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I.  INTRODUCTION

We are interested in the turbulence of one dimensional fluid flows in one
dimensional sticky dynamics. In [1], the authors considered, in Fulerian
coordinates, the velocity field u of fluid particles and a probability field u
representing their mass or charge distribution. The particles are supposed ac-
celerated between two successive shock times; the dynamics is then governed

by a force (measure) field v. For suitable initial data (u, u)|;=0 = (p0, uo) and
by discrete approximations, they solved the forced pressureless gas system

O(p) + Oz (up) =0
Op(up) + 0, (u’p) = v (1)
e — o, u(s,t) e — v weakly as t — 0

where the force v is absolutely continuous, in the space states, with respect
to (w.r.t.) p.

In this paper, we consider non accelerated fluid particles, so the force of [1]
is null and the solution of (1) is thus the one of |2, 8, 3|. In this work, we
concentrate our attention on turbulences which generate, for (1), a new force
whose the support is included in the set of shock (and pure turbulence) sites,
in space-time.

particle dynamics with interactions. Journal des mathé matiques pures

1. Y. Brenier, W. Gangbo, G. Savare, and M. westdickenberg. Sticky
et Appliquées, 99:577—617, 2013.

Let us first recall the constructions of [2, 8, 3]. They all rely on the sticky
particle dynamics which was introduced, at a discrete level, by Zeldovich [9]
in order to explain the formation of large structures in the universe. That is
a finite number of particles which move with constant velocities while they
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are not collided. All the shocks are inelastic following the conservation laws
of mass and momentum.

At a continuous level, the initial state of particles is given by the support
of a non negative measure py. A particle starts from position x with velocity
uo(z) and mass uo({z}). The particles move with constant velocities and
masses while not collided. All the shocks are inelastic, following the conser-
vation laws of mass and momentum. In their pioneering work, E et al [§]
made this construction when the particles are every where in R, ug is contin- Ref
uous and the mass of any interval [a, b] is computed with a positive density
f, e po(la, b)) = f; f(z)dz. At time ¢, a particle of position z(t) has the
mass p({x(t)},t) and the velocity u(z(t),t), the momentum of any interval

la(t),b(t)] is ff((:)) u(z,t)p(dx, t). The authors then solved (1) with v = 0.

At the same time and independently, Brenier and Grenier [2] considered
the case of particles confined in a in interval [a, b, i.e. po([a, b)) = 0. By dis-
cretization of py and using discrete sticky particle dynamics, they solved the
scalar conservation law ;M + 0,(A(M)) = 0 by a weak solution (M, A), the
unique which has some entropy condition. As a consequence, the Lebesgue-
Stieltjes measure 0,(A(M)) is absolutely continuous w.r.t. 0, M =: u(-,t),
of Randon-Nicodym derivative a function u(-,t). Then (u,u) solves (1) with
v=0.

In [3], Dermoune and Moutsinga constructed the sticky particles dynam-
ics with an initial mass distribution p, any probability measure, and a initial
velocity function ug, any continuous and locally integrable function such that
up(z) = o(x) as * — oo. The authors united and generalized previous works
of [8, 2] with the arguments that the particles paths define a Markov process
t — X, solution of the ODE

dXt = U(Xt,t)dt, (2)

and the velocity process t — u(X;,t) is a backward martingale. Moreover,
w(-,t) = Law(X,).

In [6, 7], using suitable convex hulls, Moutsinga extended the construction
when g is any non negative measure and uy has no positive jump. He gave
the description of different kinds of clusters [«(z,t), B(x,t)], i.e the set of all
the initial particles y(0) which have the same position y(t) = z at time ¢.
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Following the preoccupation of Eyink and Drivas ([4]) about turbulences,
Nuzissila, Moutsinga and Eyi Obiang [5] defined a turbulent interval as a set
[a, b] of initial positions of sticky particles from which rise a turbulence. This
means that for all y € [a, b], the interval [a, b] is the widest among the inter-
vals [d/, b'] © y which have the same position y + 7(y)uo(y) at their common
first shock time 7(y). The term "turbulence" (instead of "shock") is justified
by the description of a degenerated turbulent interval [a,b] = {a}. In this
case, at its mathematical first shock time 7(a), the particle a does not enter
in a real shock but it begins a coagulation process; it enters in a pure turbu-
lence without beginning by a real shock.
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At time of turbulence 7(a), the turbulent interval |a,b] is part of a cluster
[, B] (a,b € [, B]). The initial positions a, b, o, 5 are called turbulent par-
ticles. The motions of these particles are given by four backward Markov
processes, respectively, Z1, Z% 73 and Z* solutions of (2) and whose the ve-
locity processes (the derivatives) are semi-martingales.

