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Abstract-

 

A combined mechanism of nonequilibrium 
dislocation growth of crystal faces combined with equilibrium 
formation of a two-dimensional nucleation is presented. The 
binding energy of atoms in the crystal near the helical 
dislocation has been calculated based on the Lennard-Jones 
potential. The study substantiates thermodynamic conditions 
for the occurrence of hollow dislocation nuclei detected earlier 
in AFM observations of crystal growth. Conditions for the linear 
Onsager approximation in response to non-linear kinetics of 
crystal growth are described. The three values of solution 
supersaturation, the relationships between which are highly 
variable, are controlling the growth process of the crystal face. 
The supersaturation and their interrelations depend on the 
peculiarities of the defective crystal structure, the of the crystal-
solution interaction, and the peculiarities of the crystallization 
medium hydrodynamics.

 
I.

 

Introduction

 
t is known that any flat crystal surface is characterized 
by a certain density of free bonds

 

possessing a fixed 
heat of adsorption and, on this basis, is a crystal 

defect. If the crystal is in a multicomponent medium, 
then, according to the second principle of 
thermodynamics, impurity atoms and molecules that 
lower the surface energy are deposited on such centers. 
Then it can be confidently argued that a limiting variant 
of Langmuir theory is always realized: the adsorption 
value approaches the monolayer capacity [1]. This state 
of the crystal surface in a multicomponent crystal-
forming medium is characteristic of both equilibrium and 
nonequilibrium conditions. However, certain free energy 
thermodynamic fluctuations [2], irregularly and for a 
short period, are able to clear surface areas of 
adsorbate. Note that the distribution function of 
fluctuations on a homogeneous face surface can be 
described by Gibbs equilibrium theory [3]. The growth of 
the crystal face is possible only in these short intervals 
between desorption and secondary adsorption of 
impurities.

 

Crystal growth as a macroscopic phenomenon 
should be described by the equations of nonequilibrium 
thermodynamics. The mechanical-statistical solution to 
the problem of measuring macroscopic physical 
variables of the thermodynamic phase is well known 
[4]). Suppose the body is made up of N

 

atoms.

 

Then the 
size of the system can always be estimated at best to 
the accuracy of one atom. The relative error of 

measurements of any intensive thermodynamic 
variables cannot be less than 1/√𝑁𝑁. Thus, the locality 
limit for thermodynamic variables is at least the first tens 
of nanometers and partially overlapped by the field of 
thermodynamic fluctuations. 

At the atomic level, some mechanisms of 
building particles embedding into the structure are 
implemented at the impurity desorption site, and objects 
with atomic scale in at least one dimension should be 
discussed. These are helical and combined 
dislocations, elementary stеps, kinks of steps, two-
dimensional nuclei, etc. After theoretical description of 
these mechanisms in the language of classical or 
quantum mechanics, a transition to thermodynamic 
description is necessary. But at this transition the 
problem of time inevitably arises – time reversibility in 
the laws of classical physics (CPT–invariance in 
quantum mechanics) and time irreversibility in 
thermodynamics. Note that the problem of time, as well 
as the problem of total adsorption of impurities on the 
growing face did not attract serious attention of the 
researchers of crystal growth [5, 6]. And, besides, the 
kinetic theories of growth widely used the Arrhenius 
equation [7], which has no strict theoretical justification 
for a nonequilibrium system. As a result, classical 
growth theories are internally inconsistent and abound in 
numerous empirical formulas and coefficients. However, 
the equations and phenomenological coefficients of 
nonequilibrium thermodynamics, in contrast to empirical 
coefficients, have a reliable justification in the principle 
of local equilibrium and the three principles of 
thermodynamics [3] 

II. Dislocation in a Kossel Crystal 

Let us discuss the helical dislocation as a 
defect of crystal structure, without the participation of 
which the growth of most crystals in nature does not 
occur [4, 5]. Consider a Kossel crystal [8] with a 
primitive cubic cell in which each particle inside the 
crystal contacts six neighbors and 20 more particles on 
the diagonals and use the Lennard-Jones potential: 

𝑈𝑈(𝑟𝑟) = 4𝜀𝜀[(χ 𝑟𝑟⁄ )12 − (χ 𝑟𝑟⁄ )6].  

