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= Abstract-In the present problem, we study plane wave propagation and establish fundamental solution in the theory of >3
g nonlocal homogenous isotropic thermoelastic media with diffusion. We observe that there exists a set of three coupled =
'{é waves namely longitudinal wave(P), thermal wave(T) and mass diffusion wave(MD) and one uncoupled transverse o
E wave(SV) with different phase velocities. The effects of nonlocal parameter and diffusion on phase velocity, attenuation 2
3 coefficient, penetration depth and specific loss have been studied numerically and presented graphically with respectto
k= angular frequency. It is observed that characteristics of all the waves are influenced by the diffusion and nonlocal =
. parameter. Fundamental solution of differential equations of motion in case of steady oscillations has been investigated <
.E‘ and basic properties have also been discussed. Particular case of interest is also deduced from the present work and g
-f:i compared with the established result. The analysis of fundamental solution is very useful to investigate various problems —g
Z of nonlocal thermoelastic solid with diffusion. The graphical analysis of current study is also very beneficial in orderto  ~
T investigate the different fields of geophysics, aerospace and electronics like seismology, manufacturing of aircrafts,
= volcanology, telecommunication etc. ~
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s [. INTRODUCTION e
S It is well known that linear theory of elasticity describes the effective prop- =
erties of various materials like steel, wood and concrete etc. But this theory £

is unable to explore the nano mechanical applications like nano structure
vibrations, nano device stability etc. The theory of nonlocal elasticity is of
great importance in determinig the properties of nano structure and wave
propagation. The nonlocal theory of elasticity takes account of remote ac-
tion between atoms because in nonlocal elasticity, stresses at a point not only
depend on strain at that point but also on all points of the body. Eringen][1-
3]elaborated the concept of nonlocality to elasicity and proposed the theory of
nonlocal elasticity. Eringen and Edelen[4] obtained constitutive equations for
the nonlinear theory. Gurtin[5] gave linear thermoelastic model to investigate
the stresses produced to temperature field and distribution of temperature
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due to action of internal forces. Nowacki[6-7] constructed asymptotic solu-
tion of boundary value problems of three dimensional micropolar theory of
elasticity with free field of rotations and displacements. Green and Naghdil8-
9] introduced a new thermodynamical theory which uses a general entropy
balance and discussed thermoelastic behaviour without energy dissipation.
Kupradze et.al.[10] discussed three dimensional problem of the mathemati-
cal theory of elasticity and thermoelasticity. Kumar and Kumar[11] studied
plane wave propagation in nonlocal micropolar thermoelastic material with
voids. Kaur and Singh[12] studied propagation of plane wave in a nonlocal
magneto-thermoelastic semiconductor solid with rotation and identified four
types of reflected coupled longitudinal waves.

Diffusion is the spontaneous movement of anything generally from a region
of higher concentration to that of lower concentration and thermal diffusion
makes use of heat transfer. The thermoelastic diffusiion in elastic solids is
due to coupling of mass diffusion field of temperature and that of strain in ad-
dition to mass and heat exchange with environment. Auoadi[13-16] derived
equation of motion and constitutive equations for a generalized thermoelastic
diffusion with one relaxation time and obtained variation principle for the
governing equations. He proved uniqueness theorem for these equations by
using Laplace transform. Free vibration of a thermoelastic diffusive cylinder
was investigated by Sharma et al.[17]. Hormander[18-19] contained analysed
the partial differential operators which are very useful in order to find fun-
damental solution in the thermoelastic diffusion solid. To examine boundary
value problem of thermoelasticity, it is mandatory to evaluate the funda-
mental solution of the system of partial differential equation and to discuss
their basic properties. Fudamental solution in the classical theory of coupled
thermoelasticity was firstly studied by Hetnarski[20-21]. Svanadze[22-25] ob-
tained fundamental solution of equations of steady oscillations in different
types of thermoelastic solids. Scarpetta[26], Ciarletta et al.[27], Svanadze
et al.[28] found fundamental solution in the theory of micropolar elasticity.
Fundamental solution in the theory of thermoelastic diffusion is established
by Kumar and Kansal[29-30]. Many problems related to plane wave prop-
agation and fundamental solution have been studied by some of other re-
searchers like Sharma and Kumar[31], Kumar[32], Kumar et.al.[33], Kumar
and Devi[34], Biswas[35], Kumar and Batra[36], Biswas[37-38|, Kumar et
al.[39], Poonam et al.[40], Kumar and Batra[41]. However, from the best of
author’s knowledge, no study has been done for investigating the combin-
ing effect of nonlocal and diffusion on fundamental solution of homogenous
isotropic thermoelastic solid. In current problem, we have discussed plane
wave propagation and established the fundamental solution of differential
equations in case of steady oscillations in terms of elementary functions for
nonlocal homogenous isotropic thermoelastic solid with diffusion. Some basic
properties and special case are also discussed.
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[I.  Basic EQUATIONS