In this paper, we consider a process Z of more general form than in [5].
The gas system (1) is studied with a force generated at random turbulence

Ref time v = 7(Zp).

The paper is organized as follows. Section 2 is devoted to the sticky par-
ticles model. We recall its definition and the main properties used here. In
section 3 we come back to the results of [5] according to the study of turbu-
lence. These results were obtained when the support of pg is an interval (i.e.
there is no vacuum of matter). We generalize them to any type of support.
The particularity, in presence of vacuum, is that traditional delta-shocks are
transformed into butterfly-shocks (like in [3]). Section 4 is devoted to scalar
conservations laws from the point of view of turbulent particles. First we
give an entropy solution (NN, A) with the same flux A as in [2]|, but with
different initial data. Then, in subsection 4.1 we study the gas system. Con-
sidering the construction of [5], we define a process of more general form
t— Zy = Z g0+ 221 g2+ Z3 1 g3 + Z 1 44, with the help of any complete sys-
tem of events A, A%, A3, A*. A solution of (1), is given by u(-,t) := Law(Z;)
and u(Z;,t) = 42t The force v is absolutely continuous w.r.t. the law of

dt
the couple (Z,,7).

Backward semi-

Although this solution is constructed from the sticky particles model, it
does not have the properties of [1].

II.  Frow AND VEeLocCITY FIELD OF STICKY PARTICLES

a) The sticky particle dynamics

The definition of one dimensional sticky particle dynamics requires a mass
distribution p, any Radon measure (a measure finite on compact subsets) and
a velocity function u, any real function such that the couple (u, u) satisfies
the Negative Jump Condition (NJC) defined in [6]. Precisely, consider the
support S = {z €R : pu(x —e, x+¢) >0, Ve > 0} of p and the subsets
S_={zeR:pux—cx)>0}, S ={zeR: plx, x+e)>0,Ve >0}
Suppose that u is u locally integrable and consider the generalized limits v,
ut

martingale into burgers turbulence. J. Math. Phys., 62:1-12, 2021.

5. F. Eyi Obiang, O. Moutsinga, and F. Nzissila.

Jio—e.wy u(m)pa(dn)

“(x) =1 , YVxeds_, 3

u(z) msup = x (3)
2. ate W) p(dn

u+(x):1iminff(’+] sl ), VzeS,. (4)

e
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The Negative Jump Condition requires that
u (z) >u(z) Ve eSS, wu(x)>u(z)VreS,. (5)

In the whole paper, we mainly use o = A, the Lebesgue measure. That’s
why we always suppose that the support S = R.

Considering particles of initial mass distribution pg and of initial velocity
function uo, their sticky dynamics is defined in [7], when the couple (1, uo) Ref
satisfies (5) and 2 u(z) — 0 as |z| — +o00. The dynamics is characterized

by a forward flow (z,s,t) — ¢s+(z) defined on R x Ry x R,.

b) Proposition (Forward flow)
For all x,s,t :

1. ¢ss(z) =z and ¢s4(+) is non-decreasing and continuous.

2. The value ¢s4(x) is the position after supplementary time t of the
particle which occupied the position x at time s. More precisely :

¢s,t(¢0,s(y)) = ¢0,s+t(y) 5 vy (6)
3. If ¢y ({z}) =t [a(z,0,t), B(z,0,t)] with a(z,0,t) < B(x,0,t), then

f[a(x,o,t),g(x,o,t)] (a + tug(a))dpuo(a)
MO([a(‘r7 07 t>’ ﬁ(l’, 07 t)D

xr =

"C10T ‘TI-1:€S ‘sAyg ‘yrepy

o Ppow sopniaed AYorys oY) pue uorjenbe sieding -eSursinon QO L

FElse

r = ax,0,t) + tug(a(z,0,t)) = B(z,0,t) + tug(S(z,0,1)) .

4. B(x,0,t) + tup(S(z,0,t)) <z < afx,0,t) + tug(a(z,0,1)).
If po([a(x,0,t), y]) > 0 and po(ly, B(x,0,t)]) > 0, then

»/iy,,é’(:c,o,t)} (a + tug(a))dpo(a)
NO(]Z/, B(l‘, O? t)])

f[oc(w,O,t),y] (a + tug(a))duo(a)
UO([a(xv 07 t)? y])

<z <

5. The function [0,t] > x —— ¢ s(a(x,0,t)) is concave. It is a straight
line if and only if x = a(x,0,t) + tug(a(z,0,1t)).
The function [0,t] > © — ¢os(a(z,0,t)) is convex. It is a straight
line if and only if x = ((x,0,t) + tue(S(x,0,1)).