The equilibrium distance between particles in 
pairwise interaction is well known: 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = χ√26 = 1,122χ. However, the minimum of 
interaction energy (1) of a surface particle is reached at 
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a smaller distance 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = 1,085χ from the nearest 
neighbor in the crystal. Inside the crystal, the bonds 
between particles become stronger and the internal 
energy decreases. In an ideal Kossel cubic crystal, the 
particles are at fixed distances 𝑟𝑟 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚⁄  from each other 
[8]. For a surface particle, the first coordination 
hemisphere contains 17 neighbors and the second 
contains 57. 

The Lennard-Jones potential serves only to 
illustrate model representations, since it has the 
necessary properties of the interatomic forces of 
attraction and repulsion. 

It is easy to see that the main contribution to the 
bonding energy of a surface particle is made by the first 
coordination sphere. Taking into account interaction with 
particles of the second coordination sphere makes a 
correction not exceeding 8%, but always enhancing the 
binding energy of the particle with a crystal. To simplify 
further calculations, we will limit ourselves to the first 
coordination sphere only. We will also disregard the 
effect of adsorbed impurity, which additionally weakens 
the bonding strength of all surface atoms to the crystal. 
These two factors have a systematic but opposite effect. 

Consider the model of a helical dislocation 
exiting to the crystal surface along the OZ axis at the 
point with coordinates x=0, y=0 (Fig. 1). The dislocation 
has a unit Burgers vector. Assigning the zero value of 
the z-coordinate to the upper boundary of the first atom 
– (½.½.0), we obtain coordinates of other three atoms 
located around dislocation: (–½.½.¼), (–½.–½.½),         
(½.–½.¾). 

Suppose that the z-coordinate of any surface 
atom depends linearly on the angle of rotation of the 
radius-vector drawn from the dislocation axis to the 
center of the atom. Then at tetragonal symmetry of the 
crystal face the position z of surface atoms in the first 
quarter of the (x,y) plane can be described by the 
formula 

𝑧𝑧 = arctg(𝑥𝑥 𝑦𝑦⁄ ) 2𝜋𝜋⁄ − 1 8⁄ . 

(3)

 

In other quarters, if the coordinate system is 
rotated, z has to be further increased by ¼. 

Using this expression in other quarters when 
rotating the coordinate system, z should be further 
increased by ¼. It should be noted that expression (2) 
does not lead to a minimum of the free energy of the 
crystal, but at x,y→∞, the dissymmetry of the nearest 
surroundings of any surface atom, expressed in values 
of ∆z, rapidly decreases and the dislocation effect 
disappears. This property of the formula reflects the 
physical phenomenon and allows the use of expression 
(2) for model constructions. 

As a result the bonding energy of surface atoms 
in the first quarter is described by law 1 (Fig. 2). In the 
remaining quarters the bonding energy differs only for 
the first four atoms in the narrow region (Fig. 2) 

immediately adjacent to the dislocation axis at the given 
arrangement of atoms (Fig. 1). 

It is obvious that the atoms located in the first 
quarter of the coordinate system are most strongly 
bonded, but the atoms in the fourth quarter are weakly 
bonded to the crystal surface (Fig. 1, Fig. 2). For an 
ideal surface without dislocation, the binding energy of 
any surface atom is about 𝑈𝑈 4𝜀𝜀⁄ = −7.94, which 
corresponds to a certain value of the equilibrium 
concentration of the surrounding crystal-forming 
solution. 

