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Two-Dimensional Nucleation in the Dislocation
Model of Crystal Growth

V. |. Rakin

Absiract- A combined mechanism of nonequilibrium
dislocation growth of crystal faces combined with equilibrium
formation of a two-dimensional nucleation is presented. The
binding energy of atoms in the crystal near the helical
dislocation has been calculated based on the Lennard-Jones
potential. The study substantiates thermodynamic conditions
for the occurrence of hollow dislocation nuclei detected earlier
in AFM observations of crystal growth. Conditions for the linear
Onsager approximation in response to non-linear kinetics of
crystal growth are described. The three values of solution
supersaturation, the relationships between which are highly
variable, are controlling the growth process of the crystal face.
The supersaturation and their interrelations depend on the
peculiarities of the defective crystal structure, the of the crystal-
solution interaction, and the peculiarities of the crystallization
medium hydrodynamics.

l. INTRODUCTION

t is known that any flat crystal surface is characterized

by a certain density of free bonds possessing a fixed

heat of adsorption and, on this basis, is a crystal
defect. If the crystal is in a multicomponent medium,
then, according to the second principle of
thermodynamics, impurity atoms and molecules that
lower the surface energy are deposited on such centers.
Then it can be confidently argued that a limiting variant
of Langmuir theory is always realized: the adsorption
value approaches the monolayer capacity [1]. This state
of the crystal surface in a multicomponent crystal-
forming medium is characteristic of both equilibrium and
nonequilibrium conditions. However, certain free energy
thermodynamic fluctuations [2], irregularly and for a
short period, are able to clear surface areas of
adsorbate. Note that the distribution function of
fluctuations on a homogeneous face surface can be
described by Gibbs equilibrium theory [3]. The growth of
the crystal face is possible only in these short intervals
between desorption and secondary adsorption of
impurities.

Crystal growth as a macroscopic phenomenon
should be described by the equations of nonequilibrium
thermodynamics. The mechanical-statistical solution to
the problem of measuring macroscopic physical
variables of the thermodynamic phase is well known
[4]). Suppose the body is made up of N atoms. Then the
size of the system can always be estimated at best to
the accuracy of one atom. The relative error of
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measurements of any intensive thermodynamic
variables cannot be less than 1/+/N. Thus, the locality
limit for thermodynamic variables is at least the first tens
of nanometers and partially overlapped by the field of
thermodynamic fluctuations.

At the atomic level, some mechanisms of
building particles embedding into the structure are
implemented at the impurity desorption site, and objects
with atomic scale in at least one dimension should be
discussed. These are helical and combined
dislocations, elementary steps, kinks of steps, two-
dimensional nuclei, etc. After theoretical description of
these mechanisms in the language of classical or
quantum mechanics, a transition to thermodynamic
description is necessary. But at this transition the
problem of time inevitably arises — time reversibility in
the laws of classical physics (CPT-invariance in
quantum mechanics) and time irreversibility in
thermodynamics. Note that the problem of time, as well
as the problem of total adsorption of impurities on the
growing face did not attract serious attention of the
researchers of crystal growth [5, 6]. And, besides, the
kinetic theories of growth widely used the Arrhenius
equation [7], which has no strict theoretical justification
for a nonequilibrium system. As a result, classical
growth theories are internally inconsistent and abound in
numerous empirical formulas and coefficients. However,
the equations and phenomenological coefficients of
nonequilibrium thermodynamics, in contrast to empirical
coefficients, have a reliable justification in the principle
of local equilibrium and the three principles of
thermodynamics [3]

I1. Di1SLOCATION IN A KOSSEL CRYSTAL

Let us discuss the helical dislocation as a
defect of crystal structure, without the participation of
which the growth of most crystals in nature does not
occur [4, 5]. Consider a Kossel crystal [8] with a
primitive cubic cell in which each particle inside the
crystal contacts six neighbors and 20 more particles on
the diagonals and use the Lennard-Jones potential:

U@r) = 4e[(x/m)'" — (/1)°]. (1)

The equilibrium distance between particles in
pairwise interaction is well known:

Tmin = XNV2 = 1,122x. However, the minimum of
interaction energy (1) of a surface particle is reached at
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a smaller distance 1, = 1,085y from the nearest
neighbor in the crystal. Inside the crystal, the bonds
between particles become stronger and the internal
energy decreases. In an ideal Kossel cubic crystal, the
particles are at fixed distances r/r,,, from each other
[8]. For a surface particle, the first coordination
hemisphere contains 17 neighbors and the second
contains 57.