6. For any compact subset K = [a,b]x[0,T], consider Ay = o(¢sr(a),s,T),
By = B(¢.r(b).s,T) and the probability p = —FEEly  The
sticky particle dynamics induced by (uX, us), during time interval [0, T,

is characterized by the restriction of the function (y,t) — ¢s.(y) on
[AT,BT] X [O,T]

© 2023 Global Journals



The latter means that the restriction of flow on a compact subset of space-
time does not depend of the whole matter, but only on the restriction of the
matter (distribution) on a compact subset of space states.

Remark that if z = a(x,0,t) + tup(a(z, 0,t)) = (2, 0,t) + tue(B(z,0,1)),
then the graphs [0,t] 3 s — ¢os(a(x,0,t)), ¢os(B(x,0,t)) draw a delta-
shock, well known in the literature (Figure 1). Otherwise, these graphs draw
a kind of butterfly-shock with foded wings (Figure 2)

Notes

T

bo.s | a(z,0,t)
o) ( 0.t ) ¢(]_a(g(x,0¢t))

a(z,0,t) . B(x,0,t)

Figure 1: The blue line on the left (resp right) of the middle shock wave represents the trajectory of the
particle which started from position a(z,0,t) (resp 8(z,0,t)). It is trajectory [0,t] 3 s — ¢o s((z,0,t))
(resp [0,1] 3 5 = ¢o,s(8(,0,1)))

Do.s (d(w.,Oﬂt))

vacuum

a(xa07t> '3('L~0t)

vacuum

Figure 2: The blue curve on the left (resp right) represent the trajectory of particle which start at the
position a(z,0,t) (resp B(x,0,t)) whch is the trajectory of [0,t] 2 s — ¢o,s(c(x,0,t)) (resp [0,t] D s +—
¢O,S (B(IE, Oa t)))

What about the velocity?

¢) Proposition (Flow derivative)

1. For all y, s, the function t — ¢s.(y) has everywhere left hand deriva-
tives. It has everywhere right hand derivatives, except when ¢ (¢,.(y)) =:
la, b] with ps([a, b)) = 0 and a < b. Now and after, the notation

%qﬁ&t(y) stands for the right hand derivative.

2. There exists a function (x,t) — wu,(z) such that %(b[)’t(y) = u(do+(v))

everywhere the right derivative exists.
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3. For any compact subset K = [a,b]x[0,T], consider Ay = a(¢sr(a),s,T),

o 1
Br = B(¢sr(a),s,T) and the probability uX = %us If the

right hand derivative exits for (x, y) € K, the using the conditional
expectation under p, we have

2 6uat) = By lulons() = 6040 -

We call a cluster at time t all interval of the type [a(x,0,t), 5(z,0,1t)].
The last assertion of proposition 2.1 implies an important property on the
velocity of a cluster.

d) Corollary
1. If [a(x,0,t), B(x,0,t)] has positive mass, then

Joo(@.). sw0.) Yo(@)dio(a)
ﬂo([a(% 07 t)7 ﬁ(l’, 0; t)])

u(x) =
If a(x,0,t) = B(x,0,t), then uy(x) = up(a(z,0,t)).
Else u,(x) is not (well) defined.
2. up(B(x,0,t)) < wp(x) < up(afz,0,t)).
If po([a(x,0,t), y]) > 0 and po(Jy, B(x,0,t)]) > 0, then

oo o(@)duo(a) < w() Jiawo.4 “o(@)dno(a)
:U’O(]yaﬁ(x707t>]) - - MO([a(xaoﬂt)vy])

3. If a(x,0,t) € S_ (resp. ((z,0,t) € S; ), then u; (z) = up(a(x,0,1)).
(I"GSp. U;’_(ZE) = Uo(ﬁ(ff,o,t)))
4. If up(a(z,0,t)) = wi(x), then g (Ja(z,0,t), (x,0,t)]) = 0 and =
a(x,0,t) —|—tu0(a z,0,t)) = B(x,0,t) + tug(B(x,0,1)).
5. If ug(B(z,0,t)) = w(z), then po ([a(z,0,t), 5(x,0,t)[) = 0 and x =
a(x,0,t) —l—tuo(a z,0,t)) = B(x,0,t) + tug(B(x,0,1)).

6. For all t > 0, we have w(z) = o(x) as |x| — 4o00. For all t > 0,
if a(z,0,t) € S (resp. P(x,0,t) € S ), then limw(y) = uy (x) =
y—T

y<zx

uO(Oé(ZE, 07 t)) (resp. 11/1_123 ut(y) = uj_(x) = Uo(B(ZE, 07 t)))
e) Markov and martingale properties

Let (o, uo) be as in theorem 2.1. On abstract measure space (£, F, P) we
define a measurable function Xy :  — R with image-measure P o X; ' =

© 2023 Global Journals
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po- In practice, (Q, F, P) = (R, B(R), 0) and Xy is the identity function.
For all t > 0, we set X; = ¢0+(Xo). As a consequence of theorem 2.1, we
have the following :

1) Proposition (Markov and martingale property)

1. Vs,t, we have
Ref Xs+t = ¢s,t(Xs) (8>

2. If ug is po integrable, then under the measure iy (or P) :

d
37Xt = Eluo(X0)|Xi] = uy(X,). (9)

Else, for any compact K = [a,b] x [0,t 4 s], if ¢ps+s(a) < Xpps <
Go.1+5(b), then under the conditional probability ul*, we get (9).

