

GLOBAL JOURNAL OF SCIENCE FRONTIER RESEARCH: G
BIO-TECH & GENETICS
Volume 23 Issue 1 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 2249-4626 & Print ISSN: 0975-5896

Whole Exome Sequencing Identifies a Novel Mutation in ADGRV1 Responsible For Usher 2C Syndrome in a Large Inbred Family

By Juan Carlos Kuan, Maria Alexandra Angel, Juan Pablo Bernal, María Teresa Piñeros, Aida Giraldo, Alexandra Arias, Carolina Torres, Luis Gustavo Celis, Oscar-Javier Ortega-Recalde, Nora Contreras Bravo, Mauricio Arcos-Burgos, Claudia Silva-Aldana, Dora Janeth Fonseca, M. Arcos-Burgos, Adrien Morel & Carlos M. Restrepo

University of La Sabana

Abstract- *Introduction:* High-throughput sequencing facilitates the diagnosis of Usher syndrome and other conditions involving deafness and blindness that are genetically related, with improvements not only in accurate diagnosis, time savings, and genotype-phenotype correlation. Advances in genomic sequencing also makes it possible to approach isolated or remotely located populations with community genetics methodologies.

Keywords: *usher syndrome, ADGRV1, usher syndrome type 2C, autosomal recessive inheritance, inbreeding.*

GJSFR-G Classification: FOR Code: 1103

WHOLE EXOME SEQUENCING IDENTIFIES A NOVEL MUTATION IN ADGRV1 RESPONSIBLE FOR USHER 2C SYNDROME IN A LARGE INBRED FAMILY

Strictly as per the compliance and regulations of:

RESEARCH | DIVERSITY | ETHICS

Whole Exome Sequencing Identifies a Novel Mutation in *ADGRV1* Responsible for Usher 2C Syndrome in a Large Inbred Family

Juan Carlos Kuan ^a, María Alexandra Angel ^a, Juan Pablo Bernal ^b, María Teresa Piñeros ^c, Aida Giraldo ^y, Alexandra Arias ^d, Carolina Torres ^x, Luis Gustavo Celis ^v, Oscar-Javier Ortega-Recalde ^e, Nora Contreras Bravo ^z, Mauricio Arcos-Burgos ^f, Claudia Silva-Aldana ^g, Dora Janeth Fonseca ^f, M. Arcos-Burgos ^g, Adrien Morel ^g & Carlos M. Restrepo ^g

Abstract- Introduction: High-throughput sequencing facilitates the diagnosis of Usher syndrome and other conditions involving deafness and blindness that are genetically related, with improvements not only in accurate diagnosis, time savings, and genotype-phenotype correlation. Advances in genomic sequencing also makes it possible to approach isolated or remotely located populations with community genetics methodologies.

Material and methods: A remotely located and highly endogamic family with Usher syndrome with four affected members were ascertained with USH, by one ophthalmologist and several undergraduate medical students. Eye fundus diagnostic and audiology tests were made to the index patient. Following an informed consent adapted application, several family members were sampled for WES analysis. The sequencing and detection of variants was also performed from the sample of affected patients and from five healthy relatives, by means of a multigenic panel based on exome.

Results: A pathogenic variant in the *ADGRV1* NM_032119.4 c.6819dup T gene in homozygosity was identified in those affected. This variant is a new mutation for this gene and it causes an early stop codon NP_115495p.Ala2274Cysfs*4 that coincides with the familial segregation pattern of those affected.

Conclusion: Whole exome sequencing allowed to identify a new pathogenic variant for Usher Syndrome type 2C in an inbred family located in a remote region of Colombia.

Keywords: usher syndrome, *ADGRV1*, usher syndrome type 2C, autosomal recessive inheritance, inbreeding.

I. INTRODUCTION

Usher syndrome (USH) is a rare autosomal recessive condition characterized by degenerative vision, sensorineural hearing loss

Author ^a ^b ^c ^d ^e ^f ^g ^x ^v: Cellular Therapy and Metabolism Research Seedbed, Faculty of Medicine - University of La Sabana, Chia - Colombia. e-mail: luis.celis@unisabana.edu.co

Author ^z ^e ^f ^g ^a: Universidad Del Rosario, Bogotá, Colombia. School of Medicine and Health Sciences, Center for Research in Genetics and Genomics (CIGGUR), Institute of Translational Medicine (IMT),

Author ^c: Hospital Departamental San Vicente de Paul - Garzón - Huila - Colombia.

