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Abstract- This paper deals with the decomposition of an error vector to identify how the error 
vector  is related to the expected value of an observation vector under a general linear sample 
model since  the error vector is defined as the deviance of observation vector from the expected 
value. The main  idea of the paper is in that a random error vector can be decomposed into two 
orthogonal components  vectors; i.e., one is in a vector space generated by the coefficient matrix 
of the unknown parameter vector and the other is in orthogonal complement of it. As related 
topics to the decomposition, two things are discussed: partitioning an observation vector and 
constructing the covariance structure of it. It also shows the reason why a projection method 
would be preferred rather than a least squares method.         
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When there are some nonrandom quantities affecting a response variable, the analysis
of data can be done by using a general linear model. There are some notable references
about linear models such as [1-4]. In a general linear model, the response variable is
composed of two parts in general; one part is the deterministic portion as a linear function
of the unknown parameters of the independent or predictor variables and the other is the
random portion. When data are collected, the sample general linear model in matrix form
is applicable to the data. However, the matrix equation seems not to be useful for catching
any idea about the relationship between the matrix of predictors and error vector only with
the assumptions about the error vector; i.e., E(ϵ) = 0 and var(ϵ) = σ2 I. This requires the
error vector be the line segment from the origin, which is the point 0, to the point ϵ. The
general linear sample model in matrix form is

y = Xβ + ϵ (1)

where y denotes the n × 1 vector of observations, X denotes the n × p matrix of known
values, β denotes the p × 1 vector of unknown parameters and ϵ denotes the n × 1 vector
of unobserved random errors. The detailed discussion on random errors can be seen in
Searle[1]. The matrix equation (1) shows that the vector of observations is composed of
mean vector and error vector. When E(y) is a 0 or a mean vector acting like an origin, the
error vector satisfies the conditions of mean 0 and var(ϵ) = σ2 I. However, if E(y) = Xβ
then we might be interested in how to minimize the deviation vector, y = Xβ. The least
square method can be used as one of available methods for minimizing the error vector to
estimate the parameter vector β. However, the decomposition of an random error vector
can be a little bit more comfortable and effective than the minimization of error sum of
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Decomposition of the Random Error Vector of a General Linear Model

ϵ = y − Xβ is nonzero, ϵ is not in the column space of X. The related topics about these can
be seen in Graybill[5], Johnson[6] and so forth. Thus, when Xβ is used as a base for getting
a error vector of y that is required to have one with the shortest distance from the origin
among all the error vectors, we need to break up the error vector into a few component
error vectors. This is the main idea of this paper. First, we discuss how to decompose the
error vector. Secondly, we study the structure of error vector adjusted for the mean vector.
Thirdly, we find the structure of var(y) that is related to the error structure. Finally, we
discuss a method that is useful to calculate the sum of squares associated with the error
components.

In the matrix equation (1) let the mean vector Xβ be an nonzero vector. Then the
equation can be changed into

y = Xβ + ϵ (2)

= Xβ + ϵm + ϵr

where ϵm and ϵr are denoting two component vectors of the error vector. Since E(y) is Xβ,
ϵ can be broken down into two types of error vector; one type of error vector is the one that
is in column space of X, and the other has the characteristic orthogonal to an every vector
in a vector space generated by the columns of X, which is an orthogonal complement of
the column space of X. In matrix equation (2), y − Xβ defines the error vector based on the
mean vector Xβ assumed to have mean 0 and σ2 I in n dimensional space. Since the error
vector is defined as a vector of deviations from the mean vector of E(y), we can decompose
it into two component vectors depending on sources where the error vector is coming up;
i.e., ϵm or ϵr . Let’s rewrite the matrix equation (2) in terms of error vector from the mean
vector. Then,

y − Xβ = ϵm + ϵr (3)

= XX−ϵ + (I − XX−)ϵ

where ϵm = XX−ϵ, ϵr = (I − XX−)ϵ, and X− = (X ′X)−1X ′ denotes the Moore-Penrose
generalized inverse where (X ′X)−1 exists because X is a full column rank matrix. From
the equation (3), we can know that there are two types of error vector when a vector space
is decomposed into two orthogonal vector subspaces based on the mean vector, Xβ, of y.
The above equation shows that E(y − Xβ) = 0 and var(y − Xβ) = σ2 I. Here, the error
vector y − Xβ is assumed as a linear combination of two different types of error vector
each of which coming from two orthogonal vector subspaces. This is completely different
concept of an error vector from the one we have thought traditionally. A lot of stuffs can be
developed by the newly idea of viewing the error vector as the sum of a mean component
error vector and a residual component error vector. Here, two specific terms are used to
differentiate the types of error component: a mean component error for ϵm and a residual
component error for ϵr .