3. If ug is po integrable, then under the measure g (or P) :

Backward semi-

martingale into burgers turbulence. J. Math. Phys., 62:1-12, 2021.

ut+5<Xt+s) = E[Ut(Xt)’ft+5] y with ./—"t = O'(Xu, u Z t) (10)

Else, for any compact K = [a,b] X [0,t], ¢osts(a) < Xits < Po145(D),

then we get (10) under the probability ul’ (or under the conditional
probability knowing c(o t+s(a), 0, t+5) < Xo < B(¢or4s(a), 0, t+ ).

[I[. TURBULENCE

In this section, inspired by a preocupation from [4], we study the sticky
particles dynamics from the point of view of turbulence. Generalizing the
results of 5], we get a class of Markov processes solution (2). The velocities
fields are backward semi-martingales.

a) Flow, delta-shock and butterfly-shock
In [5], was defined the first turbulence (or shock) time of the particle initial
position a :

7(a) =inf {t : u (¢ou(a),t) # u' (dos(a),t)} . (11)

5. F. Eyi Obiang, O. Moutsinga, and F. Nzissila.

Let Xy be of image-measure 9. Define v = 7(X;) and the cluster [Z3, Z3] =
[a(X,, 0, v), B(X,, 0,7)] in which belongs X, at time . The turbulent
interval [Z], Z3] is defined as the greatest interval containing X, on which
7 is constant. It was shown in [5] that the velocities of these variables are
semi-martingales, when po = A the Lebesgue measure. The same result was
obtained for the combination Z§ = Zi1 4 + Zj1 s, with the event A : " the
particle enters in the shock from the left ". The interesting variable ZJ was
introduced [4] in order to study the Burgers turbulence.
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Our goal is to generalize the results of [5] to any non-negative measure
o and any function uy with negative jumps (w.r.t. po). Fori =1, 2, 3, 4, 5,
we consider the process t — Z; = ¢0,(Z{). But one could have other
preoccupations than the above event A of [5]. We are led to defined the
process of more of more general form t — Z; = Z M g1 + Z21 g2 + Z3 1 45 +
ZM 41, with the help of any partition A!, A%, A3, A4 of €, events of J(Xo).
Following the implication the application of the Z&’s, we have fifteen (24 —1)
types of processes . (If A = Q; then Z = 7).

i. Proposition (Random butterfly-shock)
1. Let Z stand independently for Z' 72 Z3 or Z*.

d
Vi, s > 0, s+t ¢st( ) , &Zt = U(Zu ) .

2. 7(Z}) =71(Z3) = 7(Xy) = v and

Vit <7, Z}'=27)+tuy(Zy) < Xy = Xo +tug(Xo) < Z} = Z5 + tuo(Z3)

Vt>y, Xy=Z'=2}=7=7'.

3. 7(Z3) <~ and 7(Z§) < 7.

0, 7]  t — Z} is concave and [0, 4] 3 t — Z} is convex.

Vit <7(Z3), Z}= 73+ tuy(Z)

Vt<7(Zy),  Zi=Zy +tue(Zy);-

The segment [Z}, ZZ] and the paths [0, 4] 2 t — Z}, Z? draw a prime
delta-shock (so called in [5] because of the first shock time of turbulence).

If 7(Z3) = 7(Z3) = v, then the paths [0, 7] 2 t — Z3, Z} are linear;
and the draw, with the segment [Z3, Zj], delta shock (well known in the
literature) (see figure 1 ).

If 7(Z3) < v (resp. 7(Z3 < 7)), then the path [0, 7] 23— Z} (resp.
0, 7] 2 Z?) is linear; this can occur o,ly when Z3 ¢ S~ (resp. Z5 ¢ ST).
If max (7(Z3), 7(Z3)) < 7, then the paths [0, 4] 5 Z}, Z} draw, not a
delta-shock, but butterfly-shock with folded wings (see Figure 3).
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Figure 3: Delta-shock and butterfly-shock

b) Velocity process as semi-martingale

i. Proposition

1. t — u(Zy, t)14< is bounded variational process adapted to the nat-
ural non increasing filtration FX of X.

2. Forallt, uw(Z, t) = [u(Z, t)—uo(Xo)|Li<y+M;, with My = E [ug(Xo)| F].
Hence, t — u(Z;, t) is a backward cadlag semi-martingale of FX.