For atoms 4 (Fig. 1), the relative reduction of the 
chemical potential is a rather large value ∆μc μ𝑐𝑐⁄ = 0.28. 
In the thermodynamic equilibrium state, the chemical 
potential of the crystal substance is equal to the 
chemical potential of the substance in solution [3] 
μ𝑐𝑐 = μ𝑠𝑠 , and the latter is defined by the Lewis formula: 

 

μ𝑠𝑠 = μ0 + 𝑅𝑅𝑇𝑇 ln(𝑎𝑎), 
 

where μ0
 is the chemical potential of the building 

particles in the standard state in the saturated solution, 
a is their activity in the solution. If the chemical potential 
of the substance in the crystal decreases, the 
equilibrium solution corresponding to it will have a 
different (lower) concentration. Converting the relative 
change in chemical potential per molar number of 
atoms of type 4 we get: 

 

       
Δμ𝑐𝑐
μ𝑐𝑐

= Δμ𝑠𝑠
μ𝑐𝑐

= 𝑅𝑅𝑅𝑅 ln (𝑎𝑎′ 𝑎𝑎0⁄ )
μ𝑐𝑐

≈ 𝑅𝑅𝑅𝑅 ln(𝑐𝑐′ 𝑐𝑐0⁄ )
μ𝑐𝑐

= 𝑅𝑅𝑅𝑅 ln (σ′+1)
μ𝑐𝑐

,
 
    (4)

  

 

where σ′ = (𝑐𝑐′ − 𝑐𝑐0) 𝑐𝑐0⁄
 

is the relative change in the 
equilibrium concentration of the solution for atom 4 (Fig. 
1). Expanding the logarithm into Taylor's series and 
using standard Gibbs free energy of potassium sulfate 
formation under normal conditions (μ𝑐𝑐 =– 1321

 
𝐽𝐽/(𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 

К)) as an example, we obtain σ′ ≈ − 0,15
 

for 
equilibrium conditions.

 

Thus, the equilibrium solution for the part of the 
crystal surface composed of atoms 4 should be 
considered as undersaturated, and atom 4, which is on 
the edge of the step, will be definitely removed from the 
crystal surface as a result of entropy fluctuations in the 
state of equilibrium. It will be followed by removal of 
atom 5, for which bond strength will immediately 
decrease after removal of atom 4, and then, clockwise, 
by other atoms (Fig. 1), for which the solution will also 
become undersaturated. However, the magnitude of the 
relative change in the chemical potential will decrease, 
as the distance to the dislocation axis grows, and 
eventually the process will cease. However, as the 
dislocation axis deviates, the magnitude of the relative 
change in the

 
chemical potential will decrease and the 

process will stop. As a result, a funnel is formed around 
the dislocation – a "hollow core" (Fig. 3), theoretically 
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predicted back in the 1950s [9, 10] and later observed 
in atomic force microscopes [11, 12]. 

The linear dimensions of such a formation 
cannot be established in the Lennard-Jones model, but 
one can use the thermodynamic model of a negative 
two-dimensional disk [9]. 

The random formation of empty space around a 
dislocation in a Kossel crystal, which is an open hollow 
cut disc of diameter r1 and unit height coinciding with 
the size of the building particle b can be described 
using free energy fluctuations: 

 
∆Ψ′ = 2π𝑟𝑟1𝐸𝐸

𝑏𝑏
− π𝑟𝑟1

2

𝑏𝑏2 Δ𝐺𝐺,                  (5)  
 

in which the first term is responsible for the emergence 
of an additional crystal surface along the side wall of the 
single-layer disk, and the second term is the change in 
internal energy due to the loss of particles that formed 
the crystal substance in the disk body, ∆G is the 
average change in the chemical potential of the crystal 
when one building particle is embedded in its surface 
structure, E is the bond energy between two surface 
particles. The bonding energy in the macroscopic sense 
determines the specific surface energy of the crystal, but 
in this case reflects the bonding between only two 
adjacent particles. Although formula (4) makes 
thermodynamic sense, all variables in it are not 
macroscopic. In addition, the variable ∆G per molecule 
is not the same as that for building particles inside the 
crystal, because it depends on a smaller number of 
bonds between the particles. 