In three dimensional Euclidean space E3, let X = (z,y,z) be a point, ¢
represents the time variable and D, = (£, 8%, 2). Following Eringen [1-3],
the constitutive relations for nonlocal generalised thermoelastic solid with

diffusion are given by

(1—=eV?) 0y =0}, = 2uey; + Newe — 1T — foC] 6y (1)

1
eij = 5(%3’ + ;) (2)

Using constitutive relations, equation of motion for nonlocal homogenous
isotropic thermoelastic solid with diffusion is

g+ A+ p) ujg — 51T — BoCi = p(1 —*V2)ii; (3)

Equations of heat conduction and mass diffusion for nonlocal homogenous
isotropic thermoelastic solid with diffusion are given by

p Cu(T + 70T + BiTo(ér + Toéri) + a*To(C + 70C) = KTy (4)
D*Byeppii + D a* Ty + (1 — *V?)(C + 7C) = D*b*C (5)

where u = (uy, ug, us) is the displacement vector; o;; are the stress com-
ponents and e;; are components of strain tensor; ey is dilatation; agj corre-
sponds to the local thermoelastic solid with diffusion; 7" is the temperature
change measured from the absolute temperature Ty; Cr denotes specific heat
at constant strain; K is the thermal conductivity; 7y is the relaxation time
parameter and 7 is the relaxation time of diffusion; C' is the concentration;
D* is the thermoelastic diffusion constant; a* and b* respectively measures
the thermo-diffusion effects and diffusive effects; p is mass density; 51, fo
are material coefficients with 51 = (3 + 2u) oy, B2 = (3\ + 2u) a; A and
i are Lame’s constants; a; the coefficient of linear thermal expansion and
a, is the coefficient of linear diffusion expansion; V? denotes the Laplacian
operator; € = ega is the nonlocal parameter; ey corresponds to the material
constant; a denotes the characteristic length; ¢;; is kronecker delta. In the
above equations, superposed dot represents the derivative with respect to
time and ’,” in the subscript denotes the partial derivatives with respect to
x,y, z for 7, 3 =1, 2, 3 respectively.

For two-dimensional problem, we will suppose that all quantities related to
the medium are functions of cartesian coordinates x, z (i.e.a% = 0) and time
t and are independent of y. Displacement vector is considered as

u = (Ul, O, U3) (6)
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We define the following dimensionless quantities

l‘l . w1 T Z/ . 4 u, . pwlclu u, . pwlclu
- ’ - ; 1 — 1, Wz — 39
C1 C1 B1To B1To
T B2
t=wt, T'=—,C"'=—=0C, 1, =wim0, T = w7 (7)
To B1Th
Cpc? 2
where wy = Z2L, ¢ = Alpﬂ

Now using equation (7) in equations (3), (4), (5) and suppressing the primes,
we obtain

oy V2u + ay grad diva — grad T — grad C = (1 — &3 V?) 1 (8)

(T + asdiva+ a, C) = V2T 9)
2 7 2 2 22y 0 A
as Vidivu+ag VT —a7; VO + (1 -7V, C=0 (10)
where
o — At p Y T o _ a* BT N _ D*Biw
TN 2w T A2 T pKwl YT KB pci
D*a*wy By D*b*w; , Wi 0
Qg = 51—6%’ Qy = 0—%61 = C_%’ Tt = 1—1—7’0w1§, Tc = 1+T(U1a

The displacement vector u is related to the potential functions ¢;(x, z,t) and
¢o(x, 2, t) as

091 09 _ 0¢1 O
= ox + 0z’ Us = 0z ox (11)

Using equation (11) in equations (8)-(10), we obtain

(041 + 042)V2¢1 -T-C= (1 - 5%v2>¢1 (12>
041V2¢2 = (1 — €%v2)¢‘2 (13)

0 0? 2 2
(a"‘Towlw)(T—'—OqC—i‘a’gv ¢1)ZVT (14>

4 2 2 272 a 82
Oé5v¢1—|—046VT—Oé7VC+(1—€1V)(a—i‘Twl@)C:O (15)

Equations (12), (14) and (15) show that ¢, T' and C' are coupled and ¢
remains decoupled.
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[11. PLANE WAVE

We consider a plane wave propagating in a nonlocal homogenous isotropic
thermoelastic media with diffusion and assume the solution of the form

(¢1, 2, T, C) = (¢1, b2, T, C) exp{ik(n.r — ct)} (16)

where w = kc is the frequency, c is the wave velocity, k is the wave number,
01, ¢o, T, C' are undetermined amplitudes that depend on the time and co-
ordinates r = (x,0, z), n is the unit vector.