3. If v = 7(Zy), then for all t, u(Z;, t) = [uo(Zoy) — Mo|Li<ry + M, with
M; = E [uog(Xo)|F?]. Hence, t — u(Z, t) is a backward cadlag
semi-martingale of F%.

4. If ~ is an optional time of FZ, then t — u(Z, t) is a backward
cadlag semi-martingale of the completed filtration F%. Moreover t —
U(Zt, t) - [U(Zt, t) — M,Y_]]lt<7

We recall that for any non increasing filtration F, the filtration F is
defined by F, = o (F; UN), where N is the set of negligible events of F.

Before the proof, we recall some properties well known in the theory of
stochastic processes.

¢) Lemma

Let a process Z be adapted to a non increasing filtration G = (G;,t > 0).
Let I be an optional time with respect to G, i.e. for all t > 0, the event
{I" >t} € G;. The following holds.

1. The set Gr:={A e Gy : AN{l >t} € G;} is a sigma-algebra.

2. If all the paths of Z are either continuous on the right or on the left,
then the r.v. ZrIr. is Gr measurable.

3. Suppose that G is continuous on the right; that is, for all t, G, =
o <8L>ths). If 7 is a backward martingale with respect to G, then for all
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t, the right hand and left hand limits Z+, Z;- exist a.s. Moreover, the
process t = Zryy+ — Arlps, is a backward martingale with respect to
the completed filtration G, with Ar = Zp+ — Zp-.

d) Lemma
1. If a process Z is such that Zs ., = ¢s4(Zs) for all t,s > 0, then
7(Zy) =: T' is an optional time with respect to the natural non in-

creasing filtration F# of Z. Moreover, F{ = FE.

2. Suppose that {I' <t} € FZnN FZ for somet > 0. If Zilr<; = Zilp<,
then E[F|Z]|Ir<; = E[F|Z;|Ir<; for all integrable r.v. F.

The second assertion is satisfied by (Z, Z') = (X, Z') and (Z, Z') = (X, Z?),
with I' = . Both Z3 and Z* satisfy only the first assertion.

Proof. 'We begin with the first assertion. u~(-,¢),u™(-,¢) are Borel func-
tions and it is well known that if u is discontinuous in (Z;,t), it is also
discontinuous in (Z;,,t + s). Then,

(T <t} ={u (Zi,t) #u" (Zi, )} U[{u" (Zi, t) = u" (Z, )} n{T = t}] .
Since
{u(Z,t) =ut(Z, )} N{T =t} = {u (Z,t) = u (Z;,8) N

L@l{u_(ZHl/m t+1/n) # u+(Zt+1/m i+ 1/”)} )

the proof of the first assertion is done.
Remark that Z,11/, = ¢r1/n(Z;). So {I' <t} = Z;7 Y (Ay), with

A= {u (1) £ u*(»t)}u({u(‘,t) — ut (. H))N

[ngl{u—wm b+ 1/n) £ Ut (Graymt+ 1 /n)}] )

Now we show that 77 = FZ. First remark that if {b} # ¢ (¢os(b)),
then 7(b) < t. Thus for all Borel subset B and t > 0, we have BN {1 >t} =
¢&%(¢0,t(3)) N {7 >t} and

Zy (B) N {7(Zo) > t} = Z; (doe(B)) N {T(Z0) >t}
ZyH(B) N {T >t} = Z; Y (¢ou(B)) N{T > 1} € F7

This means that Z,'(B) € FZ.
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For the second assertion, since Z;1,<; = Z}Ip<, it is easy to see that
E[F|Z]|Ir<; is 0(Z}) N o(Z;) measurable; for all bounded Borel function h,

E(h(Z)E[F|Z) To<) = BE(WZ)EF|Z)Tr<) = E(h(Z) Flp<,)
= B(h(Z)Flr<)) = B(W(Z)EIF| Z]1r).

Hence, E[F|Z]|Ir<; = E[F|Z]1r<; a.s.

Proof of proposition 3.2

1) The restriction [0, v[> t —— u(Z;,t) is monotone. Thus, the process
Ry > t+— u(Z;,t)1, is a bounded variational process. It is adapted to
FX since v is an optional time of this filtration.

2) We have F§¥ = FX. So for all £, the r.v. ug(Xo)ls<y is F;*-measurable.
Since F¥ = o(X;), we get

WZe e = u(Xe )z = Buo(X0)| X 1ey
—_———

My
= M, - FE [UO(XO)1t<7|Xt] =M, — UO(X0>]1t<'y-

Then for all ¢, u(Z;,t) = [w(Z;,t) — uo(Xo)] Lewy + M.