Author ^g: School of Medicine, Universidad de Antioquia, Medellin, Colombia.

and, sometimes, vestibular dysfunction [1]. USH is classified into four main types and at least 16 genes have been implicated in their etiology.

High-throughput sequencing (HTS) and whole exome sequencing (WES), are the preferred molecular diagnostic tools for USH diagnosis, as well as for other retinal dystrophies and hearing loss disorders in which genetic heterogeneity is present [2]. HTS has made it possible to identify candidate genes, pathogenic variants, genotype-phenotype correlations, rare undiagnosed diseases and information on the phenotypic spectrum of the disease [2].

This article presents as WES was performed to evaluate and precisely diagnoses a highly inbred family group affected by Usher type 2C syndrome, those who had not been able to be adequately studied, because they are located in a place of Colombia with scarce health resources, near a low complexity hospital, in a context of community genetics.

II. MATERIALS AND METHODS

a) Subjects

The index case (III,2) was ascertained by blindness and hearing loss into the hospital departmental San Vicente de Paul de Garzón (Huila), Colombia, the regional hospital facility located from the family's habitual residence. A genealogy was constructed showing that there were other affected members in the place of origin (III,1 deceased, III,4, III,6 and IV,1), including an inbreed union between siblings with an affected child (Figure 1A). A team was then organized with the ophthalmologist, undergraduate medical students with the support from geneticists located in a molecular genetics' laboratory in the capital city of Colombia. The team went to the nursing home and Pitalito (Huila), and evaluate the rest of the affected and healthy relatives. In summary, three more patients were identified, evaluated and sampled, so, they did not have any access to other additional functional tests.