The Lennard-Jones potential serves only to
illustrate  model representations, since it has the
necessary properties of the interatomic forces of
attraction and repulsion.

It is easy to see that the main contribution to the
bonding energy of a surface patrticle is made by the first
coordination sphere. Taking into account interaction with
particles of the second coordination sphere makes a
correction not exceeding 8%, but always enhancing the
binding energy of the particle with a crystal. To simplify
further calculations, we will limit ourselves to the first
coordination sphere only. We will also disregard the
effect of adsorbed impurity, which additionally weakens
the bonding strength of all surface atoms to the crystal.
These two factors have a systematic but opposite effect.

Consider the model of a helical dislocation
exiting to the crystal surface along the OZ axis at the
point with coordinates x=0, y=0 (Fig. 1). The dislocation
has a unit Burgers vector. Assigning the zero value of
the z-coordinate to the upper boundary of the first atom
— (12.%2.0), we obtain coordinates of other three atoms
located around dislocation: (='2.%2.4), (=V2.—V2.%),
(Vo2 %4).

Suppose that the z-coordinate of any surface
atom depends linearly on the angle of rotation of the
radius-vector drawn from the dislocation axis to the
center of the atom. Then at tetragonal symmetry of the
crystal face the position z of surface atoms in the first
quarter of the (x,y) plane can be described by the
formula

z = arctg(x/y)/2n —1/8. 2)

In other quarters, if the coordinate system is
rotated, z has to be further increased by Va.

Using this expression in other quarters when
rotating the coordinate system, z should be further
increased by V4. It should be noted that expression (2)
does not lead to a minimum of the free energy of the
crystal, but at x,y—o, the dissymmetry of the nearest
surroundings of any surface atom, expressed in values
of Az, rapidly decreases and the dislocation effect
disappears. This property of the formula reflects the
physical phenomenon and allows the use of expression
(2) for model constructions.

As a result the bonding energy of surface atoms
in the first quarter is described by law 1 (Fig. 2). In the
remaining quarters the bonding energy differs only for
the first four atoms in the narrow region (Fig. 2)
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immediately adjacent to the dislocation axis at the given
arrangement of atoms (Fig. 1).

It is obvious that the atoms located in the first
quarter of the coordinate system are most strongly
bonded, but the atoms in the fourth quarter are weakly
bonded to the crystal surface (Fig. 1, Fig. 2). For an
ideal surface without dislocation, the binding energy of
any surface atom is about U/4e = —7.94, which
corresponds to a certain value of the equilibrium
concentration of the surrounding crystal-forming
solution.

For atoms 4 (Fig. 1), the relative reduction of the
chemical potential is a rather large value Ap./u, = 0.28.
In the thermodynamic equilibrium state, the chemical
potential of the crystal substance is equal to the
chemical potential of the substance in solution [3]
1. = W, and the latter is defined by the Lewis formula:

is = Mo + RTIn(a), (3)

where y, is the chemical potential of the building
particles in the standard state in the saturated solution,
a is their activity in the solution. If the chemical potential
of the substance in the crystal decreases, the
equilibrium solution corresponding to it will have a
different (lower) concentration. Converting the relative
change in chemical potential per molar number of
atoms of type 4 we get:

Ape _ Apg _ RTIn(a'/ag) __RT In(c'/co) _ RTIn(c'+1) (4)
Ke We Ke Ke Ke '

where o' = (¢' —¢y)/c, is the relative change in the
equilibrium concentration of the solution for atom 4 (Fig.
1). Expanding the logarithm into Taylor's series and
using standard Gibbs free energy of potassium sulfate
formation under normal conditions (u, =-1321J/(mol -
K)) as an example, we obtain ¢ ~—0,15 for
equilibrium conditions.

Thus, the equilibrium solution for the part of the
crystal surface composed of atoms 4 should be
considered as undersaturated, and atom 4, which is on
the edge of the step, will be definitely removed from the
crystal surface as a result of entropy fluctuations in the
state of equilibrium. It will be followed by removal of
atom 5, for which bond strength will immediately
decrease after removal of atom 4, and then, clockwise,
by other atoms (Fig. 1), for which the solution will also
become undersaturated. However, the magnitude of the
relative change in the chemical potential will decrease,
as the distance to the dislocation axis grows, and
eventually the process will cease. However, as the
dislocation axis deviates, the magnitude of the relative
change in the chemical potential will decrease and the
process will stop. As a result, a funnel is formed around
the dislocation — a "hollow core" (Fig. 3), theoretically



predicted back in the 1950s [9, 10] and later observed
in atomic force microscopes [11, 12].