Since the structure of a random error vector in matrix model (1) is changed depending
on the structure of the mean vector, we are going to take a look at it with a bit simpler general
linear models. Consider a situation where measurements are measured as deviations from
the fixed size for products from a routine process. Let y be a random variable taking an
observation on a randomly selected product from a population of products. Data collected
from a sample of size n from the population can be arrayed in matrix form. The ith
observation of y is expressed as yi = 0 + ϵi for i = 1, 2, . . . , n, where ϵi’s are assumed to be

squares by the method of least squares in perspective that the structure of an random error
vector is primarily considered. This idea is applied to breaking up an error vector in model
(1). Since Xβ is in a specific vector subspace generated by the column space of X, and

II. Decomposition of Random Error Vector

III. Structure of Random Error Vector
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Decomposition of the Random Error Vector of a General Linear Model

independent with E(ϵi) = 0 and var(ϵi) = σ2. Applying the sample general linear model
(1) to the data, the model turns out to be

y = 0 + ϵ (4)

where y is in Rn denoting a Euclidean n-space, and E(y) = 0. Let V0 be the vector space
consisting only of 0 and let V1 be the orthogonal complement of V0. Since y is the sum of
two vectors such that one in V0 and the other in V1, 0′ϵ = 0 which shows the relationship
between mean vector and error vector of y; i.e., an orthogonal property. To express the
equation (4) as the second expression in (2), ϵ can be divided into two terms, ϵ0 and ϵ1
where ϵ0 denotes the error vector generated by 0 in a basis of V0, and ϵ1 denotes the error
vector generated by a basis set of V1. Now, the matrix equation can be expressed as

y = 0 + ϵ0 + ϵ1 (5)

where ϵ0 is in V0 of dimension 0, while ϵ1 is in V1 of dimension n. Adding the information
about the dimension of error component vectors, the equation (5) can be transformed into

y − 0 = Oϵ + (I − O)ϵ (6)

where O represents n × n zero matrix and I is n × n identity matrix. The equation shows
that ϵ from the origin of rank 0 can be decomposed into two orthogonal vectors one of
which being in the orthogonal complement of a vector space. In other words, this means
that ϵ is actually composed of a linear combination of two component vectors; i.e. ϵ0 and
ϵ1. It seems such valuable to grasp the structure of a random error vector for finding the
covariance structure of an observation vector. Now, we can study the error structure further
with a little bit general but still simpler model having just one quantitative variable as
an predictor. Consider the simple linear model with only one nonrandom independent
variable in addition to an intercept term; i.e., yi = β0 + β1X1i + ϵi, for i = 1, 2, · · · , n. We
rewrite this in vector and matrix form as

y = jβ0 + X1β1 + ϵ (7)

= Xβ + ϵ

where X = (j, X1) is an n × 2 coefficient matrix of β, β = (β0, β1)
′ is an n × 2 parameter

vector, j is an n × 1 vector of ones, and X1 is an n × 1 vector of quantitative values. ϵ is
an error vector assumed to have E(ϵ) = 0 and var(ϵ) = σ2 I. The equation (7) is different
from the one in (6) in that E(y) ̸= 0. This is not a surprising thing in a general linear model
other than that the mean vector Xβ belongs to the column space of X, Vm of dimension 2
which is thought to be a vector subspace in a Euclidean n-space, Rn. Since the mean vector
of y, Xβ, is in Vm, ϵ should be divided into two components: one in Vm and the other in
Vm

⊥ denoting an orthogonal complement of Vm in Rn; Vm ⊕ Vm
⊥ = Rn. The set of two

vectors in the matrix of X can be regarded as a basis set of Vm, which implies that Xβ is
in Vm. Hence, the error vector can be divided into two component vectors such that one
component in Vm and the other in Vm

⊥; that is, ϵ = ϵm + ϵr. When we add this kind of
information to the equation, the model will be

y − Xβ = ϵm + (I − ϵm)ϵ (8)

where y − Xβ ∈ Rn, ϵ∈Vm and (I − ϵm)ϵ in Vm
⊥. Both the set of the columns of a matrix