The conservation of the hollow disk on the 
crystal in equilibrium with the surrounding solution is 
determined by the known variation extremum condition 

δ(ΔΨ′) = 0.           (6) 

(10)

 

 The chemical potential of the equilibrium 
solution, but undersaturated with respect to the atoms 
on the edge of the step near the dislocation axis (Fig. 1, 
atom 4) differs by the value

 

∆𝐺𝐺′ = 𝑘𝑘𝑘𝑘 ln(σ′ + 1), 
 

and takes a negative value σ′ < 0. As a result of the 
solution of the variational equation (5) we obtain the 
negative radius of curvature of the side walls of the 
equilibrium disk at the helical dislocation site (Fig. 3) 

 
                           𝑟𝑟′1 = 𝑏𝑏𝑏𝑏

𝑘𝑘𝑘𝑘 ln(σ′+1) 
≈ 𝑏𝑏𝑏𝑏

𝑘𝑘𝑘𝑘σ′
 < 0.                  (8) 

  
So, the value of the free energy as a result of 

the formation of the hollow disk is also negative and is 
 

∆Ψ′1 = 𝜋𝜋𝑟𝑟1ℎ0𝐸𝐸
𝑏𝑏2 < 0, 

which at thermodynamic equilibrium in the system 
indicates a natural process. In F.C. Frank [9] the sign of 
r'1 is not discussed, but for the conditions of 
thermodynamic equilibrium the non-fluctuational nature 
of this disk and the sign are of great importance. 

Let us note two opposing factors. On the one 
hand, the adsorbed impurity additionally weakens the 
connection of the atoms located at the edge of the step 
with the lower lying atoms. It occurs in the intervals 
between the fluctuations. So, the undersaturation value 
σ' for the atoms nearest to the dislocation certainly 
increases. But on the other hand, the lattice distortions 
quickly weaken and the value of the under-saturation 
decreases in response to digressing from the helical 
dislocation (Fig. 2). At the edge of the disk the 
undersaturation σ′ → 0. Thus, formula (6) represents 
some average value of the underdesorption index within 
the disk area, which is realized at the moments of 
impurities desorption. 

Simultaneously, in deeper layers of crystalline 
matter, the second and subsequent hollow disks are 
formed in the dislocation core, but with a smaller radius 
(Fig. 3), because the binding force of atoms located at 
the edge of the non-growing step increases with depth. 
As a result, the equilibrium cone-shaped dislocation 
core at constant pressure and temperature, in 
accordance with the second law of thermodynamics, 
reduces the free Gibbs energy of the crystal by the value 
depending on chemical bonds of atoms, molecules and 
complexes in the crystal structure, the helical dislocation 
structure and on the impurity composition of the 
equilibrium crystallization medium by the value: 

 
∆Ψ′ = ∑𝜋𝜋𝑟𝑟𝑖𝑖ℎ0𝐸𝐸

𝑏𝑏2 < 0. 

 It is important to note that the dislocation core 
can persist only up to a certain supersaturation degree. 
So, in reality, the dislocation core can only be observed 
at minor supersaturation, for example, in AFM growth 
studies [11, 12]. 

III. Crystal Growth Rate 

Consider the growth of a crystal face with 
uniformly distributed growth steps running away from 
the dislocation core (Fig. 3). Evidence has been 
produced to prove the stability of uniformly distributed 
rectilinear elementary steps on the face of an equilibrium 
crystal [13]. The calculation is based on the Van der 
Waals interaction energy. Since most of the time the 
crystal face covered with adsorbate is in thermodynamic 
equilibrium with the solution [14], the structure of the 
surface even during crystal growth corresponds to the 
case described in [13]. Uniformly alternating steps on 
the flat face of the growing crystal are displayed through 
the surface interferometry (Fig. 4). The angle between 
the base surface of the octahedron face of potassium 
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alum and the inclined flat face of the growing pyramid, 
which is a simple crystallographic form of 
tetragontrioctahedron, changes usually in the range 
from 10 to 20 angular minutes [14]. 