Using equation (16) in equations (12)-(15), we obtain

(Bik> +w*)gy =T+ C (17)
(Bok? —w?)g2 = 0 (18)

(k* — Bs)T — ayBsC + a3 Bsk*¢, = 0 (19)
ask*¢y — aghk®T + (Byk*> — Bs)C =0 (20)

where
B; = 5%w2 -1, By=a; — 5%w2, B3 = iw + Ty w; w?
By = a7 — e2(iw) — et wiw?, Bs = iw + 7w w?
Solving equations (17), (19) and (20) for ¢;, T, C we obtain a cubic equation
in k? as
Fik® + Gk + H k> + Jy =0 (21)
where

F1 = B4Bl —+ Qs Jl = BgB5w2
Gl = 06306633+B4w2—BlBgB4+Oé3BgB4—B5B1+OZ4OJ5B3—Oé4OZ6BlB3—Oé5B3
H1 = —B4B3w2 - B5w2 + B5B331 - O[3B3B5 — 044046ng2

Solving equation (21), we obtain six values of k in which three values ky, ko, k3
correspond to positive z-direction and the other three values of k£ correspond
to negative z-direction. Corresponding to ki, ks and k3 there exist three
coupled waves, namely, longitudinal wave(P), thermal wave(T) and mass
diffusion wave(MD).

The expressions for the phase velocity, attenuation coefficients, penetration
depth and specific loss of above waves are evaluated as
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Phase Velocity: The phase velocities vy, vo and vz of P-wave, T-wave,
and MD-wave, respectively, are given by

w
V= §=1,2,3 (22)
7 |Re(ky)]

Attenuation Coefficients: The attenuation coefficients @Q1, Q2 and ()3 of
P-wave, T-wave and MD-wave, respectively, can be written as

Penetration Depth: The penetration depth D;, Dy and Ds of P-wave,
T-wave and MD-wave, respectively, is defined as

1
D

T [Im(ky)]

Specific Loss: 'The Specific Loss Lj, Ly and L3 of P-wave, T-wave and
MD-wave, respectively, are given by

Lj = 47T|

Re(k;
W)y 193 (25)
m

Im(k;)

Solving equation(18), we obtain two values of k£ in which one value k, cor-
responds to positive z-direction representing transverse wave(SV) and other
value of k corresponds to negative z-direction. The phase velocity of trans-
verse wave is given by vy = /B

[V. STEADY OSCILLATIONS

Assume that displacement vector, temperature change and concentration are
functions as

(u(z, z,t), T(x, z,t), C(z, 2,t)) = Re|[(u*(z, 2, 1), T*(z, 2,t), C*(z, 2,t))e” ]
(26)

Using equation (26) in equations (8),(9),(10), we obtain following system of
equations of steady oscillations

(a1 — w?e) V2 + W™ + ay grad divu* — grad T* — gradC* =0 (27)
—m ag divu* + ay C* + (V2 = 7)T* =0 (28)

as V2 divu* 4+ ag V2T* + [t2 — (a7 + 27O V] C* =0 (29)

© 2023 Global Journals

Notes



Ref

18. Hérmander L., Linear partial differential operators. Berlin: Springerverlag; 1963.

where

= —iw(l —iwn), 7' = —iw(l — iwT)
We define matrix differential operator
B(D,) = [Bun(D2)] s (30)
where
52
Bml (Dx) = [(al — w25%)v2 + w2]5m1 “+ Qg ax 81‘*
82
By2(Dy) = [(a1 — WZE%)VQ + W2]5m2 + g 92 0r+
0 0
Bm3(D:c> = Bm4<Dcc) = T o B3n(Dm) = _7}91 as

oz’

By,(D,) = a; V? Ba3(D,) = V2 — ', Bau(D,) = 7" au,

0
oz’

By3(D,) = ay VQ, Bu(D,) = - V2 + (1— 6% V2)7'01' m,n=1,2

c !

Form=n=1, z*=xandform=n =2, 2* =2, 0, is kronecker’s
delta.
The system of equations (27)-(29) can be written as

B(D_ )V(X) =0 (31)

T

where V = (uf, uf, T*, C*) ia a four component vector function.
Assume that

—(a1 +ag — w? 5%)(0(1 - w%%) (o + 6%7001) #0 (32)

If condition (32) is satisfied then B is an elliptic differential operator (Hérmander
[18]).

Definition. The fundamental solution of system of equations (27)-(29) is
the matrix A(X) = [4;;(X)],,, satisfying the condition

B(D,)A(X) = d(X)I(X) (33)

where 0 is Dirac delta, I = [5@} 1xq 18 the unit matrix.