X of rank 2 equivalent to a basis for Vm and the set of the columns of a matrix XX− can
generate the same space, Vm. Hence, the equation (8) can be changed into

y − Xβ − XX−ϵ = (I − XX−)ϵ (9)
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Decomposition of the Random Error Vector of a General Linear Model

where XX−ϵ replaces ϵm and denotes the projection of ϵm onto a vector space, Vm, gener-
ated by two vectors j and x. The matrix equation (9) turns out to be

(I − XX−)ϵ = y − (Xβ + XX−ϵ) (10)

= (I − XX−)y

where Xβ + XX−ϵ = XX−y.

From the decomposition of a random error vector of a general linear sample model in
matrix form, we can identify that the matrix model (1) can be transformed into

y = Xβ + ϵ (11)

= XX−y + (I − XX−)y

where y is composed of two orthogonal vectors: i.e., (XX−y)′(I − XX−)y = 0. The model
equation (11) implies that all types of a general linear model can be represented by a sum
of two orthogonal vectors where one vector belongs to an vector subspace and the other
is in the orthogonal complement of the vector space generated by the coefficient matrix
of β: i.e., XX−y ∈ Vm, and (I − XX−)y ∈ V⊥

m . Here, the primary concern is actually
in structural aspects of an assumed linear model while the least square method focuses
only on getting the best approximate solution from a system of inconsistent equations
such that Xβ − y = ϵ by the method of minimizing the error sum of squares. Hence,
they are different approaches developed from different view of points. Now, consider the
calculation of var(y). The covariance matrix of y is

var(y) = var(XX−y + (I − XX−)y) (12)

= σ2XX− + σ2(I − XX−)

= σ2 I

From the above equation (12), var(y) can be obtained by identifying the linear transfor-
mations of y; i.e., the covariance matrix of y can be partitioned as the sum of component
covariance matrices, which can be done by ascertaining transformation matrices for com-
ponent vectors of y. There are some referable literature related to covariance matrix such
as Milliken and Johnson[7], Hill[8], and Searle[9]. Hence, it is essential to figure out the
coefficient matrices of component error vectors to find the projections of y onto the vector
subspaces generated by the orthogonal coefficient matrices. Discussions on coefficient ma-
trices are seen in Choi[10-12], where they are related to get nonnegative variance estimates.

As a result of the decomposition of e, we see y can be represented by the sum of two
orthogonal component vectors such as (11) where one is in a vector space covering the
E(y) and the other is in the orthogonal complement of it. This means that XX−y actually
defines a projection of y onto the vector space spanned by the XX− where X is coefficient
matrix of β and given as X = (j, X1). For the estimation of parameter vector β we can use
the mean part of the model in matrix form of (11). From the concept of a projection in a
vector space the projection of y onto a column space of X is as follows:

Xβ = XX−y (13)

where E(y) = Xβ. When XX−y is viewed as the orthogonal projection of y onto a
column space of X we can take β̂p = X−y as the value of β where β̂p is an notation for
differentiating from β̂ obtained from the normal equations. When the expression in (13)
is viewed as the system of equations, the best approximate solution to the system can be

IV. Covariance Structure of Vector of Observations

V. Projection Method
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Decomposition of the Random Error Vector of a General Linear Model

obtained as β̂ = X−y because the system of equations is inconsistent and X is n × 2 matrix
of rank 2. Although solutions of β can be obtained in different approaches, the results are
actually same. In a similar way that XX−y can be used for the estimation of β, a quadratic
form in y can also be used for the estimation of σ2. Here, the required quadratic form is
given as

Qr = y′(I − XX−)y (14)

where (I − XX−) is a symmetric and idempotent matrix of rank n − 2. Since (I − XX−)y
is regarded as a linear transformation of y, it has all the information about the residual
random error component, ϵr. Hence, the quadratic form Qr in y can be used to estimate
the variance σ2. Taking the expectation of Qr is given as

E(Qr) = E(y′(I − XX−)y) (15)

= σ2tr(I − XX−) + (Xβ)′(I − XX−)Xβ

= σ2(n − 2)

where tr(·) means trace of a square matrix denoted by (·), which is defined to be the sum
of the diagonal elements of the square matrix. Some theorems and properties of trace
can be seen in Graybill[2]. As an estimate of σ2 from the equation (15), σ̂2

p can be taken
as Qr/(n − 2) which can also be obtained by the least square method when there is no
normality assumption for ϵ. Even though those two procedures have the same result, it
should be noticed they are basically approaching from different view of point; that is, one
is from the decomposition of an error vector, and the other is from the minimization of
error sum of squares.