Analysis of the events occurring in the region of 
impurity desorption X (Fig. 3) as a result of average free 
energy fluctuations at the crystal face leads in the first 
approximation to a formula determining the 
"instantaneous", on the macroscopic scale of 
measurements, normal growth rate of the crystal face 
region [14]: 

 

                 𝑣𝑣 =
βℎ0σ𝑓𝑓

κ  μ1μ2(1−𝑞𝑞)τ
= 𝐵𝐵σ𝑓𝑓.                  (7)  

 
Here: κ and β are kinetic coefficients determining the 
rate of settlement of kinks by adsorbate molecules and 
building particles. These coefficients depend on 
temperature and concentrations of impurity and building 
particles in the environment, but not on supersaturation 
(under-saturation) of the crystallization medium; 
σ𝑓𝑓 = �𝑐𝑐𝑓𝑓 − 𝑐𝑐0� 𝑐𝑐0⁄  is the relative supersaturation of the 
solution at the surface of the desorbed face (away from 
the dislocation); μ1 = 𝑙𝑙1 𝑏𝑏⁄  is the relative distance 
between kinks along one elementary step; μ2 = 𝑙𝑙2 𝑏𝑏⁄  is 
the relative distance between steps. 

To solve the time problem [15], the transfer 
theorem [16] was used. As a result, there are two 
additional macroscopic parameters in expression (7). 
Over the elementary, macroscopic time of stationary 
growth τ, an average of 1 (1 − 𝑞𝑞)⁄  independent 
fluctuations occur (high dispersion value is 𝑞𝑞 (1− 𝑞𝑞)2⁄ ). 
q is a statistical parameter. Thus, the known fluctuations 
of the growth rate of the face can be easily explained by 
the large variability in the number of fluctuations for a 
fixed elementary time of stationary crystal growth. 

The kinetic coefficients β and κ are close in 
magnitude because they reflect the competitive struggle 
of similarly sized building and impurity particles for the 
free kink. 

Stationary crystal growth, while preserving the 
macroscopic flat face and the dynamic stepped surface 
topography at the molecular level (Fig. 3), entails 
additional conditions that were taken into account when 
deriving formula (7): 
1. The number of fractures per unit face area at a 

given fixed supersaturation should be constant in 
time. That implies continuous generation of new 
rows of construction particles at the stage, 
compensating the phenomenon of fracture 
annihilation. The mechanism of this process is 
realized at the equilibrium transformation stage of 
the surface, represented by uniformly distributed 
elementary growth steps [13], as a result of small 
but frequent fluctuations of the free energy. 

2. It is known that the mean value of the effective 
fluctuations of the free energy, relevant to the model 

outlined, depends only on the temperature of the 
thermodynamic system and is constant over time. 
Therefore, regardless of the nature of the surface 
topography, the number of kinks within the 
desorption section can be assumed to be constant. 
Hence, it follows that the size of the surface area 
affected by the average fluctuation is proportional to 
the surface density of fractures under the given 
stationary growth conditions. 

3. If the average linear size of the desorption region is 
less than the distance between stages l2, then, 
according to the solution of the problem similar to 
the Buffon problem in the probability theory, all kinks 
will be concentrated on a section of one step length 
within area X. Thus, as the distance between steps 
increases, the frequency of kinks will as you might 
expect grow to the natural limit μ1=1. 