We now construct A(X) in terms of elementary functions.
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V. FUNDAMENTAL SOLUTION OF SYSTEM OF EQUATIONS
OF STEADY OSCILLATIONS

We consider the system of equations

(a1 —w?e) V2 + W2 u* +ay grad divu* — 7 as grad T* + a5 V2 grad C* = J°
(34)

—divu* + (V2 = 707" + 0, V2C* = L (35)

—diva* — 1y T + [—a; V2P + (1 — e VHNCr = M (36)

where J’ is a vector function on E® and L, M are scalar functions on E3.
The system of equations (34)-(36) may be written in the following form

B"(D,)V(X) = G(X) (37)

where B is the transpose of matrix B and G = (J°, L, M)
Applying operator div to the equation (34), we get

(1 — W)V + W divu* — 77 as VT* + a5 VEC* = div I’ (38)
—divu* + (V? = 1T* + 0, V20" = L (39)
—divu* — 7ty T + [~z V2 + (1 — &3 V) C* = M (40)
equations (38)-(40) may be expressed as
D(VHP =Q (41)
where P = (divu®, T*, C*), Q = (div 3, L, M) = (dy, d, d3) and

D(V?) = [Dpn)

3x3
(1 - w2 V2 +w? —1MayV? as V4
= —1 V2 — Tt01 a2V2 (42)
—1 —lay —ap VP4 (1 — 2 VAN 33

equations (38)-(40) may be expressed as

(V)P =o (43)
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where
3
. _ * *
o= (o1, 09, 03); 0p=¢€] E Dy dn
m=1

1
(1 —w?e?) (o + €3 79Y)

[1(V?) = el det D(V?), ef = —

and Dy is the cofactor of elements D,,, of matrix D
From equations (42) and (44), we have

DV = 1] (V*+A%)

m=1

(44)

where A2, m = 1,2, 3 are roots of equation I'; (—r) = 0 (with respect to r)
Applying T';(V?) to the equation (27) and using equation (43), we obtain

(V) [(a; — w*e?)V? + w?u* = —ay grad oy + grad oy + grad os
This equation may also be written as
(V) Ty(VHu* = o

where

[5(V?) = (g — w?ed)V? + w?

and
o' = —aygradoy + grad oy + grad oz

It can be written as
[y (V%) = (V2 + A

where A? is a root of equation T'y (—r) = 0 (with respect to r)
From equations (43) and (46), we can write

(V) V(X) = &(X)
where (X) = (0/, 05, 03) and ©(V?) = [0, (V?)], |
Onm (V?) = T1(V?) T2(V?)

O33 = Oy = I'1(V?)

(45)

(49)

(50)

© 2023 Global Journals
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O, (V) =0
m=12 g¢gh=1234 g#h

Equations (41),(44) and (48) can also be written as

o' = c11(V?) graddiv I + ¢y (V?) grad L + c31(V?) grad M (51) Notes
oy = 1(V?) div I + c95(V?) L + ¢32(V?) M (52)
o3 = c13(VH) div Y + co3(V?) L + c33(V?) M (53)
where
en(V?) = —ase; Dy +ef Dy + €1 Dy, iz =€ Dy, ci3 = ] Dij,
1(V?) = —age] Dy, + €] Diy + €] Dis, o0 = €] Dy, a3 = €] Dy,
c31(V?) = —az e} Dy + el D3y + €1 D35, ez =€] D3y, 33 =] D3y

From equations (51)-(53), we get

§(X) =H" (D,) G(X) (54)
where
H= [th}4x4
Hoa(D2) = (V) = Hyo(Da) = en(9%) = Hop(D) = en (V) 2
mi\Mz) = C11 Or Oz’ m2\{UJz) = C11 Oz o Tms\He) = Ca O’
Hyi(D,) = e31(V) -0, Hyp(Dy) = 62(V?) e, Hyn(D,) = e35(V2) o
ma x 31 8:1:* ) 3n T 12 aSC* ) 4n x 13 8:1:* )
H33(Dx) = 022(V2), H34<Dx> = 032(V2), H43<Dx) = C43(V2)7
H44(Dx) = C44(V2>; m,n = 17 2 (55>

© 2023 Global Journals
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Form=n=1, x»=xzandform=n=2, ¥ =2
From equations (37), (46) and (50), we obtain

OV =H"B"V
Above equation can be rewritten as

Htr Btr _ @

Therefore, we have
B(D,)H(D,) = ©(V?) (56)
we assume that
MNoZ£XN£0; mn=1,234 m#n
We now define

W(X) = [Ws(X)]

Wmm(X) = Z QIngn(X)v WS?)(X) = W44(X) = Z Qann(X)v Wuv(X) =0

m=1,2;, uw,v=123,4; u#v

where
1 .
&n(X) = ~1T X] exp (iA,|X]), n=1,2,3,4
4
=[] AL,-A)" 1=1234
m=1, m#l
3
pu= J] AL-A), u=123 (57)