The linear dimensions of such a formation
cannot be established in the Lennard-Jones model, but
one can use the thermodynamic model of a negative
two-dimensional disk [9].

The random formation of empty space around a
dislocation in a Kossel crystal, which is an open hollow
cut disc of diameter r; and unit height coinciding with
the size of the building particle b can be described
using free energy fluctuations:

1 2mrE

2
AY - %AG, (5)

in which the first term is responsible for the emergence
of an additional crystal surface along the side wall of the
single-layer disk, and the second term is the change in
internal energy due to the loss of particles that formed
the crystal substance in the disk body, AG is the
average change in the chemical potential of the crystal
when one building particle is embedded in its surface
structure, E is the bond energy between two surface
particles. The bonding energy in the macroscopic sense
determines the specific surface energy of the crystal, but
in this case reflects the bonding between only two
adjacent particles. Although formula (4) makes
thermodynamic sense, all variables in it are not
macroscopic. In addition, the variable AG per molecule
is not the same as that for building particles inside the
crystal, because it depends on a smaller number of
bonds between the particles.

The conservation of the hollow disk on the
crystal in equilibrium with the surrounding solution is
determined by the known variation extremum condition

§(AY") = 0. )

The chemical potential of the equilibrium
solution, but undersaturated with respect to the atoms
on the edge of the step near the dislocation axis (Fig. 1,
atom 4) differs by the value

AG' = kT In(c' + 1), (7)

and takes a negative value ¢ < 0. As a result of the
solution of the variational equation (5) we obtain the
negative radius of curvature of the side walls of the
equilibrium disk at the helical dislocation site (Fig. 3)

, _ bE _ bE_

" S e e 0. 8)
So, the value of the free energy as a result of

the formation of the hollow disk is also negative and is

_ mrihoE
= —bz

AW, <0, ©)

which at thermodynamic equilibrium in the system
indicates a natural process. In F.C. Frank [9] the sign of
r, is not discussed, but for the conditions of
thermodynamic equilibrium the non-fluctuational nature
of this disk and the sign are of great importance.

Let us note two opposing factors. On the one
hand, the adsorbed impurity additionally weakens the
connection of the atoms located at the edge of the step
with the lower lying atoms. It occurs in the intervals
between the fluctuations. So, the undersaturation value
o' for the atoms nearest to the dislocation certainly
increases. But on the other hand, the lattice distortions
quickly weaken and the value of the under-saturation
decreases in response to digressing from the helical
dislocation (Fig. 2). At the edge of the disk the
undersaturation ¢ — 0. Thus, formula (6) represents
some average value of the underdesorption index within
the disk area, which is realized at the moments of
impurities desorption.

Simultaneously, in deeper layers of crystalline
matter, the second and subsequent hollow disks are
formed in the dislocation core, but with a smaller radius
(Fig. 3), because the binding force of atoms located at
the edge of the non-growing step increases with depth.
As a result, the equilibrium cone-shaped dislocation
core at constant pressure and temperature, in
accordance with the second law of thermodynamics,
reduces the free Gibbs energy of the crystal by the value
depending on chemical bonds of atoms, molecules and
complexes in the crystal structure, the helical dislocation
structure and on the impurity composition of the
equilibrium crystallization medium by the value:

Aly'zz’”;')#<o.

(10)

It is important to note that the dislocation core
can persist only up to a certain supersaturation degree.
So, in reality, the dislocation core can only be observed
at minor supersaturation, for example, in AFM growth
studies [11, 12].

[1I.  CRYSTAL GROWTH RATE

Consider the growth of a crystal face with
uniformly distributed growth steps running away from
the dislocation core (Fig. 3). Evidence has been
produced to prove the stability of uniformly distributed
rectilinear elementary steps on the face of an equilibrium
crystal [13]. The calculation is based on the Van der
Waals interaction energy. Since most of the time the
crystal face covered with adsorbate is in thermodynamic
equilibrium with the solution [14], the structure of the
surface even during crystal growth corresponds to the
case described in [13]. Uniformly alternating steps on
the flat face of the growing crystal are displayed through
the surface interferometry (Fig. 4). The angle between
the base surface of the octahedron face of potassium
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alum and the inclined flat face of the growing pyramid,
which is a simple crystallographic form of
tetragontrioctahedron, changes usually in the range
from 10 to 20 angular minutes [14].

