B(Dx)A(X) = δ(X)I(X) (33)

where δ is Dirac delta, I =
[
δij

]
4×4

is the unit matrix.

We now construct A(X) in terms of elementary functions.
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We consider the system of equations

[(α1−ω2ε21)∇2+ω2]u∗+α2 grad div u
∗−τ 01t α3 grad T

∗+α5∇2 gradC∗ = J’

(34)

−div u∗ + (∇2 − τ 01t )T ∗ + α2∇2C∗ = L (35)

−div u∗ − τ 01t α4 T
∗ + [−α7∇2 + (1− ε21∇2)τ 01c ]C∗ = M (36)

where J’ is a vector function on E3 and L, M are scalar functions on E3.
The system of equations (34)-(36) may be written in the following form

Btr(Dx)V(X) = G(X) (37)

where Btr is the transpose of matrix B and G = (J’, L, M)

Applying operator div to the equation (34), we get

[(1− ω2ε21)∇2 + ω2] div u∗ − τ 01t α3∇2T ∗ + α5∇4C∗ = div J’ (38)

−div u∗ + (∇2 − τ 01t )T ∗ + α2∇2C∗ = L (39)

−div u∗ − τ 01t α4 T
∗ + [−α7∇2 + (1− ε21∇2)τ 01c ]C∗ = M (40)

equations (38)-(40) may be expressed as

D(∇2)P = Q (41)

where P = (div u∗, T ∗, C∗), Q = (div J’, L, M) = (d1, d2, d3) and

D(∇2) =
[
Dmn

]
3×3

=

(1− ω2ε21)∇2 + ω2 −τ 01t α3∇2 α5∇4

−1 ∇2 − τ 01t α2∇2

−1 −τ 01t α4 −α7∇2 + (1− ε21∇2)τ 01c


3×3

(42)

equations (38)-(40) may be expressed as

Γ1(∇2)P = σ (43)
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V. Fundamental Solution of System of Equations
of Steady Oscillations

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

where

σ = (σ1, σ2, σ3); σn = e∗1

3∑
m=1

D∗
mn dm

Γ1(∇2) = e∗1 detD(∇2), e∗1 = − 1

(1− ω2ε21) (α7 + ε21 τ
01
c )

(44)

and D∗
mn is the cofactor of elements Dmn of matrix D

From equations (42) and (44), we have

Γ1(∇2) =
3∏

m=1

(∇2 + Λ2
m)

where Λ2
m, m = 1, 2, 3 are roots of equation Γ1 (−r) = 0 (with respect to r)

Applying Γ1(∇2) to the equation (27) and using equation (43), we obtain

Γ1(∇2) [(α1 − ω2ε21)∇2 + ω2]u∗ = −α2 grad σ1 + grad σ2 + grad σ3 (45)

This equation may also be written as

Γ1(∇2) Γ2(∇2)u∗ = σ′ (46)

where

Γ2(∇2) = (α1 − ω2ε21)∇2 + ω2 (47)

and

σ′ = −α2 grad σ1 + grad σ2 + grad σ3 (48)

It can be written as

Γ2 (∇2) = (∇2 + Λ2
4) (49)

where Λ2
4 is a root of equation Γ2 (−r) = 0 (with respect to r)

From equations (43) and (46), we can write

Θ(∇2)V(X) = σ̂(X) (50)

where σ̂(X) = (σ′, σ2, σ3) and Θ(∇2) =
[
Θgh(∇2)

]
4×4

Θmm(∇2) = Γ1(∇2) Γ2(∇2)

Θ33 = Θ44 = Γ1(∇2)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Θgh(∇2) = 0

m = 1, 2; g, h = 1, 2, 3, 4; g ̸= h

Equations (41),(44) and (48) can also be written as

σ′ = c11(∇2) grad div J′ + c21(∇2) gradL+ c31(∇2) gradM (51)

σ2 = c12(∇2) div J′ + c22(∇2)L+ c32(∇2)M (52)

σ3 = c13(∇2) div J′ + c23(∇2)L+ c33(∇2)M (53)

where

c11(∇2) = −α2 e
∗
1D

∗
11 + e∗1D

∗
12 + e∗1D

∗
13, c12 = e∗1D

∗
12, c13 = e∗1D

∗
13,

c21(∇2) = −α2 e
∗
1D

∗
21 + e∗1D

∗
22 + e∗1D

∗
23, c22 = e∗1D

∗
22, c23 = e∗1D

∗
23,

c31(∇2) = −α2 e
∗
1D

∗
31 + e∗1D

∗
32 + e∗1D

∗
33, c32 = e∗1D

∗
32, c33 = e∗1D

∗
33

From equations (51)-(53), we get

σ̂(X) = Htr (Dx)G(X) (54)

where

H =
[
Hgh

]
4X4

Hm1(Dx) = c11(∇2)
∂2

∂x ∂x∗ , Hm2(Dx) = c11(∇2)
∂2

∂z ∂x∗ , Hm3(Dx) = c21(∇2)
∂

∂x∗ ,

Hm4(Dx) = c31(∇2)
∂

∂x∗ , H3n(Dx) = c12(∇2)
∂

∂x∗ , H4n(Dx) = c13(∇2)
∂

∂x∗ ,

H33(Dx) = c22(∇2), H34(Dx) = c32(∇2), H43(Dx) = c43(∇2),

H44(Dx) = c44(∇2); m,n = 1, 2 (55)
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Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