3) Same proof as previous, using the fact that FZ = ]-vz and E [ug(Xo)| X¢] 1< =
E [ug(Xo)|Z:] 1,<; (lemma 3.4)

4) Simple application of lemma 3.3. For all ¢,

w(Z, )y = u(Xp, 1)1y = Euo(Xo)| Xe] 1<y = E [uo(Xo)|Ze] 1<
————
My
= M'y\/t - A'y]lt<'y - Mf;]lt<’y

with Ay = M, — M.

Remark that assertion 3) is a consequence of 4). Indeed, if v = 7(Z)),
then F7 = .7-"7Z (lemma 3.4). So M and M, are ]—"7Z measurable and the
processes t — M.y, M 1, A1, are adapted to FZ. Thus, the process
M,y — A1, is a backward martingale of F Z_ Hence the process t —
u(Zy,, t) is a semi-martingale of FZ.

In fact, , M, 1<, =, Moli<, =, M 1;<,. So the martingale part is M.

Now we precise, under more general assumptions, when the velocity of
turbulence is a martingale.

¢) Martingales and soft turbulence
In this part, we show that the martingality of the velocity turbulence implies
that all mass of any turbulent interval is concentrated in at most one point

© 2023 Global Journals

Global Journal of Science Frontier Research ( F) Volume XXIII Issue VII Version I E Year 2023



Global Journal of Science Frontier Research (F) Volume XXIII Issue VII Version I E Year 2023

(single turbulent point). Let T be the set of turbulent intervals which are
not reduced to single points.

d) Corollary (Turbulence martingales and prime-delta-shocks)
1. The process t — u(Z, t) is a martingale of F~ iff a.s. Z = X.

2. Suppose that v is an optional time of F# (which is effectively the case
when S is an interval). The process t — u(Z;, t) is a martingale
of FX iff a.s. Zy = FE|[Xo|Zo). Furthermore, if A; = €, then a.s.
Z=7"=X.

The following describes the turbulent intervals and clusters when the velocity
of their borders are martingales.

e) Proposition
If Zy = Xy a.s., then T is at most countable and the interior of all turbulent
interval is a vacuum.

1. Case Z = 73 (A3 =Q) : we have a.e. Z>=7'= X and Z* = Z*.

Vi, Bl € T, wo(le, B) =0;  P(Z5#(Z5) = > po({a})

o, BlET

2. Case Z=7*(Ay =Q) : we have a.e. Z*=72= X and Z' = 73.

e, Bl€T

any turbulent interval is also a cluster at turbulent time.

3. Case A] = Ay = 0: we have a.e. Z 14, = Z?1 4, and Z?1 4, = Z*4,.
Vie, Bl € T, po([a, B]) = po{a}) + po({58});
P(Z8 #(Z3) = > lm({a}) + po({B})].
[, Bl€T

4. Case Z =7' (A1 =Q) : we have a.e. Z3=7'= X and Z*> = Z*.

\V/[CY, 6} € T: MO(]a7 B]) = O; P(Z(% 7é (Zg) = Z MO({Q})

o, Bl€T

5. Case Z =72 (Ay = Q) : we have a.e. Z*=7?= X and Z' = Z3.

Via, Bl e T, polle, B) =0;  P(Zg #(Z3) = Y mo({B})

la, BleT
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Proof: Let us study each semi-martingale.

1. For Z = Z3 : A necessary condition is that E [ug(Z3)] = E [u(Z3)] =
E [U,(Xpy,’y)] =F [Uo(Xo)] But X,y = XQ—{—’}/UO(X()) S ZQ—{—'}/U()(Z()) and
Z31,50 = Xolyso. Then v (Xo—Z8) 1,50 = uo(Z8) —uo(Xo) > 0 and
Eyv X0 —Z3)1,50] = 0. So X = Z3 Zy a.e. Thus X = 73 = 71
a.e.
In the other hand, we have a.e. uo(Z3) > u(X,,7) and E [uo(Z3) — u(X,,7)] =
0. So uo(Z3) = u(X,,v) a.e.
Now we show that 72 = Z3. If Z3 = Z}, then Z2 = Z3. 1t Z3 + Zj,
then Ja < f s.t. [ZS’, Z5] = |, ﬁ] If moreover g ([o, 8]) = 0, then
[, B] € T and Z2 = Z§ = . If po ([r, B]) > 0, then

f[a,ﬁ} wo () po(dx)
Ho ([a’ B]) ‘

up(a) = uo(Zo) = u(X, ) =

From corollary 2.3, we get uo ([, 5]) = 0 and [«, 8] € T. And again
Z =73 =0. Thus ae. : Z2 = Z4 and Z2 = Z;.