Analysis of the events occurring in the region of
impurity desorption X (Fig. 3) as a result of average free
energy fluctuations at the crystal face leads in the first
approximation to a formula determining the
'instantaneous", on the macroscopic scale of
measurements, normal growth rate of the crystal face
region [14]:

Bhooy _
Kpipz(l—q)t Boy. )

Here: x and B are kinetic coefficients determining the

rate of settlement of kinks by adsorbate molecules and

building particles. These coefficients depend on
temperature and concentrations of impurity and building
particles in the environment, but not on supersaturation

(under-saturation) of the crystallization medium;

o; = (cf —co)/co is the relative supersaturation of the

solution at the surface of the desorbed face (away from

the dislocation); w, =1[;/bis the relative distance
between kinks along one elementary step; w, = 1,/b is
the relative distance between steps.

To solve the time problem [15], the transfer
theorem [16] was used. As a result, there are two
additional macroscopic parameters in expression (7).
Over the elementary, macroscopic time of stationary
growth 1, an average of 1/(1—gq) independent
fluctuations occur (high dispersion value is q/(1 — q)?).
g is a statistical parameter. Thus, the known fluctuations
of the growth rate of the face can be easily explained by
the large variability in the number of fluctuations for a
fixed elementary time of stationary crystal growth.

The kinetic coefficients B and k are close in
magnitude because they reflect the competitive struggle
of similarly sized building and impurity particles for the
free kink.

Stationary crystal growth, while preserving the
macroscopic flat face and the dynamic stepped surface
topography at the molecular level (Fig. 3), entails
additional conditions that were taken into account when
deriving formula (7):

1. The number of fractures per unit face area at a
given fixed supersaturation should be constant in
time. That implies continuous generation of new
rows of construction particles at the stage,
compensating the phenomenon of fracture
annihilation. The mechanism of this process is
realized at the equilibrium transformation stage of
the surface, represented by uniformly distributed
elementary growth steps [13], as a result of small
but frequent fluctuations of the free energy.

2. It is known that the mean value of the effective
fluctuations of the free energy, relevant to the model
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outlined, depends only on the temperature of the
thermodynamic system and is constant over time.
Therefore, regardless of the nature of the surface
topography, the number of kinks within the
desorption section can be assumed to be constant.
Hence, it follows that the size of the surface area
affected by the average fluctuation is proportional to
the surface density of fractures under the given
stationary growth conditions.

3. |If the average linear size of the desorption region is
less than the distance between stages /,, then,
according to the solution of the problem similar to
the Buffon problem in the probability theory, all kinks
will be concentrated on a section of one step length
within area X. Thus, as the distance between steps
increases, the frequency of kinks will as you might
expect grow to the natural limit p,=1.

The frequency of steps w, in the desorption
region depends on the critical curvature of the
elementary step adjacent to the helical dislocation r,
(Fig. 3) [6]. To solve such a problem, let us again turn to
the two-dimensional nucleus model (4). Suppose the
crystal face is subject to the solution oversaturation o;.
We obtain a positive value of the radius of curvature of
the elementary step:

bE bE

~

2= KTIn(op+1)  kTof >0 ®

As a rule, at the effective Burgers vector of
dislocation h,, an initial step quickly disintegrates into
elementary steps at distances of the order of 100 nm
from the dislocation [11, 12]. Therefore, the critical
curvature can be calculated using the elementary step
model (4).

Taking into account the natural limitation of the
angular speed of rotation of the lower elementary step
after the disintegration of the step height in the Burgers
vector [6] in the first approximation we obtain the
frequency of steps on the side face:

_ 2mrohg

__ 2mhoE
K2 b2

" bkTof ©)

Thus, a quadratic dependence of the growth
rate on supersaturation near the face surface appears
when dislocation steps alternate uniformly:

BbkT
T 2memEA-)to

o = Ao}, (10)

If the Burgers vector exceeds the elementary
step twice, the step frequency also doubles (Fig. 4).
Thus, as a result of impurity desorption at the given
section of the face, the unit step (the lower step of the
package of the Burgers vector) present at distances up
to 100 nm from the dislocation exit will have a radius of
curvature corresponding to the parameter of a two-



dimensional nucleus. This case reflects the
requirements of equilibrium thermodynamics at the
moment of impurity desorption and ensures the safety of
the step. In a series of fluctuations, the radius of
curvature, r,, may vary slightly near the mean value (8),
which controls the stationary macroscopic growth rate
(10).

