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We are interested in the turbulence of one dimensional fluid flows in one
dimensional sticky dynamics. In [1], the authors considered, in Eulerian
coordinates, the velocity field u of fluid particles and a probability field µ
representing their mass or charge distribution. The particles are supposed ac-
celerated between two successive shock times; the dynamics is then governed
by a force (measure) field ν. For suitable initial data (µ, u)|t=0 = (µ0, u0) and
by discrete approximations, they solved the forced pressureless gas system

∂t(µ) + ∂x(uµ) = 0
∂t(uµ) + ∂x(u

2µ) = ν
µt → µ0, u(·, t)µt → u0µ0 weakly as t −→ 0

(1)

where the force ν is absolutely continuous, in the space states, with respect
to (w.r.t.) µ.
In this paper, we consider non accelerated fluid particles, so the force of [1]
is null and the solution of (1) is thus the one of [2, 8, 3]. In this work, we
concentrate our attention on turbulences which generate, for (1), a new force
whose the support is included in the set of shock (and pure turbulence) sites,
in space-time.
Let us first recall the constructions of [2, 8, 3]. They all rely on the sticky
particle dynamics which was introduced, at a discrete level, by Zeldovich [9]
in order to explain the formation of large structures in the universe. That is
a finite number of particles which move with constant velocities while they
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A Forced Pressure-Less Gas System via Sticky Particles Turbulences

are not collided. All the shocks are inelastic following the conservation laws
of mass and momentum.

At a continuous level, the initial state of particles is given by the support
of a non negative measure µ0. A particle starts from position x with velocity
u0(x) and mass µ0({x}). The particles move with constant velocities and
masses while not collided. All the shocks are inelastic, following the conser-
vation laws of mass and momentum. In their pioneering work, E et al [8]
made this construction when the particles are every where in R, u0 is contin-
uous and the mass of any interval [a, b] is computed with a positive density
f , i.e. µ0([a, b]) =

∫ b
a
f(x)dx. At time t, a particle of position x(t) has the

mass µ({x(t)}, t) and the velocity u(x(t), t), the momentum of any interval
[a(t), b(t)] is

∫ b(t)
a(t)

u(x, t)µ(dx, t). The authors then solved (1) with ν ≡ 0.
At the same time and independently, Brenier and Grenier [2] considered

the case of particles confined in a in interval [a, b], i.e. µ0([a, b]c) = 0. By dis-
cretization of µ0 and using discrete sticky particle dynamics, they solved the
scalar conservation law ∂tM + ∂x(A(M)) = 0 by a weak solution (M,A), the
unique which has some entropy condition. As a consequence, the Lebesgue-
Stieltjes measure ∂x(A(M)) is absolutely continuous w.r.t. ∂xM =: µ(·, t),
of Randon-Nicodym derivative a function u(·, t). Then (µ, u) solves (1) with
ν ≡ 0.

In [3], Dermoune and Moutsinga constructed the sticky particles dynam-
ics with an initial mass distribution µ0, any probability measure, and a initial
velocity function u0, any continuous and locally integrable function such that
u0(x) = o(x) as x→∞. The authors united and generalized previous works
of [8, 2] with the arguments that the particles paths define a Markov process
t 7→ Xt solution of the ODE

dXt = u(Xt, t)dt, (2)

and the velocity process t 7→ u(Xt, t) is a backward martingale. Moreover,
µ(·, t) = Law(Xt).

In [6, 7], using suitable convex hulls, Moutsinga extended the construction
when µ0 is any non negative measure and u0 has no positive jump. He gave
the description of different kinds of clusters [α(x, t), β(x, t)], i.e the set of all
the initial particles y(0) which have the same position y(t) = x at time t.

Following the preoccupation of Eyink and Drivas ([4]) about turbulences,
Nzissila, Moutsinga and Eyi Obiang [5] defined a turbulent interval as a set
[a, b] of initial positions of sticky particles from which rise a turbulence. This
means that for all y ∈ [a, b], the interval [a, b] is the widest among the inter-
vals [a′, b′] 3 y which have the same position y + τ(y)u0(y) at their common
first shock time τ(y). The term "turbulence" (instead of "shock") is justified
by the description of a degenerated turbulent interval [a, b] = {a}. In this
case, at its mathematical first shock time τ(a), the particle a does not enter
in a real shock but it begins a coagulation process; it enters in a pure turbu-
lence without beginning by a real shock.
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At time of turbulence τ(a), the turbulent interval [a, b] is part of a cluster
[α, β] (a, b ∈ [α, β]). The initial positions a, b, α, β are called turbulent par-
ticles. The motions of these particles are given by four backward Markov
processes, respectively, Z1, Z2, Z3 and Z4 solutions of (2) and whose the ve-
locity processes (the derivatives) are semi-martingales.

In this paper, we consider a process Z of more general form than in [5].
The gas system (1) is studied with a force generated at random turbulence
time γ = τ(Z0).