Now, we prove the following Lemma:

Lemma: The matrix W defined above is the fundamental matrix of operator
O(V?), that is

© 2023 Global Journals
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O(V*) W(X) = d(X)I(X) (58)

Proof: To prove the Lemma, it is sufcient to show that

(V) Ty (V) W (X) = 6(X)

[y (V2) Wig(X) = 6(X) (59)
Consider
—_ _|_ —_
@21 + Q22 + Qo3 = i
g4
where

g1 =03 =A%), g2= (AT - A9, g5 = (A7 —AY),
g = (AT — A3) (AT — A5)(AS — AS)
Solving above relations, we get
Go1 + q22 + a3 = 0 (60)
Similarly, from equation (57) we can also find out

oo (AT — A3) + qo3 (AT — A3) =0 (61)

gos(A] = A3) (A3 — A7) =1 (62)
Also, we have
(V24 A2) 6(X) = 6(X) + (A2, - A2)6,(X),  mon=123  (63)
Now consider
[1(V?) Wa3(X)
= (V2 +A]) (V? + A3) (V2 + A7) i Gan En(X)
3 n=1

= (V24 AD) (V2 +AD)D g0 [0(X) + (AT — A2) &,(X)]

= (V2+ A (V2 A [6X) D qon + D qon (AT = A2) £1(X)]

© 2023 Global Journals
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= (V2 + A (V2 +A3) D aan (A = A2) &u(X)

n=2

= (V2 AD) Y qon (AT = A7) [6(X) + (A] — A7) &u(X)]

= (V2 A9) ) gon (AT = A7) (A3 — A7) &u(X)

n=3

= (V* 4 A3) g3 (AT — A3) (A3 — A5) &(X)
= (V*+ A7) &(X)

= 0(X)

Similarly, equation (59); can be proved
Now, Define matrix

A(X) = H(D,) W(X) (64)

Using equations (56), (58) and (64), we obtain
B(D,) A(X) = B(D,) H(D,) W(X) = ©(V*) W(X) = §(X) I(X) (65)

Therefore, A(X) is solution of equation (33).
Hence, we have proved the following Theorem:

Theorem:  The matrix A(X) defined by the equation (64) is the funda-
mental solution of system of equations (27)-(29).

VI.  BASIC PROPERTIES OF THE MATRIX A(X)

Property 1. Every column of the matrix A(X) is the solution of equations
(27)-(29) for all points X € E? except the origin.

Property 2. The matrix A(X) can be written as

A= [ATS]4><4
qu<X) = Hpq(Dm> WH(X)a
Apn(X) = Hpp(Dy) Was(X),

p=1,234 ¢g=1,2; m=234.
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VII.  SpeciaL CASE

If we neglect nonlocal parameter (¢ = 0) in equations (27)-(29), we obtain
the system of equations of steady state oscillations for homogenous isotropic
generalized thermoelastic solid with diffusion as:

[ V? 4+ w?u* + oy grad divu® — grad T* — grad C* = 0 (66)
—7mMag divu* + ay O + (V2 = 72DT* =0 (67)

as V2 divu* + o VT* + 19 — a; VI C* =0 (68)

[

The fundamental solution of above system of equations is similar as obtained
by Kumar and Kansal [29].

VIII. NUMERICAL RESULTS AND DISCUSSION

For numerical calculations, values of relevant parameters for homogenous
isotropic generalized thermoelastic solid with diffusion have been swiped from
Sharma et al. [17] given in Table 1.

Phase velocity, attenuation coefficient, penetration depth and specific loss
are computed numerically by using software MATLAB. Variation of Phase
velocity, attenuation coefficient, penetration depth and specific loss with re-
spect to angular frequency of P-wave, T-wave, MD-wave and SV-wave are
shown graphically in four types of elastic solids:

Table 1: Numerical values of parametres

Notation value Notation value
A 7.76 x 10" Nm~2 o 1.78 x 10> K1
U 3.86 x 10 Nm—2 Q. 2.65 x 107*m?Kg~!
K 386 Jm 1S TK! €o 0.38
Cg 3831 JKg 'Kt a 0.5431 x 107
p 8.954 x 10° Kgm™3 Ty 293 K
a* 1.2 x 10* m?K S? To 0.58
b* 0.9 x 10° K gm?°S? T 055
D~ 0.88 x 107® KgSm™*

1. Nonlocal thermoelastic solid with diffusion

2. Local thermoelastic solid with diffusion

3. Nonlocal thermoelastic solid without diffusion
4. Local thermoelastic solid without diffusion

In all graphs, solid line and dashed line represent the impact of local and
nonlocal parameter on the variation of phase velocity, attenuation coefficient,
penetration depth and specific loss in thermoelastic solid without diffusion
respectively whereas dash-dotted and dotted line represent variation in local
and nonlocal thermoelastic solid with diffusion respectively.
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Notes