As for an example of a simple linear model, we consider following data from Krumbein
and Graybill[13]. The data are assumed to satisfy the model yi = β0 + βX1i + ϵi, for
i = 1, 2, · · · , 10, where ϵi are independent and identically distributed N(0, σ2).

Krumbein and Graybill’s Data[13].

xi 550 200 280 340 410 475 160 380 510 510
yi 200 50 60 140 130 180 20 120 190 160

For the estimation of two unknown parameters, β0 and β, we can get β̂p by multiplying
(X ′X)−1X ′ on both sides of the equation (13), which is given as:

(X ′X)−1X ′Xβ = (X ′X)−1X ′XX−y (16)

β̂p = (X ′X)−1X ′y

=

(
0.982060878 −2.312086e − 03
−0.002312086 6.060514e − 06

) (
1250

550500

)
=

(
−45.2273450

0.4462054

)
Denoting ˆβ0p, and β̂p as estimates of β0 and β respectively, ˆβ0p = −45.2273450 and
β̂p = 0.4462054. Least squares estimates are given as β̂0 = −45.227 and β̂ = 0.446. For the
estimation of σ2, we can get an estimate as:

σ̂2
p = y′(I − XX−)y/8 = 2398.13/8 = 299.7663 (17)

where (I − XX−) is the 10 × 10 matrix of rank 8. As an estimate of σ2 denoted by σ̂2
p is

given as 299.7663 which is the same as the least squares estimate σ̂2 = 299.766; hence,
ŷ = −45.2273450 + 0.446205X1.

VI. Example

Table 1: 

Notes



 
 

 
 

 
 
 
 
 
 
 
 
 
 

© 2023   Global Journals

1

Y
ea

r
20

23

36

           

           

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
X
III  
  
Is
s u

e 
  
  
 e

rs
io
n 

I 
 

V
II

  
 

(
F
)

Decomposition of the Random Error Vector of a General Linear Model

The primary concern of the study is on the decomposition of an error vector in matrix
form of a general linear model. When ϵ is n × 1 vector, the usual assumptions for error
vector are sometimes given as E(ϵ) = 0 and Var(ϵ) = σ2 I. Under these assumptions,
an idea for breaking up the error vector lies on the thought of which the mean vector is
related to the error vector because the error vector is defined to be the deviation vector
from the mean of the model. When the error vector is decomposed into two orthogonal
components, it is shown that a projection can be defined from the decomposition of the error
vector. Hence, a partition of the vector of observations can be seen as the sum of vectors
which are orthogonal projections each other. The covariance matrix of y is partitioned
into two covariance matrices; that is, one for (XX−)y, and the other for (I − XX−)y. This
implies that the covariance matrix of a vector of observations can always be partitioned
into component matrices each of which corresponding to an orthogonal projection of y
respectively. From the decomposition of an error vector of a general linear model, we
derived two types of estimators; one is linear transformation of y for Xβ to estimate β and
the other is quadratic form in y for σ2. Partitioning of the covariance matrix can be useful
to ascertain the covariance matrix of each component projection. It is worth to note that
decomposition of an error vector is actually defines a projection of y onto a column space
of X and which is quite different approach from the least square method in a point of view
for an error vector.

Although the least squares method is very useful and accepted as one of well-known
methods for estimating the unknown parameters included in a linear model, it seems not to
be right for finding out whether there is any orthogonal property exists among errors. Since
the least squares method concentrates only on minimizing the sum of squares of deviations
of the observations from the expected values, it is not an appropriate method as a tool
for getting the information on an orthogonal property between the groups of errors. The
orthogonal property is extremely important in statistics especially in the analysis of variance
for getting nonnegative estimates for variance components. There are lots of interesting
papers[14-20] related to the negative estimates of variance components seemed to be caused
by overlooking the orthogonality. So, it is emphasized that the orthogonal property can be
found by the decomposition of the random error vector. Hence, the procedure discussed
on this paper is distinct from any other methods for estimating the unknown parameters in
a general linear model.
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