The paper is organized as follows. Section 2 is devoted to the sticky par-
ticles model. We recall its definition and the main properties used here. In
section 3 we come back to the results of [5] according to the study of turbu-
lence. These results were obtained when the support of µ0 is an interval (i.e.
there is no vacuum of matter). We generalize them to any type of support.
The particularity, in presence of vacuum, is that traditional delta-shocks are
transformed into butterfly-shocks (like in [3]). Section 4 is devoted to scalar
conservations laws from the point of view of turbulent particles. First we
give an entropy solution (N,A) with the same flux A as in [2], but with
different initial data. Then, in subsection 4.1 we study the gas system. Con-
sidering the construction of [5], we define a process of more general form
t 7→ Zt = Z1

t 1IA1 +Z2
t 1IA2 +Z3

t 1IA3 +Z4
t 1IA4 , with the help of any complete sys-

tem of events A1, A2, A3, A4. A solution of (1), is given by µ(·, t) := Law(Zt)
and u(Zt, t) := dZt

dt
. The force ν is absolutely continuous w.r.t. the law of

the couple (Zγ, γ).

Although this solution is constructed from the sticky particles model, it
does not have the properties of [1].

The definition of one dimensional sticky particle dynamics requires a mass
distribution µ, any Radon measure (a measure finite on compact subsets) and
a velocity function u, any real function such that the couple (µ, u) satisfies
the Negative Jump Condition (NJC) defined in [6]. Precisely, consider the
support S = {x ∈ R : µ(x− ε, x+ ε) > 0, ∀ε > 0} of µ and the subsets
S− = {x ∈ R : µ(x− ε, x) > 0}, S+ = {x ∈ R : µ(x, x+ ε) > 0, ∀ε > 0}.
Suppose that u is µ locally integrable and consider the generalized limits u−,
u+ :

u−(x) = lim sup
ε→0

∫
[x−ε, x)

u(η)µ(dη)

µ[x− ε, x)
, ∀x ∈ S−, (3)

u+(x) = lim inf
ε→0

∫
(x, x+ε]

u(η)µ(dη)

µ(x, x+ ε]
, ∀x ∈ S+. (4)

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

II. Flow and Velocity Field of Sticky Particles

a) The sticky particle dynamics
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The Negative Jump Condition requires that

u−(x) ≥ u(x) ∀x ∈ S−, u(x) ≥ u+(x) ∀x ∈ S+. (5)

In the whole paper, we mainly use µ0 = λ, the Lebesgue measure. That’s
why we always suppose that the support S = R.

Considering particles of initial mass distribution µ0 and of initial velocity
function u0, their sticky dynamics is defined in [7], when the couple (µ0, u0)
satisfies (5) and x−1u(x) → 0 as |x| → +∞. The dynamics is characterized
by a forward flow (x, s, t) 7→ φs,t(x) defined on R× R+ × R+.

For all x, s, t :

1. φs,s(x) = x and φs,t(·) is non-decreasing and continuous.

2. The value φs,t(x) is the position after supplementary time t of the
particle which occupied the position x at time s. More precisely :

φs,t(φ0,s(y)) = φ0,s+t(y) , ∀ y. (6)

3. If φ−1
0,t ({x}) =: [α(x, 0, t), β(x, 0, t)] with α(x, 0, t) < β(x, 0, t), then

x =

∫
[α(x,0,t), β(x,0,t)]

(a+ tu0(a))dµ0(a)

µ0([α(x, 0, t), β(x, 0, t)])
.

Else

x = α(x, 0, t) + tu0(α(x, 0, t)) = β(x, 0, t) + tu0(β(x, 0, t)) .

4. β(x, 0, t) + tu0(β(x, 0, t)) ≤ x ≤ α(x, 0, t) + tu0(α(x, 0, t)).
If µ0([α(x, 0, t), y]) > 0 and µ0(]y, β(x, 0, t)]) > 0, then

∫
]y,β(x,0,t)]

(a+ tu0(a))dµ0(a)

µ0(]y, β(x, 0, t)])
≤ x ≤

∫
[α(x,0,t),y]

(a+ tu0(a))dµ0(a)

µ0([α(x, 0, t), y])
.

5. The function [0, t] 3 x 7−→ φ0,s(α(x, 0, t)) is concave. It is a straight
line if and only if x = α(x, 0, t) + tu0(α(x, 0, t)).
The function [0, t] 3 x 7−→ φ0,s(α(x, 0, t)) is convex. It is a straight
line if and only if x = β(x, 0, t) + tu0(β(x, 0, t)).

6. For any compact subsetK = [a, b]×[0, T ], considerAT = α(φs,T (a), s, T ),
BT = β(φs,T (b), s, T ) and the probability µKs =

1I[AT ,BT ]

µs([AT ,BT ])
µs. The

sticky particle dynamics induced by (µKs , us), during time interval [0, T ],
is characterized by the restriction of the function (y, t) 7→ φs,t(y) on
[AT , BT ]× [0, T ].

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

b) Proposition (Forward flow)
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The latter means that the restriction of flow on a compact subset of space-
time does not depend of the whole matter, but only on the restriction of the
matter (distribution) on a compact subset of space states.

Remark that if x = α(x, 0, t) + tu0(α(x, 0, t)) = β(x, 0, t) + tu0(β(x, 0, t)),
then the graphs [0, t] 3 s 7→ φ0,s(α(x, 0, t)), φ0,s(β(x, 0, t)) draw a delta-
shock, well known in the literature (Figure 1). Otherwise, these graphs draw
a kind of butterfly-shock with foded wings (Figure 2)

The blue line on the left (resp right) of the middle shock wave represents the trajectory of the
particle which started from position α(x, 0, t) (resp β(x, 0, t)). It is trajectory [0, t] 3 s 7→ φ0,s(α(x, 0, t))
(resp [0, t] 3 s 7→ φ0,s(β(x, 0, t)))

The blue curve on the left (resp right) represent the trajectory of particle which start at the
position α(x, 0, t) (resp β(x, 0, t)) whch is the trajectory of [0, t] 3 s 7→ φ0,s(α(x, 0, t)) (resp [0, t] 3 s 7→
φ0,s(β(x, 0, t)))

What about the velocity?