Phase velocity: Figures 1-3 represent the impact of nonlocal and diffu-
sion parameter on the phase velocities vq, vo and v3 of P-wave, T-wave, and
MD-wave respectively with respect to angular frequency w. From figures
1-2, it is clear that behaviour of phase velocity of P-wave and T-wave with
respect to angular frequency is same with difference in magnitude values.
The phase velocities v; and vy decreases monotonically, reaches to minimum
value at w = 10° for all types of thermoelastic solids. The values of v; and
vy for local solid are more than that of nonlocal solid. From physical point
of view, the stresses produced in nonlocal medium is weak due to impact
of nano-structured particles and change in stress causes the change in wave
characteristics accordingly. Also phase velocity has lower value in elastic
solid with diffusion in comparison to elastic solid without diffusion. Ther-
moelastic waves exhibit different dispersion characteristics in thermodiffusive
solid which in turn influence the Phase velocity, attenuation coefficient, pen-
etration depth and specific loss. Figure 3 shows that phase velocity vz of

35

Phase velocity Y

-+ nonlocal with diffusion
local with diffusion
— — — nonlocal without diffusion
local without diffusion 1
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-+ nonlocal with diffusion
local with diffusion
— — — nonlocal without diffusion
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b i i} 9 10 1

2 3 4 5 b i i} 9 10

Angular freguency

Figure 1: Variation of phase ve-

locity of P-wave

w10’

Angular freguency

Fligure 2: Variation of phase ve-

locity of T-wave
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Phase velocity %5
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m
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Figure 3: Variation of phase velocity of MD-wave
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Attenuation Coefficient QI

--nonlocal with diffusion
local with diffusion
— — —nonlocal without diffusion
local without diffusion

Angular fraguency

Figure 4:Variation of attenua-
tion coefficient of P-wave

Attenuation Coefficient 02

%107

I I L
-+ -nonlacal with diffusion
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Angular fraguency

Figure 5: Variation of attenua-

tion coefficient of T-wave

MD-wave decreases monotonically reaches to minimum value at w = 10° for
thermoelastic solid with diffusion whereas it increases linearly, reaches to
maximum value at w = 10° for elastic solid without diffusion.

Attenuation Coefficients:

Figures 4-6 represent the impact of nonlocal

and diffusion parameter on the attenuation coefficients @)1, Q)2 and Q3 of P-
wave, T-wave, and MD-wave respectively with respect to angular frequency
w. It has been observed from the figure 4 that attenuation coefficient ),
of P-wave increases parabolically for 1° < w < 10° in elastic solid without
diffusion. For thermoelastic solid with diffusion, (), increases linearly in
local as well as nonlocal solid. Figure 5 shows that attenuation coefficient
()2 of T-wave increases linearly with increase in w in thermoelastic solid
without diffusion whereas in thermodiffusive solid, it decrease sharply for
19 < w < 2.5 From figure 6, it is clear that attenuation coefficient Q5 of
MD-wave increases linearly in all types of solids with difference in magnitude.
The value of )3 is lower in diffusive solid in comparison to solid without
diffusion. Also, figures 4-6 show that attenuation coefficients has smaller
value in nonlocal solid in comparison to local elastic solid due to nonlocal

parameter.

Penetration Depth:

Figures 7-9 represent the effect of diffusion and non-

local parameter on the penetration depth D, Dy and D3 of P-wave, T-wave,
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Figure 0: Variation of attenuation coefcient of MD-wave

and MD-wave respectively with respect to angular frequency w. Figure 7 de-
picts the variation of penetration depth D; of P-wave with respect to angular
frequency w. In thermoelastic solid without diffusion, the penetration depth
D, decreases sharply for 1° < w < 2.5% and then slowly for w > 2.5°. The
value of D; decreases monotonically, reaches to minimum value at w = 10°
in diffusive elastic solid. It has been observed from the figure 8 that pene-
tration depth Dy of T-wave increases in diffusive solid and decreases in solid
without diffusion with increase in angular frequency w having greater value
in local solid in comparison to nonlocal elastic solid. From figure 9, it is
clear that penetration depth D3 of MD-wave decreases monotonically in all
types of solids with difference in magnitude. Also, the value of Dj is lower
in diffusive solid in comparison to solid without diffusion.