Note that observations of crystal growth lead to
the well-known nonlinear dependence of the growth rate
on the magnitude of supersaturation in the stirred
solution (Fig. 5). For a well-stirred solution, a linear
dependence between the supersaturation of the solution
away from the crystal and near the surface of the face is
usually assumed:

of = Vo. (11)

Within this assumption, let us discuss the
empirical data (Fig. 5.). At the initial stage the
dependence of normal face growth rates on
supersaturation is close to quadratic, which follows from
formula (10), but following some supersaturation (o >
0.06) it becomes linear (Fig. 5, linear trend for alumina
hexahedron).

This transition to linear dependence is caused
by the face relief rearrangement. When supersaturation
increases up to the mentioned transition, numerous
macro steps are formed on the crystal faces. According
to (8), the frequency of steps increases. In an isothermal
stationary process, the average fluctuation entropy jump
value remains unchanged, so the area affected by
desorption phenomena X, which is accounted for by a
macro step, also decreases. Thus, at high kink density
and growth of supersaturation, the relief parameters
and p, simultaneously tend to reach 1 and the limiting
case comes — their dependence on supersaturation
disappears. Thus, linear formula (7) in which B=const
will  be fulfilled (Fig. 5). For different simple
crystallographic forms this transition occurs at different
supersaturation values, which is caused by the structure
of dislocations prevailing on the face.

IV.  LINEAR ONSAGER REGIME

At small supersaturations the justification of the
linear Onsager regime becomes an important problem.
In the stationary mode of growth of an open
thermodynamic system, a linear dependence between
the coupled thermodynamic forces and thermodynamic
fluxes should be observed [3]. Thus, the normal velocity
of the face and the supersaturation of the solution near
its surface at small deviations from equilibrium should
be related by a linear function. But the experimental data
(Fig. 5) and formula (10) obviously contradict this. This
discrepancy is well known and is often mentioned in
scientific literature [6].

Note that in the macroscopic description of the
growing face, such as (111) (Fig. 4.), the echelon of
elementary steps on it represents a new crystallographic
form with a different Miller index. In Fig. 4, the faces of
the trigonal pyramid of the right lower dislocation in the
circled region represent a simple tetragon trioctahedron
shape with Miller indices {45.45.46}. As the
supersaturation increases, the step frequency (9) grows

and the face indices continuously decrease (the
frequency of bands in the interferogram should
increase). Therefore, the boundaries of the

nonequilibrium thermodynamic system change with
increasing  supersaturation. Onsager's  postulates
formally cannot be applied to such system. However, it
is possible to change the physical model by fixing the
boundaries of the system by a certain simple
tetragontrioctahedron shape in a small oversaturation
interval by the condition p,=const. Then, instead of
equation (10), formula (7) with the constant coefficient B
should be used in the thermodynamic analysis, and the
linear Onsager regime comes into force.

V.  SUPERSATURATIONS OF SOLUTION

In the described model we used values of
relative changes of solution concentration: ¢', o; and .
The first two of which are difficult to measure in the
experiment.

Note that even when the viscous crystallization
medium is actively stirred, the relationship between o;
and o cannot be expressed as a linear relationship.
However, assuming that all of the building substance
diffusing through the viscous Newtonian boundary layer
to the growing face of the crystal in the stationary growth
regime is deposited on its surface, we obtain an
additional equation for the growth rate:

(12)

where D is the diffusion coefficient of the substance in
solution, p is the density of the crystal.

From expressions (10) and (11) in linear
approximation of the boundary layer we obtain the
relationship between supersaturations:

0f=i(\/4w0+ -1), (13)
where w = (48p)/(Dc¢,) is a dimensionless parameter,
d is the thickness of the boundary layer. From the data
in Fig. 5, it is difficult to establish the value of the
parameter ®. However, it is clear that at low
supersaturation the boundary growth mode always
tends to the kinetic mode (o;— o), while at high
supersaturation - to the diffusion mode (o; - y/0/w).

The situation is different when the growth rate
depends linearly on supersaturation 0.06 < ¢ < 0.15
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(Fig. 5). Based on formulas (7) and (11), the growth
mode will always be determined only by the value of the
9 coefficient, which can be established empirically [14].