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

1. For all y, s, the function t 7→ φs,t(y) has everywhere left hand deriva-
tives. It has everywhere right hand derivatives, except when φ−1

s,t (φs,t(y)) =:
[a, b] with µs([a, b]) = 0 and a < b. Now and after, the notation
∂

∂t
φs,t(y) stands for the right hand derivative.

2. There exists a function (x, t) 7→ ut(x) such that
∂

∂t
φ0,t(y) = ut(φ0,t(y))

everywhere the right derivative exists.

Figure 1:

Figure 2:

c) Proposition (Flow derivative)
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3. For any compact subsetK = [a, b]×[0, T ], considerAT = α(φs,T (a), s, T ),
BT = β(φs,T (a), s, T ) and the probability µKs =

1I[AT ,BT ]

µs([AT ,BT ])
µs. If the

right hand derivative exits for (x, y) ∈ K, the using the conditional
expectation under µKs , we have

∂

∂t
φs,t(y) = EµKs [us|φs,t(·) = φs,t(y)] . (7)

We call a cluster at time t all interval of the type [α(x, 0, t), β(x, 0, t)].
The last assertion of proposition 2.1 implies an important property on the
velocity of a cluster.

1. If [α(x, 0, t), β(x, 0, t)] has positive mass, then

ut(x) =

∫
[α(x,0,t), β(x,0,t)]

u0(a)dµ0(a)

µ0([α(x, 0, t), β(x, 0, t)])
.

If α(x, 0, t) = β(x, 0, t), then ut(x) = u0(α(x, 0, t)).
Else ut(x) is not (well) defined.

2. u0(β(x, 0, t)) ≤ ut(x) ≤ u0(α(x, 0, t)).
If µ0([α(x, 0, t), y]) > 0 and µ0(]y, β(x, 0, t)]) > 0, then

∫
]y,β(x,0,t)]

u0(a)dµ0(a)

µ0(]y, β(x, 0, t)])
≤ ut(x) ≤

∫
[α(x,0,t),y]

u0(a)dµ0(a)

µ0([α(x, 0, t), y])
.

3. If α(x, 0, t) ∈ S− (resp. β(x, 0, t) ∈ S+ ), then u−t (x) = u0(α(x, 0, t)).
( resp. u+

t (x) = u0(β(x, 0, t))).

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

4. If u0(α(x, 0, t)) = ut(x), then µ0 (]α(x, 0, t), β(x, 0, t)]) = 0 and x =
α(x, 0, t) + tu0(α(x, 0, t)) = β(x, 0, t) + tu0(β(x, 0, t)).

5. If u0(β(x, 0, t)) = ut(x), then µ0 ([α(x, 0, t), β(x, 0, t)[) = 0 and x =
α(x, 0, t) + tu0(α(x, 0, t)) = β(x, 0, t) + tu0(β(x, 0, t)).

6. For all t ≥ 0, we have ut(x) = o(x) as |x| → +∞. For all t > 0,
if α(x, 0, t) ∈ S− (resp. β(x, 0, t) ∈ S+ ), then lim

y→x
y<x

ut(y) = u−t (x) =

u0(α(x, 0, t)) (resp. lim
y→x
y>x

ut(y) = u+
t (x) = u0(β(x, 0, t))).

Let (µ0, u0) be as in theorem 2.1. On abstract measure space (Ω, F , P ) we
define a measurable function X0 : Ω −→ R with image-measure P ◦X−1

0 =

d) Corollary

e) Markov and martingale properties
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µ0. In practice, (Ω, F , P ) = (R,B(R), µ0) and X0 is the identity function.
For all t ≥ 0, we set Xt = φ0,t(X0). As a consequence of theorem 2.1, we
have the following :

1. ∀s, t, we have

Xs+t = φs,t(Xs) (8)

2. If u0 is µ0 integrable, then under the measure µ0 (or P ) :

d

dt
Xt = E[u0(X0)|Xt] = ut(Xt). (9)

Else, for any compact K = [a, b] × [0, t + s], if φ0,t+s(a) ≤ Xt+s ≤
φ0,t+s(b), then under the conditional probability µK0 , we get (9).

3. If u0 is µ0 integrable, then under the measure µ0 (or P ) :

ut+s(Xt+s) = E[ut(Xt)|Ft+s] , with Ft = σ(Xu, u ≥ t). (10)

Else, for any compact K = [a, b] × [0, t], φ0,t+s(a) ≤ Xt+s ≤ φ0,t+s(b),
then we get (10) under the probability µK0 (or under the conditional
probability knowing α(φ0,t+s(a), 0, t+ s) ≤ X0 ≤ β(φ0,t+s(a), 0, t+ s).

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

In this section, inspired by a preocupation from [4], we study the sticky
particles dynamics from the point of view of turbulence. Generalizing the
results of [5], we get a class of Markov processes solution (2). The velocities
fields are backward semi-martingales.