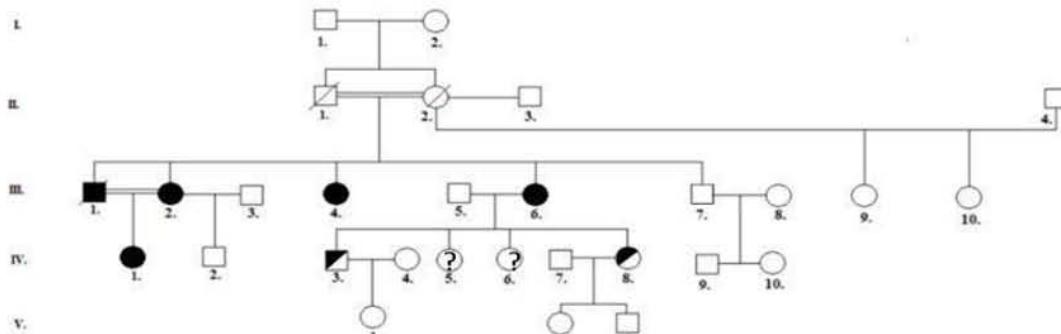


Figure 1A. Genealogical Tree

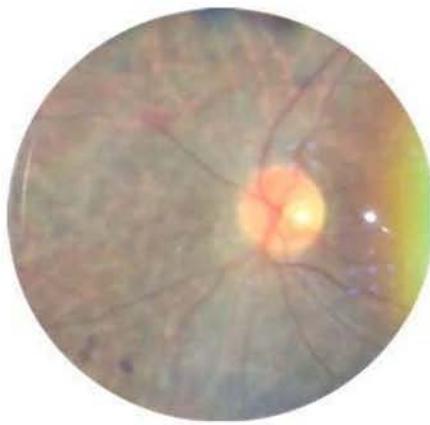


Figure 1B. Index Patient right eye funduscopy

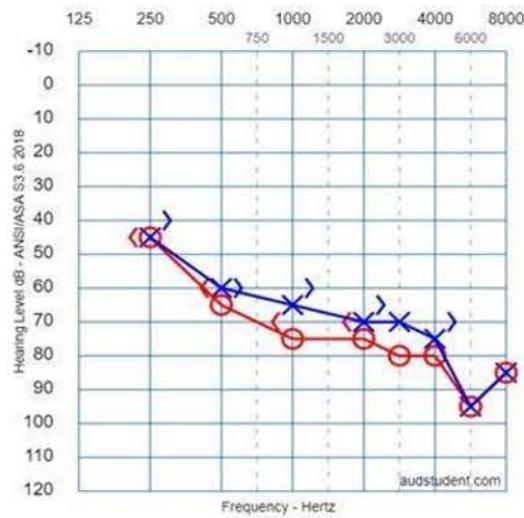


Figure 1C. Index Patient Tonal Audiometry

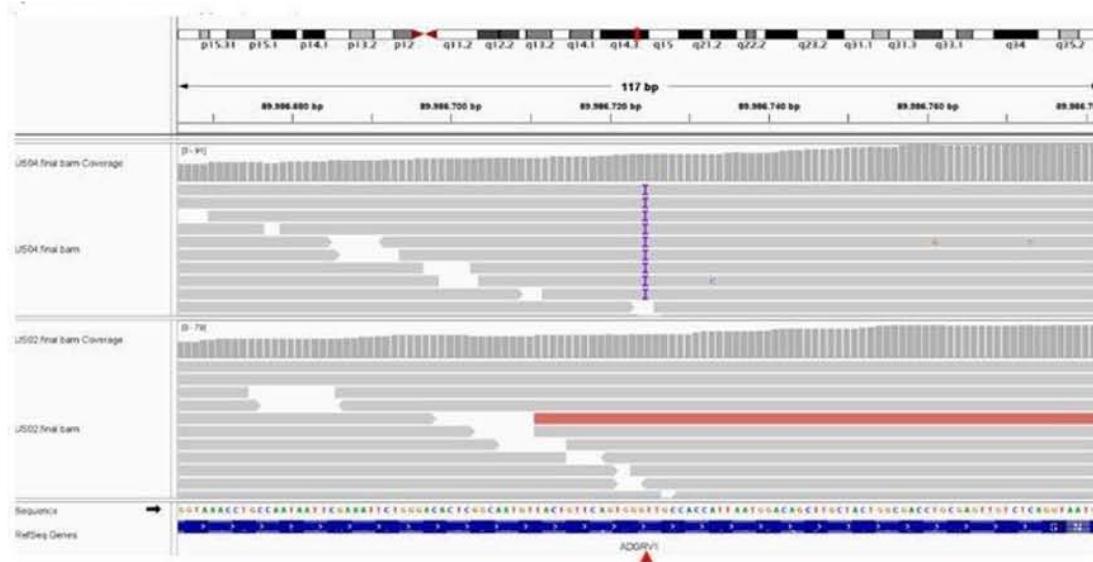


Figure 1D. BAM Archives

Figure 1B. Index patient right eye funduscopy. Pink optic disc, with 0.2 excavation, with defined edges, attenuated retinal vessels of central emergence, speckled pattern with granulation of the retinal pigmented epithelium, presence of bone spicules towards the equator, clear vitreous. Figure 1C. Tonal audiometry of the index case. Right ear: anacusis. Left ear: severe sensorineural hearing loss. Figure 1D. BAM file showing the patient homozygous for the mutant allele (US04) and homozygous for the Wild Type allele (US02).

b) *Diagnostic Tests*

All clinical evaluations, procedures and diagnostic tests had the approval and signature of an informed consent, accompanied by a witness. Given the

location of those affected, III,2, III,4, III,6 and IV,1, only diagnostic eye fundus tests were performed on (III,2, III,4, III,6 and IV,1), which data was shown (Figure 1B) and/or audiology on III,2 (Table 1).

Table 1: Main Usher Syndrome Type 2A (USH2A) Clinical Features

USH2A AFFECTED	AGE	SEX	USH MAIN CLINICAL FEATURES			DEBUTING AGE
			BLINDNESS	HEARING LOSS	VESTIBULAR	
US04 (III-4)	68	F	+	+	-	CHILDHOOD
US05 (III-6)	67	F	+	+	-	CHILDHOOD
US06 (IV-1)	25	F	+	+	-	CHILDHOOD - ADOLESCENCE
US07 (III-2)	52	F	+	+	+	CHILDHOOD