The frequency of steps μ2 in the desorption 
region depends on the critical curvature of the 
elementary step adjacent to the helical dislocation r2 
(Fig. 3) [6]. To solve such a problem, let us again turn to 
the two-dimensional nucleus model (4). Suppose the 
crystal face is subject to the solution oversaturation σf. 
We obtain a positive value of the radius of curvature of 
the elementary step: 

 
                          𝑟𝑟2 = 𝑏𝑏𝑏𝑏

𝑘𝑘𝑘𝑘 ln�σ𝑓𝑓+1� 
≈ 𝑏𝑏𝑏𝑏

𝑘𝑘𝑘𝑘σ𝑓𝑓
 > 0.          (8)  

 
As a rule, at the effective Burgers vector of 

dislocation h0, an initial step quickly disintegrates into 
elementary steps at distances of the order of 100 nm 
from the dislocation [11, 12]. Therefore, the critical 
curvature can be calculated using the elementary step 
model (4). 

Taking into account the natural limitation of the 
angular speed of rotation of the lower elementary step 
after the disintegration of the step height in the Burgers 
vector [6] in the first approximation we obtain the 
frequency of steps on the side face: 

                                    μ2 = 2π𝑟𝑟2ℎ0
𝑏𝑏2 = 2πℎ0𝐸𝐸

𝑏𝑏𝑏𝑏𝑏𝑏 σ𝑓𝑓
.                         (9)  

Thus, a quadratic dependence of the growth 
rate on supersaturation near the face surface appears 
when dislocation steps alternate uniformly: 

 
                𝑣𝑣 = β𝑏𝑏𝑏𝑏𝑏𝑏

2πκμ1𝐸𝐸(1−𝑞𝑞)τ0
σ𝑓𝑓2 = 𝐴𝐴σ𝑓𝑓2.             (10)  

 
If the Burgers vector exceeds the elementary 

step twice, the step frequency also doubles (Fig. 4). 
Thus, as a result of impurity desorption at the given 
section of the face, the unit step (the lower step of the 
package of the Burgers vector) present at distances up 
to 100 nm from the dislocation exit will have a radius of 
curvature corresponding to the parameter of a two-
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dimensional nucleus. This case reflects the 
requirements of equilibrium thermodynamics at the 
moment of impurity desorption and ensures the safety of 
the step. In a series of fluctuations, the radius of 
curvature, r2, may vary slightly near the mean value (8), 
which controls the stationary macroscopic growth rate 
(10). 

Note that observations of crystal growth lead to 
the well-known nonlinear dependence of the growth rate 
on the magnitude of supersaturation in the stirred 
solution (Fig. 5). For a well-stirred solution, a linear 
dependence between the supersaturation of the solution 
away from the crystal and near the surface of the face is 
usually assumed: 

σ𝑓𝑓 = 𝜗𝜗σ.  

Within this assumption, let us discuss the 
empirical data (Fig. 5.). At the initial stage the 
dependence of normal face growth rates on 
supersaturation is close to quadratic, which follows from 
formula (10), but following some supersaturation (σ > 
0.06) it becomes linear (Fig. 5, linear trend for alumina 
hexahedron).  

This transition to linear dependence is caused 
by the face relief rearrangement. When supersaturation 
increases up to the mentioned transition, numerous 
macro steps are formed on the crystal faces. According 
to (8), the frequency of steps increases. In an isothermal 
stationary process, the average fluctuation entropy jump 
value remains unchanged, so the area affected by 
desorption phenomena X, which is accounted for by a 
macro step, also decreases. Thus, at high kink density 
and growth of supersaturation, the relief parameters μ1 
and μ2 simultaneously tend to reach 1 and the limiting 
case comes – their dependence on supersaturation 
disappears. Thus, linear formula (7) in which B=const 
will be fulfilled (Fig. 5). For different simple 
crystallographic forms this transition occurs at different 
supersaturation values, which is caused by the structure 
of dislocations prevailing on the face. 

IV. Linear Onsager Regime 

At small supersaturations the justification of the 
linear Onsager regime becomes an important problem. 
In the stationary mode of growth of an open 
thermodynamic system, a linear dependence between 
the coupled thermodynamic forces and thermodynamic 
fluxes should be observed [3]. Thus, the normal velocity 
of the face and the supersaturation of the solution near 
its surface at small deviations from equilibrium should 
be related by a linear function. But the experimental data 
(Fig. 5) and formula (10) obviously contradict this. This 
discrepancy is well known and is often mentioned in 
scientific literature [6].