In [5], was defined the first turbulence (or shock) time of the particle initial
position a :

τ(a) = inf
{
t : u−(φ0,t(a), t) 6= u+(φ0,t(a), t)

}
. (11)

Let X0 be of image-measure µ0. Define γ = τ(X0) and the cluster [Z3
0 , Z

4
0 ] =

[α(Xγ, 0, γ), β(Xγ, 0, γ)] in which belongs X0 at time γ. The turbulent
interval [Z1

0 , Z
2
0 ] is defined as the greatest interval containing X0 on which

τ is constant. It was shown in [5] that the velocities of these variables are
semi-martingales, when µ0 = λ the Lebesgue measure. The same result was
obtained for the combination Z5

0 = Z5
01A + Z5

01Ac , with the event A : " the
particle enters in the shock from the left ". The interesting variable Z5

0 was
introduced [4] in order to study the Burgers turbulence.

f) Proposition (Markov and martingale property)

III. Turbulence

a) Flow, delta-shock and butterfly-shock
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Our goal is to generalize the results of [5] to any non-negative measure
µ0 and any function u0 with negative jumps (w.r.t. µ0). For i = 1, 2, 3, 4, 5,
we consider the process t 7−→ Zi

t = φ0,t(Z
i
0). But one could have other

preoccupations than the above event A of [5]. We are led to defined the
process of more of more general form t 7−→ Zt = Z1

t 1A1 + Z2
t 1A2 + Z3

t 1A3 +
Z4
t 1A4 , with the help of any partition A1, A2, A3, A4 of Ω, events of σ(X0).

Following the implication the application of the Zi
0’s, we have fifteen (24−1)

types of processes . (If Ai = Ω; then Z = Zi).

1. Let Z stand independently for Z1, Z2, Z3 or Z4.

∀ t, s ≥ 0, Zs+t = φs,t(Zs) ,
d

dt
Zt = u(Zt, t) .

2. τ(Z1
0) = τ(Z2

0) = τ(X0) = γ and

∀ t ≤ γ, Z1
t = Z1

0 + tu0(Z1
0) ≤ Xt = X0 + tu0(X0) ≤ Z1

t = Z2
0 + tu0(Z2

0) ,

∀ t ≥ γ, Xt = Z1
t = Z2

t = Z3
t = Z4

t .

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

3. τ(Z3
0) ≤ γ and τ(Z4

0) ≤ γ.

[0, γ] 3 t 7−→ Z3
t is concave and [0, γ] 3 t 7−→ Z3

t is convex.

∀ t ≤ τ(Z3
0), Z3

t = Z3
0 + tu0(Z3

0)

∀ t ≤ τ(Z4
0), Z4

t = Z4
0 + tu0(Z4

0); .

The segment [Z1
0 , Z

2
0 ] and the paths [0, γ] 3 t 7−→ Z1

t , Z
2
t draw a prime

delta-shock (so called in [5] because of the first shock time of turbulence).
If τ(Z3

0) = τ(Z4
0) = γ, then the paths [0, γ] 3 t 7−→ Z3

t , Z
4
t are linear;

and the draw, with the segment [Z3
0 , Z

4
0 ], delta shock (well known in the

literature) (see figure 1 ).
If τ(Z3

0) < γ (resp. τ(Z4
0 < γ)), then the path [0, γ] 37−→ Z3

t (resp.
[0, γ] 37−→ Z3

t ) is linear; this can occur o,ly when Z3
0 /∈ S− (resp. Z4

0 /∈ S+).
If max (τ(Z3

0), τ(Z4
0)) < γ, then the paths [0, γ] 37−→ Z3

t , Z
3
t draw, not a

delta-shock, but butterfly-shock with folded wings (see Figure 3).

i. Proposition (Random butterfly-shock)
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A B

Delta-shock and butterfly-shock

1. t 7−→ u(Zt, t)1t<γ is bounded variational process adapted to the nat-
ural non increasing filtration FX of X.

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

2. For all t, u(Zt, t) = [u(Zt, t)−u0(X0)]1t<γ+Mt, withMt = E
[
u0(X0)|FXt

]
.

Hence, t 7−→ u(Zt, t) is a backward càdlàg semi-martingale of FX .
3. If γ = τ(Z0), then for all t, u(Zt, t) = [u0(Z0) −M0]1t<γ + Mt, with
Mt = E

[
u0(X0)|FZt

]
. Hence, t 7−→ u(Zt, t) is a backward càdlàg

semi-martingale of FZ .
4. If γ is an optional time of FZ , then t 7−→ u(Zt, t) is a backward

càdlàg semi-martingale of the completed filtration FZ . Moreover t 7−→
u(Zt, t)− [u(Zt, t)−M−

γ ]1t<γ

We recall that for any non increasing filtration F , the filtration F is
defined by Ft = σ (Ft ∪N ), where N is the set of negligible events of F0.

Before the proof, we recall some properties well known in the theory of
stochastic processes.

Let a process Z be adapted to a non increasing filtration G = (Gt, t ≥ 0).
Let Γ be an optional time with respect to G, i.e. for all t ≥ 0, the event
{Γ > t} ∈ Gt. The following holds.

1. The set GΓ := {A ∈ G0 : A ∩ {Γ > t} ∈ Gt} is a sigma-algebra.

2. If all the paths of Z are either continuous on the right or on the left,
then the r.v. ZΓ1IΓ<∞ is GΓ measurable.

3. Suppose that G is continuous on the right; that is, for all t, Gt =

σ
(
∪
s>t
Gs
)
. If Z is a backward martingale with respect to G, then for all

b) Velocity process as semi-martingale

i. Proposition

c) Lemma
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A Forced Pressure-Less Gas System via Sticky Particles Turbulences

1. If a process Z is such that Zs+t = φs,t(Zs) for all t, s ≥ 0, then
τ(Z0) =: Γ is an optional time with respect to the natural non in-
creasing filtration FZ of Z. Moreover, FZ0 = FZΓ .