c) *Exome Sequencing and Data Analysis*

Genomic DNAs from four affected individuals (US04, US05, US06, US07) and four healthy relatives (US01, US02, US03, US08) was extracted from whole blood using standard procedures. Sequencing libraries were prepared using 1.0 μ g of genomic DNA per sample and the Agilent SureSelect Human All Exon kit (Agilent Technologies, CA, USA) following manufacturer's recommendations. Briefly, genomic DNA was fragmented by hydrodynamic shearing to generate 180-280 bp fragments. Next, overhang ends were converted into blunt ends and 3' ends were adenylated. Then, DNA fragments were ligated to adapter oligonucleotides, and these were enriched by PCR. Exon capture was performed by hybridization using biotin labeled probes and purification by the AMPure XP system (Beckman Coulter, Beverly, USA). Finally, captured libraries were enriched in a PCR reaction and index codes were added to each sample. Sequencing was performed in an Illumina HiSeq 2500 equipment generating paired-end reads. Library preparation and sequencing was carried out by Novogene (Beijing, China).

Raw reads were trimmed, and mapped to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner v0.7.8-r455 (BWA) [3] (doi: 10.1093/bioinformatics/btp698). Duplicate reads were marked in BAM files with Picard v1.111 and variant calling was performed using the GATK v3.8 [4] (doi: 10.1101/gr.107524.110). The percentage of reads mapped to the reference genome for all the samples was above 99.9% and the fraction of the targeted region covered with at least 10X was above 95%, for all samples. Variant call format (VCF) files were annotated and analyzed using the VarSeq v2.2.3 software. Variants were filtered using a multigene panel: *ADGRV1*, *ARSG*, *CDH23*, *CIB2*, *CLRN1*, *CRTAC1*, *ESPN*, *HARS1*, *MYO7A*, *PCDH15*, *PDZD7*, *USH1C*, *USH1G*, *USH2A* and *WHRN*; minimum allele frequency (MAF) <0.01 according to gnomAD genome and exome variant frequencies v2.1 [5] (doi:10.1038/s41586-020-03174-8); protein effect, including missense, indels, frameshift and splicing site

variants; and family segregation, assuming an autosomal recessive inheritance model.

III. RESULTS

The pedigree identifies five members who manifested USH, two of them were identified as healthy carriers of the mutation for the *ADGRV1* gene (Figure 1A). Four of the patients were interviewed to identify the clinical signs as shown in Table 1.

WES showed a new pathogenic variant which was identified in those affected with USH in *ADGRV1* NM_032119.4 c.6819dupT gene in homozygosis, which is a new mutation for this gene and it causes an early stop codon NP_115495p.Ala2274Cysfs*4, that coincides with the pattern of familial segregation in those affected (Figure 1C).

There were no other pathogenic or likely pathogenic variants identified in *ADGRV1* and other Usher known genes; in addition, no modifier alleles were identified in other genes in the whole exome sequencing analysis. Five homozygous *ADGRV1* NM_032119.4 c.6819dupT NP_115495p.Ala2274Cysfs*4 affected patients in the present family showed the same phenotype with blindness and hearing loss, even though there were limitations of resources for the detailed visual and hearing diagnosis, for which only two affected patients were tested because of their isolated geographic settlement.

IV. DISCUSSION

Usher syndrome (USH) is a clinically and genetically heterogeneous hereditary condition which is classified into four different main types, USH1, USH2, USH3 and USH4, depending on the age of onset, severity, progression of the symptoms and the presence or absence of vestibular dysfunction [1]. USH also presents genetic heterogeneity with at least 16 genes involved and further into different subtypes: USH1 is caused by the mutation of six different genes: *MYO7A*, *USH1C*, *CDH23*, *PCDH15*, *USH1G* and *CIB2*; USH2 is caused by the mutation of five genes *USH2A*, *ADGRV1*,

WHRN, PDZD7 and *DFNB31*; USH3 is related with mutation of two genes, *CLRN1* and *HARS* and USH4 is caused by mutations in *ARSG* gene. In addition, *ABHD12* gene is related with hearing loss, retinitis pigmentosa, cataracts and ataxia; *CEP78* and *CEP250* genes mutations causes two forms of cone-rod dystrophy with hearing loss [6]. This genetic heterogeneity implies difficulties in obtaining an accurate diagnosis in USH and also in no syndromic hearing loss and no syndromic retinitis pigmentosa forms [6], and the adequate correlation between the genotype and the phenotype. USH also has digenic, biallelic and polygenic inheritance, which adds difficulty to establish the precise diagnosis [6].