For m = n = 1, x∗ = x and for m = n = 2, x∗ = z
From equations (37), (46) and (50), we obtain

ΘV = Htr Btr V

Above equation can be rewritten as

Htr Btr = Θ

Therefore, we have

B(Dx)H(Dx) = Θ(∇2) (56)

we assume that

λ2
m ̸= λ2

n ̸= 0; m,n = 1, 2, 3, 4; m ̸= n

We now define

W(X) =
[
Wrs(X)

]
4×4

Wmm(X) =
4∑

n=1

q1nξn(X), W33(X) = W44(X) =
3∑

n=1

q2nξn(X), Wuv(X) = 0

m = 1, 2; u, v = 1, 2, 3, 4; u ̸= v

where

ξn(X) = −
1

4Π |X|
exp (iΛn|X|), n = 1, 2, 3, 4

q1l =
4∏

m=1, m̸=l

(Λ2
m − Λ2

l )
−1, l = 1, 2, 3, 4

q2u =
3∏

m=1, m̸=u

(Λ2
m − Λ2

u)
−1, u = 1, 2, 3 (57)

Now, we prove the following Lemma:

The matrix W defined above is the fundamental matrix of operator
Θ(∇2), that is
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Lemma:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Θ(∇2)W(X) = δ(X) I(X) (58)

To prove the Lemma, it is sufcient to show that

Γ1(∇2) Γ2(∇2)W11(X) = δ(X)

Γ1(∇2)W33(X) = δ(X) (59)

Consider

q21 + q22 + q23 =
−g1 + g2 − g3

g4

where

g1 = (Λ2
2 − Λ2

3), g2 = (Λ2
1 − Λ2

3), g3 = (Λ2
1 − Λ2

2),

g4 = (Λ2
1 − Λ2

2) (Λ
2
1 − Λ2

3)(Λ
2
2 − Λ2

3)

Solving above relations, we get

q21 + q22 + q23 = 0 (60)

Similarly, from equation (57) we can also find out

q22 (Λ
2
1 − Λ2

2) + q23 (Λ
2
1 − Λ2

3) = 0 (61)

q23(Λ
2
1 − Λ2

3) (Λ
2
2 − Λ2

3) = 1 (62)

Also, we have

(∇2 + Λ2
m) ξn(X) = δ(X) + (Λ2

m − Λ2
n) ξn(X), m, n = 1, 2, 3 (63)

Now consider

Γ1(∇2)W33(X)

= (∇2 + Λ2
1) (∇2 + Λ2

2) (∇2 + Λ2
3)

3∑
n=1

q2n ξn(X)

= (∇2 + Λ2
2) (∇2 + Λ2

3)
3∑

n=1

q2n [δ(X) + (Λ2
1 − Λ2

n) ξn(X)]

= (∇2 + Λ2
2) (∇2 + Λ2

3) [ δ(X)
3∑

n=1

q2n +
3∑

n=2

q2n (Λ
2
1 − Λ2

n) ξn(X)]
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Proof: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

= (∇2 + Λ2
2) (∇2 + Λ2

3)
3∑

n=2

q2n (Λ
2
1 − Λ2

n) ξn(X)

= (∇2 + Λ2
3)

3∑
n=2

q2n (Λ
2
1 − Λ2

n) [δ(X) + (Λ2
2 − Λ2

n) ξn(X)]

= (∇2 + Λ2
3)

3∑
n=3

q2n (Λ
2
1 − Λ2

n) (Λ
2
2 − Λ2

n) ξn(X)

= (∇2 + Λ2
3) q23 (Λ

2
1 − Λ2

3) (Λ
2
2 − Λ2

3) ξ3(X)

= (∇2 + Λ2
3) ξ3(X)

= δ(X)

Similarly, equation (59)1 can be proved
Now, Define matrix

A(X) = H(Dx)W(X) (64)

Using equations (56), (58) and (64), we obtain

B(Dx)A(X) = B(Dx)H(Dx)W(X) = Θ(∇2)W(X) = δ(X) I(X) (65)

Therefore, A(X) is solution of equation (33).
Hence, we have proved the following Theorem:

The matrix A(X) defined by the equation (64) is the funda-
mental solution of system of equations (27)-(29).