2. Suppose that {Γ ≤ t} ∈ FZ ∩ FZ′ for some t ≥ 0. If Z ′t1IΓ≤t = Zt1IΓ≤t,
then E[F |Z ′t]1IΓ≤t = E[F |Zt]1IΓ≤t for all integrable r.v. F .

The second assertion is satisfied by (Z, Z ′) = (X, Z1) and (Z, Z ′) = (X, Z2),
with Γ = γ. Both Z3 and Z4 satisfy only the first assertion.

We begin with the first assertion. u−(·, t), u+(·, t) are Borel func-
tions and it is well known that if u is discontinuous in (Zt, t), it is also
discontinuous in (Zt+s, t+ s). Then,

{Γ ≤ t} = {u−(Zt, t) 6= u+(Zt, t)} ∪ [{u−(Zt, t) = u+(Zt, t)} ∩ {Γ = t}] .

Since

{u−(Zt, t) = u+(Zt, t)} ∩ {Γ = t} = {u−(Zt, t) = u+(Zt, t)}∩[
∩
n≥1
{u−(Zt+1/n, t+ 1/n) 6= u+(Zt+1/n, t+ 1/n)}

]
,

the proof of the first assertion is done.
Remark that Zt+1/n = φt,1/n(Zt). So {Γ ≤ t} = Z−1

t (At), with

At = {u−(·, t) 6= u+(·, t)}∪
(
{u−(·, t) = u+(·, t)}∩

[
∩
n≥1
{u−(φt,1/n, t+ 1/n) 6= u+(φt,1/n, t+ 1/n)}

])

Now we show that FZ0 = FZΓ . First remark that if {b} 6= φ−1
0,t (φ0,t(b)),

then τ(b) ≤ t. Thus for all Borel subset B and t ≥ 0, we have B ∩{τ > t} =
φ−1

0,t (φ0,t(B)) ∩ {τ > t} and

Z−1
0 (B) ∩ {τ(Z0) > t} = Z−1

t (φ0,t(B)) ∩ {τ(Z0) > t} ,

Z−1
0 (B) ∩ {Γ > t} = Z−1

t (φ0,t(B)) ∩ {Γ > t} ∈ FZt .

This means that Z−1
0 (B) ∈ FZΓ .

t, the right hand and left hand limits Zt+ , Zt− exist a.s. Moreover, the
process t 7→ Z(Γ∨t)+ −∆Γ1IΓ>t is a backward martingale with respect to
the completed filtration G, with ∆Γ = ZΓ+ − ZΓ− .

d) Lemma

Proof.
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A Forced Pressure-Less Gas System via Sticky Particles Turbulences

For the second assertion, since Zt1Iγ≤t = Z ′t1IΓ≤t, it is easy to see that
E[F |Z ′t]1IΓ≤t is σ(Z ′t) ∩ σ(Zt) measurable; for all bounded Borel function h,

E
(
h(Zt)E[F |Z ′t]1IΓ≤t

)
= E

(
h(Z ′t)E[F |Z ′t]1IΓ≤t

)
= E

(
h(Z ′t)F1IΓ≤t

)
= E

(
h(Zt)F1IΓ≤t

)
= E

(
h(Zt)E[F |Zt]1IΓ≤t

)
.

Hence, E[F |Z ′t]1IΓ≤t = E[F |Zt]1IΓ≤t a.s.

1) The restriction [0, γ[3 t 7−→ u(Zt, t) is monotone. Thus, the process
R+ 3 t 7−→ u(Zt, t)1t<γ is a bounded variational process. It is adapted to
FX since γ is an optional time of this filtration.

2) We have FX0 = FXγ . So for all t, the r.v. u0(X0)1t<γ is FXt -measurable.
Since FXt = σ(Xt), we get

u(Zt, t)1γ≤t = u(Xt, t)1γ≤t = E [u0(X0)|Xt]︸ ︷︷ ︸
Mt

1γ≤t

= Mt − E [u0(X0)1t<γ|Xt] = Mt − u0(X0)1t<γ.

Then for all t, u(Zt, t) = [u(Zt, t)− u0(X0)]1t<γ +Mt.

3) Same proof as previous, using the fact that FZ0 = FZγ and E [u0(X0)|Xt]1γ≤t =
E [u0(X0)|Zt]1γ≤t (lemma 3.4)
4) Simple application of lemma 3.3. For all t,

u(Zt, t)1γ≤t = u(Xt, t)1γ≤t = E [u0(X0)|Xt]1γ≤t = E [u0(X0)|Zt]︸ ︷︷ ︸
Mt

1γ≤t

= Mγ∨t −∆γ1t<γ −M−
γ 1t<γ

with ∆γ = Mγ −M−
γ .

Remark that assertion 3) is a consequence of 4). Indeed, if γ = τ(Z0),
then FZ0 = FZγ (lemma 3.4). So M−

γ and Mγ are FZγ measurable and the
processes t 7−→ Mγ∨ t, Mγ1t<γ, ∆γ1t<γ are adapted to FZ . Thus, the process
Mγ∨ t − ∆γ1t<γ is a backward martingale of FZ . Hence the process t 7−→
u(Zt,, t) is a semi-martingale of FZ .
In fact, ,Mγ1t<γ =,M01t<γ =,M−

γ 1t<γ. So the martingale part is M .