The case of natural convection is described in
the model of the stationary boundary layer of the
solution [17], when calculating the entropy production
by the unit area of the growing face in the stationary
mode:

(14)

where K is the thermodynamic coefficient, linearly
depending on supersaturation ¢ at stationary growth in
a small deviation from equilibrium. In the extended
version of the thermodynamic coefficient K, gravitation
also provides its contribution. But the main component
in K is always the first term — pR In(c + 1).

Expression (12) is obtained for the stationary
regime of growth, at which the structure of the laminar
boundary layer can be considered as linear. In this case,
it is impossible to derive the dependence of entropy
production density by the growing face of the crystal on
supersaturation of the solution. However, it is noted that
the thickness of the boundary layer is always a free
parameter, which is determined only by the solution of
the hydrodynamic problem of substance transfer in
solution.

VI.  CONCLUSIONS

It has been shown by the method of molecular
dynamics that the equilibrium state in a gas is formed
after an average of ten particle collisions [3]. In
solutions, local equilibrium occurs in time of the order of
10" - 10" s. Thus, a interval of 10% — 10® s [14]
between fluctuations leading to growth, is in stable
thermodynamic equilibrium. During this time, the so-
called "equilibrium" processes of alignment of the step
distribution density on the dislocation pyramid [13] and
the kink density on each step are realized as a result of

minor fluctuations. It is important that entropy
fluctuations differ in varieties - fluctuations of
temperature, number of moles of a chemical
component, volume, polarizability, magnetization,

potential energy of the center of mass, etc. These
varieties of fluctuations can also have different signs, are
independent, equally probable, and are the source of
such equilibrium surface transformations. Due to these
numerous fluctuations, a stable stationary macroscopic
structure of the growing face surface is formed under
constant crystallization conditions on a large time scale
(Fig. 4). Due to the equilibrium state of the face
completely covered by adsorbate and ‘"equilibrium'
fluctuations of free energy, the habit of the stationary
nonequilibrium and equilibrium crystal forms coincide,
which allows a continuous transition from growth to
equilibrium [18] and further to dissolution. But as
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dissolution begins, the macro structure of the
dislocation pyramid changes [14].

An important feature of the approach to crystal
growth through fluctuations of free energy and entropy
is the separation of events occurring on a time scale of
the order of 10" s during relaxation and "equilibrium"
processes and events on a scale of 1 minute. Each
separate fluctuation of free energy should be considered
as an independent random event, the relaxation
consequences of which are described by classical
dynamics [14]. But the macroscopic kinetics of crystal
growth is influenced only by the integral result of multiple
relaxation processes. Such a model makes it possible,
let us emphasize, to bypass, but not to solve the
problem of time — its reversibility in Newtonian dynamics
and irreversibility in macroscopic phenomena of the
growth process.

Within such a two-level theory of crystal growth,
it is possible to reliably justify equilibrium two-
dimensional nucleation of two types as an integral part
of the combined nonequilibrium dislocation mechanism
of crystal growth. However, in contrast to the
conclusions of the authors of [9-12], hollow dislocation
nuclei exist in a limited range of supersaturation due to
the equilibrium mechanism and have little effect on the
growth kinetics of the face. Based on the combined
growth mechanism, it is easy to explain the complex
behavior of the crystal growth rate given an increasing
degree of deviation of the crystal-forming system from
equilibrium, and the occurrence of a hollow dislocation
nucleus resulting from minor deviations  from
equilibrium, which do not contradict the equilibrium and
nonequilibrium thermodynamics and circumvent the
problem of time.
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Fig. 1: Location of surface atoms on the edge of tetragonal symmetry around the helical dislocation. The first layer of
the nearest 16 atoms is shown. Atoms directly in contact with the dislocation are highlighted in color.
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Fig. 2: Dependence of atom binding energy on the distance to the dislocation. The number indicates the atoms
closest to the dislocation, located in the corresponding quarter of the coordinate system (Fig. 1)
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Fig. 4: Interferogram of the growth pyramids of two helical dislocations differing twice by the Buergers vector. The
frequency of interference fringes is proportional to the frequency of elementary steps on the surface of the face (111)
of alumina. The more active lower pyramid absorbs the upper one.
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Fig. 5: Kinetics of growth of the crystal faces of alum-potassium alum in aqueous solution at active agitation,
obtained with a Michelson interferometer. T = 20°C. 1 —faces {111}, 2 - {100}, 3 - {110}.
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