 

Note that in the macroscopic description of the 
growing face, such as (111) (Fig. 4.), the echelon of 
elementary steps on it represents a new crystallographic 
form with a different Miller index. In Fig. 4, the faces of 
the trigonal pyramid of the right lower dislocation in the 
circled region represent a simple tetragon trioctahedron 
shape with Miller indices {45.45.46}. As the 
supersaturation increases, the step frequency (9) grows 
and the face indices continuously decrease (the 
frequency of bands in the interferogram should 
increase). Therefore, the boundaries of the 
nonequilibrium thermodynamic system change with 
increasing supersaturation. Onsager's postulates 
formally cannot be applied to such system. However, it 
is possible to change the physical model by fixing the 
boundaries of the system by a certain simple 
tetragontrioctahedron shape in a small oversaturation 
interval by the condition μ2=const. Then, instead of 
equation (10), formula (7) with the constant coefficient B 
should be used in the thermodynamic analysis, and the 
linear Onsager regime comes into force. 

V. Supersaturations of Solution 

In the described model we used values of 
relative changes of solution concentration: σ', σf and σ. 
The first two of which are difficult to measure in the 
experiment. 

Note that even when the viscous crystallization 
medium is actively stirred, the relationship between σf 

and σ cannot be expressed as a linear relationship. 
However, assuming that all of the building substance 
diffusing through the viscous Newtonian boundary layer 
to the growing face of the crystal in the stationary growth 
regime is deposited on its surface, we obtain an 
additional equation for the growth rate: 

                                            𝑣𝑣 = 𝐷𝐷
ρ  
𝑑𝑑𝑐𝑐𝑓𝑓
𝑑𝑑𝑑𝑑

,                                (12)  

where D is the diffusion coefficient of the substance in 
solution, ρ is the density of the crystal. 

From expressions (10) and (11) in linear 
approximation of the boundary layer we obtain the 
relationship between supersaturations: 

σ𝑓𝑓 = 1
2ω
�√4ωσ+ 1 − 1�, 

where ω = (𝐴𝐴δρ) (𝐷𝐷𝑐𝑐0)⁄
 
is a dimensionless parameter, 

δ
 
is the thickness of the boundary layer. From the data 

in Fig. 5, it is difficult to establish the value of the 
parameter ω. However, it is clear that at low 
supersaturation the boundary growth mode always 
tends to the kinetic mode (σf

 
→

 
σ), while at high 

supersaturation – to the diffusion mode (σ𝑓𝑓 → �σ ω⁄ ).
 The situation is different when the growth rate 

depends linearly on supersaturation 0.06 < σ
 
< 0.15 
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(11)

(13)



(Fig. 5). Based on formulas (7) and (11), the growth 
mode will always be determined only by the value of the 
ϑ coefficient, which can be established empirically [14]. 

The case of natural convection is described in 
the model of the stationary boundary layer of the 
solution [17], when calculating the entropy production 
by the unit area of the growing face in the stationary 
mode: 

                                   𝑑𝑑𝑖𝑖𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝐾𝐾𝐾𝐾,                               (14) 

where K is the thermodynamic coefficient, linearly 
depending on supersaturation σ at stationary growth in 
a small deviation from equilibrium. In the extended 
version of the thermodynamic coefficient K, gravitation 
also provides its contribution. But the main component 
in K is always the first term – ρ𝑅𝑅 ln(σ + 1). 

Expression (12) is obtained for the stationary 
regime of growth, at which the structure of the laminar 
boundary layer can be considered as linear. In this case, 
it is impossible to derive the dependence of entropy 
production density by the growing face of the crystal on 
supersaturation of the solution. However, it is noted that 
the thickness of the boundary layer is always a free 
parameter, which is determined only by the solution of 
the hydrodynamic problem of substance transfer in 
solution. 