Now we precise, under more general assumptions, when the velocity of
turbulence is a martingale.

In this part, we show that the martingality of the velocity turbulence implies
that all mass of any turbulent interval is concentrated in at most one point

Proof of proposition 3.2

c) Martingales and soft turbulence
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(single turbulent point). Let T be the set of turbulent intervals which are
not reduced to single points.

1. The process t 7−→ u(Zt, t) is a martingale of FX iff a.s. Z ≡ X.

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

2. Suppose that γ is an optional time of FZ (which is effectively the case
when S is an interval). The process t 7−→ u(Zt, t) is a martingale
of FX iff a.s. Z0 = E [X0|Z0]. Furthermore, if Ai = Ω, then a.s.
Z ≡ Zi ≡ X.

The following describes the turbulent intervals and clusters when the velocity
of their borders are martingales.

If Z0 = X0 a.s., then T is at most countable and the interior of all turbulent
interval is a vacuum.

1. Case Z ≡ Z3 (A3 = Ω) : we have a.e. Z3 ≡ Z1 ≡ X and Z2 ≡ Z4.

∀ [α, β] ∈ T , µ0(]α, β]) = 0; P (Z3
0 6= (Z4

0) =
∑

[α, β]∈T

µ0({α})

2. Case Z ≡ Z4 (A4 = Ω) : we have a.e. Z4 ≡ Z2 ≡ X and Z1 ≡ Z3.

∀ [α, β] ∈ T , µ0([α, β[) = 0; P (Z3
0 6= (Z4

0) =
∑

[α, β]∈T

µ0({β})

any turbulent interval is also a cluster at turbulent time.

3. Case A1 = A2 = ∅: we have a.e. Z11A3 ≡ Z21A3 and Z21A4 ≡ Z4
A4 .

∀ [α, β] ∈ T , µ0([α, β]) = µ0({α}) + µ0({β});

P (Z3
0 6= (Z4

0) =
∑

[α, β]∈T

[µ0({α}) + µ0({β})].

4. Case Z ≡ Z1 (A1 = Ω) : we have a.e. Z3 ≡ Z1 ≡ X and Z2 ≡ Z4.

∀ [α, β] ∈ T , µ0(]α, β]) = 0; P (Z1
0 6= (Z2

0) =
∑

[α, β]∈T

µ0({α})

5. Case Z ≡ Z2 (A2 = Ω) : we have a.e. Z4 ≡ Z2 ≡ X and Z1 ≡ Z3.

∀ [α, β] ∈ T , µ0([α, β[) = 0; P (Z1
0 6= (Z2

0) =
∑

[α, β]∈T

µ0({β})

d) Corollary (Turbulence martingales and prime-delta-shocks)

e) Proposition
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A Forced Pressure-Less Gas System via Sticky Particles Turbulences

Let us study each semi-martingale.

1. For Z = Z3 : A necessary condition is that E [u0(Z3
0)] = E

[
u(Z3

γ)
]

=
E [u(Xγ, γ)] = E [u0(X0)]. But Xγ = X0 +γu0(X0) ≤ Z0 +γu0(Z0) and
Z3

01γ>0 = X01γ>0. Then γ−1(X0−Z3
0)1γ>0 = u0(Z3

0)−u0(X0) ≥ 0 and
E [γ−1(X0 − Z3

0)1γ>0] = 0. So X0 = Z3
0 = Z1

0 a.e. Thus X ≡ Z3 ≡ Z1

a.e.
In the other hand, we have a.e. u0(Z3

0) ≥ u(Xγ, γ) and E [u0(Z3
0)− u(Xγ, γ)] =

0. So u0(Z3
0) = u(Xγ, γ) a.e.

Now we show that Z2
0 ≡ Z4

0 . If Z3
0 = Z4

0 , then Z2
0 = Z4

0 . If Z3
0 6= Z4

0 ,
then ∃α < β s.t. [Z3

0 , Z
4
0 ] = [α, β]. If moreover µ0 ([α, β]) = 0, then

[α, β] ∈ T and Z2
0 = Z4

0 = β. If µ0 ([α, β]) > 0, then

u0(α) = u0(Z0) = u(Xγ, γ) =

∫
[α, β]

u0(x)µ0(dx)

µ0 ([α, β])
.

From corollary 2.3, we get µ0 ([α, β]) = 0 and [α, β] ∈ T . And again
Z2

0 = Z4
0 = β. Thus a.e. : Z2

0 = Z4
0 and Z2

0 ≡ Z4
0 .

Moreover {Z3
0 6= Z4

0} ⊂ ∪
[α, β]∈T

{α ≤ X0 ≤ β}. Conversely, if [α, β] ∈

T , ∃ [α′, β′] = [Z3
0 , Z

4
0 ] ⊃ [α, β], with µ0(]α′, β′]) = 0. This im-

plies [α, β] = [α′, β′]. So {Z3
0 6= Z4

0} = ∪
[α, β]∈T

{α ≤ X0 ≤ β} and

µ0(]α, β]) = 0 for all [α, β] ∈ T . But the set of vacuums is at most
countable. So is T . We then get the result P ({Z3

0 6= Z4
0}).

2. For Z = Z4 : Analogous to previous case.

3. For Z = Y : The process t 7→ u(Yt, t) is a martingale if only if its
bounded variational part vanishes :

a.e [u(Yt, t)− u(Yγ, γ)]1t<γ, ∀ t.