Every column of the matrix A(X) is the solution of equations
(27)-(29) for all points X ϵE3 except the origin.

The matrix A(X) can be written as

A =
[
Ars

]
4×4

Apq(X) = Hpq(Dx)W11(X),

Apm(X) = Hpm(Dx)W33(X),

p = 1, 2, 3, 4; q = 1, 2; m = 3, 4.
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VI. Basic Properties of the Matrix A(X)

Theorem:

Property 1.

Property 2.

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

If we neglect nonlocal parameter (ε = 0) in equations (27)-(29), we obtain
the system of equations of steady state oscillations for homogenous isotropic
generalized thermoelastic solid with diffusion as:

[α1∇2 + ω2]u∗ + α2 grad div u
∗ − grad T ∗ − gradC∗ = 0 (66)

−τ 01t [α3 div u
∗ + α4C

∗] + (∇2 − τ 01t )T ∗ = 0 (67)

α5∇2 div u∗ + α6∇2T ∗ + [τ 01c − α7∇2]C∗ = 0 (68)

The fundamental solution of above system of equations is similar as obtained
by Kumar and Kansal [29].

For numerical calculations, values of relevant parameters for homogenous
isotropic generalized thermoelastic solid with diffusion have been swiped from
Sharma et al. [17] given in Table 1.

Phase velocity, attenuation coefficient, penetration depth and specific loss
are computed numerically by using software MATLAB. Variation of Phase
velocity, attenuation coefficient, penetration depth and specific loss with re-
spect to angular frequency of P-wave, T-wave, MD-wave and SV-wave are
shown graphically in four types of elastic solids:

Numerical values of parametres

Notation value Notation value
λ 7.76× 1010Nm−2 αt 1.78× 10−5 K−1

µ 3.86× 1010Nm−2 αc 2.65× 10−4 m3Kg−1

K 386 Jm−1S−1K−1 e0 0.38
CE 383.1 JKg−1K−1 a 0.5431× 10−9

ρ 8.954× 103Kgm−3 T0 293K
a∗ 1.2× 104m2KS2 τ0 0.5S
b∗ 0.9× 106Kgm5S2 τ 0.5S
D∗ 0.88× 10−8 KgSm−3

1. Nonlocal thermoelastic solid with diffusion
2. Local thermoelastic solid with diffusion
3. Nonlocal thermoelastic solid without diffusion
4. Local thermoelastic solid without diffusion

In all graphs, solid line and dashed line represent the impact of local and
nonlocal parameter on the variation of phase velocity, attenuation coefficient,
penetration depth and specific loss in thermoelastic solid without diffusion
respectively whereas dash-dotted and dotted line represent variation in local
and nonlocal thermoelastic solid with diffusion respectively.

Plane Wave Propagation and Fundamental Solution for Nonlocal Homogenous Isotropic Thermoelastic 
Media with Diffusion

© 2023   Global Journals

1

Y
ea

r
20

23

44

     

     

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
 e

rs
io
n 

I 
 

V
III

  
 

(
F
)

VII. Special Case

VIII. Numerical Results and Discussion

Table 1:

Ref

29.K
u
m

a
r 

R
, 

K
an

sal 
T

., 
F
u
n
d
am

en
tal 

solu
tion

 
in

 
th

e 
gen

eralized
 

th
eories

of 
th

erm
oelastic d

iffu
sion

. In
tern

ation
al jou

rn
al of en

gin
eerin

g scien
ce.

2004;
42:

1897-
1910.



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figures 1-3 represent the impact of nonlocal and diffu-
sion parameter on the phase velocities v1, v2 and v3 of P-wave, T-wave, and
MD-wave respectively with respect to angular frequency ω. From figures
1-2, it is clear that behaviour of phase velocity of P-wave and T-wave with
respect to angular frequency is same with difference in magnitude values.
The phase velocities v1 and v2 decreases monotonically, reaches to minimum
value at ω = 100 for all types of thermoelastic solids. The values of v1 and
v2 for local solid are more than that of nonlocal solid. From physical point
of view, the stresses produced in nonlocal medium is weak due to impact
of nano-structured particles and change in stress causes the change in wave
characteristics accordingly. Also phase velocity has lower value in elastic
solid with diffusion in comparison to elastic solid without diffusion. Ther-
moelastic waves exhibit different dispersion characteristics in thermodiffusive
solid which in turn influence the Phase velocity, attenuation coefficient, pen-
etration depth and specific loss. Figure 3 shows that phase velocity v3 of

Variation of phase ve-
locity of P-wave

Variation of phase ve-
locity of T-wave

Variation of phase velocity of MD-wave
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Phase velocity:

Figure 1: Figure 2:

Figure 3:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Variation of attenua-
tion coefficient of P-wave

Variation of attenua-
tion coefficient of T-wave

MD-wave decreases monotonically reaches to minimum value at ω = 100 for
thermoelastic solid with diffusion whereas it increases linearly, reaches to
maximum value at ω = 100 for elastic solid without diffusion.