Specific Loss:  Figures 10-12 show the effect of diffusion and nonlocal pa-
rameter on the specific loss Ly, Ly and L3 of P-wave, T-wave, and MD-wave
respectively with respect to angular frequency w. From figures 10 and 12,
it has been observed that behaviour of specific loss L; of P-wave is similar
to behaviour of specific loss Lz of MD-wave with difference in magnitude.
Specific loss Ly and L3 decreases monotonically, reaches to minimum value
at w = 10° in thermoelastic solid without diffusion whereas it increases lin-
early, reaches to maximum value at w = 10° in thermodiffusive solid. Figure
11 represents the variation of specific loss Ly of T-wave with respect to an-
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Figure 12: Variation of specific loss of MD-wave

gular frequency w. In all types of solids, Lo increases linearly, having lower
value in diffusive solid as comparison to solid without diffusion. Also from
figures 10-12, it is clear that specific loss has greater value in local solid as
comparison to nonlocal elastic solid.

[X. CONCLUSION

We have examined the effects of nonlocal parameter on the propagation of
plane wave in nonlocal homogenous isotropic thermoelastic diffusion.

The major consequences of current problems are:

(1)There exist three coupled waves namely P-wave, T-wave, MD-wave and
one transverse wave(SV) propagating with different phase velocities. Further-
more phase velocity, attenuation coefficients, penetration depth and specific
loss with respect to angular frequency are studied graphically.

(2) It has been found that characteristics of all the waves are affected by
diffusion and nonlocal parameter of the medium.

(3) The fundamental solution of system of differential equations for steady
oscillations has been constructed.

(4) The analysis of fundamental solution M(X) of the system of equations
(27)-(29) are helpful to investigate three dimensional problems of nonlocal
homogenous isotropic elastic solid with diffusion.

(5) The graphical analysis of present work is very helpful in order to investi-
gate the various fields of aerospace, electronics and geophysics like volcanol-
ogy, telecommunication etc.

REFERENCES REFERENCES REFERENCIAS

1. Eringen A.C., Linear theory of nonlocal elasticity and dispersion of
plane waves. International journal of engineering sciences. 1972; 10:
425-435.

2. Eringen A.C., Theory of nonlocal thermoelasticity. International
Journal of engineering sciences. 1974; 12: 1063-1077.

3. Eringen A.C., Edge dislocation in nonlocal elasticity. International
Journal of engineering sciences. 1977; 15: 177-183.

© 2023 Global Journals

Global Journal of Science Frontier Research (F) Volume XXIII Issue III Version I E Year 2023



Global Journal of Science Frontier Research (F) Volume XXIII Issue III Version I E Year 2023

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2023 Global Journals

. Eringen A.C., Edelen G.B., On nonlocal elasticity. International

Journal of engineering sciences.1972; 10: 233-248.
Gurtin M.E., The linear theory of elasticity. In: Truesdel C, editors.
Handbuch der physik V1a/2. Berlin: Springer; 1972.

. Nowacki W., Dynamic problems of elasticity. Leiden: noordhoff the

netherlands; 1975.
Nowacki W., Theory of asymmetric elasticity. Oxford pergamon; 1986.

. Green A.E., Naghdi P.M., On thermodynamics and nature of second

law. Proc roy soc London A. 1977; 357: 253-270.

Green A.E., Naghdi P.M., A re-examination of basic postulates of
thermodynamics. Proc roy soc London A. 1991; 432:171-194.

Kupradze V.D., Gegelia T.G., Basheleishvili MO, Burchuladze TV,
Three dimensional problems of the mathematical theory of elasticity
and thermoelasticity. North-Holand pub. company: amsterdam New-
York.; 1979.

Kumar S., Kumar S.K., Plane waves in nonlocal micropolar
thermoelastic material with voids. Journal of thermal stresses. 2020;
43: 1-24.

Kaur I., Singh K., Plane wave in nonlocal semiconducting rotating
media with hall effect and three phase lag fractional order heat
transfer. International journal of mechanical and material engineering.
2021; 14:1-16.

Aouadi M., Uniqueness and reciprocing theorems in the theory of
generalized thermoelastic diffusion. Journal of thermal stresses. 2007;
30:665-678.

Aouadi M., Generalized theory of thermoelastic diffusion for
anisotropic media. Journal of thermal stresses. 2008; 3:270-285.

Aouadi M., Theory of generalized micropolar thermoelastic diffusion
under Lord-Shulman model. Journal of thermal stresses. 2009; 32: 923-
942.

Aouadi M., A theory of thermoelastic diffusion materials with voids.
ZAMP. 2010; 61: 357-379.

Sharma D.K., Thakur D., Walia V., Sarkar N, Free vibration analysis
of a nonlocal thermoelastic hollow cylinder with diffusion. Journal of
thermal stresses. 2020; 43:1-17.

Hormander L., Linear partial differential operators. Berlin:
Springerverlag; 1963.

Hormander L., The analysis of linear partial differential operators II:
differential operators with constant coefficients. Berlin: Springerverlag;
1983.