This equivalent to u0(Y0) = u(Yt, t) = u(Yγ, γ) = u(Xγ, γ) for all
t < γ. Then a.e.

τ(Y0) = γ, u0(Y0) = u(Xγ, γ), Y0 + tγu0(Y0) = X0 + tγu0(X0).

If Z3
0 6= Z4

0 , then ∃α < β s.t. [Z3
0 , Z

4
0 ] = [α, β] and Y0 = α or Y0 = β.

If moreover µ0([α, β]) > 0, then

u0(α) = u0(Y0) = u(Xγ, γ) =

∫
[α, β]

u0(x)µ0(dx)

µ0 ([α, β])
.

Proof:
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In this case, If Y0 = α, then from the corollary 2.3, we get µ0([α, β]) =
0 and Y0 = Z1

0 = Z3
0 = α. Then P (Y0 = α 6= X0) = µ0(]α, β]) =

0. In the same way, if Y0 = β, we get Y0 = Z2
0 = Z4

0 = β and
P (Y0 = β 6= X0) = µ0([α, β[) = 0. In any case, [α, β] ∈ T and P (Y0 6=
X0, α ≤ X0 ≤ β) = 0.

We conclude that T is at most countable and

∀ [α, β] ∈ T , µ0([α, β]) = max (µ0({α}), µ0({β})) ;{
Z3

0 6= Z4
0

}
= ∪

[α, β]∈T
{α ≤ X0 ≤ β}

This give the results.

4. For Z = Z1 : E[u0(Z1
0)] = E[u(Z1

γ , γ)] = E[u0(X0)]. But u0(Z1
0) −

u0(X0) = γ−1(X0 − Z1
0)10<γ ≥ 0. Then a.e. : Z1

0 = X0 and Z1
0 ≡ X0.

Furthermore, {
Z2

0 6= Z1
0

}
= ∪

[α, β]∈T
α<β

{α ≤ X0 ≤ β}

and for all [α, β] ∈ T , we have

µ0(]α, β]) = P (α < X0 ≤ β) ≤ P (Z1
0 6= X0) = 0.

So T is at most countable and we get the result for P (Z2
0 6= Z1

0).

5. Z = Z4 : Analogous to previous case.

Now, we are interested in the conservation laws.

In this section, we investigate if a process of type of Z can provide solutions
to the scalar conservation law

∂tM + ∂x (A(M)) = 0 (12)

and to the pressure-less gas system


∂t(µ) + ∂x(uµ) = 0
∂t(uµ) + ∂x(u

2µ) = 0
µt → µ0, u(·, t)µt → u0µ0 weakly as t→ 0

(13)

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

It is well known, from the sticky particles model, that the mass distri-
bution µt of the matter and their velocity functions u(·, t) provide a weak
solution (in the sense of distributions) to the system (13). The first line of

IV. Conservation Laws
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(13) is usually called conservation law of mass and the second is a conser-
vation law of momentum. Moreover, the couple c.d.f and the momentum
function provide an entropy solution to (12). Precisely, ∀ (x, t) ∈ R × R+,
M(x, t) = µt(]−∞, x])

∀m ∈ (0, 1), A(m) =

∫ m

0

u0(M−1
0 (z))dz, (14)

where M0 = M(·, 0). The equation (12) is conservation law of mass and
momentum. Can we have the same thing for the function N : (x, t) 7→
P (Zt ≤ x) with the same flux (14) ?

Consider the real function

v0 : a 7→
∫
Z0=a

u0(X0)dP

P (Z0 = a)
= E [u0(X0)|Z0 = a] . (15)

The couple (N, A) is a weak solution of the conservation law (12) if only if
Z coincides with the sticky particles process defined from (N0, v0).

Before the proof, let us describe what happens in our investigation. From
the point of view of the matter, our investigation consists in a change of
distributions. We recall that the paths of Z are "extracted" from significant
paths of X on which rise turbulences. The extraction procedure redistributes
the mass. If τ is constant on [a, b] and [α, β] is the cluster which contains
[a, b] at time τ(a), one of the four particles α, a, b or β are extracted. We
call them "turbulent particles". All the mass of [a, b] is initially re-affected
to these particles. In order to expect the preservation of the conservation
law, one can also re-affect the momentum as follows. First remark that each
event Ai of section 3.1 is of type "X0 ∈ Ei".

• The mass µ0 ([a, b] ∩ E3) and the momentum
∫

[a, b]∩E3
u0(x)dµ0(x) are

affected to α.
• The mass µ0 ([a, b] ∩ E1) and the momentum

∫
[a, b]∩E1

u0(x)dµ0(x) are
affected to a.

• The mass µ0 ([a, b] ∩ E2) and the momentum
∫

[a, b]∩E2
u0(x)dµ0(x) are

affected to b.
• The mass µ0 ([a, b] ∩ E4) and the momentum

∫
[a, b]∩E4

u0(x)dµ0(x) are
affected to β.

• The total mass and total momentum of α and β are aggregations of
the masses and momenta extracted from turbulent intervals inside [α, β].
Algorithm : Extraction along the time and aggregation of mass and momen-
tum to α (resp. β) until it is hinted from the left (resp. the right).