USH and other related conditions and their clinical and genomic heterogeneity requires a multidisciplinary team supported by complex laboratory equipment at fixed laboratory facilities, and sophisticated analysis to establish a precise diagnosis, to understand genotype-phenotype correlations and other particular issues for a rare disease. Genomic medicine helps us to shortcut those questions and WES analysis is ideal in cases with wide clinical and genetic variability, particularly in cases with real or relative geographical isolation or when it is impossible or difficult to evaluate several patients at the same time and collect all data and diagnostic tests of a sensory type (ophthalmological and auditory). In the present inbred familial case, genomic analysis by means of WES in a community context, through the taking of blood samples from those affected and relatives, quickly allowed obtaining the accurate diagnosis of USH2C in a short period of time, highlighting how DNA sequencing technologies are simplifying and accelerating genetic diagnosis.

USH type 2 (USH2) is the most frequent subtype and to date, three causative genes have been identified: *USH2A*, *WHRN* and *ADGRV1*, respectively causing USH2A, USH2B, USH2C and USH2D. The *ADGRV1* gene has mutations in 6 to 19 % of subtype 2 cases [7].

In the present study, a highly inbred family with five affected individuals of both genders with USH2C was identified: nine people were clinically examined: four women were affected, with three of them presenting progressive sensorineural hearing loss and retinitis pigmentosa; one, in addition, presented vestibular alterations evidenced by vertigo and gait impairment (Table 1), with which the diagnosis of USH2C was proposed. In addition, attention was paid to a first degree inbred union in which the parents and the daughter showed homozygosity for the *ADGRV1* and USH2C gene mutation with USH2C. Directed exome sequencing study with an Usher syndrome panel rapidly showed a new pathogenic variant in the *ADGRV1* gene, confirming not only the accurate diagnosis of the Usher Syndrome subtype, but also the number affected for a

family in a small village of Colombia; a fact that surely as a result of geographic isolation, facilitated the intrafamily unions observed in the genealogy.

The *ADGRV1* gene codifies an adhesion protein that binds to the V1 receptor of the G-protein which is part of the superfamily of polypeptides coupled to G-protein and expressed in the central nervous system. The *ADGRV1* protein functions as a transmembrane receptor with seven domains whose function is conducting the normal stereociliary development in the ear [8]. In the eye, the protein is involved in the growth of retinal photoreceptors [7]. Mutations in this gene have been related to four phenotypes: Usher syndrome type 2C with autosomal recessive inheritance, such as the present familial case; Usher syndrome type 2C, along with a polymorphism in the *PDZ7* gene in biallelic digenic inheritance, autosomal dominant isolated sensorineural deafness and familial febrile seizure syndrome type 4 of autosomal dominant inheritance [9-12] *ADGRV1* NM_032119.4 c.6819dupT gene in homozygosity, which is a new mutation for this gene and it causes an early stop codon NP_115495p. Ala2274Cysfs*4. WES analysis rapidly showed they differ because in USH type I, hearing loss is congenital and profound, with absence of vestibular functions and progressive retinitis pigmentosa with onset in childhood; USH type II has moderate to severe sensorineural hearing loss and retinitis pigmentosa with onset in the second decade of life; on the other hand, USH type III presents progressive sensorineural hearing loss and retinitis pigmentosa with onset in the second decade of life and variable vestibular dysfunction

Next-generation sequencing identified a new pathogenic variant in the gene *ADGRV1* NM_032119.4 c.6819dupT in homozygosity which caused an early stop codon NP_115495 p.Ala2274Cysfs*4, which predicts the synthesis of a short and possibly aberrant protein that affects the function of the G-protein complex.

In summary, a highly inbred family, located in a remote part of Colombia was identified with a pathogenic variant in the *ADGRV1* gene which causes USH2C in a fast way and with few resources of medical infrastructure. In addition, a new mutation was found for this gene. Emphasis is given to the usefulness of next-generation sequencing for a rapid solution and diagnosis of difficult cases.