Hetnarski R.B., The fundamental solution of the coupled thermoelastic
problem for small times. Arch mech stosow. 1964; 16: 23-31.

Hetnarski R.B., Solution of the coupled problem of thermoelasticity in
the form of a stress of a function. Arch mech stosow. 1964; 16: 919-
941.

Svanadze W., The fundamental matrix of linearized equations of the
theory of elastic mixtures. Proc I vekua inst appl math tbilisi state
univ. 1988; 23: 133-148.

Notes



Notes

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Svanadze M., The fundamental solution of the oscillation equations of
the thermoelasticity theory of mixtures of two solids. Journal of
thermal stresses. 1996; 19: 633-648.

Svanadze M., Fundamental solution of the equations of the theory of
thermoelasticity with microtemperatures. Journal of thermal stresses.
2004; 27:  151-170.

Svanadze M., Fundamental solution of the equations of steady
oscillations in the theory of microstretch elastic solids. International
journal of engineering sciences. 2004; 42: 1897-1910.

Scarpetta E., The fundamental solution in micropolar elasticity with
voids. Journal of thermal stresses. 1990; 82: 151-158.

Ciarletta M., Scalia A., Svanadze M., Fundamental solution in the
theory of micropolar thermoelasticity for materials with voids. Journal
of thermal stresses. 2007; 30: 213-229.

Svanadze M., Tibullo V., Zampoli V., Fundamental solution in the
theory of micropolar thermoelasticity without energy dissipation.
Journal of thermal stresses. 2006; 29: 57-66.

Kumar R, Kansal T., Fundamental solution in the generalized theories
of thermoelastic diffusion. International journal of engineering science.
2004; 42: 1897-1910.

Kumar R, Kansal T., Fundamental solution in the theory of
micropolar thermoelastic diffusion with voids. Computational and
applied mathematics. 2012; 31: 169-189.

Sharma K., Kumar P., Propagation of plane waves and fundamental
solution in thermoviscoelastic medium with voids. Journal of thermal
stresses. 2013; 36: 91-111.

Kumar R., Kumar K., Kumar R., Plane waves and fundamental
solution in a couple stress generalized solid with voids. Afrika
matematika. 2013; 25:591-603.

Kumar R., Kaur M., Rajvanshi S.C., Representation of Fundamental
and plane waves solutions in the theory of Micropolar Generalized
Thermoelastic solid with two Temperatures. Journal of computational
and theoretical nanosciences. 2015; 12: 691-702.

Kumar R., Devi S., Plane waves and fundamental solution in a
modified couple stress generalized thermoelastic with three-phase-lag
model. Multidiscipline modeling in materials and structures. 2016; 12:
693-711.

Biswas S., Fundamental solution of steady oscillations for porous
materials with dual-phase-lag model in micropolar thermoelasticity.
Mechanics based design of structures and machines. 2019; 47: 1-23.
Kumar R., Batra D., Fundamental solution of steady oscillations in
swelling porous thermoelastic medium. Acta mechanica. 2020; 231:
3247-3263.

Biswas S., Fundamental solution of steady oscillations equations in
nonlocal thermoelastic medium with voids. Journal of thermal stresses.
2020; 43: 284-304.

Biswas S., The propagation of plane waves in nonlocal
viscothermoelastic porous medium based on nonlocal strain gradient
theory. Waves in random and complex media. 2021; doi.org/
10.1080/17455030.2021.1909780

© 2023 Global Journals

Global Journal of Science Frontier Research (F) Volume XXIII Issue III Version I E Year 2023



Global Journal of Science Frontier Research (F) Volume XXIII Issue III Version I E Year 2023

39.

40.

41.

© 2023 Global Journals

Kumar R., Ghangas S., Vashishth A.K., Fundamental and plane wave
solution in non-local bio-thermoelasticity diffusion theory. Coupled
systems mechanics. 2021; 10: 21-38.

Poonam, Sahrawat R.K., Kumar K., Plane wave propagation and
fundamental solution in nonlocal couple stress micropolar
thermoelastic solid medium with voids. Waves in random and complex
media. 2021;31:1-37.

Kumar R., Batra D., Plane wave and fundamental solution in steady

oscillation in swelling porous thermoelastic medium. Waves in random
and complex media. 2022; doi.org/10.1080/17455030.2022.2091178.

Notes



	Plane Wave Propagation and Fundamental Solution for Nonlocal Homogenous Isotropic Thermoelastic Media with Diffusion
	Author
	Keywords
	I. Introduction
	II. Basic Equations
	III. Plane Wave
	IV. Steady Oscillations
	V. Fundamental Solution of System of Equations of Steady Oscillations
	VI. Basic Properties of the Matrix A(X)
	VII. Special Case
	VIII. Numerical Results and Discussion
	IX. Conclusion
	References Références Referencias