The momentum transferred to turbulent particles can also be computed
from the flux A (14) and c.d.f N0 := N(·, 0) of Z0. Indeed, the turbulent
particles in [a, b] have the momentum
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∫
{a≤Z0≤b}

u0(X0)dP =

∫
{a≤N−1

0 ≤b}
u0(M−1

0 (z))dz =

∫ N0(b)

N0(a)

u0(M−1
0 (z))dz

= A(N0(b))− A(N0(a−))

However, the velocity function induced by this momentum is not the cor-
rect one (u0) for the real dynamics of Z. Indeed, each turbulent parti-
cle of initial position a′ received the mass P (Z0 = a′) and the momentum∫
Z0=a′

u0(X0)dP . This induces the velocity∫
Z0=a′

u0(X0)dP

P (Z0 = a′)
= E [u0(X0)|Z0 = a′] = v0(a′)

So, A(N0(b)) − A(N0(a−)) =
∫ N0(b)

N0(a)
u0(N−1

0 (z))dz is the momentum of an-
other sticky particles dynamics, the one from (N0, v0).

Such a weak solution is an entropy solution
which is unique once imposed the initial datum N0. Let be the flow con-
structed from (N0, v0) and defineNt = N(·, t). One has N−1

t = (N−1
0 , t) for

all t. Since Zt = φ(Z0, t), one has also N−1
t = φ(N−1

0 , t). So (·, t) = φ(·, t)
on the support of the law of Z0, and one gets Zt = (Z0, t) for all t.

Now we consider the momentum which corresponds to the dynamics of
Z, the function B : (0, 1) 37→

∫ m
0
v0(N−1

0 (z))dZ. It is also the momentum
function of the sticky particles dynamics defined from (N0, v0).

Suppose that γ = τ (Z0) a.e. We have

∂tN + ∂x (A(N)) = −∂x (C(N, t)) (16)

∂tN + ∂x (B(N)) = ∂x (D(N, t)) (17)

with, ∀ (m, t) ∈ (0, 1)× R+,

C(m, t) =

∫ m

0

∆0

(
N−1

0 (z)
)
1t<τ(N−1

0 (z))dz

D(m, t) =

∫ m

0

∆0

(
N−1

0 (z)
)
1t≥τ(N−1

0 (z))dz

and ∆0 = u0 − v0.

Surprisingly, as shown in the sequel, these results lead to the homogeneous
conservation law of the momentum. For all t, let νt be the distribution of Zt,
i.e. νt(B) = P (Zt ∈ B) for all Borel set B.

A Forced Pressure-Less Gas System via Sticky Particles Turbulences
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For all t, let νt be the distribution of Zt, i.e. νt(B) = P (Zt ∈ B) for all Borel
set B.

Let us define δ(x, t) = E [∆0(Z0)|Zγ = x, γ = t] and consider the law PZt,γ
of (Zt, γ). If γ = τ(Z0) a.e, then we have

∂t(ν) + ∂x(uν) = 0
∂t(uν) + ∂x(u

2ν) = −δPZγ , γ
νt → µ0, u(·, t)νt → u0ν0 weakly as t→ 0

(18)

The couple (ν, u) is thus a weak solution of a pressure gas system of initial
datum is (ν0, u0).

u(Zt, t) = E
[
v0(Z0) + ∆0(Z0)1t<τ(Z0)|Zt

]
. Us-

ing w(Z0, t) := v0(Z0) + ∆0(Z0)1t<τ(Z0), we have, for any test function f on
R× R∗+ :∫ ∫

ft(x, t)N(x, t)dtdx = E

∫ ∫
ft(x, t)H(x− Zt)dtdx

= E

∫ ∫
f(x, t)u(Zt, t)δZt(dx)dt = E

∫
f(Zt, t)u(Zt, t)dt

= E

∫
f(Zt, t)w(Z0, t)dt = −E

∫ ∫
fx(x, t)H(x− Zt)w(Z0, t)dtdx

= −
∫ ∫

fx(x, t)E [H(x− Zt)w(Z0, t)] dtdx

and

E [H(x− Zt)w(Z0, t)] =

∫ N(x, t)

0

w(N−1
0 (z))dz

= A(N(x, t)) + C(N(x, t), t) = B(N(x, t))−D(N(x, t), t).

E [H(x− Zt)w(Z0, t)] = E [H(x− Zt)u(Zt, t)] =

∫ x

−∞
u(y, t)dνt(y),

∂x [A(N(x, t)) + C(N(x, t), t)] = u(x, t)dνt(x).

From previous proposition, one gets ∂tM +u(x, t)dνt(x) = 0. Then, in order
to have the first equation of gas system, use the fact that

A Forced Pressure-Less Gas System via Sticky Particles Turbulences

c) Gas system with turbulence force

d) Corollary

Proof of proposition 4.2:

Proof of corollary 4.3
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∂t∂xM = ∂x∂tM.

It remains the last equation. For any test function f on R∗+ and any test
function g on R,∫ ∫

f ′(t)g(x)u(x, t)dνt(x)dt = E

∫
f ′(t)g(Zt)u(Zt, t)dt

= E

∫
f ′(t)g(Zt)v0(Z0)dt+ E

∫
f ′(t)g(Zt)∆0(Z0)1t<τ(Z0)dt

= −E
∫
f ′(t)g(Zt)u(Zt, t)v0(Z0)dt

+E [f(γ)g(Zγ)∆0(Z0)]− E
∫ ∫

f ′(t)g(Zt)∆0(Z0)1t<τ(Z0)dt

= −E
∫
f(t)g′(Zt)u

2(Zt, t)dt+ E [f(γ)g(Zγ)∆0(Z0)]

This ends the proof.
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