Figures 4-6 represent the impact of nonlocal
and diffusion parameter on the attenuation coefficients Q1, Q2 and Q3 of P-
wave, T-wave, and MD-wave respectively with respect to angular frequency
ω. It has been observed from the figure 4 that attenuation coefficient Q1

of P-wave increases parabolically for 10 ≤ ω ≤ 100 in elastic solid without
diffusion. For thermoelastic solid with diffusion, Q1 increases linearly in
local as well as nonlocal solid. Figure 5 shows that attenuation coefficient
Q2 of T-wave increases linearly with increase in ω in thermoelastic solid
without diffusion whereas in thermodiffusive solid, it decrease sharply for
10 ≤ ω ≤ 2.50. From figure 6, it is clear that attenuation coefficient Q3 of
MD-wave increases linearly in all types of solids with difference in magnitude.
The value of Q3 is lower in diffusive solid in comparison to solid without
diffusion. Also, figures 4-6 show that attenuation coefficients has smaller
value in nonlocal solid in comparison to local elastic solid due to nonlocal
parameter.

Figures 7-9 represent the effect of diffusion and non-
local parameter on the penetration depth D1, D2 and D3 of P-wave, T-wave,
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Figure 4: Figure 5:

Attenuation  Coefficients:

Penetration Depth:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Variation of attenuation coefcient of MD-wave

and MD-wave respectively with respect to angular frequency ω. Figure 7 de-
picts the variation of penetration depth D1 of P-wave with respect to angular
frequency ω. In thermoelastic solid without diffusion, the penetration depth
D1 decreases sharply for 10 ≤ ω ≤ 2.50 and then slowly for ω ≥ 2.50. The
value of D1 decreases monotonically, reaches to minimum value at ω = 100

in diffusive elastic solid. It has been observed from the figure 8 that pene-
tration depth D2 of T-wave increases in diffusive solid and decreases in solid
without diffusion with increase in angular frequency ω having greater value
in local solid in comparison to nonlocal elastic solid. From figure 9, it is
clear that penetration depth D3 of MD-wave decreases monotonically in all
types of solids with difference in magnitude. Also, the value of D3 is lower
in diffusive solid in comparison to solid without diffusion.

Figures 10-12 show the effect of diffusion and nonlocal pa-
rameter on the specific loss L1, L2 and L3 of P-wave, T-wave, and MD-wave
respectively with respect to angular frequency ω. From figures 10 and 12,
it has been observed that behaviour of specific loss L1 of P-wave is similar
to behaviour of specific loss L3 of MD-wave with difference in magnitude.
Specific loss L1 and L3 decreases monotonically, reaches to minimum value
at ω = 100 in thermoelastic solid without diffusion whereas it increases lin-
early, reaches to maximum value at ω = 100 in thermodiffusive solid. Figure
11 represents the variation of specific loss L2 of T-wave with respect to an-
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Figure 6:

Specific Loss:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Variation of penetra-

tion depth of P-wave
Variation of penetra-

tion depth of T-wave

Variation of penetration depth of MD-wave

Variation of specific
loss of P-wave

Variation of specific
loss of T-wave
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Figure 7: Figure 8:

Figure 9:

Figure 10: Figure 11:

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

Variation of specific loss of MD-wave

gular frequency ω. In all types of solids, L2 increases linearly, having lower
value in diffusive solid as comparison to solid without diffusion. Also from
figures 10-12, it is clear that specific loss has greater value in local solid as
comparison to nonlocal elastic solid.

We have examined the effects of nonlocal parameter on the propagation of
plane wave in nonlocal homogenous isotropic thermoelastic diffusion.
The major consequences of current problems are:
(1)There exist three coupled waves namely P-wave, T-wave, MD-wave and
one transverse wave(SV) propagating with different phase velocities. Further-
more phase velocity, attenuation coefficients, penetration depth and specific
loss with respect to angular frequency are studied graphically.
(2) It has been found that characteristics of all the waves are affected by
diffusion and nonlocal parameter of the medium.
(3) The fundamental solution of system of differential equations for steady
oscillations has been constructed.
(4) The analysis of fundamental solution M(X) of the system of equations
(27)-(29) are helpful to investigate three dimensional problems of nonlocal
homogenous isotropic elastic solid with diffusion.
(5) The graphical analysis of present work is very helpful in order to investi-
gate the various fields of aerospace, electronics and geophysics like volcanol-
ogy, telecommunication etc.

Plane Wave Propagation and Fundamental Solution for Nonlocal Homogenous Isotropic Thermoelastic 
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IX. Conclusion

Figure 12:

Notes
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