Moreover {Z3 # Z3} C [ H T{a < Xy < B}. Conversely, if [o, ] €
o, Pl e

T, A, 8] = (23, Z§] D |a, B], with pe(]o’, f]) = 0. This im-
plies [o, 8] = [/, B]. So {Z3+# Zj} = [ [%]JGT{QSXO <} and

po(Ja, B]) = 0 for all [a, B] € T. But the set of vacuums is at most
countable. So is 7. We then get the result P ({Z3 # Z3}).

2. For Z = Z* : Analogous to previous case.

3. For Z =Y : The process t — u(Yy, t) is a martingale if only if its
bounded variational part vanishes :

e [u(Y;, t) —u(Y,, v)] Lic,y, Vi

This equivalent to uo(Yy) = w(Yi, t) = w(Y,, v) = u(X,, 7) for all
t <. Then a.e.

T(Yo) =1, up(Yo) = u(X,, v), Yo + tyuo(Yo) = Xo + tyue(Xo).

If Z3 # Z5, then Ja < B s.t. [Z3, Z§] = [, B] and Yy = a or Y = f3.
If moreover po([er, B]) > 0, then

f[a,ﬁ] uo () o (dx)
po ([, B)

up() = up(Yo) = u(Xy, v) =
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In this case, If Yy = «, then from the corollary 2.3, we get po([a, 8]) =
Oand Yy = Z} = Z3 = a. Then P (Yo =a # Xo) = (o, 8]) =
0. In the same way, if Yy = 3, WegetYO:Zz—Zg‘:ﬁ nd
P (Yo =8 # Xo) = pol([er, B]) = 0. In any case, [a, §] € T and P(Y, #
Xo,OzSX()SB):O.

We conclude that 7 is at most countable and
Vi, Bl €T . polle, B]) = max (uo({a}), no({8}));
%2z} = | la<Xo<p)

This give the results.

4. For Z = 7' : Elug(Zy)] = E[u(Z),7)] = Eluo(Xo)]. But ug(Zy) —
up(Xo) =71 (Xo — Z§) o<y > 0. Then a.e. : Zj = X, and Z; = Xo.
Furthermore,

Z#Zoy= Y fa<Xo<p)
a<5

and for all [«, 5] € T, we have
po(Ja, B]) = Pla < Xo < B) < P(Zy # Xo) = 0.

So T is at most countable and we get the result for P(Z2 # Z3).

5. Z = Z* : Analogous to previous case.
Now, we are interested in the conservation laws.
[V. CONSERVATION LAws

In this section, we investigate if a process of type of Z can provide solutions
to the scalar conservation law

O, M + 0, (A(M)) =0 (12)

and to the pressure-less gas system

O (1) + O (up) =0
Or(up) + 0, (u?pn) =0 (13)
[y — fo, w(-, ) e — ugpo weakly ast — 0

It is well known, from the sticky particles model, that the mass distri-
bution p; of the matter and their velocity functions wu(-,¢) provide a weak
solution (in the sense of distributions) to the system (13). The first line of
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(13) is usually called conservation law of mass and the second is a conser-
vation law of momentum. Moreover, the couple c.d.f and the momentum
function provide an entropy solution to (12). Precisely, V (z, t) € R x R,
M (z,t) = pu(] — 00, 2])

Vm € (0,1), A(m) = /Om uo(My(2))dz, (14)

where My = M(-,0). The equation (12) is conservation law of mass and
momentum. Can we have the same thing for the function N : (z,t) —
P(Z; < x) with the same flux (14) ?

a) Proposition
Consider the real function

on , Uo(Xo)dP

Vo i ar> P(Zo =) = F [ug(Xo)|Zo = d]. (15)

The couple (N, A) is a weak solution of the conservation law (12) if only if
Z coincides with the sticky particles process defined from (Ny, vy).

Before the proof, let us describe what happens in our investigation. From
the point of view of the matter, our investigation consists in a change of
distributions. We recall that the paths of Z are "extracted" from significant
paths of X on which rise turbulences. The extraction procedure redistributes
the mass. If 7 is constant on [a, b] and [«, (] is the cluster which contains
la, b] at time 7(a), one of the four particles a, a, b or § are extracted. We
call them "turbulent particles". All the mass of [a, b] is initially re-affected
to these particles. In order to expect the preservation of the conservation
law, one can also re-affect the momentum as follows. First remark that each
event A; of section 3.1 is of type "X, € E;".

o The mass 11 ([a, b] N E3) and the momentum [, 5 uo(x)dpo(x) are
affected to a.

e The mass 1 ([a, b] N Ey) and the momentum f[a B uo(z)dpo () are
affected to a.

e The mass 1 ([a, b] N Ey) and the momentum f bjn, Uo(@)dpo () are
affected to b.

e The mass p ([a, b] N Ey) and the momentum f[m BB uo(x)dpo(z) are
affected to 3.

e The total mass and total momentum of o and ( are aggregations of
the masses and momenta extracted from turbulent intervals inside [a, f].