VI. Conclusions 

It has been shown by the method of molecular 
dynamics that the equilibrium state in a gas is formed 
after an average of ten particle collisions [3]. In 
solutions, local equilibrium occurs in time of the order of 
10-11 – 10-12 s. Thus, a interval of 10-2 – 10-3 s [14] 
between fluctuations leading to growth, is in stable 
thermodynamic equilibrium. During this time, the so-
called "equilibrium" processes of alignment of the step 
distribution density on the dislocation pyramid [13] and 
the kink density on each step are realized as a result of 
minor fluctuations. It is important that entropy 
fluctuations differ in varieties – fluctuations of 
temperature, number of moles of a chemical 
component, volume, polarizability, magnetization, 
potential energy of the center of mass, etc. These 
varieties of fluctuations can also have different signs, are 
independent, equally probable, and are the source of 
such equilibrium surface transformations. Due to these 
numerous fluctuations, a stable stationary macroscopic 
structure of the growing face surface is formed under 
constant crystallization conditions on a large time scale 
(Fig. 4). Due to the equilibrium state of the face 
completely covered by adsorbate and "equilibrium" 
fluctuations of free energy, the habit of the stationary 
nonequilibrium and equilibrium crystal forms coincide, 
which allows a continuous transition from growth to 
equilibrium [18] and further to dissolution. But as 

dissolution begins, the macro structure of the 
dislocation pyramid changes [14]. 

An important feature of the approach to crystal 
growth through fluctuations of free energy and entropy 
is the separation of events occurring on a time scale of 
the order of 10-4 s during relaxation and "equilibrium" 
processes and events on a scale of 1 minute. Each 
separate fluctuation of free energy should be considered 
as an independent random event, the relaxation 
consequences of which are described by classical 
dynamics [14]. But the macroscopic kinetics of crystal 
growth is influenced only by the integral result of multiple 
relaxation processes. Such a model makes it possible, 
let us emphasize, to bypass, but not to solve the 
problem of time – its reversibility in Newtonian dynamics 
and irreversibility in macroscopic phenomena of the 
growth process. 

Within such a two-level theory of crystal growth, 
it is possible to reliably justify equilibrium two-
dimensional nucleation of two types as an integral part 
of the combined nonequilibrium dislocation mechanism 
of crystal growth. However, in contrast to the 
conclusions of the authors of [9-12], hollow dislocation 
nuclei exist in a limited range of supersaturation due to 
the equilibrium mechanism and have little effect on the 
growth kinetics of the face. Based on the combined 
growth mechanism, it is easy to explain the complex 
behavior of the crystal growth rate given an increasing 
degree of deviation of the crystal-forming system from 
equilibrium, and the occurrence of a hollow dislocation 
nucleus resulting from minor deviations from 
equilibrium, which do not contradict the equilibrium and 
nonequilibrium thermodynamics and circumvent the 
problem of time. 
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Figures 

 

Fig. 1:
 
Location of surface atoms on the edge of tetragonal symmetry around the helical dislocation. The first layer of 
the nearest 16 atoms is shown. Atoms directly in contact with the dislocation are highlighted in color.

 

Fig. 2: Dependence of atom binding energy on the distance to the dislocation. The number indicates the atoms 
closest to the dislocation, located in the corresponding quarter of the coordinate system (Fig. 1) 
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Fig. 3: Structure of the dislocation pyramid on the growing crystal face 

Fig. 4:
 
Interferogram of the growth pyramids of two helical dislocations differing twice by the Buergers vector. The 

frequency of interference fringes is proportional to the frequency of elementary steps on the surface of the face (111) 
of alumina. The more active lower pyramid absorbs the upper one.
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Fig. 5:
 
Kinetics of growth of the crystal faces of alum-potassium alum in aqueous solution at active agitation, 

obtained with a Michelson interferometer. T
 
= 20°C.  1 – faces {111}, 2 – {100}, 3 – {110}. 
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