V. CONCLUSIONS

Next-generation sequencing is a useful tool to identify mutations and in the rapid and accurate diagnosis of rare diseases such as Usher Syndrome type 2C in remote places, that also was able to be discovered because this family had a highly inbred factor between them, which allowed a new mutation of a recessive syndrome to take place in their genomics.

ACKNOWLEDGMENTS

The research team thanks the Universidad del Rosario for providing its facilities, equipment, and personnel to carry out all the molecular and genetic analysis of the samples evaluated. Likewise, we thank the Hospital San Vicente de Paul for collaborating with the recruitment of the evaluated subjects. Finally, we thank our patients for allowing us to publicize their case and broaden the knowledge of the disease.

REFERENCES RÉFÉRENCES REFERENCIAS

1. Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. *Int J Mol Sci.* 2021 Jun 23;22(13):6723. doi:10.3390/ijms22136723. PMID: 34201633; PMCID: PMC8268283.
2. Perea-Romero I, Blanco-Kelly F, Sanchez-Navarro I, Lorda-Sanchez I, Tahsin-Swafiri S, Avila-Fernandez A, Martin-Merida I, Trujillo-Tiebas MJ, Lopez-Rodriguez R, Rodriguez de Alba M, Iancu IF, Romero R, Quinodoz M, Hakonarson H, Garcia-Sandova B, Minguez P, Corton M, Rivolta C, Ayuso C. NGS and phenotypic ontology-based approaches increase the diagnostic yield in syndromic retinal diseases. *Hum Genet.* 2021 Dec;140(12):1665-1678. doi: 10.1007/s00439-021-02343-7. Epub 2021 Aug 26. PMID: 34448047; PMCID: PMC8553673.
3. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics.* 2010 Mar 1;26(5):589-95. doi: 10.1093/bioinformatics/btp698. Epub 2010 Jan 15. PMID: 20080505; PMCID: PMC2828108.
4. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110. Epub 2010 Jul 19. PMID: 20644199; PMCID: PMC2928508.
5. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME; Genome Aggregation Database Consortium, Neale BM, Daly MJ, MacArthur DG. Author Correction: The mutational constraint spectrum quantified from variation in 141,456. *humans.* *Nature.* 2021 Feb;590(7846):E53. doi: 10.1038/s41586-020-03174-8. Erratum for: *Nature.* 2020 May;581(7809):434-443. PMID: 33536625; PMCID: PMC8064911.
6. Castiglione A, Möller C. Usher Syndrome. *Audiol Res.* 2022 Jan 11;12(1):42-65. doi: 10.3390/audiolres12010005. PMID: 35076463; PMCID: PMC8788290.
7. Stemerding, M., García-Bohórquez, B., Schellens, R., Garcia-Garcia, G., van Wijk, E., & Millan, J. M. (2021). Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. In *Human Genetics.* Springer Science and Business Media Deutschland GmbH. <https://doi.org/10.1007/s00439-021-02324-w>.
8. ADGRV1 adhesion G protein-coupled receptor V1 [homo sapiens (human)] - gene - NCBI National Center for Biotechnology Information. U.S. National Library of Medicine. Available at: <https://www.ncbi.nlm.nih.gov/gene/84059/#bibliography> (Accessed: June 7, 2022).
9. Wu D, Huang W, Xu Z, Li S, Zhang J, Chen X, Tang Y, Qiu J, Wang Z, Duan X, Zhang L. Clinical and genetic study of 12 Chinese Han families with nonsyndromic deafness. *Mol Genet Genomic Med.* 2020 Apr;8(4):e1177. doi: 10.1002/mgg3.1177. Epub 2020 Feb 12. PMID: 32048449; PMCID: PMC7196461.
10. Sainan Z, Webster AR, Luxon L & Bitner-Glindzic M (2009) Update on Usher syndrome. *Curr Opin Neurol* 22: 19–27.
11. Millán JM, Aller E, Jaijo T, Blanco-Kelly F, Giménez-Pardo A & Ayuso C (2011) An Update on the Genetics of Usher Syndrome. *J Ophthalmol* 2011: 1–8.
12. Jouret G, Poisier C, Spodenkiewicz M, Jaquin C, Gouy E, Arndt C, Labrousse M, Gaillard D, Docophoroff M & Lebre A-S (2019) Genetics of Usher Syndrome: New Insights From a Meta-analysis. *Otol Neurotol* 40: 121–129.