Algorithm : Extraction along the time and aggregation of mass and momen-
tum to « (resp. ) until it is hinted from the left (resp. the right).

The momentum transferred to turbulent particles can also be computed
from the flux A (14) and c.d.f Ny := N(-, 0) of Zy. Indeed, the turbulent
particles in [a, b] have the momentum
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No(b)
/ uo(Xo)dP = / uO(Mo_l(z))dz = / uO(Mo_l(z))dz
{a<Zo<b} {a<Ng <} No(a)

= A(Np(b)) — A(No(a™))

However, the velocity function induced by this momentum is not the cor-
rect one (ug) for the real dynamics of Z. Indeed, each turbulent parti-
cle of initial position a’ received the mass P(Zy = a’) and the momentum
i) Zo—a U0(Xo)dP. This induces the velocity

onza’ UO(XQ)dP
P(Zy=a)

= E[uo(X0)|Zo = a'] = vo(d)

So, A(Ny(b)) — A(No(a™)) = ]J\Z)O(f)) uo(Ny ' (2))dz is the momentum of an-

other sticky particles dynamics, the one from (Ny, vp).

Proof of proposition 4.1: Such a weak solution is an entropy solution
which is unique once imposed the initial datum Ny. Let  be the flow con-
structed from (Ny, vo) and define N; = N (-, t). Onehas N; ' = (N; ', t) for
all t. Since Z; = ¢(Zy, t), one has also N; ' = ¢(Ny', t). So (-, t) = ¢(-, 1)
on the support of the law of Z,, and one gets Z, = (%, t) for all ¢.

Now we consider the momentum which corresponds to the dynamics of
Z, the function B : (0, 1) 3+ [" vg(Ny ' (2))dZ. It is also the momentum
function of the sticky particles dynamics defined from (Ny, vy).

b) Proposition
Suppose that v = 7 (Zy) a.e. We have

N + 0, (A(N)) = -0, (C(N,t)) (16)
BN + 8, (B(N)) = 8, (D(N,t)) (17)

with, V (m,t) € (0,1) x Ry,

Clmt) = [ 80 (N7 ) L

Dlmt) = [ 80 (N 6)) L 100y

and Ao = ug — vg.

Surprisingly, as shown in the sequel, these results lead to the homogeneous
conservation law of the momentum. For all £, let 14 be the distribution of Z;,
i.e. (B) = P(Z; € B) for all Borel set B.
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For all ¢, let v, be the distribution of Z;, i.e. v,(B) = P(Z; € B) for all Borel
set B.

d) Corollary
Let us define 6(z, t) = E [Ao(Zy)|Z, = x, v = t| and consider the law Py, .,
of (Zy,v). If vy = 1(Zy) a.e, then we have

Notes

O(v) + O0x(u ) 0
O(uv) + 8, (v’v) = —0Pz, (18)
vy — Lo, u(-, vy — ugvp weakly ast — 0

The couple (v, u) is thus a weak solution of a pressure gas system of initial
datum is (v, ug).

Proof of proposition 4.2:  u(Z;, t) = F [UO(ZO) + AO(ZO)]lt<T(ZO)|Zt] Us-
ing w(Zo, t) == v9(Zo) + Do(Zo)Li<r(z,), We have, for any test function f on
R xR% :

/ / filw, ON(z, )dtde = E / / fulw, O H(x — Z,)dtdx
—E//fxt (Zy, )07, (dz)d /th, w(Zy, t)dt

_E/f Z, Yw(Zy, )t — —E//fx(:r, DH(z — Z)w(Zo, H)dtda

and
BHE = Z)o(z 0] = [ (NG ()
— A(N(z, 1)) + C(N(z, t),t) = B(N(z, t)) — D(N(z, t), t).
Proof of corollary 4.3
BH( — Z)u(Zo, 0] = EH(a - Z)uZ, 0] = [ uly, 0dwi(y),

0. [A(N(z, t)) + C(N(z, t), t)] = wul(z, t)du(z).

From previous proposition, one gets 0, M + u(x, t)dvy(x) = 0. Then, in order
to have the first equation of gas system, use the fact that
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3t8xM == 85,;8,5M

It remains the last equation. For any test function f on R} and any test
function g on R,

[ [ rsente, vanee = £ [ rogzz, a

= E/f Zt U() Z() dt+E/f Zt)Ao(Zo)]].t<7—(Z0)dt
= —E/f Zt; )Uo(Z(])dt

+E [f(fY)g(Z A0 ZO //f Zt Ao ZO)]lt<7—(Z0)dt

_ B / F(0)9 (26> (Z, )t + B [f(7)9(Z) Ao(Z0)]

This ends the proof.
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